
Liquid Version Climber: an automated tool
for upgrading complex software systems

Christophe Pradal
UMR AGAP, CIRAD and Inria,

Montpellier, France
christophe.pradal@cirad.fr

Sarah Cohen-Boulakia
Inria, Montpellier, LRI CNRS 8623,

U.Paris Sud, France
cohen@lri.fr

Patrick Valduriez
Inria and LIRMM, Montpellier, France

Patrick.Valduriez@inria.fr

Dennis Shasha
Courant Institute, New York University, USA

Inria and LIRMM, Montpellier, France
shasha@cs.nyu.edu

Abstract
Suppose you are given a software system that is composed of a set
of packages each at a particular version. You want to update some
packages to their most recent versions possible, but you want your
software to run after the upgrades, thus perhaps entailing changes
to the versions of other packages. One approach is trial and error,
but that quickly ends in frustration. We advocate a provenance-style
approach in which tools like ptrace, reprozip, pip, and virtual ma-
chines combine to enable us to explore version combinations of
different packages even on a variety of platforms. Our approach
also contributes to reproducibility by allowing the replay of an ex-
periment from a given configuration of software and data package-
versions to work on a new configuration, thus helping to answer the
question of whether a particular result was an artifact of some logic
bug of some particular package-version. Because the space of ver-
sions to explore grows exponentially with the number of packages,
we have developed a memoizing algorithm that avoids exponential
search while guaranteeing an optimum version combination. We
have ideas for more efficient algorithms under certain assumptions.

1. Introduction
Software systems are increasingly complex and compositional.
This is particularly evident in the context of free and open source
software which may involve very large groups of independently
developed packages all evolving at different rates. End-user sci-
entists use software systems but they have neither the interest nor
the technical skill to engage in any of the continuous development
practices[5, 8] that are currently considered best practices. More
likely, they find themselves needing to update some software sys-
tem (often embedded in a workflow) whose original developer has

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

left. When they fail, they suffer from what has been called ”work-
flow analysis decay” [12] where scientific experiments relying on
intertwined packages cannot be executed even only a few months
after they have been developed.

Ideally, such researchers want to create a running systems with
certain chosen packages/data updated to recent versions. However,
updating one package may entail changes in the versions of other
packages. One approach to explore this package-version space can
be trial and error among version combinations, but that would be
unsustainably time-consuming given the number of combinations
to be tested. The goal of the Liquid Version Climber system is to
provide an intelligent automation of this version space exploration.

The remainder of this paper is organized as follows. Section
2 provides a motivating example. Section 3 describes the Liquid
Climber algorithm. Section 4 describes the implementation sub-
strate for protected execution of configurations. Section 5 shows
a case study. Section 6 places Liquid Climber within related work.
Section 7 concludes the paper.

2. Motivating Example
Consider a scientist Lucy who has designed a machine learning
experiment on image analysis in a given environment represented
by configuration C that uses Scikit-Learn version 0.8, Scikit-Image
version 0.4, SciPy version 0.10.1, NumPy version 1.4.1, and Python
version 2.6. Scikit-Learn and Scikit-Image depend on SciPy. Both
Scikit-Learn, Scikit-Image, and scipy depend on NumPy. All pack-
ages depend on Python. Configuration C works in that the exper-
iment of Lucy completes to execution with such versions of the
Scikit-Learn, NumPy and Python packages. Now, imagine that a
new version of Scikit-Learn appears (0.14) with new features that
Lucy would like to use. Lucy would thus like to upgrade Scikit-
Learn version 0.8 to 0.14. However, if Scikit-Learn is modified in
isolation (i.e., the other packages remain at the same versions as
in configuration C), the new configuration will not work because
Scikit-Learn 0.10 requires a newer version of NumPy (1.6.1 or
greater) which in turn depnds on Python 2.7.

Even if release notes (when they are available) provides some
dependency information, end-user scientist Lucy does not want
to become a goddess of version dependencies. Instead, she’d like
some easy-to-use software to figure out which versions to advance
to when advancing and then to produce a configuration she can use.
That’s what the Liquid Version Climber system aspires to be.

Building such a system entails achieving several capabilities:

1. To identify the packages and versions of the original working
configuration C.

2. To combine and link different versions of the packages from C
to form a new configuration C’ (a new set of package-versions).

3. To execute such a new configuration C’ and to detect where it
failed if it fails.

4. To use failure information to find the best possible configuration
efficiently.

3. Algorithm
In this section, we provide the main definitions underlying our
approach and then present the Liquid Climber algorithm.

3.1 Definitions
Queries Users express queries describing their desires (which
packages to upgrade) and constraints (hereafter called query con-
straints). Queries are of the form: maximize versions of the follow-
ing packages P1, P2, P3, ... Pk in that order (so it is more important
for the user to maximize P1 than P2 ...) with the constraint that Pi
should be either version 1 through 3 and Pj should be version 2
through 7.

Configurations. A configuration is a set of package-version pairs.
The initial configuration is given and works.

Definition: Two configurations are equal if they have the same ver-
sions for every package.

Definition: Suppose the packages to maximize are P1, ... Pk in
descending order of priority. We say that configuration C’ = P1.v1’,
P2.v2’, ..., Pk.vk’, ..., Pn.vn’ is lexicographically greater (>) than
C = P1.v1, P2.v2,, Pk.vk, ..., Pn.vn

if either P1.v1’ > P1.v1 or (P1.v1’ = P1.v1 and P2.v2’ > P2.v2)
or ... or (P1.v1’ = P1.v1 and P2.v2’ = P2.v2 and ... and Pk-1.vk-1’
= Pk-1.vk-1 and Pk.vk’ > Pk.vk)
Notice that lexicographic comparison is indifferent to packages that
need not be maximized.
Definition: A configuration ”works” if it executes to completion.

3.2 Assumption
In this paper, we limit ourselves to a single assumption to reduce
the need to do an exhaustive (and therefore exponential) search
in the space of package-versions. This gives us a polynomial but
somewhat expensive algorithm.

Pairwise/Global compatibility (pairwise compatible implies
global compatibility): An execution using configuration P1.v1,
, Pn.vn works if for all i, j (1≤ i,j≤ n) such that Pi calls Pj, no call
from Pi.vi to Pj.vj crashes.

3.3 LiquidClimber – basic
Goal of Algorithm. The LiquidClimber algorithm ends with a
configuration that is lexicographically maximum (e.g. maximize
packages P1, P2 in that order) and that satisfies the query con-
straints on versions (e.g. only use versions 4, 5, and 6 of package
P7). The query constraints are used to form sourcemap but play no
other role in the algorithm. The order of packages to maximize are
encoded in todolist.

The variable memo keeps tracks of calls that have failed, e.g.
Pi.vi calling Pj.vj has failed. If a configuration contains a pair of
package-versions that have failed, then that configuration will fail
so will not need to be executed.

current := package version pairs in the initial
configuration

todolist := packages requiring maximization in
descending order of priority

constraints := some query constraints on versions of
various packages

sourcemap := for each package the versions that
exist and satisfy query constraints

memo := calls for some Pi.vi to some Pj.vj that fail.
Initially this is empty

LiquidClimber()
for each package p in todolist in descending order of priority

update current to the highest version of p that works
use git binary on sourcemap
if current has less than highest version of p
in sourcemap then
versionstodo := find all greater versions

of p or major releases in
ascending order of version
number within sourcemap

for each v in versionstodo in order
temp := current with p set to v
ret := TryToMakeWork(p, temp)
if ret is not null then # we’ve had success

current:= ret

adjust temp to make it work
p is the package we’re trying to push
TryToMakeWork(p,temp)

execute temp unless we know from memo that temp will fail
if the execution of temp fails

Find the first call, say from Pi.vi’ to Pj.vj’,
that fails
Record in memo that Pi.vi’ calling Pj.vj’ fails
keepfixed := {x | x == p

or a package earlier than p in the todolist}
if Pi in keepfixed then

possible(Pi) := {vi’}
else

possible(Pi) := {all versions of Pi in sourcemap}
end if
if Pj in keepfixed then

possible(Pj) := {vj’}
else

possible(Pj) := {all versions of Pj in sourcemap}
end if
for each untried configuration c that can

be constructed from the cross-product of possible(Pi)
and possible(Pj) such that c does not
include some pair (Pk.vk, Pm.vm) in memo

ret := TryToMakeWork(p,c)
if (ret is not null) then return ret

end for
return null

else return temp # this configuration works

Theorem: The algorithm finds the lexicographically maximum
configuration that works.

Proof sketch: The query constraints are taken into account by
the construction of sourcemap. Todolist is ordered from most im-
portant package to least. Suppose that there is a another configura-
tion C=P1.v1”, P2.v2”,, Pn.vn” that is lexicographically greater
and that also works. We prove that P1.v1”, P2.v2”,, Pn.vn” must
have been tried by our algorithm.

Let Px be the first package in Q for which Px.Vx > Px.Vx. By
construction of versionstodo, Px.vx was tried by the algorithm. If
TryToMakeWork did not succeed to make it work, there was some
call from Pi.vi to Pj.vj that failed. But TryToMakeWork will try
all combinations of versions between Pi and Pj as long as those
combinations aren’t in memo and don’t affect previously optimized

packages or the package that is currently pushed (for which other
versions will be tried in the for each loop LiquidClimber). The
recursive call continues this exploration in a depth first manner.
Done.

Theorem: If there are a maximum of M versions per package
and n packages, then the number of tests≤ n× (n− 1)×M ×M

Proof: The number of possible calling pairs ≤ n × (n − 1).
Equality holds only in the case that every package calls every other
package. For each package Pi that calls package Pj, in the worst
case, we might have to test each version of Pi calling each version
of Pj. Each time such a call of the form Pi.vi calling Pj.vj causes an
error, we record that fact in memo. Once recorded, no configuration
that includes Pi.vi and Pj.vj will be executed. So, for every such pair
Pi and Pj, there need be at most M ×M executions. Done.

We have started here with the most minimal assumption.
Stronger assumptions could be considered (e.g., if Pi.vi calls Pj.vj
and fails, then any version greater than vi will fail on any version
less than vj). Considering such stronger assumptions is part of our
ongoing work.

3.4 LiquidClimber – optimized
Sarah: In this pass, we need to make our proof sketches solid proofs
in this section and elsewhere

The previous section assumed that there was no particular se-
mantics to version order. That of course is false in practice. In real
software, if Pi.vi calls Pj.vj and fails then Pj.vj is missing a function
that Pi.vi needs. Functions are ofren added to packages (Pj in this
case) as versions increase, but functions are normally not removed.
This model is encoded in the CUDF dependencies of the form Pi
version 8 depends on Pj version 10 or greater.1

Further we assume that newer versions of a caller will depend
on newer versions of a callee. To continue our example from the
previous paragraph, Pi version 9 depends on Pj version 13 or
greater is more reasonable than Pi version 9 depends on Pj version
7 or greater.

We incorporate all this in the following assumption.
Dependency monotonicity: Suppose that Pi.vi succeeds on a call

to Pj.vj. If Pi.vi’ depends on vj’ or greater of Pj and vi < vi’, then
Pi.vi will succeed on a call to Pj.y for all y ≥ vj’.

Lemma 1: If Pi.vi fails on a call to Pj.vj, then for all x ≥ vi, y
≤ vj, Pi.x will fail on a call to Pj.y.

Proof: Consider x > vi, for Pi.x to succeed on a call to Pj.y,
there must be an x ≥ x’ > vi and a y’ ≤ y such that Pi.x’ depends
on y’ or greater. But in that case by dependency monotonicity and
the fact that x ≥ x’ > vi and y’ ≤ y ≤ vj, Pi.vi will succeed on
Pj.vj. Contradiction. Done.

Our algorithm doesn’t know whether or not these dependencies
hold. However, if the (hidden) dependencies satisfy dependency
monotonicity, the following will achieve a lexicographically maxi-
mum configuration.

Algorithm: StrongMono LiquidClimber
Sarah: the simplest way to state the algorithm is as a variant of

the previous one with a few changes marked below as CHANGED

current := package version pairs in the initial
configuration

todolist := packages requiring maximization in
descending order of priority

constraints := some query constraints on versions of
various packages

sourcemap := for each package the versions that
exist and satisfy query constraints

1 NB. Consider a dependency set D = that Pi.1 calls and is successful
on Pj.1 and Pi.3 calls and is successful on Pj.3, but there are no other
compatibilities. D would not satisfy the CUDF model, because we wouldn’t
have Pi.1 being able to call Pj.3 successfully.

memo := calls for some Pi.vi to some Pj.vj that fail.
Initially this is empty

LiquidClimber()
for each package p in todolist in descending order of priority

update current to the highest version of p that works
use git binary on sourcemap
if current has less than highest version of p
in sourcemap then
versionstodo := find all greater versions

of p or major releases in
ascending order of version
number within sourcemap

for each v in versionstodo in order
temp := current with p set to v
ret := TryToMakeWork(p, temp)
if ret is not null then # we’ve had success

current:= ret

adjust temp to make it work
p is the package we’re trying to push
Knowing that a version will fail
makes use of strong monotonicity:
if Pk.vk calling Pm.vm fails then for all x >= vk and y <= vm,
Pk.x will fail on Pm.y.
TryToMakeWork(p,temp)

execute temp unless we know from memo and strong
monotonicity that temp will fail # CHANGED

if the execution of temp fails
Find the first call, say from Pi.vi’ to Pj.vj’,
that fails
Record in memo that Pi.vi’ calling Pj.vj’ fails
keepfixed := {x | x == p

or a package earlier than p in the todolist}
if Pi in keepfixed then

possible(Pi) := {vi’}
else

possible(Pi) := {all versions of Pi in sourcemap
that are less than or equal to vi} # CHANGED

end if
if Pj in keepfixed then

possible(Pj) := {vj’}
else

possible(Pj) := {all versions of Pj in sourcemap
that are greater than or equal to vj} # CHANGED

end if
for each untried configuration c that can

be constructed from the cross-product of possible(Pi)
and possible(Pj) such that c does not
include some pair (Pk.vk, Pm.vm) that strong
monotonoicity would eliminate based on memo # CHANGED

ret := TryToMakeWork(p,c)
if (ret is not null) then return ret

end for
return null

else return temp # this configuration works

Complexity: Every execution advances the version of at least
one package (either Pi or Pj) so complexity is linear with the
number of versions.

Lemma 2: Under the two assumptions of local/global and
strong monotonicity, any configuration that is ignored will fail.

Proof Sketch: The main thing to justify is that the set of ver-
sions that are still tried can be ignored. Let us say that Pi.vi has
called Pj.vj and fails. Then for vi’ ≥ vi, Pi.vi’ will also fail on Pj.y
for y ≤ vj, by lemma 1. Done.

Theorem: Under the two assumptions of local/global and strong
monotonicity, the algorithm finds the lexicographically maximum
configuration that works.

Proof Sketch: LiquidClimber will go in priority order through
the packages to be maximized. Any configuration that is skipped
will fail by lemma 2.

Overall Algorithm
Start with the strong monotonicity algorithm and record all

successful executions as well as all unsuccessful pairs (not the
inferred ones, just the ones directly tried).

Then if in the order of the todolist, we have achieved the maxi-
mum out of the first L ≤ K, take those as fixed and call the earlier
version of LiquidClimber.

So, if strong monotonicity holds, we have a linear algorithm,
but even if it doesn’t, we have an algorithm that works.

4. Implementation
Our implementation uses the general strategy of Figure 1.

• Execute the original configuration C and then wrap all relevant
parts of the execution into a virtual machine. We call such
a virtual machine frozen because all its versions are fixed in
binary. In addition, infer the package-versions used within the
execution. Reprozip allows us to do this by simply running the
execution.

• Abstract from the package-versions in the frozen virtual ma-
chine the ability to create virtual machines having arbitrary ver-
sions of those same packages. We call the result a liquid virtual
machine, because it has no fixed binding to particular versions
of packages. From the liquid virtual machine, multiple frozen
ones can be built each corresponding to a different configura-
tion by pulling versions from a repository like git.

• Take a query consisting of packages whose versions should be
maximized (in descending order of priority) and query con-
straints on the versions of some of these or other packages.
Use LiquidClimber to find the lexicographically maximum such
configuration and freeze it. Specifically, LiquidClimber will call
the operational subsystem with a configuration config to try.
The operational subsystem executes the following protocol.

Starting with the liquid virtual machine,
create an isolated environment (e.g. VirtualEnv)
for each package, version in config:

Checkout the package at a given version
Install this package with its dependencies in
the isolated environment (pip install)

Run the script using reprozip
if the script succeeds report success
else report failure and

the cause of failure (which call)

5. Experiments
Lucy wants to build a classifier to predict the value of a hand-
written digit from an image. To train the classifier, the MNIST
database of handwritten digits is used and the HOG features are
calculated for each feature of the database. Finally, a multi-class
linear SVM classifier is trained with the HOG features.

The Scikit-Image package is used to calculate the HOG features
while the Scikit-Learn package is used perform prediction and
training of a linear support vector machine. Execute the script under
Reprozip[4]. Reprozip infers an initial configuration containing
Scikit-Image version 0.4, Scikit-Learn version 0.8, NumPy, SciPy,
and Python.

Lucy wants to maximize NumPy, SciPy, Scikit-Image and
Scikit-Learn in that order. From github, the git repositories are

cloned. A liquidVM automatically extracts the list of commits and
tags of all the packages.

In our case, the number of commits for Scikit-Learn between
the version 0.8.0 and as of May 1, 2015 is 14812 and for Scikit-
image 5952. We choose to apply the LiquidClimber routine on the
tags rather than on the commits. There are only 33 tags of Scikit-
Learn since version 0.8 and 35 tags of Scikit-Image since version
0.4. These packages are tested with 23 versions of NumPy and 17
versions of SciPy.

For each configuration that LiquidClimber tests, a virtual envi-
ronment is created. Each package of the configuration is checked
out and installed in the virtual environment. Then the script or sci-
entific workflow is run using Reprozip. If the execution fails, Re-
prozip provides the two last packages that have been in conflict.
This information is returned to Liquid Climber to push the ver-
sion of the concerned packages. After 288 tests, the system reaches
NumPy : version 1.9.2 SciPy : version 0.15.1 Scikit-Image : ver-
sion 0.11.3 Scikit-Learn : version 0.16.0. Without any manual ef-
fort, Lucy now has a working configuration consisting of recent
versions of the packages she is interested in.

6. Related Work
Given a configuration of package-version pairs of a software sys-
tem, the general approach of Liquid Version Climbing is to up-
grade certain packages Pupgrade as much as possible given query
constraints C. The packages constrained in C may overlap in any
arbitrary way with the packages in Pupgrade.

The first step in our approach is to capture the initial configura-
tion. Most tools that do that use some variant of ptrace. The partic-
ular tool we use is ReproZip [4], though CARE [7] or CDE-SP [9]
could have been used with some more enhancements. These tools
find the configuration that was used in the initial execution. Our
software must make explicit the package-versions that are involved
and then ”liquify” the packages.

The next issue is to discover how much upgrading we can do of
the packages in Pupgrade. Many excellent package managers are
available such as Debian’s Apt (with front end tool Aptitude), and
the P2 tool in Eclipse [2] Package managers fetch components with
particular versions from remote repositories and perform the de-
ployment, aborting if there is a problem. Liquid Version Climber is
a tool that searches for configurations satisfying query constraints
C to optimize Pugrade. Thus, it could use these package managers
as components. The essential novelty of Liquid Version Climber is
that it explores the space of possible configurations without requir-
ing any a priori information about package-version compatibilities.

The project CUDF (Common Upgradeability Description For-
mat) [10] assumes an input of compatibility dependencies, e.g. P1
version 8 depends on P2 version 18 or above and P3 version 8 or
above etc. Given those, the system supports the user’s being able
to state a request of the form Px version greater than 4 and Py ver-
sion greater than 5. CUDF thus has similar objectives and a similar
query language to ours. (CUDF is based on the very nice theoreti-
cal work on dependency solving in [1] which we commend to the
reader.)

However, there are two fundamental differences between our
approach and CUDF. First, CUDF depends on having the CUDF
information input by someone or something. By contrast, Liquid
Version Climber discovers compatibilities through execution. Thus,
CUDF assumes the pre-existence of information that Liquid Ver-
sion Climber learns. Second, CUDF might be too conservative in
that Pi.vi (package Pi version vi) might be incompatible with Pj.vj,
but only for an obscure reason that is not relevant to a particular ap-
plication. Liquid Version Climber finds compatibilities empirically
with respect to the application of interest.

Figure 1. The steps of the operational subsystem: capture the execution of the initial configuration, liquify, fetch versions from git/svn etc.,
then deploy as directed by LiquidClimber.

Operationally, Liquid Version Climber follows a generate-and-
test paradigm. There is a long history of such work in large software
development projects using tools like git bisect to find logical bugs
or performance bugs in single packages[3, 6]. Our essential novelty
with respect to that work is that Liquid Version Climber works on
multiple packages that may have been developed independently.

Last but not least, because our audience consists of natural sci-
entists who have neither the desire nor the training to become soft-
ware developers, our tool is meant to support an interface in which
the user simply states goals and the system is guaranteed to achieve
the best possible outcome. In this way, it is completely compatible
with good scientific software practices, urged in for example in the
paper [11]: The software carpentry initiative recommends that sci-
entists who develop their own software follow some best practices,
such as writing readable well-formatted programs, using version
control, writing test cases, documenting and using components as
much as possible. Liquid Version Climber requires only the use of
components and some version control system. So Liquid Version
Climber would be a good tool for a would-be software carpenter.

7. Conclusion
Liquid Version Climber is a collection of techniques that incor-
porate provenance-inspired tools to help software system users
(such as natural scientists) take an existing working configuration
of package-versions and advance to more up-to-date working con-
figurations. The goal is to do this rationally and efficiently while
requiring minimal user effort (give a query and let it rip).

Our basic approach is to gather the package-versions of the ini-
tial configuration, abstract this so that arbitrary versions can be
fetched, establish an order of priority among packages, test con-
figurations and learn from success or failure which other configu-
rations to test. At the end we find a working configuration that is
lexicographically, (based on package priority) maximum.

Future work involves making this system more efficient and
easier to use.

Acknowledgments
This work was performed at the Institut de Biologie Computa-
tionnelle (www.ibc-montpellier.fr) and has been supported by the
RecProv Project. Support for Shasha through an INRIA Interna-
tional Chair and the U.S. National Science Foundation under grants
MCB-1412232, IOS-1339362, MCB-1355462, MCB-1158273,
IOS-0922738, and MCB-0929339. This support is greatly appreci-
ated.

References
[1] P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli. Dependency

solving: a separate concern in component evolution management.
Journal of Systems and Software, 85(10):2228–2240, 2012.

[2] D. Berre and P. Rapicault. Dependency management for the eclipse
ecosystem. IWOCE, 2009.

[3] T. Chen, L. I. Ananiev, and A. V. Tikhonov. Keeping kernel perfor-
mance from regressions. In Linux Symposium, volume 1, pages 93–
102, 2007.

[4] F. S. Chirigati, D. Shasha, and J. Freire. Reprozip: Using provenance
to support computational reproducibility. In TaPP, 2013.

[5] P. M. Duvall, S. Matyas, and A. Glover. Continuous integration:
improving software quality and reducing risk. Pearson Education,
2007.

[6] C. Heger, J. Happe, and R. Farahbod. Automated root cause isolation
of performance regressions during software development. In Proceed-
ings of the 4th ACM/SPEC International Conference on Performance
Engineering, pages 27–38. ACM, 2013.

[7] Y. Janin, C. Vincent, and R. Duraffort. Care, the comprehensive
archiver for reproducible execution. In Proceedings of the 1st ACM
SIGPLAN Workshop on Reproducible Research Methodologies and

New Publication Models in Computer Engineering, page 1. ACM,
2014.

[8] C. Larman. Agile and iterative development: a manager’s guide.
Addison-Wesley Professional, 2004.

[9] Q. Pham, T. Malik, and I. Foster. Auditing and maintaining prove-
nance in software packages. In Provenance and Annotation of Data
and Processes, pages 97–109. Springer, 2014.

[10] R. Treinen and S. Zacchiroli. Common upgradeability description
format (cudf) 2.0. The Mancoosi project (FP7), 3, 2009.

[11] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis,
R. T. Guy, S. H. D. Haddock, K. D. Huff, I. M. Mitchell, M. D.
Plumbley, B. Waugh, E. P. White, and P. Wilson. Best practices for
scientific computing. PLoS Biol, 12(1):e1001745, 01 2014.

[12] J. Zhao, J. M. Gomez-Perez, K. Belhajjame, G. Klyne, E. Garcia-
Cuesta, A. Garrido, K. Hettne, M. Roos, D. De Roure, and C. Goble.
Why workflows breakunderstanding and combating decay in taverna
workflows. In E-Science (e-Science), 2012 IEEE 8th International
Conference on, pages 1–9. IEEE, 2012.

