
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Adaptive Geometric Search for Protein Design

1. Introduction

2. Method
2.1. Overview

Our approach in the peptoid design is a two-step process.
In the first step, we consider the most influential energies
in the peptoid and conduct an efficient geometric search to
eliminate all the impossible designs. In the second step,
designs that passed the quick initial screening will be fur-
ther examined in the comprehensive protein folding soft-
ware called Rosetta. This two-step process efficiently saves
all the time that the majority impossible designs would take
to be evaluated by Rosetta.

We are going to use octrees in this algorithm, which is one
of the popular data structures for computation on 3D ob-
jects. Octrees are tree structures whose nodes correspond
to 3D cubes. Each node has eight children by subdividing
each side of the cube by the middle in the x, y and z di-
mensions. All the 3D objects are stored in the leaf nodes in
the octrees. Octrees have various stopping criteria to stop
the tree from splitting including thresholding the maximum
number of objects in a node, i.e. the octree splits only the
nodes containing more than a certain number of objects.
For our problem the 3D objects are points in 3D space and
the stopping criterion is the minimum cube length `s, that
is, the octree splits a node only if its corresponding cube
has sides of length at least 2`s. Moreover, all empty nodes,
i.e. nodes whose corresponding cubes contain no points, in
the octrees are discarded.

To search for the desirable configurations, the algorithm
first samples points from each manifold and then builds an
octree for each manifold based on these sample points with
the stopping criterion of the minimum cube length `s. No-
tice that with this stopping criterion all leaf cubes are on
the lowest level in the trees. Then the algorithm compare
two octrees at a time (Figure 1) by searching adaptively
into the cubic regions that pass the necessary condition 6
(see below). We call a pair of cubes that pass the necessary
condition 6 a “possible pair”. The algorithm finds all the
possible cube pairs on each level until it ends up with the
set of all possible pairs of leaf cubes. Then the sufficient
condition 7 (see below) is tested on all these pairs of leaf
cubes to determine whether to accept or reject all the pairs
of points inside them. At the end all the pairwise desirable
cubes are combined through a matrix product.

(a) Side chain i

(b) Side chain j

Figure 1. Purple points are points sampled from manifolds that
correspond to two side chains i and j. Part of the octree nodes
(cubes) are illustrated.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adaptive Geometric Search for Protein Design

Figure 2. An illustration of the adaptive search between two oc-
trees. Dotted lines point out the possible cube pairs on each level.
Solid lines link the desirable leaf cube (gray nodes) pairs that pass
the sufficient condition 7.

2.2. Theory : Necessary and Sufficient Conditions

Given a target polygon P = {P1, P2, . . . , Pn}, a tolerance
εT ≥ 0 and one edge (Pi, Pj), let Ci, Cj be two nonempty
cubes with size ` and the distance between their centers
d, where i, j ∈ [1, 2, . . . , n], i 6= j. Then we have the
following theorems.

Theorem 1. If d < PiPj − εT −
√
3 ` or d > PiPj + εT +√

3 `, then there are no pairs of points (G,H) ∈ Ci × Cj
such that |GH − PiPj | ≤ εT .

Proof. See Appendix A.

Theorem 6 suggests a “necessary condition” for any two
cubic regions on the same level of the trees to contain any
desirable pairs of points. We are going to call it the “nec-
essary condition 6” in the future to refer to the condition
defined in Theorem 6. There are other necessary condi-
tions based on the positions of all the points in the cubes,
but in comparison this condition is a tighter condition and
is more efficient for computation. On the other hand, we
have the following “sufficient condition 7” for all pairs of
points from two leaf cubes to be desirable.

Theorem 2. If PiPj − εT +
√
3 ` ≤ d ≤ PiPj + εT −√

3 `, then all pairs of points (G,H) ∈ Ci × Cj satisfy
|GH − PiPj | ≤ εT .

Proof. See Appendix A.

Notice that the condition of Theorem 7 is only possible
when PiPj − εT +

√
3 ` ≤ PiPj + εT −

√
3 `, or when

` ≤ εT /
√
3. Since the leaf cubes of the octrees must have

length `T ≤ 2ls, we require `s ≤ εT /(2
√
3).

Let ti be the octree generated from manifold Ai for i =
1, 2, . . . , n. Algorithm 1 gives the pseudo code of the adap-
tive geometric search algorithm. Figure 5 illustrates the al-
gorithm.

Algorithm 1 Adaptive Geometric Search
({A1,A2, . . . ,An},P, εT)

1: trees = [t1, t2, . . . , tn]
2: h = depth of the octrees ti for i = 1, 2, . . . , n
3: for i, j ∈ [1, 2, . . . , n], i 6= j do
4: pairs = []
5: l∗ = PiPj
6: combos = [[] for x in range(h+ 1)]
7: combos[0] = [(ti, tj)]
8: for k ∈ [1, 2, . . . , h] do
9: for (b0, b1) in combos[k] do

10: combos[k + 1] +=
Compare1(b0, b1, l

∗, εT)
11: end for
12: end for
13: for (b0, b1) in combos[h] do
14: pairs += Compare2(b0, b1, l

∗, εT)
15: end for
16: Append all (p, q) ∈ pairs as edges to the graph G
17: end for
18: Search G for the desirable polygon

19: # Check the necessary condition 1
20: function COMPARE1(b0, b1, l∗, εT)
21: return [(ci, cj) for (ci, cj) in b0.children ×

b1.children if |(ci.center, cj .center) − l∗| ≤ εT +√
3 ci.length]

22: end function

23: # Check the sufficient condition 2
24: function COMPARE2(b0, b1, l∗, εT)
25: if |(b0.center, b1.center) − l∗| ≤ εT −√

3 b0.length then
26: return [(b0, b1)]
27: else
28: return []
29: end if
30: end function

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Adaptive Geometric Search for Protein Design

2.3. Algorithm Complexity

The adaptive geometric search algorithm has three parts,
building the octrees, adaptively searching every two oc-
trees and the graph search. Let N be the number of sample
points from each manifold. For convenience we build all
octrees with the same initial cube length `0. The time com-
plexity of building an octree with initial cube length `0 and
minimum cube length `s is O(log2(`0/`s)N).

Next we compute the time complexity of the adaptive
search between any two octrees (without losing generality)
called t1, t2. Let the corresponding polygon edge length be
l∗. Then we have the following results.

Theorem 3. If we set `s = η εT
4
√
3

for any 0 < η < 1,
then the adaptive geometric search algorithm 1 returns all
the pairs of points whose distances are within the set [`∗ −
(1 − η)εT , `∗ + (1 − η)εT], and some but possibly not all
the pairs of points whose distances are within the set [`∗ −
εT , `

∗ − (1− η)εT) ∪ (`∗ + (1− η)εT , `∗ + εT].

Proof. See Appendix A.

Lemma 4. Set `s = η εT
4
√
3

for some 0 < η < 1.
Then for any cube C1 in an octree t1, there are at most
4π
3 (3
√
3 + 2 4

√
3

η)
(
3(`

∗

`s
)2 + (3

√
3

2 + 4
√
3

η)2
)

cubes C2 on

the same level from another octree t2 such that (C1, C2) are
possible pairs, that is, they satisfy the necessary condition
6.

Proof. See Appendix A.

Theorem 5. Recall that `0 denotes the initial cube length
and the minimum cube length `s = η εT

4
√
3

. Let nm be de-
fined as in Lemma 9. Then the time complexity of the adap-
tive search part of Algorithm 1 is O

(
1

η6ε5T

)
.

Proof. See Appendix A.

Now we consider the last part of the algorithm, the graph
search. Let sij be the number of possible leaf cube pairs
between octrees ti, tj for i, j ∈ [1, 2, . . . , n], i < j. We
view the leaf cubes as vertices and possible pairs of them
as undirected edges in the graph. If we want to produce
all the desirable n-tuple cubes, then by induction it’s easy
to see that the upper bound on the time complexity is
O(
∏

1≤i<j≤n sij).

In practice we can do much better. Consider building a
directed graph by giving directions to the edges to form
a n-cycle of groups of cubes from t1, t2, . . . , tn. Finding
strongly connected components in this directed graph first
would in most cases greatly reduce the search space with
only a linear cost O(

∑
1≤i<j≤n sij).

In summary we state the total time complexity of the algo-
rithm.

O

n log2(`0`s)N +
n2

η6ε5T
+

∏
1≤i<j≤n

sij


= O

n log2(4√3 `0η εT
)N +

n2

η6ε5T
+

∏
1≤i<j≤n

sij


= O

n log2(`0
ηεT

)
N +

n2

η6ε5T
+

∏
1≤i<j≤n

sij

 .

(1)

(2)

In practice we usually search for a triangle or a 4-sided
polygon as the target polygon, i.e. n = 3 or 4. When n =
3, depending on the parameters η, ε andN the computation
time varies but all three terms in the complexity formula
(4.1) are typically of the same order. When there are large
numbers of possible pairs si’s and/or often when n = 4,
the term C(S) in the last term of the complexity formula
(4.1) becomes the dominating term. However the number
of results sij’s can be significantly reduced when we take
optimal dihedral angles instead of uniform sampling from
[0, 2π].

3. Experiments
3.1. Scaffold Matcher

In immunology, an antigen is any structural substance that
serves as a target for the receptors of an adaptive immune
response and the epitope is the specific part of the antigen
that an antibody binds to. Because this is important to drug
development, we want to design protein structures that bind
to the epitopes of antigens.

In designing epitope-binding proteins, the algorithm can be
used to select the best scaffolds or the substitute backbone
structures given the hot-spot residues, i.e. the residues that
readily bind to the target epitope. In designing a binding
with the protein “mdm2”, we want to match an OOP type
of backbone to the hot-spot residues, leu, phe, trp stubs,
that are binding to “mdm2” in Figure 3.

3.1.1. METHODS

There are two parts of the algorithm. In step 1, we search
through all possible backbones for a matching triangle
to the target triangle. In step 2, for every match result
from step 1 the connecting atom’s bond angles are checked
against the optimal bond angle. If a match passes step 2,
it’s returned as a final result. Otherwise we continue the
iteration in step 1.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Adaptive Geometric Search for Protein Design

Figure 3. Three hot-spot residues are leu(cyan), phe(magenta),
trp(yellow) stubs. The background protein is “mdm2”, the pro-
tein the three hot-spot residues are binding with.

The target triangle is made up of Cβ’s of the hot spot
residues, illustrated in Figure 7(a). The algorithm simply
searches through the possible take-off position combina-
tions, four triangles in this example (Figure 7(c)), from ev-
ery backbone for a match in shape within the error bound.
Notice that in this case all Cβ’s are fixed due to the short
lengths of hot spot residues. With longer hot spot residues,
there will be a manifold of all the possible Cβ’s for each
hot spot residue (see Figure 7(b)). For every possible take-
off position combination as the target shape, adaptive geo-
metric search can be used to find all the matches.

Once we have the matching shapes, we calculate the corre-
sponding matrices R’s of rotation and translation such that
after applying these tranformationsR’s backbones are con-
nected onto the hotspot residues at atoms Cβ’s. Finally we
just check if the bond angles at the connecting atoms are
within some error bound to the optimal bond angles (see
Figure 5).

(a) fixed target triangle

(b) possible Cβ sites

(c) 17 possible backbone matches

Figure 4. (a) the simple case: the Cβ’s of the hotspot residues are
fixed. (b) the general case: there are multiple sites for the Cβ’s
of each hotspot residue. (c) the list of 17 candidate backbones:
white dots denote the Cβ’s. Each backbone has four Cβ’s and
thus four possibly matching triangles.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Adaptive Geometric Search for Protein Design

Figure 5. The bond angles at the connecting atoms between
hotspot residues and the backbone are highlighted in red.

Algorithm 2 Scaffold Match
({A1, A2, . . . , An}, {P1, P2, . . . , Pm}, δ, δA)

results = []
2: for i = 1, . . . ,m do

{P̃1, P̃2, . . . , P̃k} =
AdaptiveGeometricSearch({A1, A2, . . . , An}, Pi, δ)

4: for j = 1, . . . , k do
Rj = CalculateTranformation(P̃j , Pi) #

calculates the tranformation matrix from Pi to P̃j
6: if CheckAngle(RjBPi

, S1, S2, S3) then
results = results+ [RjBPi

]
8: end if

end for
10: end for

3.1.2. ALGORITHM ANALYSIS

Let Ai be the manifold of possible positions of the con-
necting atom on the i-th hotspot residue. For example, in
Figure 7(b) points in colors are sampled from manifolds
A1, A2 and A3 respectively. Let Pj be the j-th polygon of
the backbone take-off position combination and for exam-
ple, there are 4× 17 of them in Figure 7(c). Let BP denote
the atoms positions matrix corresponding to the backbone
where the target polygon P comes from. Let Si denote the
atoms positions matrix for the i-th residue. Let δ be the dis-
tance error bound and δA be the angle error bound. Then
we describe in peudocode Algorithm 2.

Let C denote the time complexity for adaptive geometric
search. Recall in Algorithm 2 thatm is the number of target
polygons from backbone take-off site combinations. Then
the time complexity of the scaffold matching algorithm is
O(Cm).

3.1.3. RESULT

In the search process we scored all the possible matches
by the RMSD (root mean square deviation) values for both
shape match and angle match in Figure 6(a). Our algo-
rithm picked the candidate at the origin which has the low-
est RMSDs. In Figure 6(b) we show this best design for
the OOP backbone of the hot-spot residues1. A sanity test
in Rosetta shows its energy score is a low 4.67 with a po-
tential energy score 4.59 after further minimization, which
means this protein is likely very stable in practice. The al-
gorithm run time is 0.02 ∼ 0.12 seconds whereas running
the same design and producing the same results in Rosetta
takes ∼ 18 minutes using the scripts of Dr. Kevin Drew.

(a) match results

(b) best match

Figure 6. (a) RMSD (root mean square deviation) graph for all
possible OOP backbone matches with the hot-spot residues. The
candidate at the origin is a clear winner having close-to-zero
RMSDs for both shape and angle matches. (b) Illustration of the
best OOP backbone that matches with the hot-spot residues.

1All figures of protein structures in this thesis are gener-
ated with PyMOL Molecular Graphics System, Version 1.7.4
Schrdinger, LLC.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Adaptive Geometric Search for Protein Design

A. Appendix

Figure 7. Cubes Ci, Cj of size ` that are d distance apart.

Theorem 6. If d < PiPj − εT −
√
3 ` or d > PiPj + εT +√

3 `, then there are no pairs of points (G,H) ∈ Ci × Cj
such that |GH − PiPj | ≤ εT .

Proof. For any two points G ∈ Ci, H ∈ Cj as shown in
Figure 7, if d < PiPj−εT−

√
3 `, by the triangle inequality

we have,

GH ≤ d+
√
3 ` < PiPj−εT −

√
3 `+

√
3 ` = PiPj−εT .

If d > PiPj + εT +
√
3 `, again by the triangle inequality,

GH ≥ d−
√
3 ` > PiPj+εT+

√
3 `+
√
3 `−
√
3 ` = PiPj+εT .

Theorem 7. If PiPj − εT +
√
3 ` ≤ d ≤ PiPj + εT −√

3 `, then all pairs of points (G,H) ∈ Ci × Cj satisfy
|GH − PiPj | ≤ εT .

Proof. As shown in Figure 7, for any points G ∈ Ci, H ∈
Cj , we have d −

√
3 ` ≤ GH ≤ d +

√
3 `. If PiPj −

εT +
√
3 ` ≤ d ≤ PiPj + εT −

√
3 `. Substituting the

tighter bound of d on each side of the inequality we have
PiPj − εT ≤ GH ≤ PiPj + εT .

Theorem 8. If we set `s = η εT
4
√
3

for any 0 < η < 1,
then the adaptive geometric search algorithm 1 returns all
the pairs of points whose distances are within the set [`∗ −
(1 − η)εT , `∗ + (1 − η)εT], and some but possibly not all
the pairs of points whose distances are within the set [`∗ −
εT , `

∗ − (1− η)εT) ∪ (`∗ + (1− η)εT , `∗ + εT].

Proof. Let `T be the length of the leaf cubes. By the defi-
nition of ls, we have `T < 2ls = η εT

2
√
3

. Thus `T < εT /
√
3

and the sufficient condition 7 can be tested. If the sufficient
condition 7 is rejected on a pair of cubes C1, C2, then the
distance d between them satisfies d > `∗ + εT −

√
3 `T or

d < `∗ − εT +
√
3 `T . Let G,H be any two points such

that G ∈ C1, H ∈ C2. By the triangle inequality, we have

GH ≥ d−
√
3 `T > `∗ + εT − 2

√
3 `T > `∗ + (1− η)εT ,

Figure 8. An illustration for Lemma 9. The outer radiusR = `∗+√
3 `+εT +

√
3
2
`, and the inner radius r = `∗−

√
3 `−εT−

√
3

2
`.

Let S denote the spherical shell (in shade). How many cubes C2
can fit into S?

or

GH ≤ d+
√
3 `T < `∗ − εT +2

√
3 `T < `∗ − (1− η)εT .

Therefore, in rejecting all pairs of points in C1 × C2 we
may have rejected some pairs of points whose distances
are within the set [`∗ − εT , `∗ − (1 − η)εT) ∪ (`∗ + (1 −
η)εT , `

∗ + εT].

Lemma 9. Set `s = η εT
4
√
3

for some 0 < η < 1.
Then for any cube C1 in an octree t1, there are at most
4π
3 (3
√
3 + 2 4

√
3

η)
(
3(`

∗

`s
)2 + (3

√
3

2 + 4
√
3

η)2
)

cubes C2 on

the same level from another octree t2 such that (C1, C2) are
possible pairs, that is, they satisfy the necessary condition
6.

Proof. For any cube C1 in t1, let ` be the length of C1. For
any possible cube C2 on the same level from t2, by the nec-
essary condition 6 the distance between them dmust satisfy
that `∗ −

√
3 `− εT ≤ d ≤ `∗ +

√
3 `+ εT . Thus all pos-

sible cubes C2 must be contained in the spherical shell S
of inner radius `∗ −

√
3 ` − εT −

√
3
2 ` and outer radius

`∗ +
√
3 ` + εT +

√
3
2 ` (see Figure 8). Since there are no

overlapping cubes on the same level in t2, the maximum
number of the possible cubes nm satisfies

nm ≤
V ol(S)
V ol(C2)

≤ 4π

3`3
(`∗ +

√
3 `+ εT +

√
3

2
`)3

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Adaptive Geometric Search for Protein Design

− 4π

3`3
(`∗ −

√
3 `− εT −

√
3

2
`)3

≤ 4π

3`3
(3
√
3 `+ 2εT)

(
3(`∗)2 + (

3
√
3

2
`+ εT)

2

)

≤ 4π

3
(3
√
3 + 2

εT
`
)

(
3(
`∗

`
)2 + (

3
√
3

2
+
εT
`
)2

)

≤ 4π

3
(3
√
3 + 2

εT
`s

)

(
3(
`∗

`s
)2 + (

3
√
3

2
+
εT
`s

)2

)

=
4π

3
(3
√
3 + 2

4
√
3

η
)

(
3(
`∗

`s
)2 + (

3
√
3

2
+

4
√
3

η
)2

)
.

Theorem 10. Recall that `0 denotes the initial cube length
and the minimum cube length `s = η εT

4
√
3

. Let nm be de-
fined as in Lemma 9. Then the time complexity of the adap-
tive search part of Algorithm 1 is O

(
1

η6ε5T

)
.

Proof. Let d be the depth of the octrees t1, t2. Let ψk(t)
be the number of nodes on the k-th level in the octree t1.
Recall that `0 denotes the length of the root cubes of the oc-
trees t1, t2. Since all the cubes have the minimum length `s,
we have `0/2d ≥ `s, or d ≤ log2(`0/`s). Using Lemma 9
the total number of computations N satisfies

N = O(ψ1(t1)ψ1(t2) + nm × 64

d−1∑
k=1

ψk(t1))

= O(nm
d−1∑
k=1

ψk(t1)) = O(nm
d−1∑
k=1

8k)

= O(nm8d) = O(nm8log2(l0/ls)) = O(nm(l0/ls)
3)

= O

[
4π

3
(3
√
3 + 2

4
√
3

η
)

(
3(
`∗

`s
)2 + (

3
√
3

2
+

4
√
3

η
)2

)
(
l0
ls
)3

]

= O
(

1

η`5s
+

1

(η`s)3

)
= O

(
1

η6ε5T
+

1

η6ε3T

)
= O

(
1

η6ε5T

)
.

