Adaptive Geometric Search for Protein Design

1. Introduction

2. Method
2.1. Overview

Our approach in the peptoid design is a two-step process.
In the first step, we consider the most influential energies
in the peptoid and conduct an efficient geometric search to
eliminate all the impossible designs. In the second step,
designs that passed the quick initial screening will be fur-
ther examined in the comprehensive protein folding soft-
ware called Rosetta. This two-step process efficiently saves
all the time that the majority impossible designs would take
to be evaluated by Rosetta.

We are going to use octrees in this algorithm, which is one
of the popular data structures for computation on 3D ob-
jects. Octrees are tree structures whose nodes correspond
to 3D cubes. Each node has eight children by subdividing
each side of the cube by the middle in the x,y and z di-
mensions. All the 3D objects are stored in the leaf nodes in
the octrees. Octrees have various stopping criteria to stop
the tree from splitting including thresholding the maximum
number of objects in a node, i.e. the octree splits only the
nodes containing more than a certain number of objects.
For our problem the 3D objects are points in 3D space and
the stopping criterion is the minimum cube length ¢, that
is, the octree splits a node only if its corresponding cube
has sides of length at least 2¢,. Moreover, all empty nodes,
i.e. nodes whose corresponding cubes contain no points, in
the octrees are discarded.

To search for the desirable configurations, the algorithm
first samples points from each manifold and then builds an
octree for each manifold based on these sample points with
the stopping criterion of the minimum cube length /. No-
tice that with this stopping criterion all leaf cubes are on
the lowest level in the trees. Then the algorithm compare
two octrees at a time (Figure 1) by searching adaptively
into the cubic regions that pass the necessary condition 6
(see below). We call a pair of cubes that pass the necessary
condition 6 a “possible pair”’. The algorithm finds all the
possible cube pairs on each level until it ends up with the
set of all possible pairs of leaf cubes. Then the sufficient
condition 7 (see below) is tested on all these pairs of leaf
cubes to determine whether to accept or reject all the pairs
of points inside them. At the end all the pairwise desirable
cubes are combined through a matrix product.

(a) Side chain 7

(b) Side chain j

Figure 1. Purple points are points sampled from manifolds that
correspond to two side chains ¢ and j. Part of the octree nodes
(cubes) are illustrated.

Adaptive Geometric Search for Protein Design

h
~
Y

O
\

Figure 2. An illustration of the adaptive search between two oc-
trees. Dotted lines point out the possible cube pairs on each level.
Solid lines link the desirable leaf cube (gray nodes) pairs that pass
the sufficient condition 7.

2.2. Theory : Necessary and Sufficient Conditions

Given a target polygon P = {Py, P, ..., P, }, a tolerance
er > 0 and one edge (P;, P;), let C;,C; be two nonempty
cubes with size ¢ and the distance between their centers
d, where i,5 € [1,2,...,n],i # j. Then we have the
following theorems.

Theorem 1. Ifd < P;P; —er — V3Llord > P, Pj+er+
/34, then there are no pairs of points (G, H) € C; x C;
such that |GH — P;P;| < er.

Proof. See Appendix A. O

Theorem 6 suggests a “necessary condition” for any two
cubic regions on the same level of the trees to contain any
desirable pairs of points. We are going to call it the “nec-
essary condition 6” in the future to refer to the condition
defined in Theorem 6. There are other necessary condi-
tions based on the positions of all the points in the cubes,
but in comparison this condition is a tighter condition and
is more efficient for computation. On the other hand, we
have the following “sufficient condition 7” for all pairs of
points from two leaf cubes to be desirable.

Theorem 2. If P;P; — e7 + /3¢ < d < P,Pj + er —
V34, then all pairs of points (G, H) € C; x C; satisfy
|GH*Psz| S €T.

Proof. See Appendix A. O

Notice that the condition of Theorem 7 is only possible
when PP — ep + V30 < PiPj + er — V3¢, or when
(<er/ V/3. Since the leaf cubes of the octrees must have
length £ < 21, we require £, < eT/(Q\/g).

Let ¢; be the octree generated from manifold A; for i =
1,2, ..., n. Algorithm 1 gives the pseudo code of the adap-
tive geometric search algorithm. Figure 5 illustrates the al-
gorithm.

Algorithm 1
({A1, A, ..

Adaptive Geometric Search

. 7An}77)a 6T)

—_

_
e

11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:

22:

23:
24
25:

26:
27:
28:
29:
30:

R A A SR

: trees =[t1,ta, ..., tn]
h = depth of the octrees ¢; fori =1,2,...
fori,j5 €[1,2,...,n],i # jdo
pairs =[]
I* = PP;
combos = [[] for x in range(h + 1)]
combos|0] = [(t;, ;)]
for k € [1,2,...,h] do
for (bg, by) in combos[k| do
comboslk + 1]
Comparel(bg, b1, l*, er)
end for
end for
for (bo,b1) in combos[h] do
pairs += Compare2(bg, b1, l*, er)
end for
Append all (p, q) € pairs as edges to the graph G
end for
Search G for the desirable polygon

Check the necessary condition 1
function COMPARE1(bg, b1, 1*, eT)

return [(c;,cj) for (c;,c;) in bg.children x
by.children if |(c;.center, c;j.center) — I*| < ep +
V3 c;.length)
end function

Check the sufficient condition 2
function COMPARE2(bg, by, l*, 1)
if |(bo.center,by.center) — I*| < ep —
V/3bg.length then
return [(bo, b1)]
else
return ||
end if
end function

Adaptive Geometric Search for Protein Design

2.3. Algorithm Complexity

The adaptive geometric search algorithm has three parts,
building the octrees, adaptively searching every two oc-
trees and the graph search. Let NV be the number of sample
points from each manifold. For convenience we build all
octrees with the same initial cube length ;. The time com-
plexity of building an octree with initial cube length ¢y and
minimum cube length £, is O(log, (o /ls)N).

Next we compute the time complexity of the adaptive
search between any two octrees (without losing generality)
called ¢1, 2. Let the corresponding polygon edge length be
I*. Then we have the following results.

Theorem 3. If we set £y = 7746\;5 forany 0 < n < 1,
then the adaptive geometric search algorithm I returns all
the pairs of points whose distances are within the set [(* —
(I —n)er, * + (1 — n)er|, and some but possibly not all
the pairs of points whose distances are within the set [(* —

er, £* — (1 —=n)er) U (¢* + (1 — n)er, £* + e].

Proof. See Appendix A. O

Lemma 4. Set {, = 7746\% for some 0 < n < 1

Then for any cube Cy in an octree ty, there are at most
ir (34/3 + 2%) 3(5)2 + (M + %)2
3 n Ly 2 n

the same level from another octree to such that (C1,Cz) are

possible pairs, that is, they satisfy the necessary condition
6.

) cubes Cy on

Proof. See Appendix A. O

Theorem 5. Recall that £y denotes the initial cube length

and the minimum cube length {4 = 7746\%. Let n,, be de-

fined as in Lemma 9. Then the time complexity of the adap-

tive search part of Algorithm 1 is O (7]6%)
T
Proof. See Appendix A. O

Now we consider the last part of the algorithm, the graph
search. Let s;; be the number of possible leaf cube pairs
between octrees t;,t; for i,j € [1,2,...,n],7 < j. We
view the leaf cubes as vertices and possible pairs of them
as undirected edges in the graph. If we want to produce
all the desirable n-tuple cubes, then by induction it’s easy
to see that the upper bound on the time complexity is
O(H1§i<j§n Sij)-

In practice we can do much better. Consider building a
directed graph by giving directions to the edges to form
a n-cycle of groups of cubes from ¢1,¢s,...,%,. Finding
strongly connected components in this directed graph first
would in most cases greatly reduce the search space with
only a linear cost O(3_; ;. j<, Sij)-

In summary we state the total time complexity of the algo-
rithm.

2

60 n
o nlogz(e—)NJr 5 T H Sij
s er 1<i<j<n
4\/360 n2
= O | nlogy(IN + —= H Sij
ner Ter 1 <ili<n
60 TL2
= O nlog <>N++ Sii
2 ner 7766%—' 1<E<n !

(D
2

In practice we usually search for a triangle or a 4-sided
polygon as the target polygon, i.e. n = 3 or 4. When n =
3, depending on the parameters 7, € and /N the computation
time varies but all three terms in the complexity formula
(4.1) are typically of the same order. When there are large
numbers of possible pairs s;’s and/or often when n = 4,
the term C(S) in the last term of the complexity formula
(4.1) becomes the dominating term. However the number
of results s;;’s can be significantly reduced when we take
optimal dihedral angles instead of uniform sampling from
[0, 27].

3. Experiments
3.1. Scaffold Matcher

In immunology, an antigen is any structural substance that
serves as a target for the receptors of an adaptive immune
response and the epitope is the specific part of the antigen
that an antibody binds to. Because this is important to drug
development, we want to design protein structures that bind
to the epitopes of antigens.

In designing epitope-binding proteins, the algorithm can be
used to select the best scaffolds or the substitute backbone
structures given the hot-spot residues, i.e. the residues that
readily bind to the target epitope. In designing a binding
with the protein “mdm2”, we want to match an OOP type
of backbone to the hot-spot residues, leu, phe, trp stubs,
that are binding to “mdm?2” in Figure 3.

3.1.1. METHODS

There are two parts of the algorithm. In step 1, we search
through all possible backbones for a matching triangle
to the target triangle. In step 2, for every match result
from step 1 the connecting atom’s bond angles are checked
against the optimal bond angle. If a match passes step 2,
it’s returned as a final result. Otherwise we continue the
iteration in step 1.

Adaptive Geometric Search for Protein Design

Figure 3. Three hot-spot residues are leu(cyan), phe(magenta),
trp(yellow) stubs. The background protein is “mdm2”, the pro-
tein the three hot-spot residues are binding with.

The target triangle is made up of C/3’s of the hot spot
residues, illustrated in Figure 7(a). The algorithm simply
searches through the possible take-off position combina-
tions, four triangles in this example (Figure 7(c)), from ev-
ery backbone for a match in shape within the error bound.
Notice that in this case all C'3’s are fixed due to the short
lengths of hot spot residues. With longer hot spot residues,
there will be a manifold of all the possible C3’s for each
hot spot residue (see Figure 7(b)). For every possible take-
off position combination as the target shape, adaptive geo-
metric search can be used to find all the matches.

Once we have the matching shapes, we calculate the corre-
sponding matrices I2’s of rotation and translation such that
after applying these tranformations R’s backbones are con-
nected onto the hotspot residues at atoms C'3’s. Finally we
just check if the bond angles at the connecting atoms are
within some error bound to the optimal bond angles (see
Figure 5).

(c) 17 possible backbone matches

Figure 4. (a) the simple case: the C'§’s of the hotspot residues are
fixed. (b) the general case: there are multiple sites for the C'3’s
of each hotspot residue. (c) the list of 17 candidate backbones:
white dots denote the C'3’s. Each backbone has four C'3’s and
thus four possibly matching triangles.

Adaptive Geometric Search for Protein Design

Figure 5. The bond angles at the connecting atoms between
hotspot residues and the backbone are highlighted in red.

Algorithm 2 Scaffold Match
({A1,As, .. . A AP, P,y ..., P}, 6,04)
results = ||
2: fori=1,...,mdo
{P1,Py,...,P} =
AdaptiveGeometricSearch({A1, Az, ..., Ay}, P;,d)

4: forj=1,...,kdo :
R; = CalculateTranformation(P;, P;) #
calculates the tranformation matrix from P; to P;

6: if CheckAngle(R;Bp,, S1, 52, S3) then
results = results + [R;Bp,]
8: end if
end for
10: end for

3.1.2. ALGORITHM ANALYSIS

Let A; be the manifold of possible positions of the con-
necting atom on the ¢-th hotspot residue. For example, in
Figure 7(b) points in colors are sampled from manifolds
A1, Ay and Aj respectively. Let P; be the j-th polygon of
the backbone take-off position combination and for exam-
ple, there are 4 x 17 of them in Figure 7(c). Let Bp denote
the atoms positions matrix corresponding to the backbone
where the target polygon P comes from. Let .S; denote the
atoms positions matrix for the i-th residue. Let § be the dis-
tance error bound and 6 4 be the angle error bound. Then
we describe in peudocode Algorithm 2.

Let C denote the time complexity for adaptive geometric
search. Recall in Algorithm 2 that m is the number of target
polygons from backbone take-off site combinations. Then
the time complexity of the scaffold matching algorithm is
O(Cm).

3.1.3. RESULT

In the search process we scored all the possible matches
by the RMSD (root mean square deviation) values for both
shape match and angle match in Figure 6(a). Our algo-
rithm picked the candidate at the origin which has the low-
est RMSDs. In Figure 6(b) we show this best design for
the OOP backbone of the hot-spot residues'. A sanity test
in Rosetta shows its energy score is a low 4.67 with a po-
tential energy score 4.59 after further minimization, which
means this protein is likely very stable in practice. The al-
gorithm run time is 0.02 ~ 0.12 seconds whereas running
the same design and producing the same results in Rosetta
takes ~ 18 minutes using the scripts of Dr. Kevin Drew.

Scaffold match of mdm2 hotspot residues with
OOP backbones

RMSD for angle match
.
.
.
-
.

RMSO for shape match

(a) match results

(b) best match

Figure 6. (a) RMSD (root mean square deviation) graph for all
possible OOP backbone matches with the hot-spot residues. The
candidate at the origin is a clear winner having close-to-zero
RMSDs for both shape and angle matches. (b) Illustration of the
best OOP backbone that matches with the hot-spot residues.

'All figures of protein structures in this thesis are gener-
ated with PyMOL Molecular Graphics System, Version 1.7.4
Schrdinger, LLC.

Adaptive Geometric Search for Protein Design

A. Appendix

Ci Ci

Figure 7. Cubes C;, C; of size ¢ that are d distance apart.

Theorem 6. Ifd < P;iPj —er —+/30ord > PPj+er +
/34, then there are no pairs of points (G, H) € C; x C;
such that |GH — P;P;| < er.

Proof. For any two points G € C;, H € C; as shown in
Figure 7,if d < P;P;—er— /3 £, by the triangle inequality
we have,

GH < d—}—\/gf < P P; —ET—\/gg-‘r\/gf = P;Pj—er.
Ifd > P, Pj+er + /34, again by the triangle inequality,

GH > d—/30> PiPjter+V30+V30—/30 = PiPj+ter.

O

Theorem 7. If P,P; — er + V/3(< d < P,P; + eg —
V34, then all pairs of points (G,H) € C; x C; satisfy
|GH—PZP]| S €T.

Proof. As shown in Figure 7, for any points G € C;, H €
Cj, we have d — /3¢ < GH < d + /30 If P,P; —
er + V3¢ < d < P,P; + er — /3 (. Substituting the
tighter bound of d on each side of the inequality we have
PinfeTSGHSBPj+€T. O

Theorem 8. If we set £, = 7746\;5 forany 0 < n < 1,
then the adaptive geometric search algorithm I returns all
the pairs of points whose distances are within the set [(* —
(I —n)ep, * + (1 — n)er|, and some but possibly not all
the pairs of points whose distances are within the set [(* —

er, 0* — (1 — 77)€T) U (6* + (1 - ’I])ET,E* + GT].

Proof. Let {1 be the length of the leaf cubes. By the defi-
nition of I, we have {1 < 2l = 77;\%. Thus {7 < ep/V/3
and the sufficient condition 7 can be tested. If the sufficient
condition 7 is rejected on a pair of cubes Cq,Cs, then the
distance d between them satisfies d > ¢* + ep — v/3 41 or
d < 0* —ep + /3 4r. Let G, H be any two points such
that G € Cy, H € Co. By the triangle inequality, we have

GH >d—3lp > 0" +ep —2v/30p > * + (1 —n)er,

Figure 8. An illustration for Lemma 9. The outer radius R = £* +
V3 l+er+ ? ¢, and the inner radius r = £* —v/30—ep — @ £
Let S denote the spherical shell (in shade). How many cubes Co
can fit into S?

or
GH < d+V3lp <0 —ep +2V30p < 0* — (1 —n)er.

Therefore, in rejecting all pairs of points in C; x Ca we
may have rejected some pairs of points whose distances
are within the set [¢* — ep, £* — (1 — n)er) U (£* + (1 —
n)er, £* + er]. O

Lemma 9. Set {; = 7746\% for some 0 < n < 1.

Then for any cube Ci in an octree 11, there are at most
(3V3 42500 (3(5)2 + (2 + 1)
the same level from another octree to such that (C1,Cz) are

possible pairs, that is, they satisfy the necessary condition
6.

) cubes Cy on

Proof. For any cube C; in t1, let £ be the length of C;. For
any possible cube Cs on the same level from ¢, by the nec-
essary condition 6 the distance between them d must satisfy
that * — /30— ep < d < 0* + 30+ ep. Thus all pos-
sible cubes C2 must be contained in the spherical shell S
of inner radius £* — /30 — ep — @ ¢ and outer radius
0+ 30+ ep + @ ¢ (see Figure 8). Since there are no
overlapping cubes on the same level in t,, the maximum
number of the possible cubes n,,, satisfies

. Vol(S)
m= VOZ(CQ)
4 V3 3
< — (0 ~=
<l +VBlter+70)

Adaptive Geometric Search for Protein Design

RE AT TR LY

=T (3v/30 + 2er) (3(?32 (3‘/4%6T)2>

<
- 363

| /\

2

®W3¢*+2£)(3(*)2+(3Vf-+gs)>

T (3v3 427 ><3<;>2+<3W f>>

| /\

‘ 2
Ar 4v/3 5 3V3 43,
3(3\[‘*‘2 ")(3(&) +(2+n)>-
O

Theorem 10. Recall that ¢ denotes the initial cube length
and the minimum cube length {5 = 774\[be de-
fined as in Lemma 9. Then the time complexity of the adap-

tive search part of Algorithm 1 is O (W

Proof. Let d be the depth of the octrees t1,t2. Let 1)y (%)
be the number of nodes on the k-th level in the octree ¢;.
Recall that £(denotes the length of the root cubes of the oc-
trees t1, to. Since all the cubes have the minimum length /,,
we have £y/2% > £, or d < log,(fy/s). Using Lemma 9
the total number of computations N satisfies

d—1

= O(Y1(t1)1(t2) + 1 ¥ 64Z¢k(t1))

— Ol 3 va(t2) = Ol 3 %)
:CXan%i:CKn Q%ﬂ%ﬂsjlzouwxm/gf)
- [3v3+ 220 (3 (Epr B2 4f>> <§j>3]
° (i *)

1
_O(W%>'

