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Abstract: We describe an algorithm for designing the sequence of one or more interacting nucleic acid strands intended
to adopt a target secondary structure at equilibrium. Sequence design is formulated as an optimization problem with the
goal of reducing the ensemble defect below a user-specified stop condition. For a candidate sequence and a given target
secondary structure, the ensemble defect is the average number of incorrectly paired nucleotides at equilibrium evaluated
over the ensemble of unpseudoknotted secondary structures. To reduce the computational cost of accepting or rejecting
mutations to a random initial sequence, candidate mutations are evaluated on the leaf nodes of a tree-decomposition of the
target structure. During leaf optimization, defect-weighted mutation sampling is used to select each candidate mutation
position with probability proportional to its contribution to the ensemble defect of the leaf. As subsequences are merged
moving up the tree, emergent structural defects resulting from crosstalk between sibling sequences are eliminated via
reoptimization within the defective subtree starting from new random subsequences. Using a �(N3) dynamic program
to evaluate the ensemble defect of a target structure with N nucleotides, this hierarchical approach implies an asymptotic
optimality bound on design time: for sufficiently large N , the cost of sequence design is bounded below by 4/3 the cost
of a single evaluation of the ensemble defect for the full sequence. Hence, the design algorithm has time complexity
�(N3). For target structures containing N ∈ {100, 200, 400, 800, 1600, 3200} nucleotides and duplex stems ranging from
1 to 30 base pairs, RNA sequence designs at 37◦C typically succeed in satisfying a stop condition with ensemble defect
less than N/100. Empirically, the sequence design algorithm exhibits asymptotic optimality and the exponent in the time
complexity bound is sharp.
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Introduction

The programmable chemistry of nucleic acid base pairing enables
the rational design of self-assembling molecular structures, devices,
and systems.1–3 Here, we address the challenge of encoding equi-
librium secondary structure into primary sequence.

Secondary Structure Model

For an RNA strand with N nucleotides, the sequence, φ, is specified
by base identities φi ∈ {A,C,G,U} for i = 1, . . . , N (T replaces U
for DNA). The secondary structure, s, of one or more interacting
RNA strands4 is defined by a set of base pairs (each a Watson Crick
pair [A–U or C–G] or wobble pair [G–U]). A polymer graph for a
secondary structure is constructed by ordering the strands around a
circle, drawing the backbones in succession from 5′ to 3′ around the
circumference with a nick between each strand, and drawing straight

lines connecting paired bases. A secondary structure is pseudoknot-
ted if every strand ordering corresponds to a polymer graph with
crossing lines. A secondary structure is connected if no subset of the
strands is free of the others. An ordered complex corresponds to the
unpseudoknotted structural ensemble, �, comprising all connected
polymer graphs with no crossing lines for a particular ordering of
a set of strands. For a secondary structure, s ∈ �, the free energy,
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�G(φ, s), is calculated using nearest-neighbor empirical parame-
ters for RNA in 1 M Na+5, 6 or for DNA in user-specified Na+ and
Mg++ concentrations.7–9 This physical model provides the basis
for rigorous analysis and design of equilibrium base-pairing in the
context of ensemble �.

Characterizing Equilibrium Secondary Structure

By calculating the partition function10

Q(φ) =
∑
s∈�

e−�G(φ,s)/kBT

over �, it is possible to evaluate the equilibrium probability

p(φ, s) = 1

Q(φ)
e−�G(φ,s)/kBT ,

of any secondary structure s ∈ �. Here, kB is the Boltzmann constant
and T is temperature. The secondary structure with the highest prob-
ability at equilibrium is the minimum free energy (MFE) structure,∗
satisfying

sMFE(φ) = arg min
s∈�

�G(φ, s).

The equilibrium structural features of ensemble � are quantified by
the base-pairing probability matrix, P(φ), with entries Pi,j(φ) ∈
[0, 1] corresponding to the probability,

Pi,j(φ) =
∑
s∈�

p(φ, s)Si,j(s), (1)

that base pair i·j forms at equilibrium. Here, S(s) is a structure matrix
with entries Si,j(s) ∈ {0, 1}. If structure s contains pair i · j, then
Si,j(s) = 1, otherwise Si,j(s) = 0. For convenience, the structure and
probability matrices are augmented with an extra column to describe
unpaired bases. The entry Si,N+1(s) is unity if base i is unpaired in
structure s and zero otherwise; the entry Pi,N+1(φ) ∈ [0, 1] denotes
the equilibrium probability that base i is unpaired over ensemble �.
Hence the row sums of the augmented S(s) and P(φ) matrices are
unity.

The distance between two secondary structures, s1 and s2, is the
number of nucleotides paired differently in the two structures:

d(s1, s2) = N −
∑

1≤i≤N
1≤j≤N+1

Si,j(s1)Si,j(s2).

We also define the discrete delta function

δs1,s2 =
{

1, if d(s1, s2) = 0
0, otherwise

with respect to secondary structure.

∗For simplicity of exposition, we assume that there is a unique MFE
structure; only superficial changes are required if this is not the case.

Although the size of the ensemble, �, grows exponentially with
the number of nucleotides N ,11 the MFE structure, the partition func-
tion, and the equilibrium base-pairing probabilities can be evaluated
efficiently using �(N3) dynamic programs.4, 12–19

Objective Functions

For a given target structure, s, we formulate sequence design as
an optimization problem, minimizing an objective function with
respect to sequence, φ. Rather than seeking a global optimum, we
terminate optimization if the objective function is reduced below a
prescribed stop condition.

MFE Defect Optimization

One strategy is to minimize the MFE defect:14, 20–24

µ(φ, s) = d(sMFE, s)

= N −
∑

1≤i≤N
1≤j≤N+1

Si,j(s
MFE(φ))Si,j(s),

corresponding to the distance between the MFE structure sMFE(φ)

and the target structure s. The utility of this approach hinges on
whether or not the equilibrium structural features of ensemble � are
well-characterized by the single structure sMFE(φ), which in turn
depend on the specific sequence φ.24 If µ(φ, s) = 0, the target struc-
ture s is the most probable secondary structure at equilibrium; p(φ, s)
can nonetheless be arbitrarily small, because of the competition from
other secondary structures in �.

Probability Defect Optimization

To address this concern, an alternative strategy is to minimize the
probability defect:14, 24–26

π(φ, s) = 1 − p(φ, s),

corresponding to the sum of the probabilities of all nontarget struc-
tures in the ensemble �. If π(φ, s) ≈ 0, the sequence design is
essentially ideal because the equilibrium structural properties of
the ensemble are dominated by the target structure s. However,
as π(φ, s) deviates from zero, it increasingly fails to characterize
the quality of the sequence because the probability defect treats
all nontarget structures as being equally defective. This property is
a concern for challenging designs, where it may be infeasible to
achieve π(φ, s) ≈ 0.

Ensemble Defect Optimization

To address these shortcomings, a third strategy is to minimize the
ensemble defect:24

n(φ, s) =
∑
σ∈�

p(φ, σ)d(σ , s)

= N −
∑

1≤i≤N
1≤j≤N+1

Pi,j(φ)Si,j(s),
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corresponding to the average number of incorrectly paired
nucleotides at equilibrium calculated over ensemble �.

Comparing Formulations

We cast these three objective functions into a unified formulation to
highlight their differences:

n(φ, s) =
∑
σ∈�

p(φ, σ)d(σ , s),

µ(φ, s) =
∑
σ∈�

δσ ,sMFE d(σ , s),

π(φ, s) =
∑
σ∈�

p(φ, σ)(1 − δσ ,s).

Using n(φ, s) to perform ensemble defect optimization, the average
number of incorrectly paired nucleotides at equilibrium is evaluated
over ensemble � using p(φ, σ), the Boltzmann-weighted probabil-
ity of each secondary structure σ ∈ �, and d(σ , s), the distance
between each secondary structure σ ∈ � and the target structure s.
By comparison, using µ(φ, s) to perform MFE defect optimization,
p(φ, σ) is replaced by the discrete delta function δσ ,sMFE , which is
unity for sMFE and zero for all other structures σ ∈ �. Alternatively,
using π(φ, s) to perform probability defect optimization, d(σ , s) is
replaced by the binary distance function (1−δσ ,s), which is zero for
s and 1 for all other structures σ ∈ �. Hence, the MFE defect makes
the optimistic assumption that sMFE will dominate � at equilibrium,
whereas the probability defect makes the pessimistic assumption
that all structures σ ∈ � with d(σ , s) �= 0 are equally distant from
the target structure s. The objective function n(φ, s) quantifies the
equilibrium structural defects of sequence φ even when µ(φ, s) and
π(φ, s) do not. In the present work, we perform ensemble defect
optimization by minimizing n(φ, s) with respect to φ.

Prior Optimization Algorithms

Previous implementations of probability defect optimization14, 24, 25

and ensemble defect optimization24 employed single-scale muta-
tion procedures in which each candidate mutation was evaluated
on the full sequence using a �(N3) dynamic program to calculate
Q(φ) or P(φ), respectively. By comparison, more efficient hierar-
chical mutation procedures have been developed for MFE defect
optimization.14, 20–22 These methods perform a hierarchical decom-
position of the target structure, optimizing subsequences on a series
of growing substructures to reduce the number of times that sMFE(φ)

is calculated on the full sequence using a �(N3) dynamic program.
Furthermore, to reduce the total number of mutations that must be
evaluated, these methods guide the selection of candidate mutation
positions based on defects in the MFE substructure.14, 20–22

Algorithm

Here, we describe a sequence design algorithm that achieves high
design quality via ensemble defect optimization, and low design cost
via hierarchical structure decomposition and defect-weighted sam-
pling. For a given target secondary structure, s, with N nucleotides,

we seek to design a sequence, φ, with ensemble defect, n(φ, s),
satisfying the stop condition:

n(φ, s) ≤ fstopN ,

for a user-specified value of fstop ∈ (0, 1). Candidate mutations
are evaluated at the leaves of a binary tree decomposition of the
target structure. During leaf optimization, defect-weighted muta-
tion sampling is used to select each candidate mutation position
with probability proportional to its contribution to the ensemble
defect of the leaf. If emergent structural defects are encountered
when merging subsequences moving up the tree, they are elimi-
nated via defect-weighted child sampling and reoptimization. This
design algorithm is outlined below and detailed in the pseudocode
of Algorithm 1 (see Appendix).

Hierarchical Structure Decomposition

Prior to sequence design, the target structure s is decomposed into a
(possibly unbalanced) binary tree of substructures, with each node of
the tree indexed by a unique integer k. For each parent node, k, there
is a left child node, kl , and a right child node, kr . Each nucleotide
in parent structure sk is partitioned to either the left or right child
substructure (sk = sk

l ∪ sk
r and sk

l ∩ sk
r = ∅). Child node kl inherits

from parent node k the augmented substructure, sk
l+, comprising

native nucleotides, skl
native ≡ sk

l , and additional dummy nucleotides
that approximate the influence of its sibling in the context of their
parent (skl ≡ skl

native ∪ skl
dummy ≡ sk

l+).
In contrast to earlier hierarchical methods that decompose parent

structures at multiloops,14, 20, 22 our algorithm decomposes parent
structures within duplex stems. This approach is more generally
applicable to the design of duplex-rich engineered structures that
often contain no multiloops. Eligible split-points are those loca-
tions within a duplex stem with at least Hsplit consecutive base-pairs
to either side, such that both children would have at least Nsplit

nucleotides. If there are no eligible split-points, a structure becomes
a leaf node in the decomposition tree. Otherwise, an eligible split-
point is selected so as to minimize the difference in the size of the
children, ||sk

l |− |sk
r ||. Dummy nucleotides are defined by extending

the newly-split duplex stem across the split-point by Hsplit base pairs

(|skl
dummy| = 2Hsplit). See Figure 1 for an example of a hierarchical

structure decomposition.
For a parent node k, the sequence φk follows the same partition-

ing as the structure sk (φk = φk
l ∪ φk

r and φk
l ∩ φk

r = ∅). Likewise,
for a child node kl , the sequence contains both native and dummy
nucleotides (φkl ≡ φ

kl
native ∪ φ

kl
dummy ≡ φk

l+).

For any node k with sequence φk and structure sk , the ensemble
defect, nk ≡ n(φk , sk), may be expressed as

nk =
∑

1≤i≤|sk |
nk

i ,

where

nk
i = 1 −

∑
1≤j≤|sk |+1

Pk
i,jS

k
i,j
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is the contribution of nucleotide i to the ensemble defect of the
node. For a parent node k, the ensemble defect can be expressed as
a sum of contributions from bases partitioned to the left and right
children (nk = nk

l + nk
r ). For a child node kl , the ensemble defect

can be expressed as a sum of contributions from native and dummy
nucleotides (nkl = nkl

native + nkl
dummy). Conceptually, nkl

native, the con-
tribution of the native nucleotides to the ensemble defect of child
kl [calculated on child node kl at cost �(|skl |3)], approximates nk

l ,
the contribution of the left-child nucleotides to the ensemble defect
of parent k [calculated on parent node k at higher cost �(|sk |3)].
In general, nkl

native �= nk
l , because the dummy nucleotides in child

node kl only approximate the influence of its sibling (which is fully
accounted for only in the more expensive calculation on parent
node k).

The utility of hierarchical structure decomposition hinges on the
assumption that sequence space is sufficiently rich that two subse-
quences optimized for sibling substructures will often not exhibit
crosstalk when merged by a parent node. Our hierarchical mutation
procedure is designed to benefit from this property when it holds
true, and to eliminate emergent defects when they do arise.

Leaf Optimization with Defect-Weighted Mutation Sampling

The sequence design process is initialized by randomly specify-
ing the identities of all nucleotides in the leaf structures, subject
to the constraint that bases intended to be paired are chosen to be
Watson-Crick complements. At leaf node k, sequence optimization
is performed by mutating either one base at a time (if Sk

i,|sk |+1
= 1)

or one base pair at a time (if Sk
i,j = 1 for some 1 ≤ j ≤ |sk |, in

which case φk
i and φk

j are mutated simultaneously so as to remain
Watson-Crick complements).

We perform defect-weighted mutation sampling by selecting
nucleotide i as a candidate for mutation with probability nk

i /nk . A
candidate sequence φ̂k is evaluated via calculation of n̂k if the can-
didate mutation, ξ , is not in the set of previously rejected mutations,
γunfavorable (position and sequence). A candidate mutation is retained
if n̂k < nk and rejected otherwise. The set, γunfavorable, is updated
after each unsuccessful mutation and cleared after each successful
mutation.

Optimization of leaf k terminates successfully if the leaf stop
condition:

nk ≤ fstop|sk |
is satisfied, or restarts if Munfavorable|sk | consecutive unfavorable can-
didate mutations are either inγunfavorable or are evaluated and added to
γunfavorable. Leaf optimization is restarted from new random initial
conditions up to Mleafopt times before terminating unsuccessfully.
The outcome of leaf optimization is the leaf sequence φk corre-
sponding to the lowest encountered value of the leaf ensemble
defect nk .

Subsequence Merging and Reoptimization

After sibling nodes kl and kr have been optimized, parent node k
merges their native subsequences (setting φk

l = φ
kl
native and φk

r =
φ

kr
native) and evaluates nk to check the parental stop condition:

nk ≤ max
(
fstop

∣∣sk
l

∣∣, nkl
native

) + max
(
fstop

∣∣sk
r

∣∣, nkr
native

)
.

If this stop condition is satisfied, subsequence merging contin-
ues up the tree. Otherwise, failure to satisfy the stop condition
implies the existence of emergent defects resulting from crosstalk
between the two child sequences. In this case, parent node k initi-
ates defect-weighted child sampling and reoptimization within its
subtree. Left child kl is selected for reoptimization with proba-
bility nk

l /nk and right child kr is selected for reoptimization with
probability nk

r /nk . This defect-weighted child sampling procedure
is performed recursively until a leaf is encountered (each time using
partitioned defect information inherited from the parent k that initi-
ated the reoptimization). The standard leaf optimization procedure is
then performed starting from a new random initial sequence. The use
of random initial conditions during leaf reoptimization is based on
the assumption that sequence space is sufficiently rich that emergent
defects can typically be eliminated simply by designing a different
leaf sequence. Following leaf reoptimization, merging begins again
starting with the reoptimized leaf and its sibling. The elimination
of emergent defects in parent k by defect-weighted child sampling
and reoptimization is attempted up to Mreopt times.

Optimality Bound and Time Complexity

This hierarchical sequence design approach implies an asymptotic
optimality bound on the cost of designing the full sequence rela-
tive to the cost of evaluating a single candidate mutation on the
full sequence. For a target structure with N nucleotides, evalua-
tion of a candidate sequence requires calculation of n(φ, s) at cost
ceval(N) = �(N3). Performing sequence design using hierarchical
structure decomposition, mutations are evaluated at the leaf nodes
and merged subsequences are evaluated at all other nodes. For node
k, the evaluation cost is ceval(|sk |). If at least one mutation is required
in each leaf, the design cost is minimized by maximizing the depth
of the binary tree. Furthermore, at each depth in the tree, the design
cost is minimized by balancing the tree. Hence, a lower bound on
the cost of designing the full sequence is given by

cdes(N) ≥ ceval(N)

[
1 + 2

(
1

2

)3

+ 4

(
1

4

)3

+ 8

(
1

8

)3

+ . . .

]

or

cdes(N) ≥ 4

3
ceval(N).

Hence, if the sequence design algorithm performs optimally for large
N , we would expect the cost of full sequence design to be 4/3 the
cost of evaluating a single mutation on the full sequence. In practice,
many factors might be expected to undermine optimality: imperfect
balancing of the tree, the addition of dummy nucleotides in each
non-root node, the use of finite tree depth, leaf optimizations requir-
ing evaluation of multiple candidate mutations, and reoptimization
to eliminate emergent defects. This optimality bound implies time
complexity �(N3) for the sequence design algorithm.

Methods

Computational sequence design studies were performed using the
default algorithm parameters of Table 1. Design trials were run on

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 1. Hierarchical decomposition of a target structure. The split-
point within each parent structure is denoted by a red line. The dummy
nucleotides within each child structure are depicted in green. The
native nucleotides within each structure are depicted in black. Hsplit =
2, Nsplit = 20.

a cluster of 2.53 GHz Intel E5540 Xeon dual-processor/quad-core
nodes with 24 GB of memory per node.

Target Structure Test Sets

Algorithm performance was evaluated on structure test sets contain-
ing 30 target structures for each of N ∈ {100, 200, 400, 800, 1600,
3200}. An engineered test set was generated by randomly select-
ing structural components and dimensions from ranges intended to
reflect current practice in engineering nucleic acid secondary struc-
tures. A multi-stranded version was produced by introducing nicks
into the structures in the engineered test set. Each structure in a
random test set was obtained by calculating an MFE structure of
a different random RNA sequence at 37◦C. Figure 2 compares the
structural features of the engineered and random test sets. In gen-
eral, the random test set has target structures with a lower fraction of
bases paired, more duplex stems, and shorter duplex stems (as short
as one base pair). Additional structural features of the engineered
and random test sets are summarized in Supporting Information
Figure S1. The structure test sets are available as Supporting Infor-
mation. For the design studies that follow, new target structure test
sets were generated from scratch. The design algorithm was not
tested on these structures prior to generating the depicted results.

Other Algorithms

To illustrate the roles of hierarchical structure decomposition and
defect-weighted sampling in the context of ensemble defect opti-
mization, we compare our algorithm to three alternative algorithms
lacking either or both of these features:

Table 1. Default Parameter Values Used in Evaluating Algorithm
Performance for RNA Design.

Parameter Value

Hsplit 2
Nsplit 20
fstop 0.01
Mreopt 10
Mleafopt 3
Munfavorable 4

For DNA design, Hsplit = 3.

• Single-scale ensemble defect optimization with uniform mutation
sampling:24 The leaf optimization algorithm is applied directly on
the full sequence using uniform mutation sampling in which each
candidate mutation position is selected with equal probability
(pseudocode in Supporting Information Algorithm S1).

• Single-scale ensemble defect optimization with defect-weighted
mutation sampling: The leaf optimization algorithm is applied
directly on the full sequence (pseudocode in Supporting Infor-
mation Algorithm S2).

• Hierarchical ensemble defect optimization with uniform sam-
pling: The hierarchical algorithm is applied using uniform
mutation sampling during leaf optimization and uniform child
sampling during subsequence merging and reoptimization (pseu-
docode in Supporting Information Algorithm S3).

We also modified our algorithm to compare performance to algo-
rithms inspired by previous work:

• Single-scale probability defect optimization with uniform muta-
tion sampling:14, 24–26 This method seeks to design a sequence
such that the probability defect satisfies the stop condition
π(φ, s) ≤ fstop. For fstop ∈ (0, 0.5], satisfaction of this stop con-
dition is sufficient to ensure that stop conditions n(φ, s) ≤ fstopN
and µ(φ, s) ≤ fstopN are also satisfied. Optimization is performed
using a modified version of the leaf optimization algorithm
(with π(φ, s) taking the role of n(φ, s)) applied directly on the
full sequence using uniform mutation sampling (pseudocode in
Supporting Information Algorithm S4).

• Hierarchical MFE defect optimization with defect-weighted sam-
pling:14, 20–22 This method seeks to design a sequence such that
the MFE defect satisfies the stop condition µ(φ, s) ≤ fstopN .

Figure 2. Comparison of the structural features of the engineered and random test sets.

Journal of Computational Chemistry DOI 10.1002/jcc
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Optimization is performed using a modified version of our algo-
rithm with µk taking the role of nk (pseudocode in Supporting
Information Algorithm S5).

Implementation

The sequence design algorithm is coded in the C programming lan-
guage. By parallelizing the dynamic program for evaluating P(φ)

using MPI,27 the sequence design algorithm is capable of exploit-
ing multiple computational cores to reduce run time. For a design
job allocated M computational cores, each evaluation of Pk for
node k with structure sk is performed using m cores for some
m ∈ 1, . . . , M selected to approximately minimize run time based on
|sk |. Our sequence design algorithm is available online as part of the
NUPACK web server (www.nupack.org).28 NUPACK source
code may be downloaded for non-commercial research purposes.

Results

Our primary test scenario is RNA sequence design at 37◦C for target
structures in the engineered test set using a single computational
core. For each target structure in a test set, 10 independent design
trials were performed. Each plotted data point represents a median
over 300 design trials (10 trials for each of 30 structures for a given
size N).

Algorithm Performance and Asymptotic Optimality

Figure 3 demonstrates the typical performance of our algorithm
across a range of values of N using the engineered and ran-
dom test sets. Typical designs surpass the desired design quality
(n(φ, s) ≤ N/100) as a result of overshooting stop conditions lower
in the decomposition tree (panel a). For the engineered test set, typ-
ical design cost ranges from a fraction of a second for N = 100 to
roughly 3 h for N = 3200 (panel b). For small N , the design cost
for the random test set is higher than for the engineered test set,
becoming comparable as N increases. Typical GC content is less
than 60% (starting from random initial sequences with ≈50% GC
content; panel c). Remarkably, as the depth of the decomposition
tree increases with N , the relative cost of design, cdes(N)/ceval(N),
decreases asymptotically to the optimal bound of 4/3 (panel d).
Hence, for sufficiently large N , the typical cost of sequence design
is only 4/3 the cost of a single mutation evaluation on the root node.
Mutation evaluation has time complexity �(N3) and is empirically
observed to be approximately in the asymptotic regime (Supporting
Information Fig. S2). Hence, for our design algorithm, the empirical
observation of asymptotic optimality implies that the exponent in
the �(N3) time complexity bound is sharp.

Leaf Independence and Emergent Defects

Figure 4 compares the ensemble defect evaluated at the root node, to
the sum of the ensemble defects evaluated at the leaf nodes.† If the
assumption of leaf independence is valid (i.e., if dummy nucleotides
do a good job of mimicking parental environments and there is

†To avoid overcounting defects at the leaves, nk
i is counted in leaf k only if

nucleotide i is native throughout its ancestry.

minimal crosstalk between merged subsequences), we would expect
the data to fall near the diagonal.

For the engineered test set (panel a), we observe three striking
properties. First, for random initial sequences, the assumption of
leaf independence is well-justified despite the fact that the ensemble
defect is large. Second, leaf optimization followed by merging with-
out reoptimization (i.e., Mreopt = 0) typically yields full sequence
designs that achieve the desired design quality (n(φ, s) ≤ N/100 on
the root), with emergent defects arising only in a minority of cases.
Third, these emergent defects are successfully eliminated by defect-
weighted child sampling and reoptimization starting from new
random initial subsequences. The resulting full sequence designs
exhibit leaf independence and satisfy the stop condition.

By comparison, for the random test set, merging of leaf-
optimized sequences typically does lead to emergent defects in
the root node. Even in this case, our algorithm successfully elim-
inates emergent defects using defect-weighted child sampling and
reoptimization starting from new random initial subsequences.

Contributions of Algorithmic Ingredients

Figure 5 isolates the contributions of hierarchical structure decom-
position and defect-weighted sampling to our ensemble defect
optimization algorithm by comparing performance to three mod-
ified algorithms lacking one or both ingredients. All four methods
typically achieve the desired design quality, with hierarchical meth-
ods surpassing the quality requirement for the root node as a result
of overshooting stop conditions lower in the decomposition tree.
Hierarchical methods dramatically reduce design cost relative to
their single-scale counterparts (which are not tested for N = 800
due to high cost). Defect-weighted sampling reduces design cost
and GC content by focusing mutation effort on the most defec-
tive subsequences. For the single-scale methods, the relative cost of
design, cdes(N)/ceval(N), increases with N . For hierarchical meth-
ods, cdes(N)/ceval(N) decreases asymptotically to the optimal bound
of 4/3 as N increases. Our algorithm thus combines the design qual-
ity of ensemble defect optimization, the reduced cost and asymptotic
optimality of hierarchical decomposition, and the reduced cost and
reduced GC content of defect-weighted sampling.

Sequence Initialization

To explore the effect of sequence initialization on typical design
quality and cost, we tested four types of initial conditions (Fig. 6):
random sequences (default), random sequences using only A and T
bases, random sequences using only G and C bases, and sequences
satisfying sequence symmetry minimization (SSM).29‡ The desired
design quality is achieved independent of the initial conditions
(panel a), which have little effect on design cost (panels b and d).
Designs initiated with random AT sequences or with random GC
sequences illustrate that the ensemble defect stop condition can be
satisfied over a broad range of GC contents (panel c).

‡SSM is a heuristic that promotes specificity for the target structure by pro-
hibiting repeated subsequences of a specified word length (taken to be six
for our tests). For bases in single-stranded or branched regions of the target
structure, the complementary word is also prohibited.29

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 3. Algorithm performance and asymptotic optimality. a) Design quality. The stop condition is
depicted as a dashed line. b) Design cost. c) Sequence composition. The initial GC content is depicted
as a dashed line. d) Cost of sequence design relative to a single evaluation of the objective function.
The optimality bound is depicted as a dashed line. RNA design at 37◦C on the engineered and random
test sets.

Stop Condition Stringency

Figure 7 depicts typical algorithm performance for five dif-
ferent levels of stringency in the stop condition: fstop ∈
{0.001, 0.005, 0.01(default), 0.05, 0.10}. For each stop condition,
the observed design quality is better than required as a result of

overshooting stop conditions lower in the decomposition tree. Con-
sistent with empirical asymptotic optimality, the design cost is
independent of fstop for sufficiently large N (for the tested stringency
levels). It is noteworthy that the algorithm is capable of routinely
and efficiently designing sequences with ensemble defect less than
N/1000.

Figure 4. Leaf independence and emergent defects. Comparison of the ensemble defect evaluated at
the root node to the sum of the ensemble defects evaluated at the leaf nodes. a) Engineered test set.
b) Random test set. Dots represent independent designs. Symbols denote medians for each value of
N ∈ {100, 200, 400, 800, 1600, 3200} (symbol size increases with N). RNA design at 37◦C.
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Figure 5. Contributions of hierarchical structure decomposition and defect-weighted sampling to
algorithm performance. a) Design quality. The stop condition is depicted as a dashed line. b) Design
cost. c) Sequence composition. The initial GC content is depicted as a dashed line. d) Cost of sequence
design relative to a single evaluation of the objective function. The optimality bound is depicted as a
dashed line. RNA design at 37◦C on the engineered test set.

Figure 6. Effect of sequence initialization on algorithm performance. a) Design quality. The stop
condition is depicted as a dashed line. b) Design cost. c) Sequence composition. InitialGC contents are
depicted with dashed lines. d) Cost of sequence design relative to a single evaluation of the objective
function. The optimality bound is depicted as a dashed line. RNA design at 37◦C on the engineered
test set.
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Figure 7. Effect of stop condition stringency on algorithm performance. a) Design quality. Stop con-
ditions are depicted by dashed lines. b) Design cost. c) Sequence composition. The initial GC content
is depicted as a dashed line. d) Cost of sequence design relative to a single evaluation of the objective
function. The optimality bound is depicted as a dashed line. RNA design at 37◦C on the engineered test
set.

Figure 8. Algorithm performance on single-stranded and multi-stranded target structures. a) Design
quality. The stop condition is depicted as a dashed line. b) Design cost. c) Sequence composition. The
initial GC content is depicted as a dashed line. d) Cost of sequence design relative to a single evaluation
of the objective function. The optimality bound is depicted as a dashed line. RNA design at 37◦C on the
engineered test set.
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Multi-Stranded Target Structures

Multi-stranded target structures arise frequently in engineering prac-
tice.1–3 Figure 8 demonstrates that our algorithm performs similarly
on single-stranded and multi-stranded target structures.

Design Material

Figure 9 compares RNA and DNA design. DNA designs are per-
formed in 1 M Na+ at 23◦C to reflect that DNA systems are
typically engineered for room temperature studies. In comparison
to RNA design, DNA design leads to similar design quality (panel
a), higher design cost (panel b), and somewhat higher GC con-
tent (panel c), while continuing to exhibit asymptotic optimality
(panel d).

Sequence Constraints and Pattern Prevention

Molecular engineers sometimes constrain the sequence of
certain nucleotides in the target structure (e.g., to ensure
complementarity to a specific biological sequence), or pre-
vent certain patterns from appearing anywhere in the design
(e.g., GGGG). Our algorithm accepts sequence constraints
and pattern prevention requirements expressed using stan-
dard nucleic acid codes.§ Figure 10 demonstrates that the
prevention of patterns {AAAA,CCCC,GGGG,UUUU,KKKKKK,
MMMMMM,RRRRRR,SSSSSS,WWWWWW,YYYYYY} has little effect
on design quality or GC content (panels a and c), and somewhat
increases design cost while retaining asymptotic optimality (panels
b and d).

Parallel Efficiency and Speedup

The contour plots of Figure 11 demonstrate the parallel effi-
ciency and speedup achieved using a parallel implementation of the
design algorithm on M computational cores (efficiency(N , M) =
t(N , 1)/(t(N , M) × M), speedup(N , M) = t(N , 1)/t(N , M), where
t is wall clock time). Using two computational cores, the parallel effi-
ciency exceeds ≈0.9 for target structures with N > 400. Using 32
computational cores, the parallel speedup is ≈14 for target structures
with N = 3200.

Comparison to Previous Approaches

Figure 12 compares the performance of our algorithm to the perfor-
mance of algorithms inspired by previous publications. Single-scale
methods that employ uniform mutation sampling to optimize either
ensemble defect or probability defect achieve the desired design
quality at significantly higher cost and with significantly higher GC
content (panels a-c). Sequences resulting from probability defect
optimization typically surpass the ensemble defect stop condition
despite failing to satisfy the probability defect stop condition (panel
e), reflecting the pessimism of π(φ, s) in characterizing the equi-
librium structural defect over ensemble �. For either single-scale

§During leaf optimization, mutation candidates are not considered if they
would introduce a pattern violation. Pattern violations that arise during merg-
ing are eliminated via an adaptive walk in which mutations are accepted if
they reduce the number of pattern violations.

method, the relative cost of design, cdes(N)/ceval(N), increases with
N (panel d). Owing to the high cost of the single-scale approaches,
designs were not attempted for large N .

By contrast, hierarchical MFE defect optimization with defect-
weighted sampling leads to efficient satisfaction of the MFE stop
condition (panels b and f), exhibiting asymptotic optimality with
cdes(N)/ceval(N) approaching 4/3 for large N (panel d). Asymp-
totically, the cost of hierarchical MFE defect optimization relative
to hierarchical ensemble defect optimization is lower by a constant
factor corresponding to the relative cost of evaluating the two objec-
tive functions using �(N3) dynamic programs (panels b and d).
The shortcoming of MFE defect optimization is the unreliability
of sMFE(φ) in characterizing the equilibrium structural properties
of ensemble �.24 Despite satisfying the MFE defect stop condi-
tion, sequences designed via MFE defect optimization typically fail
to achieve the ensemble defect stop condition by roughly a fac-
tor of five for the engineered test set (panel a), and by roughly
a factor of 20 for the random test set (Supporting Information
Fig. S3).

Discussion

Our algorithm combines four major ingredients to design the
sequence φ of one or more strands intended to adopt target secondary
structure s at equilibrium:

• Ensemble defect optimization: The design objective function is
the ensemble defect, n(φ, s), representing the average number
of incorrectly paired nucleotides at equilibrium calculated over
the ensemble of unpseudoknotted secondary structures �. For a
target structure with N nucleotides, we seek to satisfy the stop
condition: n(φ, s) ≤ fstopN .

• Hierarchical structure decomposition: We perform a binary tree
decomposition of the target secondary structure, decomposing
each parent structure within a duplex stem, and introducing
dummy nucleotides to extend the truncated duplex in each child
structure to mimic the parental environment.

• Leaf optimization with defect-weighted mutation sampling: Start-
ing from a random initial sequence, sequence optimization is
performed in the leaf nodes using defect-weighted mutation sam-
pling in which each candidate mutation position is selected with
probability proportional to its contribution to the ensemble defect
of the leaf.

• Subsequence merging and reoptimization: As subsequences are
merged moving up the tree, a parent node initiates defect-
weighted child sampling and reoptimization within its subtree
only if there are emergent defects resulting from crosstalk
between child subsequences. Leaf reoptimization starts from a
new random initial sequence.

Using a �(N3) dynamic program to evaluate the design objec-
tive function, we derive an asymptotic optimality bound on design
time: for large N , the minimum cost to design a sequence with N
nucleotides is 4/3 the cost of evaluating the objective function once
on N nucleotides. Hence, our design algorithm has time complexity
�(N3).
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Figure 9. Effect of design material on algorithm performance. a) Design quality. The stop condition is
depicted as a dashed line. b) Design cost. c) Sequence composition. The initial GC content is depicted
as a dashed line. d) Cost of sequence design relative to a single evaluation of the objective function.
The optimality bound is depicted as a dashed line. RNA design at 37◦C and DNA design at 23◦ on the
engineered test set.

Figure 10. Effect of pattern prevention on algorithm performance. a) Design quality. The stop con-
dition is depicted as a dashed line. b) Design cost. c) Sequence composition. The initial GC content
is depicted as a dashed line. d) Cost of sequence design relative to a single evaluation of the objective
function. The optimality bound is depicted as a dashed line. RNA design at 37◦C on the engineered
test set.

Journal of Computational Chemistry DOI 10.1002/jcc



12 Zadeh, Wolfe, and Pierce • Vol. 000, No. 00 • Journal of Computational Chemistry

Figure 11. Parallel algorithm performance. a) Parallel efficiency and b) parallel speedup using
multiple computational cores. Dashed lines denote boundaries between nodes, indicating the use
of message passing. RNA design at 37◦C on the engineered test set.

Figure 12. Comparison to algorithms inspired by previous publications. a) Design quality.
The stop condition for ensemble defect optimization is depicted as a dashed line. b) Design
cost. c) Sequence composition. The initial GC content is depicted as a dashed line. d) Cost of
sequence design relative to a single evaluation of the objective function. The optimality bound
is depicted as a dashed line. e,f) Evaluation of each sequence design using three objective
functions. Stop conditions are depicted as dashed lines. Dots represent independent designs.
Symbols denote medians for each value of N ∈ {100, 200} (symbol size increases with N).
RNA design at 37◦C on the engineered test set.
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We studied the performance of our algorithm in the context of
empirical secondary structure free energy models6, 7 that have prac-
tical utility for the analysis30–34 and design35–39 of functional nucleic
acid systems. In particular, we examined RNA design at 37◦C on
target structures containing N ∈ {100, 200, 400, 800, 1600, 3200}
nucleotides and duplex stems ranging from 1 to 30 base pairs.
Empirically, we observe several striking properties:

• Emergent defects are sufficiently infrequent that they can typ-
ically be eliminated by leaf reoptimization starting from new
random initial sequences.

• It is routine to design sequences with ensemble defect n(φ, s) <

N/100 over a wide range of GC contents.
• Our algorithm exhibits asymptotic optimality for large N , with

full sequence design costing roughly 4/3 the cost of a single evalu-
ation of the objective function. Hence, the algorithm is efficient in
the sense that the exponent in the �(N3) time complexity bound
is sharp.

We modified our algorithm to compare performance to algo-
rithms inspired by previous work.14, 20–22, 24–26 In line with con-
ceptual expectations, we observe empirically that our algorithm
achieves lower design cost relative to single-scale probability or
ensemble defect optimization with uniform mutation sampling,
and higher design quality relative to hierarchical MFE defect
optimization with defect-weighted sampling.

To enhance the utility of our algorithm for molecular engineers,
our algorithm addresses several practical considerations, includ-
ing: sequence constraints, pattern prevention, multi-stranded target
structures, and parallel execution.
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Appendix

Algorithm 1. Pseudocode for hierarchical ensemble defect optimization with defect-weighted sampling. For a given target structure s, a designed sequence φ

is returned by the function call DesignSeq(∅, s, ∅, 1). During the recursive design procedure, φ, s, and n are local variables that are used to push sequence,
structure, and defect information between nodes in the tree. By contrast, nk,a provides global storage for the ensemble defect of each node k. For a given k,
the index, a = 1, . . . ,Depth(k), enables storage of the ensemble defect corresponding to the sequence for node k that has been accepted up to depth a in the
tree. Storage of these historical values eliminates unnecessary recalculation of ensemble defects during subtree reoptimization.

DesignSeq(φ, s, n, k)

a ← Depth(k)

if HasChildren(k)

mreopt ← 0
if n = ∅

φl ← DesignSeq(∅, sl+, ∅, kl)

φr ← DesignSeq(∅, sr+, ∅, kr)

else
UpdateChildren(k, a, a − 1)

child, φ ← WeightedChildSampling(φ, s, nl , nr)

φchild ← DesignSeq(φchild+, schild+, nchild+, kchild)

nk,a ← EnsembleDefect(φ, s)
UpdateChildren(k, a, a + 1)

while nk,a > max(fstop|sl|, nkl ,a
native) + max(fstop|sr |, nkr ,a

native)

and mreopt < Mreopt

child, φ̂ ← WeightedChildSampling(φ, s, nk,a
l , nk,a

r )

φ̂child ← DesignSeq(φchild+, schild+, nk,a
child+, kchild)

n̂ ← EnsembleDefect(φ̂, s)
if n̂ < nk,a

φ, nk,a ← φ̂, n̂
UpdateChildren(k, a, a + 1)

mreopt ← mreopt + 1
else

mleafopt ← 0
φ, nk,a ← OptimizeLeaf(s)
while nk,a > fstop|s| and mleafopt < Mleafopt

φ̂, n̂ ← OptimizeLeaf(s)
if n̂ < nk,a

φ, nk,a ← φ̂, n̂
mleafopt ← mleafopt + 1

return φnative

UpdateChildren(k, a, b)

if HasChildren(k)

nkl ,a ← nkl ,b

nkr ,a ← nkr ,b

UpdateChildren(kl , a, b)

UpdateChildren(kr , a, b)

OptimizeLeaf(s)

munfavorable ← 0
γunfavorable ← ∅
φ ← InitSeq(s)
n ← EnsembleDefect(φ, s)
while n > fstop|s| and munfavorable < Munfavorable|s|

ξ , φ̂ ← WeightedMutationSampling(φ, s, n1, . . . , n|s|)
if ξ ∈ γunfavorable

munfavorable ← munfavorable + 1
else

n̂ ← EnsembleDefect(φ̂, s)
if n̂ < n

φ, n ← φ̂, n̂
munfavorable ← 0
γunfavorable ← ∅

else
munfavorable ← munfavorable + 1
γunfavorable ← γunfavorable ∪ ξ

return φ, n
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