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• Definition: A chain of 7+ amino acids 
(residues), with the N- and C-termini 
connected to form a closed loop

• Why good:
o More rigid conformations and 

resistance to degradation compared to 
linear peptides

o Potentially superior binding affinity and 
selectivity compared to small molecules

o Immune system (e.g. exopeptidase) 
doesn’t recognize them as well as linear 
peptide (especially when mixing L- with 
D-).

Why Cyclic Peptides?

Small molecule drug:
Aspirin (0.18 kDa)

Cyclic peptide drug:
Cyclosporine (1.2 kDa)

Linear peptide drug:
Bivalirudin (2.18 kDa)
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Backbone search:
High dimensionality challenge

Side-chain optimization:
exponential  combinatorial problem

Cyclic Peptide Design Pipeline
𝜙,  𝜓 torsion angle variables Ramachandran space

● For n-residue peptide, backbone has n pairs of 
(𝜙,  𝜓) torsion angle variables

● Each pair (𝜙,  𝜓) ∈ Ramachandran space

● The search space grows exponentially with 
peptide size

● There are 20 natural amino acids 

● Sequence design has at least 20n choices

● Many more if allow non-canonicals (e.g., D- and 
artificial amino acids)

2/17



Algorithm
• Backbone: Use kinematic loop 

closure to algebraically solve the 
cyclic constraint [1]

• Side-chain: Use Monte Carlo 
simulated annealing to minimize the 
energy [2]

Prior Work: Physics-based design in Rosetta

[1] D. Mandell, et al. Nature Methods, 6:551-552, 2009. [4] G. Bhardwaj, et al. Nature,538:329–335, 2016.  
[2] A. Leaver-Fay, et al. Methods Enzymol., 487:545-574, 2011. [5] V. Mulligan, et al. Protein Sci., 29:2433–2445, 2020.
[3] P. Hosseinzadeh, et al. Science, 358:1461–1466, 2017. 

Cross-link

Pros
• Design can include D-amino 

acids, which are more resistant 
to peptidase degradation

• Can design non-canonicals, 
thus expanding chemical 
diversity even more

Cons
• Backbone sampling works efficiently 

only for 7-10 residues

• To exceed this size limit, researchers 
use disulfide cross-links (11-26 
residues [3, 4]) or symmetry (15-24 
residues [5]) 

L-conformer D-conformer S4 symmetryKinematic loop closure
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Prior: Deep-learning design led by AlphaFold

[1] S. Rettie, et al. bioRxiv, doi:10.1101/2023.02.25.529956, 2023.
[2] S. Rettie, et al. bioRxiv, doi:10.1101/2024.11.18.622547, 2024.
[3] C. Zhang, et al. Brief Bioinform., 25:bbae215, 2024.

Algorithm
• Base on AlphaFold or RFdiffusion

• Encode the cyclic backbone 
constraint into their amino acid 
relative position matrix

Pros
• Can design slightly larger sizes of 

7-16 residues [1, 2] due to 
AlphaFold’s protein training data

• Can predict 12-39 residues [3]

Cons
• Trained on natural L-amino acids, 

so:

• Not good for designing 
non-canonicals or mixed chirality

• Therefore: restricted design 
search space

L D
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Our CyclicChamp Design Pipeline

[1] Q. Zhu, et al. PLoS Comput. Biol. 2025.

Initial backbone 
torsion angles 

selection (Comb 
design)

Simulated 
annealing 

backbone search

Rosetta amino 
acid residue 

design + genetic 
alg

Stability 
validation
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Initial Backbone Torsion Angles Selection

[1] C. Colbourn, et al. J. Combin. Designs, 14:124-138, 2006.

Example initial backbone with all torsion angles chosen as center 1

● Initial backbones are chains of glycine 
residues, with (𝜙,  𝜓) chosen from the six 
torsion bin centers of the Rama space.

● For n-residue peptide, ~6n/n combinations 
subject to cyclic permutations.

● Use combinatorial design to obtain well-spaced 
random samples from all possible 
combinations [1].

6/17



Active Search for Backbone: Simulated Annealing

• Start from “well-spaced” random 
initial configurations

• At each step, add perturbations and 
accept based on the Metropolis 
acceptance criterion

• Close the backbone into cycle, but 
also seek desirable features like 
hydrogen bonds and low steric 
clashes
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https://docs.google.com/file/d/1ydn1yHw24vKIxo5y2-dKwu3tTEKzNrb4/preview


How CyclicChamp Simulated Annealing Works

[1] R. Alford, et al. J. Chem. Theory Comput., 13:3031–3048, 2017.

Hydrogen bond [1]Repulsive energy [1]

Cyclic error = 0.14

virtual atoms

● Goal: find cyclic backbones with low repulsive energy 

and sufficient hydrogen bonds

●

● At each step t, generate random moves in a shrinking 

disk of radius ,  M=10000 steps.

● Accept new configuration if (Metropolis acceptance)

● Parameters including weights w, initial disk radius k0 and 

its dropping rate b, initial temperature T0 and its dropping 

rate c vary using combinatorial design in test runs.
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Cyclic Backbone Constraint Modeled as Cyclic Error

● Generate a virtual atom Cvirtual at the origin before the N terminus

● The first N atom lies on the standard x-axis, and the first CA atom 
lies in the standard xy-plane

● For a given set of 𝜙, 𝜓 torsion angle values, compute the 
coordinates of all backbone atoms using

○ Ideal bond angles and bond lengths

○ Ideal torsion ω = 180° at peptide bond (C-N)

● Two virtual atoms Nvirtual, CAvirtual after the C terminus also computed

● Construct unit vector x’ pointing from Cn to Nvirtual, and its 
perpendicular y’ such that CAvirtual lies in the x’y’-plane

● The cyclic error
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Stability = probability to fold into backbone

[1] P. Hosseinzadeh, et al. Science, 358:1461–1466, 2017.

Sample energy landscapes
● For a designed amino acid sequence, the full-energies 

of alternative conformations, together with their 
backbone root-mean-square-deviations (RMSDs) from 
the designed structure, form the energy landscape

● Stable design if all low-energy conformations align 
closely to the backbone conformation

Stability Validation by Sampling Alternative Conformations

Alternative 
low-energy 

conformation

● To quantitatively measure stability, use

● PNear>0.9 experimentally shown to be indicative of 
stability [1]

Designed Alternative
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 What genetic algorithms accomplish

[1] P. Hosseinzadeh, et al. Science, 358:1461–1466, 2017.

Rosetta’s failure to sample thoroughly
● The conformational space grows exponentially with the 

peptide size.

● Rosetta’s random sampling approach [1] yields many 
false-negatives when validating 15 residue designs, and 
generates unusable energy landscapes for 20 and 24 
residues.

Genetic Algorithms to Avoid Local Minima

● Using simulated annealing alone may find only 
shallow minima in a rugged energy landscape

● Explore potential energy minima via genetic 
algorithms that perform crossover and mutation on 
low-energy conformations
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Validation by Replica Exchange Molecular Dynamics

[1] Y. Sugita, et al. Chem. Phys. Lett., 314:141–151, 1999.

● For top designs with high PNear, perform replica 
exchange molecular dynamics (REMD) 
simulations as a validation method

● Identical replicas of designed peptides in solvent 
(water) box copied for different temperatures, 
and undergo regular molecular dynamics 
simulations [1]

● Periodically swap temperatures for neighboring 
replicas, so that each replica has chance to 
explore behavior at high temperatures to 
overcome energy barriers

● Collect and analyze conformations sampled at 
reference temperature T0

12/17



Low energy ≠ High PNearFour times faster to design a stable peptide
● Allocating equivalent computation time for backbone 

sampling, CyclicChamp found 4.5 times as many stable 
designs as Rosetta.

● CyclicChamp also recovered the experimentally validated 
conformations designed by Rosetta [1].

Faster 7-residue Macrocycle Design with PNear Insights

● The second-lowest energy bin had the largest 
probability of high PNear values

● Low energy alone not sufficient for stability

● Other features like tight hydrogen bond networks 
often enhance stability

[1] P. Hosseinzadeh, et al. Science, 358:1461–1466, 2017.

PDB: 6BF3 CyclicChamp
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REMD Validated 15-24 residue Large Macrocycle Designs
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Structure Predictions for Previously Known Macrocycles

Accurate predictions for 7-24 residues
● Predicted 17 existing macrocycles without 

cross-links, whose experimentally-solved structures 
deposited in the Protein Data Bank

● Predicted backbones have RMSDs of 0.277-1.836 Å 
from experimental structures

Only amino acid sequence known
● Generated energy landscapes using only the amino 

acid sequences as input
● Clustered the 50 lowest-energy conformations and 

selected the 5 lowest-energy cluster centers as 
predictions
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Conclusion

● We have addressed the high dimensionality challenge in backbone search by

○ Transforming the cyclic backbone constraint into an error function

○ Employing simulated annealing for backbone sampling

○ Employing genetic algorithms for thorough exploration of energy minima

○ Employing combinatorial design for initial configuration and parameter selection

● We have achieved

○ Faster speed for designing small (e.g. 7-residue) macrocycles

○ Unique ability to design 15-24 residue large macrocycles with mixed-chirality

○ Accurate predictions for existing macrocycles deposited in PDB

● Codes available at https://github.com/qiyaozhu/CyclicPeptide
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https://github.com/qiyaozhu/CyclicPeptide


Future Work

● Design cyclic peptide-binders to druggable protein sites as novel therapeutics

● Add option for sampling backbones with disulfide cross-links

● Incorporate into Rosetta for smooth transition between CyclicChamp’s backbone 

sampling and Rosetta’s sequence design, and user friendliness

● Add GPU support for further speed up
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What is combinatorial design? Well-spaced sampling. 
Suppose you are a thief… 

Combinatorial Safe: 10 switches with 3 settings each. Over 59,000 (3^10) 
possible configurations. However there is a certain pair of switches (you 
don’t know which pair) and a certain pair of values of those switches that 
will open the safe.

Illustration: 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
            C           A

Challenge: 
Open the safe in as few switch configurations as possible. How many? How 

to do? /19
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Safecracking Solution
(X = Don’t care)

• Number  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
• 1:      A A A A A A A A A A
• 2:      A B B B B B B B B B
• 3:      A C C C C C C C C C
• 4:      B A B C A B C A B C
• 5:      B B C A B C A B C A
• 6:      B C A B C A B C A B
• 7:      C A C B A C B A C B
• 8:      C B A C B A C B A C
• 9:      C C B A C B A C B A
• 10:     X A A A B B B C C C
• 11:     X A A A C C C B B B
• 12:     X B B B A A A C C C
• 13:     X B B B C C C A A A
• 14:     X C C C A A A B B B
• 15:     X C C C B B B A A A /19



Faster design & Larger macrocycles

[1] Q. Zhu, et al. PLoS Comput. Biol. 2025.

15 residue

20 residue 24 residue

• For 7 residues, our CyclicChamp takes 
one-fourth the time of Rosetta’s to find a 
stable design. Advantage increases with 
size.

• de novo design of the first 15-24 residue 
mixed-chirality macrocycles, without relying 
on additional cross-links or symmetry

• Computationally validate using molecular 
dynamics

15 residue

22



Rosetta’s backbone kinematic closure [2]

• Besides the three pivot points p1, p2, p3, all other 
segments’ torsion angles are randomly sampled

• Algebraically solve for the six torsions of p1, p2, p3 to 
satisfy loop closure

• Fast solution, but hit desirable features by chance

Our active search vs. Rosetta’s random sampling

[1] Q. Zhu, et al. PLoS Comput. Biol. 2025.
[2] D. Mandell, et al. Nature Methods, 6:551-552, 2009.

Our backbone simulated annealing search [1]

• Start from “well-spaced” random initial configurations

• At each step, add perturbations and accept based  on 
the Metropolis acceptance criterion

• Close the backbone into cycle, but also seek 
desirable features like hydrogen bonds
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https://docs.google.com/file/d/1ydn1yHw24vKIxo5y2-dKwu3tTEKzNrb4/preview

