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Abstract: Nucleic acid secondary structure models usually exclude pseudoknots due to the difficulty of treating these
nonnested structures efficiently in structure prediction and partition function algorithms. Here, the standard secondary
structure energy model is extended to include the most physically relevant pseudoknots. We describe an O(N°) dynamic
programming algorithm, where N is the length of the strand, for computing the partition function and minimum energy
structure over this class of secondary structures. Hence, it is possible to determine the probability of sampling the lowest
energy structure, or any other structure of particular interest. This capability motivates the use of the partition function
for the design of DNA or RNA molecules for bioengineering applications.
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Introduction

The problem of predicting the minimum energy secondary struc-
ture of an RNA or single-stranded DNA (ssDNA) molecule has
been studied extensively for the past two decades. Secondary
structure is described by a list of base pairs i - j in which each base
appears at most once. Using a loop-based nearest-neighbor energy
function and experimentally derived parameters, numerous algo-
rithms have been implemented to predict the secondary structure
or structures that a given nucleic acid sequence will adopt. The first
dynamic programming algorithms for secondary structure predic-
tion were proposed by Waterman and Smith'- and Nussinov et al.?
In 1981, Zuker and Stiegler* introduced an improved dynamic
programming algorithm that explores all possible unpseudoknotted
secondary structures in O(N*) time, where N is the sequence
length. Several reviews describe subsequent progress on methods
for secondary structure prediction.”” In 1990, McCaskill® de-
scribed a different O(N*) dynamic programming algorithm for
computing the partition function of a given sequence over all
possible unpseudoknotted secondary structures. Both the Zuker
and Stiegler structure prediction algorithm and the McCaskill
partition function algorithm can be reduced to O(N?) complexity
using a simplified energy model.*® The partition function can be
used to derive thermodynamic properties of the equilibrium con-
formational ensemble including the base-pairing probability of any
two bases.®® As a result, the partition function holds promise as a
means of evaluating and improving sequence designs for mole-

cules that are intended to adopt a specified secondary struc-
ture, 'O

In the absence of pseudoknots, thermodynamic models for
nucleic acid secondary structure are based on a decomposition of
the base-pairing graph for a molecule into distinct loops that are
associated with empirically measured enthalpic and entropic terms
that depend on loop sequence, length and type.''? Starting with
the work of Tinoco,'* the development of these physical models
has involved the work of many researchers.>~” The canonical loop
types are illustrated in Figure 1, where the base-pairing graph
incorporates stacked bases, hairpin loops, a bulge loop, an interior
loop and a multiloop. Depicted as a polymer graph with the
polymer backbone drawn as a straight line and paired bases con-
nected by arcs, all of these loop types appear as nested structures
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Figure 1. Canonical loops of nucleic acid secondary structure: hairpin
loops (one closing base pair), stacked base pairs (two closing base
pairs with both loop sides of length zero), a bulge loop (two closing
base pairs with one loop side of length greater than zero), an interior
loop (two closing base pairs with both loop sides of length greater than
zero), and a multiloop (more than two closing base pairs). These loop
structures are all nested so there are no crossing arcs in the polymer
graph with the polymer backbone drawn as a straight line.

with no crossing arcs. The energy of the structure is the sum of the
energies of its constituent loops.

One deficiency in most RNA or ssDNA secondary structure
models has been the assumption that these structures do not
contain pseudoknots. Pseudoknots are formed when two base pairs
i-jandd - e, with i < d, fail to satisty the nesting property i <
d < e < j as illustrated in Figure 2. The omission of pseudoknots
from secondary structure models removes an exponentially large
subset of all possible secondary structures from consideration.
Pseudoknots are known to exist in ribosomal RNA, viral RNA and
a number of ribozymes.'> Currently, pseudoknots have been iden-
tified in over 200 naturally occurring RNAs, as cataloged in the
Pseudobase database.'® Pseudoknotted structures also arise in en-
gineering efforts to design new molecular structures and machines
using nucleic acids.'”

Pseudoknots present a major obstacle to the algorithms com-
monly used to predict RNA and ssDNA structures. Dynamic
programming approaches solve large problems by breaking them
up into smaller, self-contained subproblems. For example, to find
the minimum energy fold of a sequence containing N nucleotides,
Zuker and Stiegler’s algorithm® calculates the minimum energy
fold for each subsequence [i, j], forall 1 =i < j = N. Using the
standard energy model, in the special case where bases i and j are
paired, the assumption that there are no pseudoknots ensures that
this subproblem is self-contained; no base between i and j can
base-pair with anything outside of this region, and no secondary
structure outside of this region will affect the loop energy of this
subsequence. As a consequence, the minimum energy fold for this
region (still assuming i and j are paired) can be determined
independently of the rest of the sequence, and the solution can be
applied wherever this subsequence occurs. However, when
pseudoknots are allowed, forcing i to be paired with j is not
sufficient to define a self-contained subproblem, as neither the
structure nor the energy of the region between i and j is indepen-
dent of the rest of the sequence. Thus, to use a dynamic program-
ming algorithm for pseudoknots, simplifying assumptions about

the complexity of pseudoknots must be made, and additional, more
intricate recursions must be adopted.

Owing to these difficulties, alternative approaches have been
attempted for predicting pseudoknotted secondary structures. Max-
imum weighted matching'® has been applied to this problem using
a nonloop-based energy model. Heuristics have also been used to
include some pseudoknots in structure searches based on the
standard energy model.'® 22 However, there is currently no known
efficient algorithm that considers all possible secondary structures
and produces a minimum energy structure or the partition function.
In fact, Lyngso and Pedersen® and Akutsu®* proved that finding a
minimum energy structure among all possible pseudoknots is
NP-hard when using the standard nearest-neighbor energy func-
tion.

One strategy for bypassing the inherent intractability of a
complete search of secondary structure space is to limit the class of
pseudoknots to those that are physically most likely to occur. Rivas
and Eddy?® have attempted to do this by expanding the dynamic
programming scheme for structure prediction to include a re-
stricted set of pseudoknots. Owing to a dearth of experimental data
on pseudoknot energetics, Rivas and Eddy parameterize a plausi-
ble and computationally expedient energy function for
pseudoknots. Their algorithm is slower than Zuker and Stiegler’s
original dynamic program,® running in O(N®) time, but it does
successfully capture many possible pseudoknots. Akutsu** de-
scribes an O(N”) dynamic program for secondary structure pre-
diction over a different class of pseudoknots. Unfortunately, the
recursions defined by Rivas and Eddy and by Akutsu contain many
redundancies, and are hence unsuitable for partition function cal-
culations.

A recursion is redundant if a single secondary structure is
reached by multiple trajectories in the recursion process. For
structure prediction algorithms, redundancy is not a fundamental
problem; the goal is to evaluate the minimum energy structure, and
hence, it is inconsequential whether the same structure is examined
more than once (except for efficiency concerns). Partition function
algorithms determine a weighted sum of all configurations, so
repetition implies overcounting. The goal of the present work is to
design nonredundant pseudoknot recursions that allow for partition
function calculations on a restricted set of physically important
pseudoknots. The partition function algorithm can be modified in
a straightforward way to obtain an algorithm for computing the
minimum energy structure over the same class of secondary struc-
tures.

This article proceeds by summarizing the standard physical
model and introducing McCaskill’s partition function algorithm
for the unpseudoknotted case, which requires O(N*) computation
and O(N?) storage.® With the exception of interior loop terms, this

Figure 2. A sample pseudoknot with base pairs a - f and ¢ + h (with
a < c) that fail to satisfy the nesting property a < ¢ < h < f. This
leads to crossing arcs in the polymer graph.
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algorithm can be reduced to O(N?) following ideas presented by
McCaskill.® However, Lyngso et al.>® have shown that the com-
plexity of the interior loop evaluations can also be reduced to
O(N?) by exploiting certain features of the standard energy model.
Following a similar strategy, we present an O(N?) partition func-
tion algorithm for the unpseudoknotted case that requires no ap-
proximation to the standard energy model.

A pseudoknot energy model is then introduced that resembles
the standard multiloop treatment. A nonredundant O(N®) algo-
rithm requiring O(N*) storage is described that computes the
partition function for structures including the most common
pseudoknots in nature and in engineering applications. By increas-
ing the number of O(N*) storage arrays, the computational com-
plexity of the algorithm can be reduced to O(N°). Furthermore, by
generalizing the special interior loop treatment to the pseudoknot-
ted case, it is possible to further reduce the computational com-
plexity to O(N®) without approximation.

The dynamic programming algorithms are described using two
compatible representations. Recursion diagrams facilitate the in-
vention, modification, and interpretation of the algorithms by
illuminating the relationships between the various recursive quan-
tities. Each diagram corresponds to a mathematical recursion equa-
tion. For clarity and conciseness, we present these equations in the
form of compact pseudocode.

We perform a preliminary parameterization of our pseudoknot
model for RNA using 200 known RNA pseudoknots and 400
unpseudoknotted tRNAs. We then demonstrate the use of the
partition function as a tool for sequence design. Given a physical
model and a target secondary structure, we are curious whether it
is possible to select a sequence that will adopt the desired structure
with high probability. This issue is examined for the design of a
multiloop and a pseudoknot using the new pseudoknot model.
These case studies suggest that most sequences selected using the
standard approach of sequence symmetry minimization?’ do not
adopt the target secondary structure with high probability. How-
ever, by direct optimization of the probability using repeated
evaluations of the partition function, it is possible to obtain se-
quences that are predicted to fold to the target structure with high
probability.

Partition Function without Pseudoknots

Standard Energy Model

In the standard energy model for unpseudoknotted secondary
structures,'>'? a loop free energy G, is associated with each loop
L in a secondary structure s, so that the total free energy G, is

G, = G, (1
LEs

The partition function is then a weighted sum over the set of all
possible secondary structures S

Q — Z e*G,/RT (2)

SES

where R is the universal gas constant and 7 is the temperature.

A base pair d - e is interior to another base pairi - jif i <d <
e < j. In the standard energy model, the energy associated with an
empty subsequence [i, j] that contains no base pairs and is external
to all loops is assumed to be zero

G = 0. ©)

The energy associated with a hairpin loop closed by base pair
i+ j is represented by a two-dimensional array

G?;irpin (4)

that depends on sequence and loop size. The energy of an interior
loop defined by closing base pair i + j and an interior base pair
d - e is represented in a four-dimensional array

e )

that depends on sequence, loop size and loop asymmetry. Bulge
loops are treated as special cases of interior loops (where either
d=1i+ 1ore =j— 1). Stacked pairs are represented by interior
loops with bothd = i + 1 and e = j — 1. In treating multiloops,
it is impractical to incorporate sequence dependence for all of the
defining base pairs. This is true both because there is a lack of
experimental data and because the energy array would continue to
increase in size by a factor of O(N?) with the addition of each
interior base pair to the loop. Instead, the multiloop energetics are
approximated by the expression

G™ = o, + a,B + ;U (6)

where «, is the penalty for the formation of a multiloop, B is the
number of base pairs that define the multiloop (including the
closing pair i - j), and U is the number of unpaired bases in the
multiloop. This energy expression is illustrated in Supplementary
Material Figure S1. The total energy for a multiloop must be
introduced incrementally, as each interior base pair defining the
loop is encountered during the multiloop recursions. The form of
these incremental pieces of G™" will be stated as the recursions
are defined.

O(N*) Algorithm

To determine the partition function Q for an unpseudoknotted
strand of length N, McCaskill’s algorithm® starts by considering
all continuous subsequences of length / = 1 and explores all
subsequences of incrementally increasing length until / = N. The
O(N*) form of the algorithm requires the calculation and storage
of three terms Q,; ;, 07 ;» and Q7" for each subsequence. These
quantities ignore the portions of the structure that are exterior to
the subsequence [i, j].

O, ; represents the full partition function for subsequence [i, /]
and is defined recursively by the equation

Q=1+ ; Qi,d—lQZ,e @)
iSd;eSj
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Figure 3. O(N*) Algorithm: recursion for Q; j» the full partition
function for the subsequence [i, j]. Either the subsequence [i, j] is
empty with recursion energy G{7P¥ = 0, or there exists one or more
pairs with rightmost base pair d - e and recursion energy G¢3R*% = 0.

where Qf’  requires its own recursive definition and represents the
partition function for subsequence [i, j] assuming that i and j are
base-paired. The definition of Q; ; may be equivalently represented
by the recursion diagram of Figure 3. Recursion diagrams®® are a
useful tool for describing the relationships between recursive
quantities. A horizontal line indicates the phosphate backbone, a
solid curved line indicates that two bases are paired, and a dashed
curved line denotes a subsequence with terminal bases that may be
paired or unpaired. The letter under the curve matches the super-
script of the quantity defining the contribution (e.g., “b” corre-
sponds to Q). Shaded regions indicate portions of secondary
structure that are fixed at the current recursion level and contribute
a recursion energy to the partition function as defined by the
standard energy model (3)—(6). Unshaded regions under curves
have partition function contributions based on recursive quantities
previously evaluated for shorter subsequences.

In Eq. (7) and Figure 3, the first possibility is that the subse-
quence [i, j] is empty, contributing the term exp(— G;;"*/RT) =
1. Otherwise, there must exist a rightmost base pair d - e on the
subsequence [i, j] denoted by a solid b-curve with an associated
partition function contribution given by a previous evaluation of
Qf,yg. The term rightmost implies that no other base on the subse-
quence [e + 1, j] is involved in a base pair, so the shaded region
is associated with a recursion energy G¢75"; = 0. The subsequence
[i, d — 1] may, however, contain additional base-pairs, and its
partition function is given by a previous evaluation of Q; ,_,.
Every possible base pair d * e that can be formed in subsequence
[, j1 must be considered as a possible rightmost pair, and for each
of these, the product Q,-,‘,,le’,’eexp(—GiTpl"yj/RT) is added to
Q,;- The reliance on the concept of a rightmost pair ensures that the
recursions are nonredundant and is a key distinction between
McCaskill’s partition function approach and the redundant energy
minimization recursions of Zuker and Stiegler,* Rivas and Eddy,*
and Akutsu?* (the use of a leftmost extremal convention is equally
valid).

The above recursion relied on the calculation of Qﬁf J» Tepre-
senting the partition function for subsequence [i, j] assuming i and
J are base-paired. This quantity is defined by the recursive equation

0! = exp(—GM™™RT) + . exp(—GM™/RT)Q},

d,e
i<d<e<j
+ E Q?’H.d—lQZ,eeXp{_[al + 20, + a3(j — e — 1)J/RT},
i<dd%ee<j

(®)

or equivalently by the recursion diagram of Figure 4. Although
similar in spirit, there are important differences from the recursions
for Q, ; defined above. First, because i and j are paired, the empty
recursion becomes a hairpin loop, with a recursion energy given by
(4) and a corresponding partition function contribution
exp(—Gy4™"/RT). Second, placing a rightmost pair d - e can lead
to two types of structures with very different energy functions. If
[i, jl contains only the single interior base pair d * e, then an
interior loop is formed, with a recursion energy given by (5). The
partition function contribution associated with the subinterval
[d, e] is given by a previous evaluation of Q% so that the total
contribution for each interior loop structure is exp(—Gif‘;fzi"}‘/
RﬂQZ,E. Otherwise, in addition to the rightmost pair d * e, there
must be at least one base pair in the interval [ + 1, d — 1], and
a multiloop is formed. This requirement is depicted in Figure 4 by
a dashed m-curve which implies that there is at least one base pair
in the subinterval that may or may not involve the terminal bases.
Rather than explicitly enumerating all possible base pairing sce-
narios for the interval [i + 1, d — 1] at this level in the recursion
(an approach that would increase the time complexity by a factor
of O(N?) for every additional base pair), the influence of these
additional pairs may be obtained more efficiently by evaluating the
recursive quantity Q7 , ;,_,. This is possible because the ener-
getic model for multiloops (6) depends only on the number of
interior base pairs and the number of unpaired bases and not on
simultaneous knowledge of all the base pairs that define the
multiloop. The multiloop recursion energy for this diagram is then
a;, + 2a, + a3(j — e — 1), accounting for initiating a
multiloop, the closing base pair i - j, the interior base pair d * e and
the number of unpaired bases j — e — 1. The corresponding
partition function contribution is Q7 ,_ le,yeexp{ —lo;, +
2000 + a5(j — e — 1)]/RT}.

The quantity Q' is used to examine all multiloop structures,

L
and is defined by the recursive equation

m = dE [exp{—[a, + as(d — i) + as(j — €)VRT}O,

i=d<e=j

+ Qfd—lQZ,eeXP{*[az + as(j — e))/RT}] )

b
{4 recursion
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Figure 4. O(N*) Algorithm: recursion for Qf-’yj, the partition function

for the subsequence [/, j] assuming i and j are base-paired. Either the
subsequence [, j] is a hairpin loop with recursion energy G?j"pi", or
there exists one internal base pair d * e forming an interior loop with
recursion energy G;"}f{"f" or there are at least two interior base pairs
forming a multiloop with rightmost pair d - e and recursion energy
ap + 2a, + az(j —e — 1).
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Figure 5. O(N*) Algorithm: recursion for Q7" the partition function
for the subsequence [i, j] inside a multiloop when there is at least one
base pair in the subsequence. Either there is only one more base pair
d + e defining the multiloop and the recursion energy is o, +
oas(d — i) + as(j — e), or there is more than one pair with rightmost
pair d * e and recursion energy a, + as;(j — e).

or the recursion diagram of Figure 5. Again, we consider the
placement of a rightmost base pair d + e with partition function
contributions given by a previous evaluation of QZ,E~ Inside a
multiloop, there are exactly two possibilities. The pair d * e may
complete the definition of the multiloop, in which case the recur-
sion energy a, + as(d — i) + a;(j — e) accounts for the single
new pair and the remaining bases. Otherwise, there is at least one
more base pair in the subsequence [i, d — 1] to be accounted for
by a previous evaluation of Q7",_,. The recursion energy then
accounts for the new pair d * e and the newly identified unpaired
bases to give o, + as(j — e).

Pseudocode for the algorithm is shown in Figure 6, where the
recursion Egs. (7)-(9) lead to O(N*) computational complexity, as
reflected in the programming loops that are nested four deep to
compute Q, Q”, and Q™. Note that Q” must be computed prior to
Q and Q™ for each subsequence. The bounds for each program-
ming loop are chosen so as to exclude hairpins with fewer than
three unpaired bases. These sterically impossible structures have
infinite energies in the standard physical model, and so do not
contribute to the partition function.

Initialize (Q, Q%, Q™) // O(N?) space
Set all values to 0 except Q;.5—1 =1

forl=1,N
fori=1,N—-I+1
j=1i+l-1

// Qb recursion
Q?_’j = exp{fG’?aj'rp'"/RT}
for d = i+1,j—5 // loop over all possible rightmost pairs d-e
for e =d+4,5—1
QL 4= exp{— Ginfze??r/RT} Qie
Q= QUyumy Qe exp{—lon + 202 + a3(j—e—1)]/RT}
/] Q, Q ' recurswns
Qi,; =1 //empty recursion
for d = i,7—4 // loop over all possible rightmost pairs d-e
for e = d+4,j
Qij+t= Qia—1 nge
QY5 += exp{—[as + as(d—i) + as(j—e)l/RT} Q; ,
Q7 += Q7 Qh.. exp{—[az + as(j — ¢)]/RT}
//Partition function is Q1 ~

Figure 6. Pseudocode implementation of McCaskill’s O(N*) dy-
namic programming partition function algorithm for nucleic acids
without pseudoknots. Here, N is the length of the strand and [ = j —
i + 1 is the length of the substrand under consideration at any given
point during the recursive process. The recursions are described sche-
matically in Figures 3-5.

() recursion Empty At least one pair

o

- . /

- - - s & Y -

i i dd i

Figure 7. O(N®) Algorithm: recursion for Q; > the full partition
function for the subsequence [i, j]. Either the Gubscquence [i, j] is
empty with recursion energy G577 = 0, or there exists one or more
pairs with a rightmost base pair that involves d and some other base on
the subinterval [d + 4, j].

O(N°) Algorithm

As noted by McCaskill in his original article,® this algorithm can
be improved to run in time O(N?) if the standard energy model for
interior loops is simplified and extra memory is used to store
intermediate values in computing @ and Q™. Lyngso et al.?®
exploit the form of the standard interior loop energy expression to
calculate interior loop contributions in O(N?). Following McCa-
skill® and Lyngso et al.,>® we now describe an O(N?) algorithm
that reproduces the results of the O(N*) algorithm without approx-
imation. The modifications necessary to obtain this improvement
will provide a useful precedent for achieving similar gains in the
pseudoknotted case.

Recursion diagrams are presented in Figures 7-10 and
pseudocode is shown in Figure 11. The recursion for Q,; ; de-
scribed in Figure 7 no longer explicitly considers a rightmost base
pair d - e. Instead, the secondary recursive quantity Qy ; is used to
evaluate all possible rightmost base pairs that can form with base
d. Note that the s-curve is solid on one half and dotted on the other,
because base d is known only to be paired to some base in the
interval [d + 4, j].

The recursions for Qb and Q;"; are modified in a similar way
in Figures 8 and 9 by mtroducmg the secondary recursion quantity
Q™ to compute the multiloop contributions. The Q7 ; and Q7%

{J;I' FECUTEION
/‘/-- -1.\\
I I \\ =
| \
| |
Hairpin loop Interior loop N \luhll o

. .

A | S22 |
L | EONT el

i+l a1 d 1

Figure 8. O(N>) Algorithm: recursion for Q? ' ;» the partition function
for the subsequence [i, j] assuming i and j are base-paired. Either the
subsequence [7, j] is a hairpin loop with recursion energy G?*‘,-i'pi“, or
there exists one internal base pair d * ¢ forming an interior loop with
recursion energy GI“(‘f;"a' or there are at least two interior base pairs
with rightmost base pair that involves d and some other base on the
subinterval [d + 4, j — 1]. The interior loop contributions are
obtained in O(N?) using the function “fastiloops” described in Sup-
plementary Material Figures S2 and S3.
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Figure 9. O(N*) Algorithm: recursion for Q7" the partition function
for the subsequence [i, j] inside a multiloop when there is at least one
base pair in the subsequence. One possibility is that there is only one
more base pair defining the multiloop. In this case, the unpaired
subinterval [i, d — 1] is associated with a recursion energy o;(d — i) and
the rightmost pair involves d and some other base on the subinterval [d +
4, j]. The other possibility is that there are at least two interior base pairs
with a rightmost base pair that involves d and some other base on the
subinterval [d + 4, j].

recursions have exactly the same structure but different recursion
energies, and are depicted by the recursion diagram in Figure 10.
As suggested by the solid and dashed halves of the s- and ms-
curves, this recursion considers all possible base-pairing partners
for base i. For Q7 ;, the bases on the subinterval [d + 1, j] are
external to all loops so the recursion energy is G™Y. For Q7";,
pair i + d is inside a multiloop and the bases [d + 1, j] are
unpaired bases inside a multiloop so the recursion energy is o, +
as(j — d).

Using these recursions, the pseudocode in Figure 11 now
describes an algorithm that is O(N?) with the exception of the
interior loop contributions, which are computed in the function
“fastiloops.” To this point, the interior loop energy has been
described by the black-box function :“jfi“;r of Eq. (5), whose four
subscripts imply an O(N*) computational complexity for comput-
ing the interior loop contributions to Q”. To reduce the complex-
ity, it will be necessary to examine the definition of :"f;“f
An interior loop with closing pair i « j and interior pair d - e has

sides of length
Li=d—i—1, Ly=j—e—1 (10)
so that the loop size and asymmetry may be expressed as

size=L, + L,, asymmetry = |L, — L,|. (11)

e pair

o)

i ] i d )

Figure 10. O(N?) Algorithm: recursion for 0} ; and Q"}, secondary

i,j°
partition functions for considering all p0551ble rlghtmost base pairs

that involve base i. For Q7 ;, the subsequence [d, j] is external to all
base pairs so the recursion energy is Gg1hY; = 0. For Q}", the

subsequence [d, j] is inside a multiloop so the recursion energy is
o, + as(j — d).

Initialize (Q, Q°, Q™, Q%, Q™" QI Q“ Q%?%) //O(N?) space
Sct all values to 0 cxcept Q451 =
for | =1, N // subsequence length
Initialize Q* = Q*1, QT = Q%, Q** =0
fort=1,N—-I+1
j=i+l-1
// Q" recursion
@1 = oxp(GH )
//Compute internal loop contributions to Q% in O(N?)
call fastiloops(4, 7,1, Q%, @%, @%%)
for d =i4+6,57—5

QE] += Q;+1,d71 QZ?;,I exp{—[a1 + a2]/RT}
// Q°, Q™ recursion
for d = i+4, j // loop over all possible rightmost pairs i-d
Qi; += QL d
ng 4= Q% 4 exp{—[az + a3z(j—d)]/RT}
// Q, Q’" recursions
Qi,; =1 //cmpty recursion
ford=14,5—4
Qz ]+ Q1 d—1 Q
Q" += oxp{—oald—il/RT} QJ':
QY += Q1 QY
//Partition function is Q1,n
Figure 11. Pseudocode implementation of an O(N>) dynamic pro-
gramming partition function algorithm for nucleic acids without
pseudoknots. Here, N is the length of the strand and [ =j — i + 1
is the length of the substrand under consideration at any given point
during the recursive process. The recursions are described sche-
matically in Figures 7-10. The function “fastiloops” computes the
interior loop contributions to fo ;forall i andjin O(N?) as detailed
in the pseudocode and schematic of Supplementary Material Fig-
ures S2 and S3.

Stacked bases correspond to the special case L, > =0 and
bulge loops to the case where either L, = 0 or L, = 0. In the
standard model, special energy expressions are used for stacked
pairs and bulge loops as well as for those interior loops with either
L, =3 or L, = 3. However, for all cases when both L, = 4 and
L, = 4, the form of the energy function becomes

— L)) + (i, j, i+ 1,j— 1)
+ yle,d,e +1,d— 1) (12)

;r:;eenjor =y(L + L) + 72(‘L1

corresponding to functions of loop size, loop asymmetry, and the
identity of the closing base pairs and nearest neighbors. We term
these structures “extensible loops” and the related structures in
which i and j are not required to base pair “possible extensible
loops.” For subsequences of length / = j — i + 1, we now define
the quantity

01, = > exp{—[i(s)

possible extensible loops
with size L1 +La=s

+ 'Y2(|L1 - L2|) + 'Yz(e, d’ e + 17 d - 1)]/RT}QZ€7

13)

where d and e are expressed in terms of L, and L, using (10). If
the nucleotides at i and j can form a base pair, then the partition
function contributions to Q associated with the extensible inte-
rior loops of size s can be computed as the product
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exp{=y;(i, j, i + 1, j — D)/RT} (14)

because all of the loops in the summation are closed by i - j. Note
that the value of j is implied by i and /. Whether or not i and j can
base pair, the quantity Q7 , remains useful because it satisfies the
following recursive extension property>®

Q?—l,ﬁz = Q}",SEXP{*[% (s+2)— ’Yl(S)]/RT} + eXP{*['Yl (s+2)
+ (L — L)) + y3le, d, e + 1,d — DYRTIQ, [6=s

+6XP{—[71(S+2)+Vz(|L1—Lz|)

p |Li=s—2

+vys(e, d, et 1, d—1)1/RT}Q; |i-4 (15)

Hence, possible extensible loops for which i and j cannot base pair
can still be used to compute the partition function contributions for
larger loops when the sequence does permit the closing base pair
to form. The first line of the extension property expresses the fact
that extending each side of the possible extensible loop by one
base requires a change in the size contribution from 7vy,(s) to
v,(s + 2) but otherwise leaves the asymmetry and interior base
pair contributions of each of these structures unchanged. The
subsequent lines add the new contributions from possible extensi-
ble loops of size s + 2 with either L, = 4 or L, = 4. These are
the only two possible extensible loops of length s + 2 that cannot
be obtained by extending smaller loops because these smaller
loops do not use the energy expression (12). Exploiting the exten-
sion property (15) and making use of (14), the contributions of all
extensible interior loops to each Qﬁ ; can be computed in O(N?).
For each of O(N?) closing i - j pairs, the remaining O(N) non-
extensible interior loops are evaluated as special cases using ex-
pressions contained in the black box function Gi"f,cﬁ“;' The total
complexity of the interior loop evaluations is thus O(N?). Using
these ideas, the algorithm for computing the interior loop contri-
butions in O(N?) is described in the pseudocode and schematic of
Supplementary Material Figures S2 and S3.

Minimum Energy Structure Modifications

Recurrence relations that generate each secondary structure ex-
actly once can be applied equally well to either energy minimiza-
tion or partition function calculations by treating the loop energies
differently in the two cases. When the partition function scheme
calculates the term exp(—G/RT) for a loop, the energy minimi-
zation scheme considers the loop energy G. When the exponenti-
ated energies are multiplied in the partition function algorithm, the
loop energies are added for energy minimization. Finally, when the
contributions from alternative structures are added in the partition
function scheme, a minimum is taken over these structures in the
energy minimization scheme. After fully applying the recursions,
the structure prediction scheme identifies the energy of the most
stable structure, while the partition function scheme produces a
sum with one exponentiated energy term for every possible struc-
ture.

(_-'I or (2 recursion

Empty At least one pair At least one pseudoknot

wzs b ) h 4

i i -1 e i

.'= d-14 e
Figure 12. O(N®) Algorithm: recursion for 0, ;» the full partition
function for the subsequence [i, j]. Either the subsequence [i, j] is
empty with recursion energy G777, or there is at least one pair (with
rightmost base pair d + ¢) with recursion energy G¢1R%, or there is at
least one pseudoknot (with rightmost pseudoknot filling the subse-
quence [d, e]) with recursion energy B, + G¢R%. The same recur-
sion is used (with modified recursion energies) for Q7 ;, the full
partition function for the subsequence [i, j] inside a pseudoknot. In
this context, either the subsequence [i, j] is empty with recursion
energy f35(j — i + 1), or there is at least one pair (with rightmost base
pair d + e) with recursion energy 3, + B5(j — e), or there is at least
one pseudoknot (with rightmost pseudoknot filling the subsequence
[d, e]) with recursion energy BY + 28, + B5(j — e).

Partition Function with Pseudoknots

Pseudoknot Energy Model

We now introduce an energy model for pseudoknots that is moti-
vated by the standard treatment of multiloops. The energy associ-
ated with an exterior pseudoknot is given by

GP® = By + BB’ + B U, 16)

where 3, is the penalty for introducing a pseudoknot, B” is the
number of base pairs that border the interior of the pseudoknot, and
U? is the number of unpaired bases inside the pseudoknot. If the
pseudoknot is inside a multiloop, B, is replaced by 87", and if the
pseudoknot is inside another pseudoknot, B, is replaced by 7.
Several features of this potential function are illustrated in Sup-
plementary Material Figure S4.

O(N?%) Algorithm

We now introduce pseudoknots into the partition function recur-
sions while maintaining the property that each structure contrib-
utes to the partition function exactly once. First, we consider a
relatively straightforward but inefficient approach that increases
the complexity of the algorithm to O(N®) and the storage require-
ments to O(N*).

In the unpseudoknotted case, Q, Q”, and Q™ were defined in a
nonredundant manner by using the extremal convention of intro-
ducing rightmost base pairs or b-curves. The same approach can be
followed for pseudoknots, introducing rightmost pseudoknots or
p-curves. In Figures 12-14, p-curves are introduced in a com-
pletely analagous manner to b-curves. Each p-curve represents the
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Figure 13. O(N®) Algorithm: recursion for Qf-f » the partition function
for the subsequence [/, j] assuming i and j are base-paired. Either the
subsequence [, j] is a hairpin loop with recursion energy G?f}i'pi“, or
there exists one internal base pair d * e forming an interior loop with
recursion energy G;“(‘f;“j" or there is more than one base pair or
pseudoknot (with rightmost pair d - e) forming a multiloop with
recursion energy «; + 2a, + a3(j — e — 1), or there is one
pseudoknot filling the subsequence [d, e] with recursion energy «, +

T+ 3a, + az(d —i — 1) + az(j — e — 1), or there is more than
one pseudoknot or base pair (with rightmost pseudoknot filling the
subsequence [d, e]) with recursion energy o, + BT + 3a, +

asz(j —e — 1).

boundaries of a pseudoknot, so d and e are paired to some bases in
the subinterval [d — 1, e — 1], but not to each other, as reflected
in the solid divided arc of the p-curve. Using a nonredundant
definition of the partition function contribution of the p-curve, O,
will ensure that the algorithm never visits a structure twice.

The quantity Q% is defined recursively by the diagram in
Figure 15, where the pseudoknot interior is specified. Arcs that
would cross in this diagram are reflected across the horizontal axis

&
0 recursicn Ome pair One base pair and mose

N o o o
L 2 - [ 3 -
J i d I

il -1 & i

Uine pseadoknot One pseudoknot and more

@ o o
’ T 1 e T |

i o e iti d-1 d e i
Figure 14. O(N®) Algorithm: recursion for 07"}, the partition function
for the subsequence [, j] inside a multiloop when there is at least one
base pair or pseudoknot in the subsequence. Either there is one final
base pair d * e in the multiloop with recursion energy a, + as(d —
i) + a5(j — e), or there is more than one base pair or pseudoknot
(with rightmost pair d * ¢) and recursion energy o, + os(j — e), or
there is one pseudoknot contributing two base pairs to the multiloop
with recursion energy B + 2a, + as(d — i) + a5(j — e), or there
is more than one pseudoknot or base pair (with rightmost pseudoknot
filling the subsequence [d, e]) and recursion energy B} + 2a, +

as(j — e).

{_1::'. TrECUrsion

—

Figure 15. O(N®) Algorithm: recursion for Q7 ;, the partition function
for the pseudoknot filling the subsequence [i, j]. The recursion energy
is 23,, where (3, is the penalty associated with each base pair border-
ing the interior of the pseudoknot.

for clarity. The structure of the spanning regions is described by
another recursive quantity Q¥, which requires four subscripts and
hence O(N*) storage. The three interior regions of the pseudoknot
are depicted as dashed z-curves to indicate that the right and left
bases may or may not be paired. The corresponding quantity Q< is
defined by exactly the same recursive process as Q (see Fig. 12)
but with recursion energies that reflect the fact that Q¢ is inside a
pseudoknot.

The gap partition function Qf , . ; is defined by the recursion in
Figure 16. There are two types of cases: either i - j and d - e are
the only spanning pairs or there is another outermost spanning pair
¢ * f inside the spanning region. In either case, if there is no
additional structure inside the spanning region then an interior loop
is formed. If there is at least one additional base pair or pseudoknot
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Figure 16. O(N®) Algorithm: recursion for Q% j» the partition
function for the pseudoknot spanning region filling subsequence [i, j]
excluding the gap [d + 1, e — 1]. There are two types of cases: i.
either i - j and d - e are the only spanning base pairs; ii. there is another
outermost spanning pair ¢ * f inside the spanning region. An interior
loop may be formed (with recursion energy i. G2 or ii. GI"5'") or
else a multiloop is formed due to at least one more base pair or
pseudoknot in the spanning region. There may be additional structure
to the left of the gap [with recursion energy i. a; + 2a, + a3(j —
e — 1)orii. a; + 2a, + a3(j — f — 1)], to the right of the gap
[with recursion energy i. a; + 2a, + a3(d — i — 1) orii. a; +
2a, + as(c — i — 1)], or on both sides of the gap (with recursion
energy i. or ii. a; + 2a,).
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Figure 17. O(N°>) Algorithm: recursion for O’ » the partition function
for the pseudoknot filling the subsequence [, ]] There is no recursion
energy associated with this diagram.

in the spanning region to the left, right, or on both sides of the gap,
then a multiloop is formed inside the spanning region.

The precise mathematical form of the recursions for the O(N®)
algorithm is given in Supplementary Material Figure SS5. The
computational complexity of the algorithm increases to O(N®)
because it requires the eight indices i, a, b, c, d, e, f, j to specify
the structure of the pseudoknot.

The pseudoknot recursion of Figure 15 describes pseudoknots
that have precisely two spanning regions (i.e., g-curves). Note that
pseudoknots may be nested within the interior (using z-curves) or
the spanning regions (using m-curves) of pseudoknots to as many
levels as are allowed by the length of the strand. This class of
pseudoknots includes 98% of the pseudoknots in the Pseudobase
database of known RNA pseudoknots.'*'® However, this class is
somewhat more restrictive than those treated by the redundant
structure prediction recursions of Rivas and Eddy*® and Akutsu®*
(see Supplementary Material Figure S6, for examples).

O(N°) Algorithm

The previous O(N®) algorithm can be improved to O(N°) com-
plexity by defining additional intermediate recursions and gener-
alizing the “fastiloops” approach to calculate interior loops inside
the spanning regions of pseudoknots. Noting the number of indices
on the recursion diagrams in Figures 12—16 or the nesting depth of
the loops in the O(N®) pseudocode of Supplementary Material
Figure S5, it is apparent that the two parts of the algorithm that
require modification are the calculation of Q”, which is O(N®),
and the calculation of Q%, which has four contributions that are
O(N®). The other recursions for Q, Q”, 0™ and Q° depicted in
Figures 12-14 are O(N*) and need not be modified. The challenge
is to find a way of specitying the pseudoknot internal structure in
stages so as to recurse over exactly the same set of nonredundant
structures using exactly the same recursion energies.

A new Q7 recursion for the pseudoknot interior is shown in
Figure 17. In comparison to Figure 15, the interior z-curve regions
of the pseudoknot have been subsumed into left and right gap
recursions Q%' and Q%”. Q%' has an outer spanning pair i * f and an
inner spanning pair between e and some base in the subsequence
[i + 1,d — 1]. O* has an outer spanning pair d * j and an inner
spanning pair with one end in the subsequence [d + 1, e — 1] and
the other in the subsequence [ f + 1, j — 1]. There are now five
subscripts corresponding to an O(N”) complexity.

The recursions for Q%' and Q%" are defined in Figure 18, where
the pseudoknot interior regions are specified by introducing z-
curves. The definitions of Q%" and Q%' were chosen specifically so
that Q%" could recurse to Q%’, which in turn, recurses to Q%. This
approach is more efficient in terms of operation count and storage
than alternative formulations in which Q%" recurses to Q¢ through
a different intermediate quantity.

The new O(N°) recursion for Q¢ is shown in Figure 19. The
only cases that require modification are the ones where there is an
additional spanning pair. If there is an interior loop, the use of the
black-box potential G;"C‘e;‘;" would lead to an O(N®) computational
complexity. However, a similar “fastiloops” treatment of “possible
extensible loops™” can be used to compute these contributions in
O(N®) as detailed in the pseudocode of Supplementary Material
Figure S7. For the three multiloop cases where there is an addi-
tional spanning pair, we introduce the left and right supplementary
gap recursions Q%’* and Q*"* defined in Figure 20. These recur-
sions define the spanning region using g-curves and introduce the
multiloop interior using m-curves.

It is critical to employ these recursions in the correct order so
that all quantities are available when needed. Pseudocode describ-
ing the mathematical formulation of this O(N®) algorithm for
computing the partition function of a nucleic acid strand is shown
in Figure 21. This is the main result of the article.

Methods

The partition function algorithms and minimum energy structure
prediction algorithms described in this article were implemented in
the C programming language using recursion energies based on
standard secondary structure energy models for unpseudoknotted
ssDNA and RNA.'>'3 A new pseudoknot energy model was
introduced and a preliminary parameterization for RNA is de-
scribed under Results.

One difference from the published form of the unpseudoknot-
ted RNA energy potential'? is the exclusion of the special bonus
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Figure 18. O(N®) Algorithm: recursions for Q%! s and OF% . the
partition functions for the left and right spanning regions of a
pseudoknot. The recursion energy for Q¢' is 8, corresponding to the
penalty for base pair d * f bordering the interior of a pseudoknot. There
is no recursion energy for Q%".
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for hairpins with GGG on the 5’ side of the stem because this term
violates the loop decomposition paradigm. Coaxial stacking
terms'> are also excluded, although these could be incorporated
with the same computational complexity by using additional mem-
ory. However, from the point of view of partition function redun-
dancy, it is unclear how to treat different coaxial stackings of the
same secondary structure.

All other energy terms in the standard model,'® including
dangle energies?® and penalties for helices not terminated by G * C
are included in the implementation. These terms are also applied to
the pseudoknot energy model. These details do not change the
structure of the recursions described in the pseudocode, and are
omitted for clarity. The dangle terms can be implemented exactly
without the use of additional recursions if helices are not allowed
to terminate with a G + U wobble pair (this is the method used for
the results presented here). This case can also be handled exactly
at the expense of storing and computing multiple copies of some of
the recursive quantities. Another alternative is to allow G - U
wobble pairs to terminate helices but to treat the associated dangle
energies approximately.

The structure prediction algorithms identify the energy of the
most stable structure. Once the minimum energy is known, a
separate backtrack routine is used to identify a corresponding
minimum energy structure.
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Figure 19. O(N®) Algorithm: recursion for Q% ;» the partition
function for the pseudoknot spanning region filling subsequence [i, j]
excluding the gap [d + 1, e — 1]. There are two types of cases: i.
either i - j and d * e are the only spanning base pairs, ii. there is another
outermost spanning pair ¢ * f inside the spanning region. All cases of
type i. are O(N*) and the treatment is identical to Figure 16. The
contribution for the interior loop case of type ii. may be calculated in
O(N°) using the function “fastiloops” detailed in the pseudocode of
Supplementary Material Figure S7. The three other type ii. cases
correspond to multiloops with at least one more base pair or
pseudoknot in the spanning region. There may be additional structure
to the left of the gap [with recursion energy o; + a, + a3(j — f —
1)], to the right of the gap [with recursion energy a; + a, + as(c —
i — 1)], or on both sides of the gap (with recursion energy a; + ).
The boundaries of the spanning regions are specified in the left and
right supplementary gap recursions Q% and Q%"*.
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Figure 20. O(N°) Algorithm: recursions for Q¢%, . and Q%7, .,
supplementary gap partition functions used in computing Q%. The
recursion energy for both diagrams is a,, corresponding to the intro-

duction of a base pair bordering the interior of a multiloop.

Results

Pseudoknot Model Parameterization

Although it is not the emphasis of the present work, we provide a
preliminary parameterization of our pseudoknot model for RNA
secondary structure by suggesting values for 8,, BY', B7, B,, and
Bs. We focus on RNA rather than ssDNA because of the large
number of pseudoknotted and unpseudoknotted secondary struc-
tures that are known for RNAs. The standard RNA parameters for
unpseudoknotted structures are taken directly from mfold3.1 by
Zuker and coworkers.'® In selecting values for the pseudoknot
parameters, there are two competing objectives. A negative control
monitors the introduction of spurious pseudoknots into structures
that are known to be unpseudoknotted. A positive control monitors
the correct prediction of pseudoknots in known pseudoknotted
structures. For both controls, the selected cases are divided into a
“working” set that is used during the parameter search and a “free”
set that is used to provide an independent evaluation of the pa-
rameters after the search is completed. Model parameterization is
performed by comparing the predicted minimum energy structure
with the experimentally determined secondary structure.

For the negative control, we rely on a database of over 3000
known tRNA sequences that are believed to be unpseudoknotted
based on experimental structures or sequence alignment.>® From
these sequences we randomly select a working set and a free set
with 200 sequences each. For the purposes of this study, the only
concern of the negative control was whether or not a spurious
pseudoknot is predicted in the lowest energy structure. Correct
prediction of the unpseudoknotted secondary structures for these
tRNAs lies in the purview of the mfold3.1 parameters,'> which
were not altered in this study. Two potential drawbacks to using
tRNAs as the negative control are that tRNAs all have roughly the
same cloverleaf structure, and that most tRNAs involve modified
nucleotides. The first problem may result in a bias towards param-
eters that preserve cloverleaf structures, while the second may
produce errors if the modified nucleotides significantly affect the
minimum energy fold. In the future, it would be advantageous if
secondary structure information were provided in RNA crystal and
NMR structure databases to provide more information for second-
ary structure studies.
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Initialize (Q, Q%, Q™,Q", Q%) // O(N?) space
Initialize (Q¢, Q9, Q97, Q91%, Q97 =, in sz) // O(N*) space
Set all values to 0 except Q; ;-1 = QZ i1 =
for [ = 1, N // examine subsequences of i increasing length
Initialize Q¥ =Q", Q*' =Q"?, Q" =0
for:=1,N—-I+1
J=i+l-1
/] Q° recursion
Q% ; = exp(—GIPR /RT)
for d = t+41,5—5 // all possible rightmost pairs d-e
for e =d+4,5-1 . )
Q7 += exp(~GITis /RT) Qf
@Y, += Q%1 g_y Q4. exp{—lo1 + 202 + as (j—e—1)]/RT}
for d = 1+1 7—9 // all possible rightmost pseudoknots filling [d, €]
for e = d+8,j—1
Grecurslou = a1 + /BIrL + 3&2 + ag (]7671>
QY += expl—[G™HN L oy (d=i-1]/RT} QY
Q?,J = QT gy QF exp{—GTwSion JRTY
// Q¢ recursion
for d =t¢+1,5—5 // set inner pair d-¢
fore=d+4,5-1
QL e, I+7 eXp( Glntcrlol /RT)
call fdbtll()opb(l,], 1, QY QI QTQ)
ford=1+6,7-5
for e = d+4 j—1
L= Ql+1 a1 exp{—[a1+2a2+az(j—e—1)]/RT}

fore=d+4,j—6
Q7 . += exp{—[o1+2a2+as(d—i—DI/RT} QTpy ,_,
for d =74+6,j—-10
fore=d+4,5 -6
Q“i, ]JF Q1+1 d—1 SXP{*[‘II+202]/RT}QF+1 i—1
for d =i4+7,j—6
fore=d+4,5 -2
for f=e+1,57—1
Q. = QM te.y xP{—lor+astasi—f—1)]/RT}
for d = 7.+2 i—1
for e = d+4 j—=7
forc=1i+1,d—1
QF .= oxp{—[ay faztas(e—i- DI/RTIQYY,
for d = i+7,j—11
fore=d+4,5-7
forc=1+6,d—1
QF g = Qi1 e 1 QTS oxp{~lon + az)/RT}
// Q9. Q9 recursions
forc=4i+5,j—6
ford=c+1,7-5
for e =d+4,5—-1

QY , A= cxp(—aa/RT) Q7. , Q7
for d = i+1,5;—-10
fore=d+4.5-6
for f =e+1,j—5
fgtf(, += Q?,d.eif QT4 exp(—a2/RT)
// Q%', QY recursions
ford=i+1,7-5
for f=d+4,5 -1
for (= =d, f 3
@l 1= @luy; Qhine owo(=5a/RT)
ford=14+1,7—4
fore=d+3,;-1
for f =e,j—1
zde += zdf]Qz.f—i
/] QF recursnon
for d =i+ 2,j—4 // set points left to right
for ¢ = max{d+2,i+5),j—3
for f=e+1,5-2
gl ”
QF += Q.z],dflic,f Qg,e—ljﬂ,,
/] Q, Q"’ QF recursions
Qb j =1 //empty recursion
Q7 ; = exp(—[Bs(j —i+1)]/RT)
for d =1,7—4 // all possible rightmost pairs d-e
fore =d+4.j
Qi j+= Qia—1 QZ,E.
QU += exp{—[oz +as (d—i) + a3 (j—e)]/RT} Q'
QY += Qa1 Q.. exp{—[e2 + a3 (j—e)]/RT}
Q) += QFy s @y, expl—[ds + Bs(i—e)]/RT)
for d =i, j—8 // all possible rightmost pscudoknots filling [d, ¢]
for e = d+8,j
Qi+= Qia—1QF _ exp{—B:1/RT}
QU += exp{—[B7 + 203 + a3 (d—i) + g (j— )] /RT}
QT += Q1 Qf . exp{—[67" + 2 +as (j—e)l/RT}
Qi ;= Qa1 Q. exp{—[8] + 202 + B2(j—e)]/RT}
//Partition function is Q1,~

codye,d

d e

For the positive control, we draw from a database of 212 RNA
pseudoknots, each described as a single stretch of consecutive
nucleotides.'>'® From this sample, we exclude the five structures
that contain chains of pseudoknots that cannot be modeled using
the present recursions (see, e.g., Supplementary Material Fig. S6).
From the remaining sequences, we randomly select a working set
and a free set of 100 pseudoknots each. To determine if the
predicted and experimental structures are equivalent, the structures
are reduced to a basic pseudoknot topology. This is accomplished
by considering only the base pairs in the spanning regions that
define the pseudoknot (i.e., the pairs in the Q* recursion that span
the gap). If both the experimental and the predicted structures have
the same pseudoknot topology, and the end of each spanning
region in the predicted structure overlaps with the corresponding
region in the experimental structure, then the prediction is consid-
ered a match.

As a starting point, we began by interpolating the parameters of
a recent pseudoknot model*® to obtain the partial specification:
B, + 2B, = 9.6 and B; = 0.15. After a search of the nearby
parameter space we selected the values

B,=9.6, Br=p;=150, B,=0.1, B;=

The success rates for the working set and the free set for both the
negative and the positive controls are summarized in Table 1. The
O(N®) structure prediction algorithm avoids introducing spurious
pseudoknots in 92% of the negative controls and correctly predicts
61% of the pseudoknots in the positive controls. By comparison,
running Rivas and Eddy’s structure prediction algorithm with their
parameters>> on the same sequences, there are no spurious
pseudoknots predicted for 98% of the negative controls, and the
correct pseudoknots are predicted for 43% of the positive controls.
Our experience suggests that for our model, there is a clear tradeoff
between avoiding spurious pseudoknots and predicting correct
ones. We chose to balance our parameters so as to obtain as many
correct pseudoknots as possible while maintaining at least a 90%
rate on the negative control.

Additional assistance in parameterizing the pseudoknot model
using computational or experimental studies would be most wel-
come. Modifications to the formulation of the pseudoknot energy
expression can be accommodated to the extent that the dynamic
programming framework allows.

Algorithm Complexity

The computational complexity of all four partition function algo-
rithms is demonstrated empirically in Figure 22. The O(N*) and

Figure 21. Pseudocode implementation of an O(N°) dynamic pro-
gramming partition function algorithm for nucleic acids with
pseudoknots. Here, N is the length of the strand and [ = j — i + 1
is the length of the substrand under consideration at any given point
during the recursive process. The recursions are described schemati-
cally in Figures 12—-14 and 17-20. The function “fastiloops” computes
certain interior loop contributions to Q¢ in O(N°) as detailed in the
pseudocode of Supplementary Material Figure S7.
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Table 1. RNA Pseudoknot Parameterization.
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Negative control

Positive control

Model Working Free Overall Working Free Overall
Dirks & Pierce 179/200 187/200 92% 60/100 61/100 61%
Rivas & Eddy* 195/200 197/200 98% 40/100 46/100 43%

O(N?) algorithms excluding pseudoknots and the O(N®) and
O(N?) algorithms including pseudoknots are each tested on three
random sequences for each of the depicted sequence lengths. The
slopes of the least-squares fits to this data closely follow the
expected theoretical complexity estimates with the exception of
the O(N®) algorithm, which scales somewhat worse than the
expected estimate. This effect occurs because some of the nested
loops that dominate the software execution time are shorter than
length N, so the slope is greater than the predicted slope for small
N. The complexity estimates for all four algorithms should in-
crease in accuracy as the length of the test molecules increases.

To illustrate the impact of lower computational complexity,
note that calculation of the unpseudoknotted partition function for
a sequence of length 500 requires roughly 120 s using the O(N?)
algorithm and 2900 s using the O(N*) method. Shorter test mol-
ecules must be considered for the algorithms that incorporate
pseudoknots. For a sequence of length 100, the O(N®) algorithm
requires roughly 80 s while the O(N®) algorithm requires roughly
1200 s. By comparison, the O(N®) structure prediction algorithm
of Rivas and Eddy?® runs in approximately 2300 s on sequences of
length 100. Complexity benchmarks were performed on a
700MHz Pentium Xeon processor.

Computational Complexity
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Figure 22. Comparison of the observed computational complexity for
O(N*) and O(N?) partition function algorithms without pseudoknots
and O(N®) and O(N®) partition function algorithms that include
pseudoknots. Each algorithm is run on three randomly selected se-
quences for each of the depicted sequence lengths N. Timings are
performed on a 700MHz Pentium Xeon processor.

Sequence Design

In designing nucleic acid structures for nanotechnology applica-
tions, the objective is to select sequences that adopt the desired
secondary structure with both high affinity and high specificity.
Currently, most designs are performed using sequence symmetry
minimization (SSM),?” an approach that has proven quite useful
for designing branched structures®' including DNAs with the
connectivity of a cube*? and a two-dimensional DNA crystal
lattice.!” SSM attempts to ensure specificity by prohibiting re-
peated subsequences (of a specified length) in double-stranded
regions of the target graph and by prohibiting repeated subse-
quences and their complements in single-stranded or branched
regions of the target graph. This simple and flexible strategy can be
employed for single or multiple strands with or without
pseudoknots. Affinity is optimized only weakly by ensuring com-
patibility with the base-pairing graph so it is unclear on theoretical
grounds whether SSM should produce sequences that adopt the
desired graph with high probability.

The partition function provides an ideal framework for evalu-
ating the performance of design algorithms. At equilibrium, the
probability of sampling a secondary structure s with energy G,
may be obtained from the partition function Q using

p(s) = exp(—G/RT)/Q. 17)

If the probability of adopting the desired graph is close to unity,
then within the context of the approximate physical model, the
sequence design achieves both high affinity and high specificity for
the target graph. This observation suggests that direct optimization
of the sequence so as to maximize the probability of folding to the
target graph represents an attractive design strategy.'®'' In the
past, this approach has only been applicable to the design of single
strands without pseudoknots due to the inability to compute the
partition function for more general cases.

Consider the sequence selection problem for the RNA mul-
tiloop of Figure 23. It is an interesting question as to whether it is
possible to design a sequence that adopts this entropically unfa-
vorable structure with high probability. In Figure 23, we compare
the probabilities of folding to the target graph for 1000 sequences
that satisfy the base pairing graph and are either random or satisfy
SSM for subsequences of length four. These probabilities were
computed using the O(N°) partition function algorithm including
pseudoknots. Approximately 94% of the random sequences and
87% of the SSM sequences fold to the desired secondary structure
with less than 10% probability. The best random design has a
probability of 61% and the best SSM design has a probability of
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Design Algorithm Performance Comparison
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Figure 23. RNA multiloop design test case with 64 nucleotides. The
multiloop comprises three closing base pairs separated by single
stranded regions of length six. The three stems contain six base pairs
each and the hairpins are of length five. The partition function is used
to evaluate the probability of folding to the desired secondary structure
for 1000 sequences that satisfy the base pairing graph and are either
random or satisfy perfect sequence symmetry minimization with a
word length of four. The highest probability achieved by a random
sequence is 61%, and the highest probability achieved by an SSM
sequence is 51%. Direct optimization of the probability using an
adaptive walk leads to a single sequence with a probability of folding
to the desired graph of 98%.

51%. Note that this performance assessment is based on the
stringent criterion that every nucleotide must exactly match the
target graph. In practice, molecules may still have utility even if
the secondary structure deviates to some degree from the desired
target.

To attempt to determine whether it is possible to design a
sequence that samples this multiloop structure with high probabil-
ity, we used an adaptive walk in sequence space to optimize the
probability directly. The sequence at a randomly selected position
was subjected to a random perturbation (matched by a compatible
mutation to a paired base) and the move was accepted if the
partition function indicated an increased probability of folding to
the target graph. After only a few hundred iterations, this proce-
dure yielded a sequence with a 98% probability of folding to the
intended secondary structure.

If the probabilities are instead evaluated using the standard
energy model'® and the O(N?) partition function algorithm with-
out pseudoknots, there is virtually no change in the histogram. The
maximum probabilities achieved by random and SSM sequences
remain 61% and 51%, respectively. The sequence obtained by an
adaptive walk maintains a probability of 98%.

As another interesting design test case, consider the RNA
pseudoknot of Figure 24. Approximately 98% of random and 93%
of SSM designs have less than a 10% probability of folding to the
target structure. The best random and SSM designs have proba-
bilities of 42 and 44%, respectively. Using an adaptive walk and

repeated evaluation of the partition function, we obtained a se-
quence that folds to the target graph with 98% probability.

Conclusions

We describe a nonredundant dynamic programming algorithm that
computes the partition function of an RNA or ssDNA strand over
secondary structure space. For the first time, this space is extended
to include the most physically relevant pseudoknots. The algorithm
has a time complexity of O(N°) and requires O(N*) memory,
where N is the length of the strand. An algorithm for identifying
the minimum energy structure is obtained by a straightforward
modification of the partition function algorithm. A preliminary
parameterization of the model is performed for RNA using 200
RNA pseudoknots and 400 unpseudoknotted tRNAs.

The partition function is useful for studying the conformational
ensembles of both naturally occuring and designed nucleic acid
sequences. Tests on an RNA multiloop and an RNA pseudoknot
indicate that sequences designed using the standard approach of
sequence symmetry minimization tend to adopt the target base
pairing graph with low probability. Sequences designed by direct
optimization of the probability demonstrated high affinity and
specificity for the target secondary structures. These conclusions
are subject to the limitations of the approximate physical model on
which the partition function is based. Future work will explore the
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Figure 24. RNA pseudoknot design test case with 54 nucleotides. The
pseudoknot comprises two stems of length six with two interior single
stranded regions of length 12 and one of length six. The partition
function is used to evaluate the probability of folding to the desired
secondary structure for 1000 sequences that satisfy the base pairing
graph and are either random or satisfy perfect sequence symmetry
minimization with a word length of four. The highest probability
achieved by a random sequence is 42%, and the highest probability
achieved by an SSM sequence is 44%. Direct optimization of the
probability using an adaptive walk leads to a single sequence with a
probability of folding to the desired graph of 98%.
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experimental behavior of sequences designed using the partition
function.
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