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Abstract

Consider the problem of monitoring tens of
thousands of time series data streams in an
online fashion and making decisions on them.
In addition to single stream statistics such as
average and standard deviation, we also want
to �nd high correlations among all pairs of
streams. A stock market trader might use
such a tool to spot arbitrage opportunities.
This paper proposes eÆcient methods for solv-
ing this problem based on Discrete Fourier
Transforms and a three level time interval hi-
erarchy. Extensive experiments on synthetic
data and real world �nancial trading data
show that our algorithm beats the direct com-
putation approach by several orders of mag-
nitude. It also improves on previous Fourier
Transform approaches by allowing the eÆcient
computation of time-delayed correlation over
any size sliding window and any time delay.
Correlation also lends itself to an eÆcient grid-
based data structure. The result is the �rst
algorithm that we know of to compute cor-
relations over thousands of data streams in
real time. The algorithm is incremental, has
�xed response time, and can monitor the pair-
wise correlations of 10,000 streams on a single
PC. The algorithm is embarrassingly paral-
lelizable.

1 Introduction

Many applications consist of multiple data streams.
For example,

� In mission operations for NASA's Space Shut-
tle, approximately 20,000 sensors are telemetered
once per second to Mission Control at Johnson
Space Center, Houston[14].

� There are about 50,000 securities trading in the
United States, and every second up to 100,000
quotes and trades (ticks) are generated.

Unfortunately it is diÆcult to process such data
in set-oriented data management systems, although
object-relational time series extensions have begun to
�ll the gap [19]. For the performance to be suÆciently
good however, \Data Stream Management Systems"
(DSMSs) [3], whatever their logical model, should ex-
ploit the following characteristics of the application:

� Updates are through insertions of new elements
(with relatively rare corrections of older data).

� Queries (moving averages, standard deviations,
and correlation) treat the data as sequences not
sets.

� Since a full stream is never materialized, queries
treat the data as a never-ending data stream.

� One pass algorithms are desirable because the
data is vast.

� Interpretation is mostly qualitative, so sacri�cing
accuracy for speed is acceptable.

This paper presents the algorithms and architec-
ture of StatStream, a data stream management sys-
tem. The system computes a variety of single and
multiple stream statistics in one pass with constant
time (per input) and bounded memory. To show its
use for one practical application, the statistics we con-
sidered in our framework include most of the statistics



that a securities trader might be interested in. The al-
gorithms, however, are applicable to other disciplines,
such as sensor data processing and medicine. We di-
vide our contributions into functional and algorithmic.
Our functional contributions are:

1. We compute multi-stream statistics such as syn-
chronous as well as time-delayed correlation and
vector inner-product in a continuous online fash-
ion. This means that if a statistic holds at time
t, that statistic will be reported at time t + v,
where v is a constant independent of the size and
duration of the stream.

2. For any pair of streams, each pair-wise statistic is
computed in an incremental fashion and requires
constant time per update. This is done using a
Discrete Fourier Transform approximation.

3. The approximation has a small error under natu-
ral assumptions.

4. Even when we monitor the data streams over slid-
ing windows, no revisiting of the expiring data
streams is needed.

5. The net result is that on a Pentium 4 PC, we can
handle 10,000 streams with a delay window v of
only 2 minutes.

Our algorithmic contributions mainly have to do
with correlation statistics. First, we distinguish three
time periods:

� timepoints { the smallest unit of time over which
the system collects data, e.g. second.

� basic window { a consecutive subsequence of time-
points over which the system maintains a digest
incrementally, e.g., a few minutes.

� sliding window { a user-de�ned consecutive sub-
sequence of basic windows over which the user
wants statistics, e.g. an hour. The user might
ask, \which stocks were correlated with a value of
over 0.9 for the last hour?"

The use of the intermediate time interval that we
call basic windows yields three advantages:

1. Results of user queries need not be delayed more
than the basic window time. In our example, the
user will be told about correlations between 2 PM
and 3 PM by 3:02 PM and correlations between
2:02 PM and 3:02 PM by 3:04 PM.

2. Maintaining stream digests based on the basic
window allows the computation of correlations
over windows of arbitrary size as well as time-
delayed correlations with high accuracy.

3. The size of the basic window can be adjusted to
trade speed for accuracy.

A second algorithmic contribution is the grid struc-
ture, each of whose cells store the hash function value
of a stream. The structure itself is unoriginal but the
high eÆciency we obtain from it is due to the fact that
we are measuring correlation and have done the time
decomposition mentioned above.

The remainder of this paper will be organized as
follows. The data we consider and statistics we pro-
duce are presented in Section 2. Section 3 presents our
algorithms for monitoring high speed time series data
streams. Section 4 discusses the system StatStream.
Section 5 presents our experimental results. Section 6
puts our work in the context of related work.

2 Data And Queries

2.1 Time Series Data Streams

We consider data entering as a time ordered series of
triples (streamID, timepoint, value). Each stream con-
sists of all those triples having the same streamID. (In
�nance, a streamID may be a stock, for example.) The
streams are synchronized.

Each stream has new value available at every peri-
odic time interval, e.g. every second. We call the inter-
val index the timepoint. For example, if the periodic
time interval is a second and the current timepoint for
all the streams is i, after one second, all the streams
will have a new value with timepoint i+1. (Note that
if a stream has no value at a timepoint, a value will
be assigned to that timepoint based on interpolation.
If there are several values during a timepoint, then a
summary value will be assigned to that timepoint.)

Let si or s[i] denote the value of stream s at time-
point i. s[i : j] denotes the subsequence of stream s
from timepoints i through j inclusive. si denotes a
stream with streamID i. Also we use t to denote the
latest timepoint, i.e., now. The statistics we will mon-
itor will be denoted stat(si1j ; s

i2
j ; :::; s

ik
j ; j 2 windows).

We will discuss the meaning of windows in the next
section.

2.2 Temporal Spans

In the spirit of the work in [9, 10], we generalize the
three kinds of temporal spans for which the statistics
of time series are calculated.

1. Landmark windows: In this temporal span,
statistics are computed based on the values be-
tween a speci�c timepoint called landmark and
the present. stat(s; landmark(k)) will be com-
puted on the subsequence of time series s[i]; i � k.
An unrestricted window is a special case when
k = 1. For an unrestricted window the statistics
are based on all the available data.



2. Sliding windows: In �nancial applications, at
least, a sliding window model is more appropri-
ate for data streams. Given the length of the
sliding window w and the current timepoint t,
stat(s; sliding(w)) will be computed in the sub-
sequence s[t� w + 1 : t].

3. Damped window model: In this model, recent
sliding windows are more important than previous
ones. For example, in the computation of a mov-
ing average, a sliding window model will compute

the average as avg =
Pt

i=t�w+1 si
w . By contrast, in

a damped window model the weights of data de-
crease exponentially into the past. For example,
a moving average in a damped window model can
be computed as follows:

avgnew = avgold � p+ st � (1� p); 0 < p < 1

Other statistics in a damped window model can
be de�ned similarly.

In this paper, we will focus on the sliding window
model, because it is the one used most often. Also, be-
cause the algorithms for sliding windows are the most
general, it can be extended to the other two temporal
spans with little e�ort.

2.3 Statistics To Monitor

Consider the stream si; i = 1; :::; w. The statistics we
will monitor are

1. Single stream statistics, such as average, standard
deviation, best �t slope. These are straightfor-
ward.

2. Correlation coeÆcients

corr(s; r) =
1

w

Pw
i=1 siri � s rpPw

i=1(si � s)2
pPw

i=1(ri � r)2

3. Autocorrelation: the correlation of the series with
itself at an earlier time.

4. Beta: the sensitivity of the values of a stream s
to the values of another stream r (or weighted
collection of streams). For example, in �nancial
applications the beta measures the risk of a stock.
A stock with a beta of 1.5 to the market index
experiences 50 percent more movement in price
than the market.

beta(s; r) =
1

w

Pw
i=1 siri � s rPw
i=1(ri � r)2

Basic Window
S[0]
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Figure 1: Sliding windows and basic windows

3 Statistics Over Sliding Windows

To compute the statistics over a sliding window, we
will maintain a synopsis data structure for the stream
to compute the statistics rapidly. To start, our
framework subdivides the sliding windows equally into
shorter windows, which we call basic windows, in
order to facilitate the eÆcient elimination of old data
and the incorporation of new data. We keep digests for
both basic windows and sliding windows. For exam-
ple, the running sum of the time series values within
a basic window and the running sum within an entire
sliding window belong to the two kinds of digests re-
spectively. Figure 1 shows the relation between sliding
windows and basic windows.

Let the data within a sliding window be s[t�w+1 :
t]. Suppose w = kb, where b is the length of a basic
window and k is the number of basic windows within
a sliding window. Let S[0]; S[1]; :::; S[k � 1] denote a
sequence of basic windows, where S[i] = s[(t � w) +
ib+ 1 : (t � w) + (i+ 1)b]. S[k] will be the new basic
window and S[0] is the expiring basic window. The
j-th value in the basic window S[i] is S[i; j].

The size of the basic window is important because
it must be possible to report all statistics for basic
window i to the user before basic window i + 1 com-
pletes (at which point it will be necessary to report
the statistics for window i+ 1).

3.1 Single Stream Statistics

The single stream statistics such as moving average
and moving standard deviation are computationally
inexpensive and trivial. In this section, we discuss
moving averages just to demonstrate the concept of
maintaining digest information based on basic win-
dows. Obviously, the information to be maintained
for the moving average is

P
(s[t�w+1 : t]). For each

basic window S[i], we maintain the digest
P
(S[i]) =Pb

j=1 S[i; j]. After b new data points from the stream
become available, we compute the sum over the new
basic window S[k]. The sum over the sliding window
is updated as follows:

P
new(s) =

P
old(s) +

P
S[k]�P

S[0].

3.2 Correlation Statistics

Correlation statistics are important in many applica-
tions. For example, Pairs Trading, also known as the



correlation trading strategy, is widely employed by ma-
jor Wall Street �rms. This strategy focuses on trading
pairs of equities that are correlated. The correlation
between two streams (stocks) is a�ected by some fac-
tors that are not known a priori. Any pair of streams
could be correlated at some time. Much e�ort has
been made to �nd such correlations in order to enjoy
the arbitrage pro�ts. These applications imply that
the ability to spot correlations among a large amount
of streams in real time will provide competitive advan-
tages. To make our task even more challenging, such
correlations change over time and we have to update
the moving correlations frequently.

The eÆcient computation of correlation potentially
requires the examination of all pairs of streams. To
compute the correlation coeÆcients eÆciently, we need
to employ some data reduction techniques. Our gen-
eral approach is to use curve �tting in each basic win-
dow to reduce the data size. We will use the Discrete
Fourier Transform to compute the correlation coeÆ-
cients of all pairs of streams approximately. In almost
all applications, end users are interested only in pairs
that are highly correlated. We will also show how to re-
port these pairs without examining all pairs of streams
using DFT and a grid structure.

We start by a quick review of DFT. We will ex-
plain how to compute the vector inner-product when
the two series are aligned in basic windows. This ap-
proach is extended to the general case when the basic
windows are not aligned. Then we will show our ap-
proach for reporting the highly correlated stream pairs
in an online fashion.

3.3 Review of the Discrete Fourier Transform

We will follow the convention in [2]. The Dis-
crete Fourier Transform of a time sequence x =
x0; x1; :::; xw�1 is a sequence X = X0; X1; :::; Xw�1 =
DFT (x) of complex numbers given by

XF =
1p
w

w�1X
i=0

xie
�j2�Fi=w F = 0; 1; :::; w � 1

where j =
p�1. The inverse Fourier transform of X

is given by

xi =
1p
w

w�1X
F=0

XF e
j2�Fi=w i = 0; 1; :::; w � 1

The following properties of DFT can be found in
any textbook on DFT.

� The DFT preserves the Euclidean distance be-
tween two sequence x and y.

d(x; y) = d(X;Y )

� (Symmetry Property) If x is a real sequence, then

X(i) = X�(w � i); i = 1; 2; :::; w � 1

X� is the complex conjugate of X .

Since for most real time series the �rst few DFT co-
eÆcients contain most of the energy(

P
x2i ), we would

then expect those coeÆcients to capture the raw shape
of the time series[2, 8]. For example, the energy spec-
trum for the random walk series, which models stock
movements, declines with a power of 2 with increasing
coeÆcients. And for black noise, which successfully
models series like the water level of a river as it varies
over time, the energy spectrum declines even faster
with increasing number of coeÆcients.

3.4 Inner-product With Aligned Windows

The correlation and beta can be computed from the
vector inner-product. The vector inner-product for
two series x = (x1; :::; xw); y = (y1; :::; yw), denoted
as  (x; y), is just the sum of the products of their cor-
responding elements:

 (x; y) =
wX
i=1

xiyi

Given two series sx and sy, when the two series are
aligned,

 (sx; sy) =

kX
i=1

 (Sx[i]; Sy[i])

So, we must explain how to compute the inner-product
of two basic windows: x1; x2; :::xb and y1; y2; :::yb.

Let f : f1(x); f2(x); ::: be a family of continu-
ous functions. We approximate the time series in
each basic window, Sx[i] = x1; x2; :::xb and Sy[i] =
y1; y2; :::yb, with a function family f . (We will give
speci�c examples later.)

xi �
n�1X
m=0

cxmfm(i); yi �
n�1X
m=0

cymfm(i)

i = 1; :::; b

cxm; c
y
m;m = 0; :::; n � 1 are n coeÆcients to approxi-

mate the time series with the function family f .
The inner-product of the two basic windows is

therefore

bX
i=1

xiyi �
bX

i=1

� n�1X
m=0

cxmfm(i)

n�1X
p=0

cypfp(i)
�

=

n�1X
m=0

n�1X
p=0

cxmc
y
p

� bX
i=1

fm(i)fp(i)
�



=

n�1X
m=0

n�1X
p=0

cxmc
y
pW (m; p)

where W (m; p) =
Pb

i=1 fm(i)fp(i) can be precom-
puted. If the function family f is orthogonal, we have

W (m; p) =

�
0 m 6= p
V (m) 6= 0 m = p

Thus,
bX

i=1

xiyi �
n�1X
m=0

cxmc
y
mV (m)

With this curve �tting technique, we reduce the
space and time required to compute inner-products
from b to n. It should also be noted that besides data
compression, the curve �tting approach can be used to
�ll in missing data. This works naturally for comput-
ing correlations among streams with missing data at
some timepoints.

The sine-cosine function families have the right
properties. We perform the Discrete Fourier Trans-
forms for the time series over the basic windows, en-
abling a constant time computation of coeÆcients for
each basic window. Following the observations in [2],
we can obtain a good approximation for the series with
only the �rst n DFT coeÆcients,

xi � 1p
b

n�1X
F=0

XF e
j2�Fi=b i = 1; 2; :::; b

3.5 Inner-product With Unaligned Windows

A much harder problem is to compute correlations
with time lags. The time series will not necessary be
aligned at their basic windows. However, the digests
we keep are enough to compute such correlations.

Without loss of generality, we will show the com-
putation of the n-approximate lagged inner-product
of two streams with time lags less than the size
of a basic window. Given two such series, sx =
sx1 ; :::; s

x
w = Sx[1]; :::; Sx[k] and sy = sya+1; :::; s

y
a+w =

Sy[0]; Sy[1]; :::; Sy[k�1]; Sy[k], where for the basic win-
dows Sy[0] and Sy[k], only the last a values in Sy[0]
and the �rst b�a values in Sy[k] are included (a < b).
We have

 (sx; sy) =

wX
i=1

(sxi s
y
a+i)

=

kX
i=1

�
�(Sx[i]; Sy[i� 1]; a)+ �(Sy[i]; Sx[i]; b�a)�

where �(S1; S2; d) =
Pd

i=1 S
1[i]S2[b�d+ i]. For S1 =

x1; :::; xb and S
2 = y1; :::; yb, �(S

1; S2; a) is the inner-
product of the �rst a values of S1 with the last a values

of S2. This can be computed using only their �rst n
DFT coeÆcients.

aX
i=1

xiyb�a+i �
aX
i=1

� n�1X
m=0

cxmfm(i)
n�1X
p=0

cypfp(b� a+ i)
�

=

n�1X
m=0

n�1X
p=0

cxmc
y
p

� aX
i=1

fm(i)fp(b� a+ i)
�

=

n�1X
m=0

n�1X
p=0

cxmc
y
pW (m; p; a)

This implies that if we precompute the table of

W (m; p; a) =

aX
i=1

fm(i)fp(b� a+ i)

m; p = 0:::; n� 1; a = 1; :::; bb=2c
we can compute the inner-product using only the DFT
coeÆcients in time O(n2) without requiring the align-
ment of basic windows.

Theorem 1 The n-approximate lagged inner-product
of two time series using their �rst n DFT coeÆcients
can be computed in time O(kn) if the two series have
aligned basic windows, otherwise it takes time O(kn2),
k is the number of basic windows.

It is not hard to show that this approach can be
extended to compute the inner-product of two time
series over sliding windows of any size.

Corollary 1 The inner-product of two time series
over sliding windows of any size with any time delay
can be computed using only the basic window digests
of the data streams.

3.6 IO Performance

It might be desirable to store the summary data for
future analysis. Since the summary data we keep are
suÆcient to compute all the statistics we are interested
in, there is no need to store the raw data streams. The
summary data will be stored on disk sequentially in the
order of basic windows.

LetNs be the number of streams, Nb be the number
of basic windows, Sb be the size of basic windows and
Nc be the number of DFT coeÆcients we use(2Nc real
number), the I/O cost to access the data for all streams
within a speci�c period will be

NsNbSizeof(float)(2 + 2Nc)

PageSize

while the I/O cost for the exact computation is

NsNbSizeof(float)Sb
PageSize



The improvement is a ratio of

Sb
2 + 2Nc

The �rst 2 in the above equations corresponds to two
non-DFT elements of summary data: the sum and the
sum of the squares of the time series in each basic
window. Also the I/O costs above assume sequential
disk access. This is a reasonable assumption given the
time-ordered nature of data streams.

3.7 Monitoring Correlations Between Data
Streams

The above curve �tting technique can be used for
computing inner-products and correlations over slid-
ing windows of any size, as well as with any time delay
across streams. A frequent goal is to discover streams
with high correlations. To do online monitoring of syn-
chronized streams over a �xed size of sliding window
with correlation above a speci�c threshold, we use an
approach based on DFT and a hash technique that will
report such stream pairs quickly.

First, we introduce the normalization of a series
over sliding windows of size w, x1; x2; :::; xw, as fol-
lows.

x̂i =
xi � x

�x
; i = 1; 2; :::; w

where

�x =

vuut wX
i=1

(xi � x)2

As the following theorem suggests, the correlation
coeÆcient of two time series can be reduced to the
Euclidean distance between their normalized series.

Theorem 2 The correlation coeÆcient of two time
series x1; :::; xw and y1; :::; yw is

corr(x; y) = 1� 1

2
d2(x̂; ŷ)

where d(x̂; ŷ) is the Euclidean distance between x̂ and
ŷ.

Proof First, we notice that

wX
i=1

x̂2i =
wX
i=1

ŷ2i = 1

corr(x; y) =

Pw
i=1(xi � x)(yi � y)pPw

i=1(xi � x)2
pPw

i=1(yi � y)2
=

wX
i=1

x̂iŷi

d2(x̂; ŷ) =

wX
i=1

(x̂i � ŷi)
2 =

wX
i=1

x̂2i +

wX
i=1

ŷ2i � 2

wX
i=1

x̂iŷi

= 2� 2corr(x; y)

By reducing the correlation coeÆcient to Euclidean
Distance, we can apply the techniques in [2] to report
sequences with correlation coeÆcients higher than a
speci�c threshold.

Theorem 3 Let the DFT of the normalized form of

two time series x and y be X̂ and Ŷ respectively,

corr(x; y) � 1� �2 ) dn(X̂; Ŷ ) � �

where dn(X̂; Ŷ ) is the Euclidean distance between se-

ries X̂1; X̂2; :::; X̂n and Ŷ1; Ŷ2; :::; Ŷn.

Proof As DFT preserves Euclidean distance, we have

d(X̂; Ŷ ) = d(x̂; ŷ)

Using only the �rst n and last n; (n << w) DFT
coeÆcients[2, 22], from the symmetry property of
DFT, we have

nX
i=1

(X̂i � Ŷi)
2 +

nX
i=1

(X̂w�n � Ŷw�n)
2

= 2

nX
i=1

(X̂i � Ŷi)
2 = 2d2n(X̂; Ŷ ) � d2(X̂; Ŷ )

corr(x; y) � 1� �2 ) d2(x̂; ŷ) � 2�2

) d2(X̂; Ŷ ) � 2�2 ) dn(X̂; Ŷ ) � �

From the above theorem, we can examine the corre-
lations of only those stream pairs for which dn(X̂; Ŷ ) �
� holds. We will get a superset of highly correlated
pairs and there will be no false negatives. The false
positives can be further �ltered out as we explain
later. In the work[17], HierarchyScan also uses cor-
relation coeÆcients as a similarity measure for time

series. They use
Pn

i=1 X̂iŶi as an approximation for
the correlation coeÆcient. As such approximations
will not be always above the true values, some stream
pairs could be discarded based on their approxima-
tions, even if their true correlations are above the
threshold. Though HierarchyScan propose an empir-
ical method to select level-dependent thresholds for
multi-resolution scans of sequences, it cannot guaran-
tee the absence of false negatives.

We can extend the techniques above to report
stream pairs of negative high-value correlations.

Corollary 2 Let the DFT of the normalized form of

two time series x and y be X̂ and Ŷ .

corr(x; y) � �1 + �2 ) dn(�X̂; Ŷ ) � �



Proof We have

DFT (�x) = �DFT (x)

corr(x; y) � �1 + �2 )
wX
i=1

x̂iŷi � �1 + �2

)
wX
i=1

(�x̂i)ŷi � 1� �2 ) dn(�X̂; Ŷ ) � �

Now we discuss how to compute the DFT coeÆ-
cients X̂ incrementally. The DFT coeÆcients X̂ of
the normalized sequence can be computed from the
DFT coeÆcients X of the original sequence.

Lemma 1 Let X̂ = DFT (x̂); X = DFT (x), we have(
X̂0 = 0

X̂i =
Xi

�x
i 6= 0

We can maintain DFT coeÆcients over sliding win-
dows incrementally[11].

Theorem 4 Let Xold
m be the m-th DFT coeÆcient of

the series in sliding window x0; x1; :::; xw�1 and Xnew
m

be that coeÆcient of the series x1; x2; :::; xw,

Xnew
m = e

j2�m
w (Xold

m +
xw � x0p

w
)

m = 1; :::; n

This can be extended to a batch update based on
the basic windows.

Corollary 3 Let Xold
m be the m-th DFT coeÆcient

of the series in sliding window x0; x2; :::; xw�1
and Xnew

m be that coeÆcient of the series
xb; xb+1; :::; xw; xw+1; :::; xw+b�1,

Xnew
m = e

j2�mb

w Xold
m

+
1p
w

� b�1X
i=0

e
j2�m(b�i)

w xw+i �
b�1X
i=0

e
j2�m(b�i)

w xi
�

m = 1; :::; n

The corollary suggests that to update the DFT coef-
�cients incrementally, we should keep the following n
digests for the basic windows.

b�1X
i=0

e
j2�m(b�i)

w xi; m = 1; :::; n

By using the DFT on normalized sequences, we
also map the original sequences into a bounded fea-
ture space.

Theorem 5 Let X̂0; X̂1; :::; X̂w�1 be the DFT of a
normalized sequence x1; x2; :::; xw, we have

jX̂ij �
p
2

2
; i = 1; :::; n; n < w=2

Proof
w�1X
i=1

(X̂i)
2 =

wX
i=1

(x̂i)
2 = 1

) 2

nX
i=1

X̂2
i =

nX
i=1

(X̂2
i + X̂2

w�i) � 1

) jX̂ij �
p
2

2
; i = 1; :::; n

From the above theorem, the DFT feature space
R2n is a cube of diameter

p
2. Thus we can use a grid

structure to report near neighbors eÆciently.
We will use the �rst n̂, n̂ � 2n, dimensions of the

DFT feature space for indexing. We superimpose an
n̂-dimensional orthogonal regular grid on the DFT fea-
ture space and partition the cube of diameter

p
2 into

cells with the same size and shape. There are (2d
p
2

2� e)n̂
cells of cubes of diameter �. Each stream is mapped to
a cell based on its �rst n̂ normalized DFT coeÆcients.
Suppose a stream x is hashed to cell (c1; c2; :::; cn̂). To
report the streams whose correlation coeÆcients with
x is above the threshold 1 � �2, only streams hashed
to cells adjacent to cell (c1; c2; :::; cn̂) need to be exam-
ined. Similarly, streams whose correlation coeÆcients
with x is less than the threshold �1 + �2, must be
hashed to cells adjacent to cell (�c1;�c2; :::;�cn̂). Af-
ter hashing the streams to cells, the number of stream
pairs to be examined is greatly reduced. We can then
compute their Euclidean distance, as well as correla-
tion, based on the �rst n DFT coeÆcients.

The grid structure can be maintained as follows.
Without loss of generality, we discuss the detection of
only positive high-value correlations. There are two
kinds of correlations the user might be interested in.

� synchronized correlation If we are interested
only in synchronized correlation, the grid struc-
ture is cleared at the end of every basic window.
At the end of the basic windows, all the data
within the current basic window are available and
the digests are computed. Suppose that stream
x is hashed to cell c, and set Sc includes all the
cells adjacent to c and c itself. If any stream y
was hashed to a cell in Sc before x, the correla-
tion between x and y will be examined. Thus we
guarantee all the highly correlated stream pairs
are reported only once.

� lagged correlation If we also want to report
lagged correlation, including autocorrelation, the



maintenance of the grid structure will be a lit-
tle more complicated. Let TM be a user-de�ned
parameter specifying the largest lag that is of in-
terest. Each cell in the grid as well as the streams
hashed to the grid will have a timestamp. The
timestamp Tx associated with the hash value of
the stream x is the time when x is hashed to the
grid. The timestamp Tc of a cell c is the latest
timestamp when the cell c is updated. The grid is
updated every basic window time but never glob-
ally cleared after it is initiated. When stream x
hashes to cell c, all cells ci, ci 2 Sc, are examined
one by one. Let the timestamps of cell ci be Tci . If
Tx� Tci > TM , that means all the streams in cell
ci are out of date. Thus cell ci is locally cleared.
If 0 < Tx � Tci � TM , that means some streams
in cell ci might be out of the date and ci has not
been visited in the current round of grid updating.
All the streams in cell ci are examined and those
streams with timestamps older than Tx � TM are
deleted from out of the cell. The streams with up-
to-date timestamps are examined as usual. Also
Tci will be set to Tx to indicate ci is just updated.
Finally in the case when Tx = Tci , no updating of
ci is necessary and streams in ci are examined to
see if they are highly correlated to x.

3.8 Parallel Implementation

Our framework facilitates a parallel implementation
by using a straightforward decomposition. Consider
a network of k servers to monitor Ns streams. We
assume these servers have similar computing resources.

The work to monitor the streams has two stages.

1. Compute the digests and single stream statistics
for the data streams. The Ns streams are equally
divided into k groups. The server i(i = 1; :::; k)
will read those streams in the i-th group and
compute their digests, single stream statistics and
hash values.

2. Report highly correlated stream pairs based on
the grid structure. The grid structure is also geo-
metrically and evenly partitioned into k parts. A
server X will read in its part, a set of cells SX .
Server X will also read a set of cells S0X includ-
ing cells adjacent to the boundary cells in SX .
Server X will report those stream pairs that are
highly correlated within cells in Sx.

1 Note that
only the �rst n normalize DFT coeÆcients need to
be communicated between servers, therefore the
overhead for communication is greatly reduced.

1To avoid repeated reporting of pairs split by the partition,
two servers in charge of adjacent grid parts must agree in the
splitting of pairs.

4 StatStream System

StatStream runs in a high performance interpreted
environment called K[1]. Our system makes use of
this language's powerful array-based computation to
achieve high speed in the streaming data environment.
The system follows the algorithmic ideas above and
makes use of the following parameters:

� Correlation Threshold Only stream pairs
whose absolute value of correlation coeÆcients
larger than a speci�ed threshold will be reported.
The higher this threshold, the �ner the grid struc-
ture, and the fewer streams whose exact correla-
tions must be computed.

� Sliding Window Size This is the time interval
over which statistics are reported to the user. If
the sliding window size is 1 hour, then the re-
ported correlations are those over the past hour.

� Duration over Threshold Some users might be
interested in only those pairs with correlation co-
eÆcients above the threshold for a pre-de�ned pe-
riod. For example, a trader might ask \Has the
one hour correlation between two stocks been over
0.95 during the last 10 minutes?" This parameter
provides such users with an option to specify a
minimum duration. A longer duration period of
highly correlated streams indicates a stronger re-
lationship between the streams while a shorter one
might indicate an accidental correlation. For ex-
ample, a longer duration might give a stock mar-
ket trader more con�dence when taking advantage
of such potential opportunities. A longer duration
also gives better performance because we can up-
date the correlations less frequently.

� Range of Lagged Correlations In addition
to synchronized correlations, StatStream can also
detect high-value lagged correlations. This pa-
rameter, i.e. TM in section 3.7, speci�es the range
of the lagged correlations. For example, if the
range is 10 minutes and the basic window is 2 min-
utes, the system will examine cross-correlations
and autocorrelations for streams with lags of 2,4,8
and 10 minutes.

5 Empirical Study

Our empirical studies attempt to answer the following
questions.

� How great are the time savings when using the
DFT approximate algorithms as compared with
exact algorithms? How many streams they can
handle in real time?

� What's the approximation error when using DFT
within each basic window to estimate correlation?



How does it change according to the basic and
sliding window sizes?

� What is the pruning power of the grid structure
in detecting high correlated pairs? What is the
precision?

We perform the empirical study on the following
two datasets on a 1.5GHz Pentium 4 PC with 128 MB
of main memory.

� Synthetic Data The time series streams are gen-
erated using the random walk model. For stream
s,

si = 100 +
iX

j=1

(uj � 0:5); i = 1; 2; :::

where uj is a set of uniform random real numbers
in [0; 1].

� Stock Exchange Data The New York Stock Ex-
change (NYSE) Trade and Quote (TAQ) database
provides intraday trade and quote data for all
stocks listed on NYSE, AMEX, NASDAQ, and
SmallCap issues. The database grows at the rate
of 10GB per month. The historical data since
1993 have accumulated to 500GB. The data we
use in our experiment are the tick data of the ma-
jor stocks in a trading day. The 300 stocks in
this dataset are heavily traded in NYSE. During
the peak hours, there are more than one trade
for a single stock in a second. We use the price
weighted by volume as the price of that stock at
that second. In a second when there is no trad-
ing activities for a particular stock, we use the
last trading price as its price. In this way, all
the stock streams are updated every second, cor-
responding to a timepoint. The sliding window
will vary from half an hour to two hours (1,800 to
7,200 timepoints). In practice the actual choice of
the sliding windows will be up to the user. The
lengths of the basic windows are half a minute
to several minutes, depending on the number of
streams to be monitored and the computing ca-
pacity.

5.1 Speed Measurement

Suppose that the streams have new data every second.
The user of a time series stream system asks himself
the following questions:

1. How many streams can I track at once in an online
fashion? (Online means that even if the data come
in forever, I can compute the statistics of the data
with a �xed delay from their occurrence.)

2. How long is the delay between a change in corre-
lation and the time when I see the change?

Figure 2: Comparison of the number of streams that
the DFT and Exact method can handle

Our system will compute correlations at the end of
each basic window. As noted above, the computation
for basic window i must �nish by the end of basic win-
dow i + 1 in order for our system to be considered
on-line. Otherwise, it would lag farther and farther
behind over time. Therefore, some of the correlations
may be computed towards the end of the basic window
i+ 1. The user perceives the size of the basic window
as the maximum delay between the time that a change
in correlation takes place and the time it is computed.

The net result is that the answers to questions (1)
and (2) are related. We can increase the number of
streams at the cost of increasing the delay in reporting
correlation.

Figure 2 shows the number of streams vs. the min-
imum size of the basic window for a uniprocessor and
with di�erent algorithms. In the DFT method, we
choose the number of coeÆcients to be 16.

Using the exact method, given the basic window
size b, the time to compute the correlations among ns
streams with b new timepoints is T = kbn2s. Because
the algorithm must �nish this in b seconds, we have

kbn2s = b) ns =
q

1

k .

With the DFT-grid method, the work to monitor
correlations has two parts: (1)Updating digests takes
time T1 = k1bns; (2)Detecting correlation based on
the grid takes time T2 = k2n

2
s. To �nish these two

computations before the basic window ends, we have
T1+T2 = b. Since T2 is the dominating term, we have

ns �
q

b
k2
. Note that because of the grid structure,

k2 << k. Also, the computation with data digests is
much more IO eÆcient than the exact method on the
raw streams. 2 From the equation above, we can in-
crease the number of streams monitored by increasing
the basic window size, i.e., delay time. This is con-
�rmed in the �gure. The number of streams handled
by our system increases with the size of the basic win-
dow, while there is no perceivable change for the exact
algorithm.

2We also did experiments on how k2 is a�ected by the number
of DFT coeÆcients and the thresholds. We cannot include those
results due to the page limit.



Figure 3: Average approximation errors for correlation
coeÆcients with di�erent basic/sliding window sizes
for synthetic(up) and real(down) datasets

5.2 Precision Measurement

When computing the approximate correlations based
on DFT curve �tting in each basic window, the size of
the basic window can be adjusted to trade speed for
accuracy. Our experiments on the two datasets show
that the errors of correlation coeÆcients using this ap-
proach are very small, especially for sliding windows
of large size. Figure 3 shows the average approxima-
tion errors for correlation coeÆcients of pairs out of
300 streams using synthetic and real datasets. It com-
pares the approximation errors using di�erent sizes of
sliding and basic windows. We use the �rst 2 DFT co-
eÆcients in each basic window. Smaller basic windows
are more precise as we would expect. The experiments
also indicate that for a larger sliding window, a larger
basic window can still give very good approximation.
Most of the approximation errors in the correlation
calculation above are far below 0:005.

We also perform experiments in testing the e�ec-
tiveness of the grid structure. The grid structure
on DFT feature space prunes out most of the low-
correlated pairs of streams. The pruning power [15]
is the number of pairs reported by the grid, divided
by the number of all potential pairs. Since our sys-
tem guarantees no false negatives, the reported pairs
include all the high-correlated pairs and some false
positives. We also measure the quality of the sys-
tem by precision, which is the ratio of the number of
pairs whose correlations are above the threshold and
reported by StatStream, to the number of pairs that
are reported by StatStream. Figure 4 shows the preci-
sion and pruning power fraction using di�erent num-

Figure 4: The precision and pruning power using dif-
ferent numbers of coeÆcients, thresholds and datasets

Table 1: Precision after post processing
Dataset R0.85 R0.85 R0.9 R0.9 S0.85
Tolerance 0.001 0.0005 0.001 0.0005 0.0005
Precision 0.9933 0.9947 0.9765 0.9865 0.9931
Recall 1.0 0.9995 1.0 0.9987 1.0

bers of coeÆcients and values of thresholds for di�erent
datasets. R0:85 indicates the real dataset with thresh-
old of 0:85, S0:9 indicates the synthetic dataset with
threshold of 0:9,etc. The length of the sliding window
is one hour. Note that the recall is 1.

Since the results still include some false positives,
it is a common practice in database similarity queries
to �lter out the false positives with post processing.
This is not quite practical in our one pass stream-
ing data processing framework. Fortunately, as shown
by our previous experiments, the approximate corre-
lation coeÆcients computation based on the digests
has high accuracy, so we can use them to further �l-
ter out the false positives. In fact, it is possible to
increase precision (fewer false positives) at the ex-
pense of recall (more false negatives) by post process-
ing with a tolerance. Specially, we report those pairs
with approximate correlation coeÆcients larger than
threshold � tolerance. Table 1 shows the results for
�ve experiments.

6 Related Work

There is increasing interest in data streams. In the the-
oretical literature, Datar et. al [6] study the problem
of maintaining data stream statistics over sliding win-
dows. Their focus is single stream statistics. They pro-
pose an online data structure, exponential histogram,
that can be adapted to report statistics over sliding
windows at every timepoint. They achieve this with a
limited memory and a tradeo� of accuracy. Our online



basic window synopsis structure can report the precise
single stream statistics with a delay of the size of a ba-
sic window, but our multi-stream statistics also trade
accuracy against memory and time.

Gehrke et al. [10] also study the problem of mon-
itoring statistics over multiple data streams. The
statistics they are interested in are di�erent from ours.
They compute correlated aggregates when the number
of streams to be monitored is small. A typical query in
phone call record streams is the percentage of interna-
tional phone calls that are longer than the average du-
ration of a domestic phone call. They use histograms
as summary data structures for the approximate com-
puting of correlated aggregates.

Recently, the data mining community has turned
its attention to data streams. A domain-speci�c lan-
guage, Hancock[5], has been designed at AT&T to
extract signatures from massive transaction streams.
Algorithms for constructing decision trees[7] and clus-
tering [13] for data streams have been proposed. Re-
cent work of Manku et al.[18], Greenwald et al.[12]
have focused on the problem of approximate quantile
computation for individual data streams. Our work
is complementary to the data mining research because
our fast techniques for �nding correlations can be used
as inputs to the clustering algorithms.

The work by Yi et al.[25] for the online data mining
of co-evolving time sequences is also complementary
to our work. Our approximation algorithm can spot
correlations among a large number of co-evolving time
sequences quickly. Their method, MUSCLES can then
be applied to those highly correlated streams for linear
regression-based forecasting of new values.

Time series problems in the database community
have focused on discovering the similarity between an
online sequence and an indexed database of previ-
ously obtained sequence information. Traditionally,
the Euclidean similarity measure is used. The orig-
inal work by Agrawal et al. [2] utilizes the DFT to
transform data from the time domain into frequency
domain and uses multidimensional index structure to
index the �rst few DFT coeÆcients. In their work,
the focus is on whole sequence matching. This was
generalized to allow subsequence matching [8]. Ra�ei
and Mendelzon[21] improve this technique by allow-
ing transformations, including shifting, scaling and
moving average, on the time series before similarity
queries. The distances between sequences are mea-
sured by the Euclidean distance plus the costs asso-
ciated with these transformations. Our work di�ers
from them in that (1)In [2, 8, 21, 17], the time series
are all �nite data sets and the focus is on similarity
queries against a sequence database having a precon-
structed index. Our work focuses on similarity detec-
tion in multiple online streams in real time. (2)We use
the correlation coeÆcients as a distance measure like
[17]. The correlation measure is invariant under shift-

ing and scaling transformations. Correlation makes
it possible to construct an eÆcient grid structure in
bounded DFT feature space. This is what enable us
to give real time results. [17] allows false negatives,
whereas our method does not.

Other techniques such as Discrete Wavelet Trans-
form (DWT) [4, 23, 20], Singular Value Decomposi-
tion (SVD)[16] and Piecewise Constant Approxima-
tion (PCA)[24, 15] are also proposed for similarity
search. Keogh et al. [15] compares these techniques
for time series similarity queries. The performance of
these techniques varied depending on the characteris-
tics of the datasets, because no single transform can
be optimal on all dataset. These techniques based on
curve �tting are alternative ways of computing digests
and could be used in our sliding window/basic window
framework. 3

7 Conclusion

Maintaining multi-stream and time-delayed statistics
in a continuous online fashion is a signi�cant challenge
in data management. Our paper solves this problem in
a scalable way that gives a guaranteed response time
with high accuracy.

The Discrete Fourier Transform technique reduces
the enormous raw data streams into a manageable syn-
optic data structure and gives good I/O performance.
For any pair of streams, the pair-wise statistic is com-
puted in an incremental fashion and requires constant
time per update using a DFT approximation. An slid-
ing/basic window framework is introduced to facilitate
the eÆcient management of streaming data digests.
We reduce correlation coeÆcient similarity measure to
Euclidean measure and make use of a grid structure
to detect correlations among thousands of high speed
data streams in real time. Experiments conducted
using synthetic and real data show that StatStream
is very eÆcient and precise for correlations detection
among data streams.
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