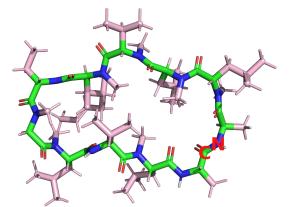
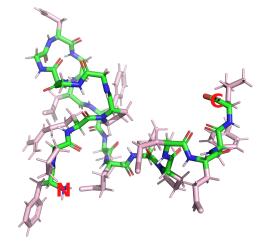
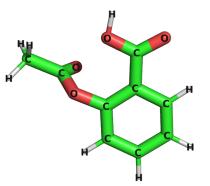

Heuristic energy-based cyclic peptide design

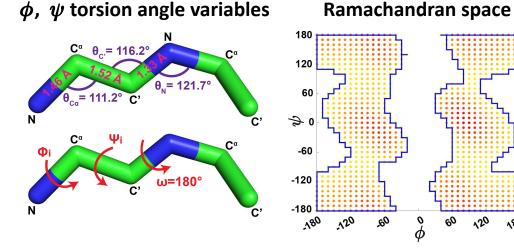
Qiyao Zhu (NYU, now Simons Foundation), Vikram Mulligan (Simons Foundation), and **Dennis Shasha**

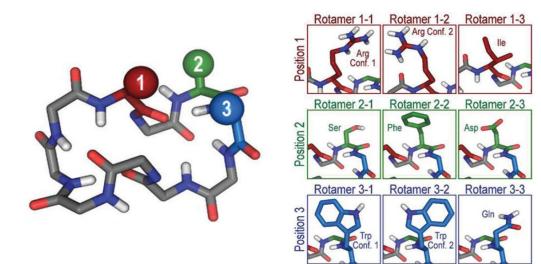

(New York University)


Why Cyclic Peptides?

- Definition: A chain of 7+ amino acids (residues), with the N- and C-termini connected to form a closed loop
- Why good:
 - More rigid conformations and resistance to degradation compared to linear peptides
 - Potentially superior binding affinity and selectivity compared to small molecules
 - Immune system (e.g. exopeptidase)
 doesn't recognize them as well as linear
 peptide (especially when mixing L- with D-).


Cyclic peptide drug: Cyclosporine (1.2 kDa)

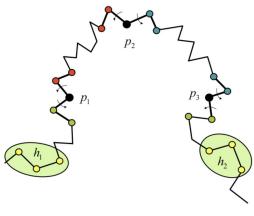

Linear peptide drug: Bivalirudin (2.18 kDa)



Small molecule drug: Aspirin (0.18 kDa)

Cyclic Peptide Design Pipeline

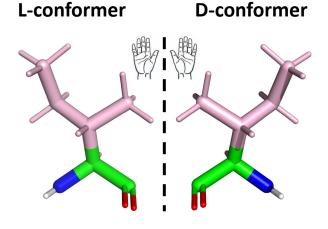
Backbone search: High dimensionality challenge


- For *n*-residue peptide, backbone has *n* pairs of
 (φ, ψ) torsion angle variables
- Each pair $(\phi, \psi) \in$ Ramachandran space
- The search space grows *exponentially* with peptide size

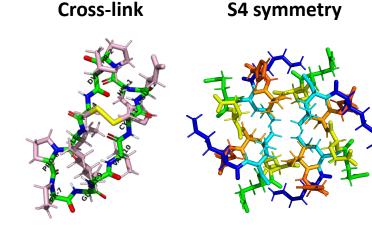
Side-chain optimization: exponential combinatorial problem

- There are 20 natural amino acids
- Sequence design has at least 20ⁿ choices
- Many more if allow non-canonicals (e.g., D- and artificial amino acids)

Prior Work: Physics-based design in Rosetta


Kinematic loop closure

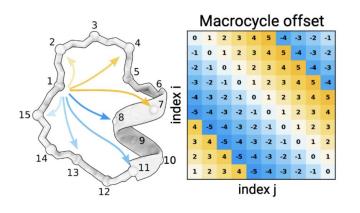
Algorithm


- Backbone: Use kinematic loop closure to algebraically solve the cyclic constraint ^[1]
- Side-chain: Use Monte Carlo simulated annealing to minimize the energy ^[2]

D. Mandell, et al. *Nature Methods*, 6:551-552, 2009.
 A. Leaver-Fay, et al. *Methods Enzymol.*, 487:545-574, 2011.
 P. Hosseinzadeh, et al. *Science*, 358:1461–1466, 2017.

Pros

- Design can include D-amino acids, which are more resistant to peptidase degradation
- Can design non-canonicals, thus expanding chemical diversity even more

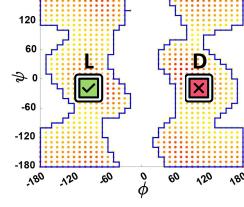


Cons

- Backbone sampling works efficiently only for 7-10 residues
- To exceed this size limit, researchers use disulfide cross-links (11-26 residues ^[3, 4]) or symmetry (15-24 residues ^[5])

[4] G. Bhardwaj, et al. *Nature*,538:329–335, 2016.
[5] V. Mulligan, et al. *Protein Sci.*, 29:2433–2445, 2020.

Prior: Deep-learning design led by AlphaFold



- Base on AlphaFold or RFdiffusion
- Encode the cyclic backbone constraint into their amino acid relative position matrix

Pros

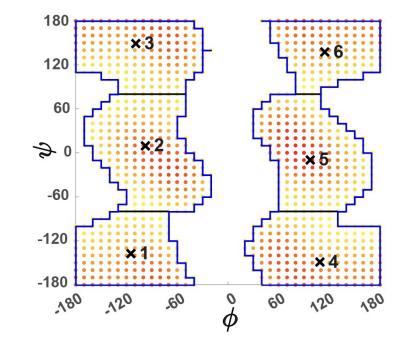
- Can design slightly larger sizes of 7-16 residues ^[1, 2] due to *AlphaFold*'s protein training data
- Can predict 12-39 residues ^[3]

Cons

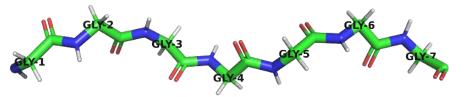
- Trained on natural L-amino acids, so:
- Not good for designing non-canonicals or mixed chirality
- Therefore: restricted design search space

S. Rettie, et al. *bioRxiv*, doi:10.1101/2023.02.25.529956, 2023.
 S. Rettie, et al. *bioRxiv*, doi:10.1101/2024.11.18.622547, 2024.
 C. Zhang, et al. *Brief Bioinform.*, 25:bbae215, 2024.

Our CyclicChamp Design Pipeline

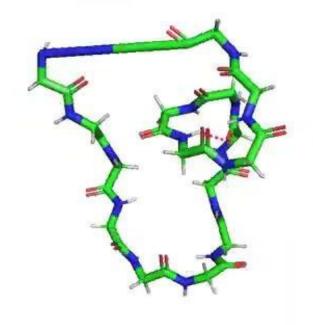

Initial backbone torsion angles selection (Comb design)

Simulated annealing backbone search *Rosetta* amino acid residue design + genetic alg

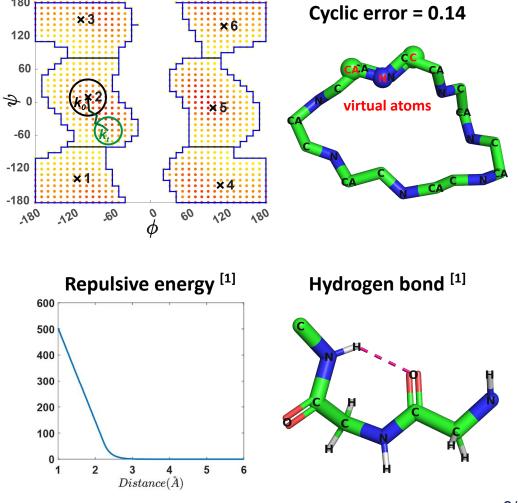

Stability validation

Initial Backbone Torsion Angles Selection

- Initial backbones are chains of glycine residues, with (ϕ, ψ) chosen from the six torsion bin centers of the Rama space.
- For *n*-residue peptide, ~6ⁿ/n combinations subject to cyclic permutations.
- Use combinatorial design to obtain well-spaced random samples from all possible combinations ^[1].

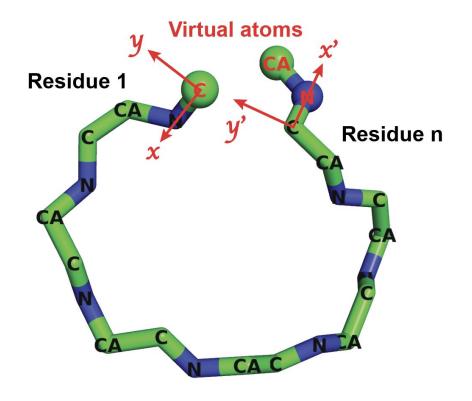

Example initial backbone with all torsion angles chosen as center 1

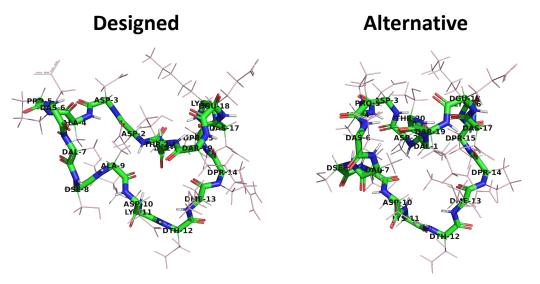
Active Search for Backbone: Simulated Annealing


- Start from "well-spaced" random initial configurations
- At each step, add perturbations and accept based on the Metropolis acceptance criterion
- Close the backbone into cycle, but also seek desirable features like hydrogen bonds and low steric clashes

Rama = 106.13, Repulsive = 20.18, Cyclic = 92.41, H-bond = 1

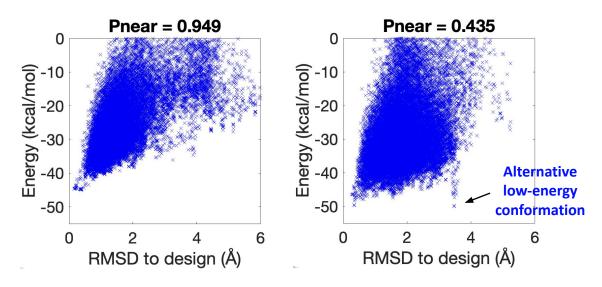
How CyclicChamp Simulated Annealing Works


- Goal: find cyclic backbones with low repulsive energy and sufficient hydrogen bonds
- $E_{total} = w_{cyc} * E_{cyc} + w_{rep} * E_{rep} + w_{hbond} * E_{hbond}$
- At each step *t*, generate random moves in a shrinking disk of radius $k_t = \frac{k_0}{1 + b * t/M}$, M=10000 steps.
- Accept new configuration if (*Metropolis acceptance*)
 - a) Its energy $E_{new} \leq E_{total}$
 - b) Or rand(0,1) $\leq e^{(E_{total} E_{new})/T_t}$, $T_t = \frac{T_0}{1 + c * t/M}$
- Parameters including weights w, initial disk radius k₀ and its dropping rate b, initial temperature T₀ and its dropping rate c vary using combinatorial design in test runs.


Cyclic Backbone Constraint Modeled as Cyclic Error

- Generate a virtual atom $C_{virtual}$ at the origin before the *N* terminus
- The first *N* atom lies on the standard *x*-axis, and the first *CA* atom lies in the standard *xy*-plane
- For a given set of ϕ , ψ torsion angle values, compute the coordinates of all backbone atoms using
 - Ideal bond angles and bond lengths
 - Ideal torsion ω = 180° at peptide bond (C-N)
- Two virtual atoms $N_{virtual}$, $CA_{virtual}$ after the C terminus also computed
- Construct unit vector x' pointing from C_n to $N_{virtual}$, and its perpendicular y' such that $CA_{virtual}$ lies in the x'y'-plane
- The cyclic error

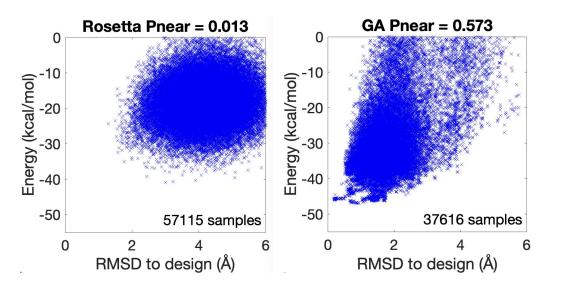
$$E_{cyc} = \sqrt{\|C_n - C_{virtual}\|^2 + \|x - x'\|^2 + \|y - y'\|^2}$$



Stability Validation by Sampling Alternative Conformations

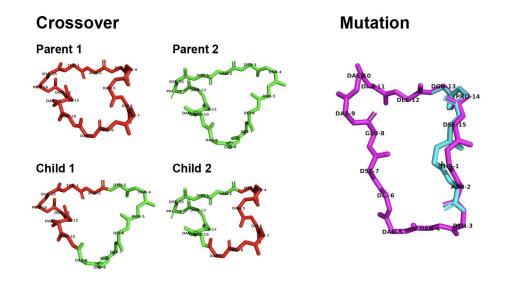
Sample energy landscapes

- For a designed amino acid sequence, the **full-energies** of alternative conformations, together with their backbone root-mean-square-deviations (**RMSDs**) from the designed structure, form the energy landscape
- **Stable** design if all low-energy conformations align closely to the backbone conformation


Stability = probability to fold into backbone

• To quantitatively measure stability, use

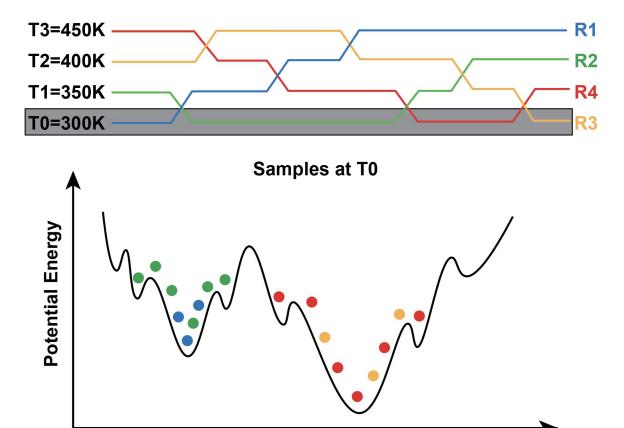
$$P_{Near} = \frac{\sum_{i=1}^{N} \exp\left(\frac{-RMSD_i^2}{\lambda^2}\right) \exp\left(-\frac{E_i}{k_BT}\right)}{\sum_{i=1}^{N} \exp\left(-\frac{E_i}{k_BT}\right)}, \ \lambda \sim 1, \ k_BT = 0.62$$


P_{Near}>0.9 experimentally shown to be indicative of stability ^[1]

Genetic Algorithms to Avoid Local Minima

Rosetta's failure to sample thoroughly

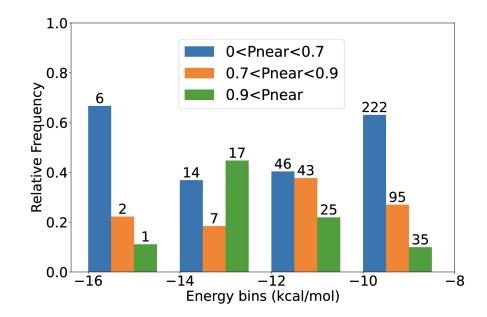
- The conformational space grows **exponentially** with the peptide size.
- *Rosetta*'s **random sampling** approach ^[1] yields many false-negatives when validating 15 residue designs, and generates unusable energy landscapes for 20 and 24 residues.



What genetic algorithms accomplish

- Using **simulated annealing** alone may find only shallow minima in a rugged energy landscape
- Explore potential energy minima via **genetic algorithms** that perform crossover and mutation on low-energy conformations

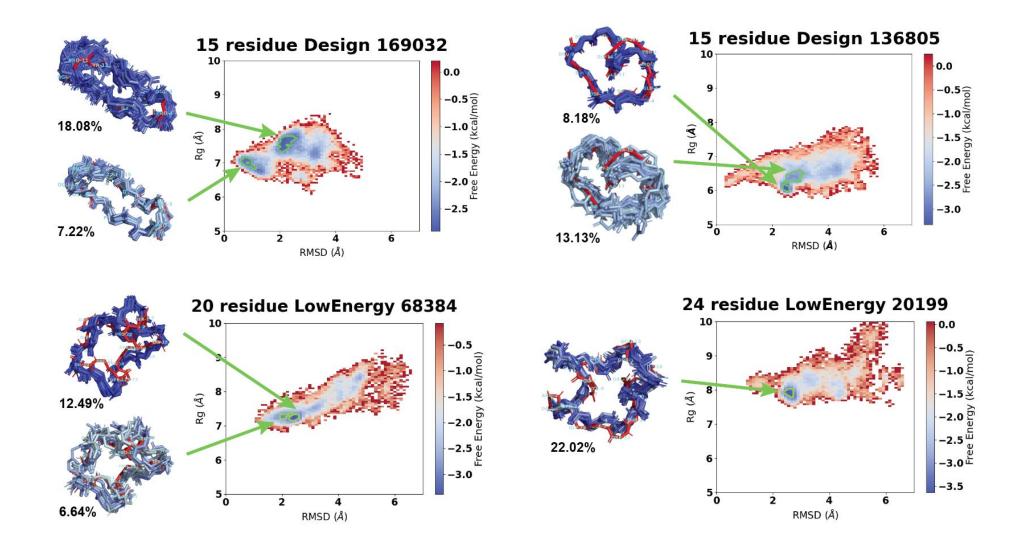
Validation by Replica Exchange Molecular Dynamics


- For top designs with high *P_{Near}*, perform *replica exchange molecular dynamics (REMD)* simulations as a validation method
- Identical replicas of designed peptides in solvent (water) box copied for different temperatures, and undergo regular molecular dynamics simulations ^[1]
- Periodically *swap* temperatures for neighboring replicas, so that each replica has chance to explore behavior at high temperatures to overcome *energy barriers*
- Collect and analyze conformations sampled at reference temperature *T0*

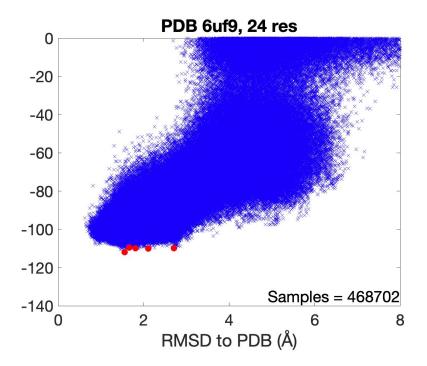
Collective Variable

Faster 7-residue Macrocycle Design with P_{Near} Insights

PDB: 6BF3 CyclicChamp

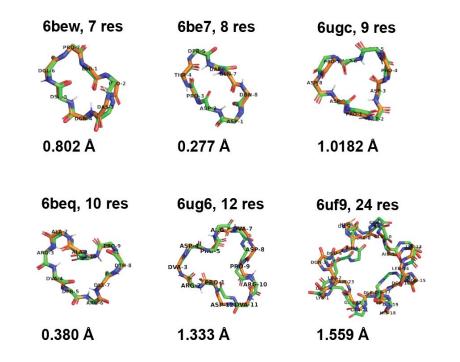

Four times faster to design a stable peptide

- Allocating equivalent computation time for backbone sampling, *CyclicChamp* found **4.5 times** as many stable designs as *Rosetta*.
- *CyclicChamp* also recovered the experimentally validated conformations designed by *Rosetta*^[1].


Low energy ≠ High P_{Near}

- The second-lowest energy bin had the largest probability of high *P*_{Near} values
- Low energy alone not sufficient for stability
- Other features like tight hydrogen bond networks often enhance stability

REMD Validated 15-24 residue Large Macrocycle Designs



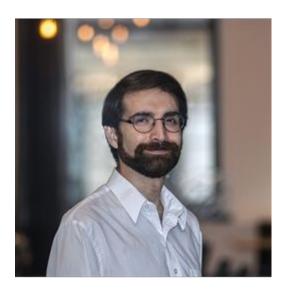
Structure Predictions for Previously Known Macrocycles

Only amino acid sequence known

- Generated energy landscapes using only the amino acid sequences as input
- Clustered the 50 lowest-energy conformations and selected the 5 lowest-energy cluster centers as predictions

Accurate predictions for 7-24 residues

- Predicted 17 existing macrocycles without cross-links, whose experimentally-solved structures deposited in the Protein Data Bank
- Predicted backbones have RMSDs of 0.277-1.836 Å from experimental structures


Conclusion

- We have addressed the high dimensionality challenge in backbone search by
 - Transforming the cyclic backbone constraint into an error function
 - Employing simulated annealing for backbone sampling
 - Employing genetic algorithms for thorough exploration of energy minima
 - Employing combinatorial design for initial configuration and parameter selection
- We have achieved
 - Faster speed for designing small (e.g. 7-residue) macrocycles
 - Unique ability to design 15-24 residue large macrocycles with mixed-chirality
 - Accurate predictions for existing macrocycles deposited in PDB
- Codes available at https://github.com/qiyaozhu/CyclicPeptide

Future Work

- Design cyclic peptide-binders to druggable protein sites as novel therapeutics
- Add option for sampling backbones with disulfide cross-links
- Incorporate into *Rosetta* for smooth transition between *CyclicChamp*'s backbone sampling and *Rosetta*'s sequence design, and user friendliness
- Add GPU support for further speed up

Acknowledgements

Vikram Mullligan Research Scientist at Flatiron Institute **Qiyao Zhu** Research Fellow at Flatiron Institute

What is combinatorial design? Well-spaced sampling. Suppose you are a thief...

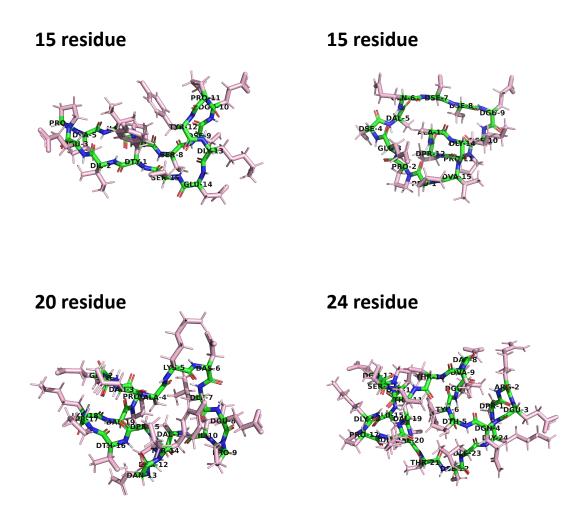
Combinatorial Safe: 10 switches with 3 settings each. Over 59,000 (3^10) possible configurations. However there is a certain pair of switches (you don't know which pair) and a certain pair of values of those switches that will open the safe.

```
Illustration:

51 52 53 54 55 56 57 58 59 510

C A
```

Challenge:

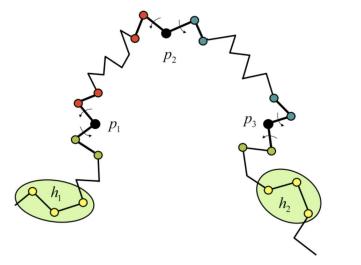

Open the safe in as few switch configurations as possible. How many? How to do?

Safecracking Solution (X = Don't care)

- Number S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
- 1: AAAAAAAAAA
- 2: **ABBBBBBB**
- 3: ACCCCCCCC
- 4: BABCABCABC
- 5: BBCABCABCA
- 6: BCABCABCAB
- 7: CACBACBACB
- 8: CBACBACBAC
- 9: CCBACBACBA
- 10: XAAABBBCCC
- 11: XAAACCCBBB
- 12: XBBBAAACCC
- 13: XBBBCCCAAA
- 14: XCCCAAABBB
- 15: XCCCBBBAAA

Faster design & Larger macrocycles

- For 7 residues, our *CyclicChamp* takes one-fourth the time of *Rosetta*'s to find a stable design. Advantage increases with size.
- *de novo* design of the first 15-24 residue mixed-chirality macrocycles, without relying on additional cross-links or symmetry
- Computationally validate using molecular dynamics


Our active search vs. Rosetta's random sampling

Rama = 106.13, Repulsive = 20.18, Cyclic = 92.41, H-bond = 1

Our backbone simulated annealing search ^[1]

- Start from "well-spaced" random initial configurations
- At each step, add perturbations and accept based on the Metropolis acceptance criterion
- Close the backbone into cycle, but also seek
 desirable features like hydrogen bonds

Rosetta's backbone kinematic closure ^[2]

- Besides the three pivot points *p1*, *p2*, *p3*, all other segments' torsion angles are randomly sampled
- Algebraically solve for the six torsions of *p1*, *p2*, *p3* to satisfy loop closure
- Fast solution, but hit desirable features by chance