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Why Cyclic Peptides?

Cyclic peptide drug:
Cyclosporine (1.2 kDa)
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* Definition: A chain of 7+ amino acids
(residues), with the N- and C-termini

Small molecule drug:
connected to form a closed loop mall molecule drug

Aspirin (0.18 kDa)
e Why good:

o More rigid conformations and
resistance to degradation compared to Linear peptide drug:
linear peptides Bl\{gllrudln (2.18 kDa)

o Potentially superior binding affinity and
selectivity compared to small molecules

o Immune system (e.g. exopeptidase)
doesn’t recognize them as well as linear
peptide (especially when mixing L- with I |
D-). 1117




Cyclic Peptide Design Pipeline

¢, Y torsion angle variables Ramachandran space
180

120

Backbone search:
High dimensionality challenge

e For n-residue peptide, backbone has n pairs of
(¢, o) torsion angle variables
e FEach pair (¢, ¥) € Ramachandran space

e The search space grows exponentially with
peptide size
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Side-chain optimization:

exponential combinatorial problem

e There are 20 natural amino acids
e Sequence design has at least 20" choices

e Many more if allow non-canonicals (e.g., D- and
artificial amino acids)
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Prior Work: Physics-based design in Rosefta

Kinematic loop closure

Algorithm

« Backbone: Use kinematic loop
closure to algebraically solve the
cyclic constraint ']

» Side-chain: Use Monte Carlo
simulated annealing to minimize the
energy !

[1] D. Mandell, et al. Nature Methods, 6:551-552, 2009.

[2] A. Leaver-Fay, et al. Methods Enzymol., 487:545-574, 2011.
[3] P. Hosseinzadeh, et al. Science, 358:1461-1466, 2017.
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Pros Cons

« Design can include D-amino « Backbone sampling works efficiently
acids, which are more resistant only for 7-10 residues
to peptidase degradation « To exceed this size limit, researchers

use disulfide cross-links (11-26
residues B 4) or symmetry (15-24
residues )

Can design non-canonicals,
thus expanding chemical
diversity even more

[4] G. Bhardwaij, et al. Nature,538:329-335, 2016.

[5] V. Mulligan, et al. Protein Sci., 29:2433—-2445, 2020. 3/17



Prior: Deep-learning design led by AlphaFold

Macrocycle offset
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Algorithm Pros Cons
» Base on AlphaFold or RFdiffusion « Can design slightly larger sizes of « Trained on natural L-amino acids,
« Encode the cyclic backbone 7-16 residues " zl_d“e _tO_ SO
constraint into their amino acid Alphafold's protein training data - Not good for designing
relative position matrix « Can predict 12-39 residues Bl non-canonicals or mixed chirality

» Therefore: restricted design

search space
[1] S. Rettie, et al. bioRxiv, doi:10.1101/2023.02.25.529956, 2023.

[2] S. Rettie, et al. bioRxiv, doi:10.1101/2024.11.18.622547, 2024. 4/17
[3] C. Zhang, et al. Brief Bioinform., 25:bbae215, 2024.



Our CyclicChamp Design Pipeline

Initial backbone . Rosetta amino
. Simulated . .
torsion angles acid residue

T design + genetic

selection (Comb
design) alg

backbone search

[11Q. Zhu, et al. PLoS Comput. Biol. 2025.

Stability

validation
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Initial Backbone Torsion Angles Selection

180 T

e |Initial backbones are chains of glycine 120
residues, with (¢, v) chosen from the six 60
torsion bin centers of the Rama space. S0

e For n-residue peptide, ~6"/n combinations il

subject to cyclic permutations.

e Use combinatorial design to obtain well-spaced
random samples from all possible AR
combinations [,

[1] C. Colbourn, et al. J. Combin. Designs, 14:124-138, 2006. 6/17



Active Search for Backbone: Simulated Annealing

« Start from “Well-spaced” random Rama = 106.13, Repulsive = 20.18, Cyclic = 92.41, H-bond = 1

initial configurations

» At each step, add perturbations and
accept based on the Metropolis
acceptance criterion

» Close the backbone into cycle, but
also seek desirable features like
hydrogen bonds and low steric
clashes
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https://docs.google.com/file/d/1ydn1yHw24vKIxo5y2-dKwu3tTEKzNrb4/preview

How CyclicChamp Simulated Annealing Works

e Goal: find cyclic backbones with low repulsive energy

and sufficient hydrogen bonds

o Etotal = Weyce * Ecyc + Wrep * Evep + Whbond * Enbond
e At each step t, generate random moves in a shrinking
disk of radius k =—2—  M=10000 steps.

1+bx*t/M
e Accept new configuration if (Metropolis acceptance)

a) ltsenergy Enew < Etotal

b) Orrand(0,1) < e(rotat~Fnew/Te, T, = -0

e Parameters including weights w, initial disk radius k, and

its dropping rate b, initial temperature T ,and its dropping

rate c vary using combinatorial design in test runs.

[1] R. Alford, et al. J. Chem. Theory Comput., 13:3031-3048, 2017.

180
120 |
60 -
=0
60 |

-120

-180

600

500

400 -

300 -

200 -

100 -

Repulsive energy !

2 3 4
Distance(A)

5

6

Cyclic error =0.14

Hydrogen bond !
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Cyclic Backbone Constraint Modeled as Cyclic Error

e Generate a virtual atom C . _ at the origin before the N terminus

e The first N atom lies on the standard x-axis, and the first CA atom
lies in the standard xy-plane

e Fora given set of ¢, y torsion angle values, compute the
coordinates of all backbone atoms using
o |deal bond angles and bond lengths
o lIdeal torsion w = 180° at peptide bond (C-N)
e Two virtual atoms N CA after the C terminus also computed

virtual’ virtual

e Construct unit vector x’ pointing from Cn to Nw. al and its

perpendicular y’ such that CA .. _ lies in the x’y*-plane

e The cyclic error

Ecyc = \/”Cn — Chirtuatll® + llx = x"[|2 + [ly — ¥’ |2
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Stability Validation by Sampling Alternative Conformations

Alternative

Designed

Sample energy landscapes

e For a designed amino acid sequence, the full-energies
of alternative conformations, together with their
backbone root-mean-square-deviations (RMSDs) from
the designed structure, form the energy landscape

e Stable design if all low-energy conformations align
closely to the backbone conformation

[1] P. Hosseinzadeh, et al. Science, 358:1461-1466, 2017.
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Stability = probability to fold into backbone

e To quantitatively measure stability, use
- 2 .
3t exp a2 Jexp( 1)
E.
S

e P, .>0.9 experimentally shown to be indicative of

stability [

Pyear = , A~1, kgT = 0.62
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Genetic Algorithms to Avoid Local Minima

-50 57115 samples | -50 | 37616 samples
0 2 4 6 0 2 4 6
RMSD to design (A) RMSD to design (&)

Rosetta’s failure to sample thoroughly

e The conformational space grows exponentially with the
peptide size.

e Rosetta’s random sampling approach [l yields many
false-negatives when validating 15 residue designs, and
generates unusable energy landscapes for 20 and 24
residues.

[1] P. Hosseinzadeh, et al. Science, 358:1461-1466, 2017.

Crossover Mutation

Parent 1 Parent 2

Child 1

What genetic algorithms accomplish

e Using simulated annealing alone may find only
shallow minima in a rugged energy landscape

e Explore potential energy minima via genetic
algorithms that perform crossover and mutation on
low-energy conformations

11/17



Validation by Replica Exchange Molecular Dynamics

e For top designs with high P, __, perform replica T3=450K ——— R1
exchange molecular dynamics (REMD) T2=400K \ X X / R2
/

simulations as a validation method T1=350K /—R4
+ ldentical replicas of desianed peptides in solvent TS0 7 7 ]

(water) box copied for different temperatures, A Samples at T0
and undergo regular molecular dynamics
simulations '] 3
Q
e Periodically swap temperatures for neighboring T
replicas, so that each replica has chance to 8
c
explore behavior at high temperatures to g
overcome energy barriers -
e Collect and analyze conformations sampled at

reference temperature 70 Collective Variable

12/17
[11Y. Sugita, et al. Chem. Phys. Lett., 314:141-151, 1999. /



Faster 7-residue Macrocycle Design with P,,___Insights
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Four times faster to design a stable peptide Low energy # High P, ___
e Allocating equivalent computation time for backbone e The second-lowest energy bin had the largest
sampling, CyclicChamp found 4.5 times as many stable probability of high P, values

designs as Rosetta. e Low energy alone not sufficient for stability

e CyclicChamp also recovered the experimentally validated

) e Other features like tight hydrogen bond networks
conformations designed by Rosetta '"'.

often enhance stability

[1] P. Hosseinzadeh, et al. Science, 358:1461-1466, 2017. 13/17



REMD Validated 15-24 residue Large Macrocycle Designs
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Structure Predictions for Previously Known Macrocycles

5 PDB 6uf9, 24 res o 6bew, 7 res 6be7, 8 res éugc, 9 res
-20
-40
-60 1.0182 A
-80
6beq, 10 res 6ug6, 12 res 6uf9, 24 res
-100 ;
-120 |
140 ‘ Samples = 468702
0 2 4 6 8 '
RMSD to PDB (A) 0.380 A 1.333A
Only amino acid sequence known Accurate predictions for 7-24 residues
e Generated energy landscapes using only the amino e Predicted 17 existing macrocycles without
acid sequences as input cross-links, whose experimentally-solved structures
e Clustered the 50 lowest-energy conformations and deposited in the Protein Data Bank
selected the 5 lowest-energy cluster centers as e Predicted backbones have RMSDs of 0.277-1.836 A
predictions from experimental structures
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Conclusion

e \We have addressed the high dimensionality challenge in backbone search by

o Transforming the cyclic backbone constraint into an error function

o Employing simulated annealing for backbone sampling

o Employing genetic algorithms for thorough exploration of energy minima

o Employing combinatorial design for initial configuration and parameter selection
e \We have achieved

o Faster speed for designing small (e.g. 7-residue) macrocycles

o Unique ability to design 15-24 residue large macrocycles with mixed-chirality

o Accurate predictions for existing macrocycles deposited in PDB

e (Codes available at https://qgithub.com/givaozhu/CvyclicPeptide

16/17


https://github.com/qiyaozhu/CyclicPeptide

Future Work

e Design cyclic peptide-binders to druggable protein sites as novel therapeutics
e Add option for sampling backbones with disulfide cross-links

e Incorporate into Rosetta for smooth transition between CyclicChamp’s backbone

sampling and Rosefta’'s sequence design, and user friendliness

e Add GPU support for further speed up
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What is combinatorial design? Well-spaced sampling.
Suppose you are a thief...

Combinatorial Safe: 10 switches with 3 settings each. Over 59,000 (3710)
possible configurations. However there is a certain pair of switches (you

don't know which pair) and a certain pair of values of those switches that
will open the safe.

Illustration:
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
C A

Challenge:
Open the safe in as few switch configurations as possible. How many? How

to do? 119




Safecracking Solution
(X = Don’t care)

Number S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
AAAAAAAAAA
ABBBBBBBBB
AcCcccccccc
BABCABCABC
BBCABCABCA
BCABCABCAB
CACBACBACB
CBACBACBAC
CCBACBACBA
XAAABBBCCC
XAAACCCBBB
XBBBAAACCC
XBBBCCCAAA
XCCCAAABBB
XCCCBBBAAA 19
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Faster design & Larger macrocycles

15 residue 15 residue

* For 7 residues, our CyclicChamp takes
one-fourth the time of Rosefta’s to find a
stable design. Advantage increases with
size.

* de novo design of the first 15-24 residue
mixed-chirality macrocycles, without relying
on additional cross-links or symmetry

« Computationally validate using molecular
dynamics

[11 Q. Zhu, et al. PLoS Comput. Biol. 2025.



Our active search vs. Rosetta’'s random sampling

Rama = 106.13, Repulsive = 20.18, Cyclic = 92.41, H-bond = 1

Our backbone simulated annealing search ]

« Start from “well-spaced” random initial configurations

» At each step, add perturbations and accept based on
the Metropolis acceptance criterion

» Close the backbone into cycle, but also seek
desirable features like hydrogen bonds

[11Q. Zhu, et al. PLoS Comput. Biol. 2025.
[2] D. Mandell, et al. Nature Methods, 6:551-552, 2009.

Rosetta’s backbone kinematic closure [

Besides the three pivot points p7, p2, p3, all other
segments’ torsion angles are randomly sampled

Algebraically solve for the six torsions of p1, p2, p3 to
satisfy loop closure

Fast solution, but hit desirable features by chance

23


https://docs.google.com/file/d/1ydn1yHw24vKIxo5y2-dKwu3tTEKzNrb4/preview

