
StatStream: Statistical Monitoring of Thousands of

Data Streams in Real Time

Yunyue Zhu Dennis Shasha

yunyue@cs.nyu.edu shasha@cs.nyu.edu

Courant Institute of Mathematical Sciences

Department of Computer Science

New York University

November 4, 2001

Abstract

Consider the problem of monitoring tens of thousands of time series data streams

in an online fashion and making decisions on them. In addition to single stream

statistics such as average and standard deviation, we also want to track correlations

between all pairs of streams. A stock market trader might use such a tool to spot

arbitrage opportunities. This paper proposes eÆcient methods for solving this prob-

lem based on Discrete Fourier Transforms and a three level time interval hierarchy.

Extensive experiments on synthetic data and real world �nancial trading data show

that our algorithm beats the direct computation approach by several orders of mag-

nitude. It also improves on previous Fourier Transform approaches by allowing the

eÆcient computation of time-delayed correlation over any size sliding window and

any time delay across streams or within a single stream. Correlation also lends itself

to an eÆcient grid-based data structure. The result is a fully on-line, incremental,

�xed response time, approximate yet accurate system for monitoring the pairwise

correlations of 10,000 streams on a single PC. The algorithm is embarrassingly par-

allelizable.

1 Introduction

Many applications consist of multiple data streams. For example,

� In mission operations for NASA's Space Shuttle, approximately 20,000 sensors are
telemetered once per second to Mission Control at Johnson Space Center, Houston[15].

� There are about 50,000 securities trading in the United States, and every second up
to 100,000 quotes and trades (ticks) are generated.

Unfortunately it is diÆcult to process such data in set-oriented data management
systems, though object-relational time series extensions have begun to �ll the gap in a
logical sense at least[20]. For the performance to be suÆciently good however, \Data
Stream Management Systems" (DSMSs) [3], whatever their logical model, should exploit
the following characteristics of the application:

� Updates are through insertions of new elements (with relatively rare corrections of
older data).

1

� Queries (moving averages, standard deviations, and correlation) treat the data as
sequences not sets.

� Since a full stream is never materialized, queries treat the data as a never-ending
data stream.

� One pass algorithms are desirable because the data is vast.

� Interpretation is mostly qualitative, so sacri�cing accuracy for speed is acceptable.

This paper presents the algorithms and architecture of StatStream, a data stream man-
agement system. The system computes a variety of single and multiple stream statistics
in one pass with constant time (per input) and bounded memory. The statistics we con-
sidered in our framework include most of the statistics that a securities trader might be
interested in, just to show its use for one practical application. The algorithms, however,
are applicable to other disciplines, such as sensor data processing and medicine. We divide
our contributions into functional and algorithmic. Our functional contributions are:

1. We compute multi-stream statistics such as synchronous as well as time-delayed
correlation and vector inner-product in a continuous online fashion. This means
that if a statistic holds at time t, that statistic will be reported at time t+ v, where
v is a constant independent of the size and duration of the stream.

2. For any pair of streams, each pair-wise statistic is computed in incremental fash-
ion and requires constant time per update. This is done using a Discrete Fourier
Transform approximation.

3. The approximation has a small error under natural assumptions.

4. Even when we monitor the data streams over sliding windows, no revisiting of the
expiring data streams is needed.

5. The net result is that on a Pentium 4 PC, we can handle 10,000 streams with a delay
window v of only 5 minute.

Our algorithmic contributions mainly have to do with correlation statistics. First, we
distinguish three time periods:

� timepoints { the smallest unit of time over which the system collects data, e.g.
second.

� basic window { a consecutive subsequence of time points over which the system
maintains a digest incrementally, e.g., a few minutes.

� sliding window { a user-de�ned consecutive subsequence of basic windows over which
the user wants statistics, e.g. an hour. The user might ask, \which stocks were
correlated with a value of over 0.9 for the last hour?"

The intermediate time interval that we call basic windows yields three advantages:

1. Results of user queries need not be delayed more than the basic window time. In
our example, the user will be told about correlations between 2 PM and 3 PM by
3:05 PM.

2. The basic window allows the computation of correlations over windows of arbitrary
size as well as time-delayed correlations with high accuracy.

2

3. The size of the basic window can be adjusted to trade speed for accuracy. In our
experiments we construct the size to be the largest that ensures that correlations are
calculated with an error of 0.01.

A second algorithmic contribution is the grid structure each of whose cells store the
hash function value of a stream. The structure itself is unoriginal but the high eÆciency
we obtain from it is due to the facts that we are measuring correlation and have done the
time decomposition mentioned above.

The remainder of this paper will be organized as follows. The data we consider and
statistics we produce are presented in Section 2. Section 3 presents our algorithms for
monitoring high speed time series data streams. Section 4 discusses the system StatStream.
Section 5 presents our experimental results. Section 6 puts our work in the context of
related work.

2 Data And Queries

2.1 Time Series Data Streams

We consider data entering as a time ordered series of triples (streamID, timepoint, value).
Each stream consists of all those triples having the same streamID. (In �nance, a streamID
may be a stock, for example.) The streams are synchronized.

Each stream has new value available at every periodic time interval, e.g. every second.
We call the interval value the timepoint. For example, if the periodic time interval is a
second and the current timepoint for all the streams is i, after one second, all the streams
will have a new value with timepoint i + 1. (Note that if a stream has no value at a
timepoint, a value will be assigned to that timepoint based on interpolation. If there
are several values during a timepoint, then a summary value will be assigned to that
timepoint.)

Let si or s[i] denote the value of stream s at timepoint i. s[i : j] denotes the subsequence
of stream s from timepoints i through j inclusive. si denotes a stream with streamID i.
Also we use t to denote the latest timepoint, i.e., now. The statistics we will monitor will
be denoted stat(si1j ; s

i2
j ; :::; s

ik
j ; j 2 windows). We will discuss the meaning of windows in

the next section.

2.2 Temporal Spans

In the spirit of the work in [9, 10], we generalize the three kinds of temporal spans for
which the statistics of time series are calculated.

1. Landmark windows: In this temporal span, statistics are computed based on the
values between a speci�c timepoint called landmark and now. stat(s; landmark(k))
will be computed on the subsequence of time series s[i]; i � k. An unrestricted
window is a special case when k = 1. For an unrestricted window the statistics are
based on all the available data.

2. Sliding windows: In �nancial applications, at least, a sliding window model is
more appropriate for data streams. Given the length of the sliding window w and
the current timepoint t, stat(s; sliding(w)) will be computed in the subsequence
s[t� w + 1 : t].

3

3. Damped window model: In this model, recent sliding windows are more impor-
tant than previous ones. For example, in the computation of a moving average, a
sliding window model will compute the average as

avg =

Pt
i=t�w+1 si

w

In a damped window model, by contrast, the weights of data decrease exponentially
into the past. For example, a moving average in a damped window model can be
computed as follows:

avgnew = avgold � p+ st � (1� p); 0 < p < 1

Other statistics in a damped window model can be de�ned similarly.

In this paper, we will focus on the sliding window model, because it is the one used
most often. Also, the algorithms for sliding windows are the most general, so it can be
specialized to the other two temporal spans.

2.3 Statistics To Monitor

Consider the stream si; i = 1; :::; w. The statistics we will monitor are

1. Average

avg(s) =

Pw
i=1 si
w

2. Standard deviation

std(s) =

sPw
i=1 s

2
i � wavg(s)2

w � 1

3. Maximum and Minimum

4. Best Fit Slope: the slope of the line that best �t the time series.

bfs(s) =
1

w

Pw
i=1 sii� avg(i)avg(s)

1

w

Pw
i=1 i

2 � avg(i)2

5. Correlation coeÆcients

corr(s; r) =
1

w

Pw
i=1 siri � avg(s)avg(r)

std(s)std(r)

6. Autocorrelation: the correlation of the series with itself at an earlier time.

7. Beta: the sensitivity of the value of a stream s to the values of another stream r (or
weighted collection of streams).

beta(s; r) =
1

w

Pw
i=1 siri � avg(s)avg(r)

std(r)2

4

Basic Window
S[0]

Sliding Window

Basic Window
S[k−1]

...
Digests Digests Digests

New Basic Window
S[k]

Figure 1: Sliding windows and basic windows

3 Statistics Over Sliding Windows

To compute the statistics over a sliding window, we will maintain a synopsis data structure
for the stream to compute the statistics rapidly. To start, our framework subdivides the
sliding windows equally into shorter windows, which we call basic windows, to facilitate
the eÆcient elimination of old data and the incorporation of new data. We keep digests
for both basic windows and sliding windows. For example, the running sum of the time
series values within a basic window and the running sum within an entire sliding window
belong to the two kinds of digests respectively. Figure 1 shows the relation between sliding
windows and basic windows.

Let the data within a sliding window be s[t � w + 1 : t]. Suppose w = kb, where b
is the length of a basic window and k is the number of basic windows within a sliding
window. Let S[0]; S[1]; :::; S[k � 1] denote a sequence of basic windows, where S[i] =
s[(t� w) + ib+ 1 : (t � w) + (i+ 1)b]. S[k] will be the new basic window and S[0] is the
expiring basic window. The j-th value in the basic window S[i] is S[i; j].

The size of the basic window is important because it must be possible to report all
statistics for basic window i to the user before basic window i+1 completes (when it will
be necessary to report the statistics for window i+ 1).

3.1 Simple Statistics

As a concrete example, consider the computation of the moving average. Since the moving
average always involves w points, the information to be maintained is

P
(s[t�w+ 1 : t]).

For each basic window S[i], we maintain the digest
P
(S[i]). After b new data points from

the stream become available, we compute the sum over the new basic window S[k].
The sum over the sliding window is updated as follows.X

new

(s) =
X
old

(s) +
X

S[k]�
X

S[0]

The computations of minimum, maximum and standard deviation are similar.
For the computation of the best �t slope, it is suÆcient to compute the following digest

based on the sliding window:

�(s) =

wX
i=1

ist�w+i

We maintain the following digests on the basic windows:

�(S[i]) =

bX
j=1

S[i; j]j

5

Theorem 1 The incremental maintenance of �(s) can be achieved by use of the following
equation:

�new(s) = �old(s) + w
X

S[k]� b
X
new

(s) + �(S[k]) � �(S[0])

Proof We have

�old(s) =
k�1X
i=0

�
�(S[i]) + ib

X
(S[i])

�

�new(s) =

k�1X
i=0

�
�(S[i+ 1]) + ib

X
(S[i+ 1])

�
�new(s)� �old(s)

= �(S[k])� �(S[0]) + (k � 1)b
X

(S[k])� b

k�1X
i=1

X
(S[i])

= �(S[k])� �(S[0]) + kb
X

(S[k])� b

kX
i=1

X
(S[i])

3.2 Correlation Statistics

The eÆcient computation of correlation and beta potentially requires the examination of
all pairs of streams. To compute the correlation coeÆcients eÆciently, we need to employ
some data reduction techniques. We will use the Discrete Fourier Transform.

In contrast to the simple statistics we considered in the last section, the computation
of correlation requires information on the shape of the time series, instead of just some
cumulative information. Our general approach is to use curve �tting in each basic window
to reduce the data size. In almost all applications, end users are interested only in pairs
that are highly correlated. We will also show how report these pairs without examining
all pairs of streams using DFT and hash techniques.

We start by a quick review of DFT. We will explain how to compute the vector inner-
product when the two series are aligned in basic windows. This approach is extended to
the general case when the basic windows are not aligned. Then we will show our approach
for reporting the highly correlated stream pairs in an online fashion.

3.3 The Discrete Fourier Transform

In this section, we review the Discrete Fourier Transform and some of its properties. We
will follow the convention in [2]. The Discrete Fourier Transform of a time sequence
x = x0; x1; :::; xw�1 is a sequence X = X0; X1; :::; Xw�1 = DFT (x) of complex numbers
given by

XF =
1p
w

w�1X
i=0

xie
�j2�Fi=w F = 0; 1; :::; w � 1

where j =
p�1. The inverse Fourier transform of X is given by

xi =
1p
w

w�1X
F=0

xF e
j2�Fi=w i = 0; 1; :::; w � 1

6

The following properties of DFT can be found in any textbook on DFT.

� The DFT preserves the Euclidean distance between two sequence x and y.

d(x; y) = d(X;Y)

� (Symmetry Property) If x is real sequence, then

X(i) = X�(w � i); i = 1; 2; :::; w � 1

X� is the complex conjugate of X .

Since for most real time series the �rst few coeÆcients contain most of the energy,
we would then expect those coeÆcients to capture the raw shape of the time series[2,
8]. For example, the energy spectrum for the random walk series, which models stock
movements, declines with a power of 2 with increasing coeÆcients. And for black noise,
which successfully models series like the water level of a river as it varies over time, the
energy spectrum declines even faster with increasing number of coeÆcients.

3.4 Inner-product With Aligned Windows

The vector inner-product for two series x = (x1; :::; xw); y = (y1; :::; yw), denoted as (x; y),
is just the sum of the products of their corresponding elements:

 (x; y) =

wX
i=1

xiyi

Given two series sx and sy, when the two series are aligned,

 (sx; sy) =

kX
i=1

 (Sx[i]; Sy[i])

So, we must explain how to compute the inner-product of two basic windows: x1; x2; :::xb
and y1; y2; :::yb.

Let f : f1(x); f2(x); ::: be a family of continuous functions. We approximate the time
series in each basic window, Sx[i] = x1; x2; :::xb and S

y[i] = y1; y2; :::yb, with a function
family f . (We will give speci�c examples later.)

xi �
n�1X
m=0

cxmfm(i); yi �
n�1X
m=0

cymfm(i)

i = 1; :::; b

cxm; c
y
m;m = 0; :::; n� 1 are n coeÆcients to approximate the time series with the function

family f .
The inner-product of the two basic windows is therefore

bX
i=1

xiyi �
bX

i=1

� n�1X
m=0

cxmfm(i)

n�1X
p=0

cypfp(i)
�

=
n�1X
m=0

n�1X
p=0

cxmc
y
p

� bX
i=1

fm(i)fp(i)
�

7

=

n�1X
m=0

n�1X
p=0

cxmc
y
pW (m; p)

where W (m; p) =
Pb

i=1 fm(i)fp(i) can be precomputed. If the function family f is or-
thogonal, we have

W (m; p) =

�
0 m 6= p
V (m) 6= 0 m = p

Thus,
bX

i=1

xiyi �
n�1X
m=0

cxmc
y
mV (m)

With this curve �tting technique, we reduce the space and time required to compute
inner-products from b to n. It should also be noted that besides data compression, the
curve �tting approach can be used to �ll in missing data. This works naturally for com-
puting correlations among streams with missing data at some timepoints.

Triangular function families have the right properties. We perform the Discrete Fourier
Transforms for the time series over the basic windows, enabling a constant time computa-
tion of coeÆcients for each basic window. Following the observations in [2], we can obtain
a good approximation for the series with only the �rst n DFT coeÆcients,

xi � 1p
b

n�1X
F=0

XF e
j2�Fi=b i = 1; 2; :::; b

3.5 Inner-product With unaligned windows

When we compute the correlation between two streams with time lags, including auto-
correlations, the two time series will not necessary be aligned at their basic windows.
However, the digests we keep are enough to compute such correlations.

Without loss of generality, we will show the computation of the n-approximate lagged
inner-product of two streams with time lags less than the size of a basic window. Given two
such series, sx = sx1 ; :::; s

x
w = Sx[1]; :::; Sx[k] and sy = sya+1; :::; s

y
a+w = Sy[0]; Sy[1]; :::; Sy[k�

1]; Sy[k], where for the basic windows Sy[0] and Sy[k], only the last a values in Sy[0] and
the �rst a values in Sy[k] are included.(a < b) We have

 (sx; sy) =

wX
i=1

(sxi s
y
a+i)

=

kX
i=1

�
�(Sx[i]; Sy[i� 1]; a) + �(Sy[i]; Sx[i]; a)

�
where

�(S1; S2; a) =

aX
i=1

S1[i]S2[b� a+ i]

For S1 = x1; :::; xb and S
2 = y1; :::; yb, �(S

1; S2; a) is the inner-product of the �rst a values
of S1 with the last a values of S2. This can be computed using only their �rst n DFT
coeÆcients.

aX
i=1

xiyb�a+i �
aX
i=1

� n�1X
m=0

cxmfm(i)

n�1X
p=0

cypfp(b� a+ i)
�

8

=

n�1X
m=0

n�1X
p=0

cxmc
y
p

� aX
i=1

fm(i)fp(b� a+ i)
�

=

n�1X
m=0

n�1X
p=0

cxmc
y
pW (m; p; a)

This implies that if we precompute the table of

W (m; p; a) =

aX
i=1

fm(i)fp(b� a+ i)

m; p = 0:::; n� 1; a = 1; :::; bb=2c
we can compute the inner-product using only the DFT coeÆcients in time O(n2) without
requiring the alignment of basic windows.

Theorem 2 The n-approximate lagged inner-product of two time series using their �rst
n DFT coeÆcients can be computed in time O(kn) if the two series have aligned basic
windows, otherwise it takes time O(kn2), k is the number of basic windows.

It is not hard to show that this approach can be extended to compute the inner-product
of two time series over sliding window of any size.

Corollary 1 The inner-product of two time series over sliding windows of any size with
any time delay can be computed using only the basic windows digests of the data streams.

3.6 IO Performance

It might be desirable to store the summary data for future analysis. Since the summary
data we keep are suÆcient to compute all the statistics we are interested in, there is no
need to store the raw data stream. The summary data will be stored in disk sequentially
by the order of basic windows.

Let Ns be the number of streams, Nb be the number of basic windows, Sb be the size
of basic windows and Nc be the number of DFT coeÆcients we use(2Nc real number), the
I/O cost to access the data for all streams within a speci�c period will be

NsNbSizeof(float)(2 + 2Nc)

PageSize

while the I/O cost for the exact computation is

NsNbSizeof(float) � Sb
PageSize

The improvement is a ratio of
Sb

2 + 2Nc

The �rst 2 in the above equations corresponds to two non-DFT elements of summary data:
the sum and the sum of the squares of the time series in each basic window. Also the I/O
costs above assume sequential disk access, a reasonable assumption given the time-ordered
nature of data streams.

9

3.7 Monitoring Correlations Between Data Streams

The above curve �tting technique can be use for computing inner-products and correlations
over sliding windows of any size, as well as with any time delay across streams. To do online
monitoring of synchronized streams over a �xed size of sliding window with correlation
above a speci�c threshold, we use an approach based on DFT and a hash technique that
will report such stream pairs quickly.

First, we introduce the normalization of a series over sliding windows of size w,
x1; x2; :::; xw, as follows.

x̂i =
xi � x

�x
; i = 1; 2; :::; w

where

�x =

vuut wX
i=1

(xi � x)2

As the following theorem suggests, the correlation coeÆcient of two time series can be
reduced to the Euclidean distance between their normalized series.

Theorem 3 The correlation coeÆcient of two time series x1; :::; xw and y1; :::; yw is

corr(x; y) = 1� 1

2
d2(x̂; ŷ)

where d(x̂; ŷ) is the Euclidean distance between x̂ and ŷ.

Proof First, we notice that
wX
i=1

x̂2i =

wX
i=1

ŷ2i = 1

corr(x; y) =

Pw
i=1(xi � x)(yi � y)pPw

i=1(xi � x)2
pPw

i=1(yi � y)2
=

wX
i=1

x̂iŷi

d2(x̂; ŷ) =

wX
i=1

(x̂i � ŷi)
2 =

wX
i=1

x̂2i +

wX
i=1

ŷ2i � 2

wX
i=1

x̂iŷi

= 2� 2corr(x; y)

By reducing the correlation coeÆcient to Euclidean Distance, we can apply the tech-
niques in [2, 22] to report sequences with correlation coeÆcients higher than a speci�c
threshold.

Theorem 4 Let the DFT of the normalized form of two time series x and y be X̂ and Ŷ
respectively,

corr(x; y) � 1� �2) dn(X̂; Ŷ) � �

where dn(X̂; Ŷ) is the Euclidean distance between series X̂1; X̂2; :::; X̂n and Ŷ1; Ŷ2; :::; Ŷn.

10

Proof As DFT preserves Euclidean distance, we have

d(X̂; Ŷ) = d(x̂; ŷ)

Using only the �rst n and last n; (n << w) DFT coeÆcients[2, 22], from the symmetry
property of DFT, we have

nX
i=1

(X̂i � Ŷi)
2 +

nX
i=1

(X̂w�n � Ŷw�n)
2

= 2

nX
i=1

(X̂i � Ŷi)
2 = 2d2n(X̂; Ŷ) � d2(X̂; Ŷ)

corr(x; y) � 1� �2) d2(x̂; ŷ) � 2�2

) d2(X̂; Ŷ) � 2�2) dn(X̂; Ŷ) � �

From the above theorem, we can examine the correlations of only those stream pairs
for which dn(X̂; Ŷ) � � holds. We will get a superset of highly correlated pairs and there
will be no false negatives.

We can extend the techniques above to report stream pairs of high negative correlation.

Corollary 2 Let the DFT of the normalized form of two time series x and y be X̂ and
Ŷ .

corr(x; y) � �1 + �2) dn(�X̂; Ŷ) � �

Proof We have
DFT (�x) = �DFT (x)

corr(x; y) � �1 + �2)
wX
i=1

x̂iŷi � �1 + �2

)
wX
i=1

(�x̂i)ŷi � 1� �2) dn(�X̂; Ŷ) � �

Now we discuss how to compute the DFT coeÆcients X̂ incrementally. The DFT
coeÆcients X̂ of the normalized sequence can be computed from the DFT coeÆcients X
of the original sequence.

Lemma 1 Let X̂ = DFT (x̂); X = DFT (x), we have(
X̂0 = 0

X̂i =
Xi

�x
i 6= 0

We can maintain DFT coeÆcients over sliding windows incrementally[11].

Theorem 5 Let Xold
m be them-th DFT coeÆcient of the series in sliding window x0; x1; :::; xw�1

and Xnew
m be that coeÆcient of the series x1; x2; :::; xw,

Xnew
m = e

j2�m
w (Xold

m +
xw � x0p

w
)

m = 1; :::; n

11

This can be extended to a batch update based on the basic windows.

Corollary 3 Let Xold
m be the m-th DFT coeÆcient of the series in sliding window x0; x2; :::; xw�1

and Xnew
m be that coeÆcient of the series xb; xb+1; :::; xw; xw+1; :::; xw+b�1,

Xnew
m = e

j2�mb

w Xold
m +

1p
w

� b�1X
i=0

e
j2�m(b�i)

w xw+i �
b�1X
i=0

e
j2�m(b�i)

w xi
�

m = 1; :::; n

The corollary suggests that to update the DFT coeÆcients incrementally, we should keep
the following n digests for the basic windows.

b�1X
i=0

e
j2�m(b�i)

w xi; m = 1; :::; n

By using the DFT on normalized sequences, we also map the original sequences into a
bounded feature space.

Theorem 6 Let X̂0; X̂1; :::; X̂w�1 be the DFT of a normalized sequence x1; x2; :::; xw, we
have

jX̂ij �
p
2

2
; i = 1; :::; n; n < w=2

Proof
w�1X
i=1

(X̂i)
2 =

wX
i=1

(x̂i)
2 = 1

) 2

nX
i=1

X̂2
i =

nX
i=1

(X̂2
i + X̂2

w�i) � 1

) jX̂ij �
p
2

2
; i = 1; :::; n

From the above theorem, the DFT feature space R2n is a cube of diameter
p
2. Thus

we can use a grid structure to report near neighbors eÆciently.
We will use the �rst n̂, n̂ � 2n, dimensions of the DFT feature space for indexing.

We superimpose a n̂-dimensional orthogonal regular grid on the DFT feature space and
partition the cube of diameter

p
2 into cells with the same size and shape. There are

(2d
p
2

2� e)n̂ cells of cubes of diameter �. Each stream is mapped to a cell based on its �rst
n̂ normalized DFT coeÆcients. Suppose a stream x is hashed to cell (c1; c2; :::; cn̂). To
report the streams whose correlation coeÆcients with x is above the threshold 1 � �2,
only streams hashed to cells adjacent to cell (c1; c2; :::; cn̂) need to be examined. Similarly,
streams whose correlation coeÆcients with x is less than the threshold �1 + �2, must be
hashed to cells adjacent to cell (�c1;�c2; :::;�cn̂). After hashing the streams to cells, the
number of stream pairs to be examined is greatly reduced. We can then compute their
Euclidean distance, as well as correlation, based on the �rst n DFT coeÆcients.

12

3.8 Parallel Implementation

Our framework facilitates a parallel implementation by using a straightforward decom-
position. Consider a network of k servers to monitor the Ns streams. We assume these
servers have similar computing resources.

The work to monitor the streams has two stages.

1. Compute the digests and single stream statistics for the data streams. The Ns

streams are equally divided into k groups. The server i(i = 1; :::; k) will read those
streams in the i-th group and compute their digests, single stream statistics and
hash values.

2. Report highly correlated stream pairs based on the grid structure. The grid structure
is also partitioned evenly into k parts. Each server will read in its part plus those
cells adjacent to that part. Note that only the �rst n normalize DFT coeÆcients
need to be communicated between servers, the overhead for communication is greatly
reduced. Each server will report those stream pairs that are highly correlated in its
part.

4 StatStream System

StatStream runs in a high performance interpreted environment called K[1]. The system
follows the algorithmic ideas above and makes use of the following parameters:

� Correlation Threshold Only stream pairs whose absolute value of correlation
coeÆcients larger than a speci�ed threshold will be reported, because the others are
not of interest. The higher this threshold, the fewer streams whose exact correlations
must be computed.

� Sliding Window Size This is the time interval over which statistics are reported
to the user. If the sliding window size is 1 hour, then the reported correlations are
those over the past hour.

� Duration over Threshold Some users might be interested in only those pairs with
correlation coeÆcients above the threshold for a pre-de�ned period. For example, a
trader might ask \Has the one hour correlation between two stocks been over 0.95
during the last 2 minutes?" This parameter provides such users with an option to
specify a minimum duration. A longer duration period of highly correlated streams
indicates a stronger relationship between the streams while a shorter one might in-
dicate an accidental correlation. For example, a longer duration might give a stock
market trader more con�dence when taking advantage of such potential opportuni-
ties. A longer duration also gives better performance, because we can update the
correlations less frequently.

5 Empirical Study

Our empirical studies attempt to answer the following questions.

� How great are the time savings when using the DFT approximate algorithms as
opposed to exact algorithms? How many streams they can handle in real time?

13

Figure 2: Comparison of the number of streams that the DFT and Exact method can
handle

� What's the approximation error when using DFT within each basic window to es-
timate correlation? How does it change according to the basic and sliding window
sizes?

� When we use the approximate algorithm to report high correlated pairs on real data
set, what is its precision?

5.1 Synthetic Data Experiments

The time series streams are generated using the random walk model. For stream s,

si = 100 +

iX
j=1

(uj � 0:5); i = 1; 2; :::

where uj is a set of uniform random numbers. Our experiments were performed on a
1.5GHz Pentium 4 PC with 128 MB of main memory.

Suppose that the synchronized streams have new data every second. The user of a
time series stream system asks himself the following questions:

1. How many streams can I track at once in an online fashion? (Online means that
even if the data come in forever, I can compute the statistics of the data with a �xed
delay from their occurrence.)

2. How long is the delay between a change in correlation and the time when I see the
change?

Our system will compute correlations of all pairs at the end of each basic window. As
noted above, the computation for basic window i must �nish by the end of basic window
i+1 in order for our system to be considered on-line. Otherwise, it would lag farther and
farther behind over time. Therefore, some of the correlations may be computed towards
the end of the basic window i + 1. So, the user perceives the size of the basic window
as the maximum delay between the time that a change in correlation takes place and the
time it is computed.

The net result is that the answers to questions (1) and (2) are related. We can increase
the number of streams at the cost of increasing the delay in reporting correlation.

Figure 2 shows the number of streams vs. the minimum size of the basic window for a
uniprocessor and for di�erent versions of the algorithm. In the DFT method, we choose
the number of coeÆcients to be 6.

14

Figure 3: Approximation error with di�erent basic/sliding window sizes

Figure 4: The precision using di�erent numbers of coeÆcients

The number of streams handled by our system increases with the size of the basic
window, while there is no perceivable change for the exact algorithm.

Precision Measurement

When compute the correlations of all pairs based on DFT curve �tting in each basic
window, the size of the basic window can be adjusted to trade speed for accuracy. Our
experiment shows that the error of correlation coeÆcients using this approach is very
small, especially for sliding windows of large size.

Figure 3 shows the maximum approximate errors for correlation coeÆcients of pairs
out of 100 streams when we use the �rst 2 DFT coeÆcients in each basic windows. It
compares the precision using di�erent sizes of sliding and basic windows. Smaller basic
windows are more precise as we would expect. The experiment also indicates that for a
larger sliding window, a larger basic window can still give very good approximation.

5.2 Stock Exchange Data Experiments

The New York Stock Exchange (NYSE) Trade and Quote (TAQ) database provides intra-
day trade and quote data for all stocks listed on NYSE, AMEX, NASDAQ, and SmallCap
issues. The database grows at the rate of 10GB per month. The historical data since 1993
have accumulated to 500GB.

The data we use in our experiment are the tick data of the stocks indexed by SP500
during the �rst two weeks of 2001. During this period there are 452 streams that have
tick data each work day. Every day each stream holds about 400 timepoints, in this case
minutes, corresponding to a six and a half hour trading day. We choose a sliding window
of two weeks and a basic window of a day.

15

Table 1: Comparison of StatStream with the Most Similar Methods
Properties Agrawal et al. Datar et al. Gehrke et al. StatStream
Online Algorithm No Yes Yes Yes
Guaranteed response time Not relevant Amortized Yes Yes
Search data structure Yes Not relevant Not relevant Yes
Auto-correlation No No No Yes

Figure 4 shows the precision using di�erent numbers of coeÆcients. The correlation
coeÆcient thresholds in the �gure are 0.9 and 0.96 respectively. The precision is the
ratio of the number of pairs whose correlations are above the threshold and reported by
StatStream, to the number of pairs that are reported by StatStream(including some false
positives). The experiment shows that with 6 DFT coeÆcients for the series in sliding
windows, we can achieve high precision. Also the system guarantees no false negatives.
The experiment shows that our choice of the number of Fourier coeÆcients is consistent
with the observation made in [2].

6 Related Work

There is increasing interest in data streams. In the theoretical literature, Datar et. al [6]
study the problem of maintaining data stream statistics over sliding windows. They focus
on single stream statistics and propose an online data structure, exponential histogram,
that can be adapted to report statistics over siding windows at every timepoint. They
achieve this with a limited memory and a tradeo� of accuracy. Our online basic window
synopsis structure can report the precise single stream statistics with a delay of the size
of basic window, but our multi-stream statistics also trade accuracy against memory and
time.

Gehrke et al. [10] also study the problem of monitoring statistics over multiple data
streams. The statistics they are interested in are correlated aggregates when the number
of streams to be monitored is small. A typical query in phone call record streams is
the percentage of international phone calls that are longer than the average duration of a
domestic phone call. They use histograms as summary data structures for the approximate
computing of correlated aggregates. For some applications, such as �nance, correlation
coeÆcients are used more often as multiple streams aggregates, because they are robust
to shifts and scaling. Still, in spirit if not in technique, our work is similar to theirs.

Recently, the data mining community has turned its attention to data streams. A
domain-speci�c language, Hancock[5], has been designed at AT&T to extract signatures
from massive transaction streams. Algorithms for constructing decision trees[7], associa-
tion rule mining[14] and clustering [13] for data streams have been proposed. Recent work
of Manku et al.[18, 19], Greenwald et al.[12] have focused on the problem of approximate
quantile computation for individual data streams. Ganti et al. [9]introduce data span
dimensions, including landmark windows and sliding windows, to clustering and associ-
ation rule mining. Our work is complementary to the data mining research because our
fast techniques for �nding correlation coeÆcients can be used to speed up the clustering
algorithms.

The work by Yi et al.[25] for the online data mining of co-evolving time sequences is
very relevant to our work. Their method, MUSCLES, uses multivariate linear regression
to interpolate missing or delayed values. They also extend their method to correlation

16

detection. 1 Both MUSCLES and our method are incremental algorithms. Our approx-
imate algorithm is faster than MUSCLES' exact algorithm, resulting in a shorter delay.
Also, our method is able to compute auto-correlation eÆciently.

Time series problems in the database community have been focused on discovering
the similarity between an online sequence and an indexed database of previously obtained
sequence information. Traditionally, the Euclidean similarity measure is used. The original
work by Agrawal et al. [2] utilizes the DFT to transform data from the time domain
into frequency domain and uses multidimensional index structure to index the �rst few
DFT coeÆcients. In their work, the focus is on the whole sequence matching. This was
generalized to allow subsequence matching [8]. Ra�ei and Mendelzon[21] improve this
technique by allowing transformations, including shifting, scaling and moving average, on
the time series before similarity queries. The distances between sequences are measured
by the Euclidean distance plus the costs associated with these transformations. By using
the correlation measure in our work, we can discover counter-trends, which correspond to
negative correlations. In the work described in this paragraph, the time series are all �nite
data sets. The maintenance of digests for basic windows also permits the computation
of other statistics, such as autocorrelation. But the main di�erence between our work
and the previous work is that our comparisons are online streams vs. online streams as
opposed to queried sequences vs. database. Table 1 compares our work with some of the
previous work.

Other techniques such as Discrete Wavelet Transform (DWT)[4, 23], Singular Value
Decomposition (SVD)[17] and Piecewise Constant Approximation (PCA)[24, 16] are also
proposed for similarity search. Keogh et al. [16] compares these techniques for time
series similarity queries. With the exception of SVD, these techniques are based on curve
�tting. Hence they are alternative ways of computing digests and could be used in our
sliding window/basic window framework.

7 Conclusion

Maintaining multi-stream and time-delayed statistics in a continuous online fashion is a
signi�cant challenge in data management. Our paper solves this problem in a scalable and
eÆcient way that gives a guaranteed response time with high accuracy.

The Discrete Fourier Transform technique reduces the enormous raw data streams into
a manageable synoptic data structure and gives good I/O performance. For any pair of
streams, the pair-wise statistic is computed in an incremental fashion and requires constant
time per update using a DFT approximation. Experiments conducted using synthetic and
real data show this technique to be very eÆcient and precise for long time series. On a PC
costing less than $1,000, we can detect high pairwise correlations among 10,000 streams
that deliver data every second with a delay of less than �ve minutes. We can do this in a
continuous way, because our algorithm uses a �xed amount of memory.

References

[1] http://www.kx.com.

1Our method for computing correlation coeÆcients can be applied to the interpolation of values missing

from one data stream. We exploit the fact that high-valued correlation coeÆcients imply high-valued

regression coeÆcients. We can choose streams that are highly correlated to the delayed stream and

perform a linear regression-based interpolation of the missing values.

17

[2] R. Agrawal, C. Faloutsos, and A. N. Swami. EÆcient Similarity Search In Sequence
Databases. In D. Lomet, editor, Proceedings of the 4th International Conference of
Foundations of Data Organization and Algorithms (FODO), pages 69{84, Chicago,
Illinois, 1993. Springer Verlag.

[3] S. Babu and J. Widom. Continuous queries over data streams. SIGMOD Record,
30(3):109{120, 2001.

[4] K.-P. Chan and A. W.-C. Fu. EÆcient time series matching by wavelets. In Proceed-
ings of the 15th International Conference on Data Engineering, Sydney, Australia,
pages 126{133, 1999.

[5] C. Cortes, K. Fisher, D. Pregibon, and A. Rogers. Hancock: a language for ex-
tracting signatures from data streams. In ACM SIGKDD Intl. Conf. on Knowledge
Discoveryand Data Mining, pages 9{17, 2000.

[6] M. Datar, A. Gionis, P. Indyk, , and R. Motwani. Maintaining stream statistics over
sliding windows. In SODA, page to appear, 2002.

[7] P. Domingos and G. Hulten. Mining high-speed data streams. In Proc. ACM SIGMOD
International Conf. on Management of Data, pages 71 { 80, 2000.

[8] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in
time-series databases. In Proc. ACM SIGMOD International Conf. on Management
of Data, pages 419{429, 1994.

[9] V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon: Data evolution and monitoring.
In Proceedings of the 16th International Conference on Data Engineering, San Diego,
California, 2000.

[10] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates over
continual data streams. In Proc. ACM SIGMOD International Conf. on Management
of Data, 2001.

[11] D. Q. Goldin and P. C. Kanellakis. On similarity queries for time-series data: Con-
straint speci�cation and implementation. In Proceedings of the 1st International Con-
ference on Principles and Practice of Constraint Programming (CP'95). Springer Ver-
lag, 1995.

[12] M. Greenwald and S. Khanna. Space-eÆcient online computation of quantile sum-
maries. In Proc. ACM SIGMOD International Conf. on Management of Data, pages
58{66, 2001.

[13] S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams. In
the Annual Symposium on Foundations of Computer Science,IEEE, 2000.

[14] C. Hidber. Online association rule mining. In Proc. ACM SIGMOD International
Conf. on Management of Data, pages 145{156, 1999.

[15] E. Keogh and P. Smyth. A probabilistic approach to fast pattern matching in time
series databases. In the third conference on Knowledge Discovery in Databases and
Data Mining, 1997.

[16] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Pazzani. Locally adaptive
dimensionality reduction for indexing large time series databases. In Proc. ACM
SIGMOD International Conf. on Management of Data, 2001.

18

[17] F. Korn, H. V. Jagadish, and C. Faloutsos. EÆciently supporting ad hoc queries in
large datasets of time sequences. In J. Peckham, editor, SIGMOD 1997, Proceedings
ACM SIGMOD International Conference on Management of Data, May 13-15, 1997,
Tucson, Arizona, USA, pages 289{300. ACM Press, 1997.

[18] G. Manku, S. Rajagopalan, and B. Lindsley. Approximate medians and other quan-
tiles in one pass and with limited memory. In Proc. ACM SIGMOD International
Conf. on Management of Data, pages 426{435, 1998.

[19] G. S. Manku, S. Rajagopalan, , and B. G. Lindsay. Random sampling techniques for
space eÆcientonline computation of order statistics of large datasets. In Proc. ACM
SIGMOD International Conf. on Management of Data, pages 251{262, 1999.

[20] L. Molesky and M. Caruso. Managing �nancial time series data: Object-relational and
object database systems. In VLDB'98, Proceedings of 24rd International Conference
on Very Large Data Bases, August 24-27, 1998, New York City, New York, USA.
Morgan Kaufmann, 1998.

[21] D. Ra�ei and A. Mendelzon. Similarity-based queries for time series data. In Proc.
ACM SIGMOD International Conf. on Management of Data, pages 13{25, 1997.

[22] D. Ra�ei and A. Mendelzon. EÆcient retrieval of similar time sequences using dft.
In Proc. FODO Conference, Kobe, Japan, 1998.

[23] Y.-L. Wu, D. Agrawal, and A. E. Abbadi. A comparison of dft and dwt based
similarity search in time-series databases. In Proceedings of the 9 th International
Conference on Information and Knowledge Management, 2000.

[24] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp norms. In
VLDB 2000, Proceedings of 26th International Conference on Very Large Data Bases,
September 10-14, 2000, Cairo, Egypt, pages 385{394. Morgan Kaufmann, 2000.

[25] B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, and A. Biliris.
Online data mining for co-evolving time sequences. In Proceedings of the 16th Inter-
national Conference on Data Engineering, San Diego, California, pages 13{22, 2000.

19

