
Skip-Over: Algorithms and Complexity for Overloaded Systems

that Allow Skips�

Gilad Koren Dennis Shasha

Computer Science Institute Courant Institute

Bar-Ilan University New York University

Ramat-Gan, 52900 Israel New York, NY 10012

January 10, 1996

Abstract

In applications ranging from video reception to
telecommunications and packet communication to air-
craft control, tasks enter periodically and have �xed
response time constraints, but missing a deadline is
acceptable, provided most deadlines are met. We
call such tasks \occasionally skippable". We look at
the problem of uniprocessor scheduling of occasionally
skippable periodic tasks in an environment having peri-
odic tasks. We show that making optimal use of skips
is NP-hard. We then look at two algorithms called
Skip-Over Algorithms (one a variant of earliest dead-
line �rst and one of rate monotonic scheduling) that
exploit skips. We give schedulability bounds for both.

1 Introduction

1.1 Basic Assumptions and De�nitions

We consider a uni-processor system in which pre-
emption is possible at any time and costs nothing. All
tasks are periodic but they may enter the system at
any time. A task is characterized by its computation
requirements and period; the deadline of a task equals
its period. Tasks are assumed to be independent, i.e.,
there are no precedence constraints among di�erent
tasks. A task t is divided into instances where each
instance occurs during a single period of the task. Ev-
ery instance of a task can be red or blue. A red task

�This paper appeared in the proceedings of the 16th Real-
Time Systems Symposium, Pisa Italy, December 1995.
Supported by U.S. O�ce of Naval Research grants #N00014-
91-J-1472 and #N00014-92-J-1719, U.S. National Science Foun-
dation grant #CCR-9103953.
NSF grant #IRI-9224601
Authors' e-mail addresses :
koren@bimacs.cs.biu.ac.il, and shasha@cs.nyu.edu
Author fax: 212-995-4123 (but we hate faxes)

instance must complete before its deadline; a blue task
instance can be aborted at any time. We borrow this
colorful terminology from the Swedish VIA project [8].
A blue task instance may complete by its deadline or
miss its deadline. When a task misses its deadline we
say that the task (or deadline) instance was skipped.
We characterize the possible skips of a task by its skip
parameter, 2 � s � 1, which gives the tolerance of
this task to missing deadlines. The distance between
two consecutive skips must be at least s periods. That
is, after missing a deadline at least s�1 task instances
must meet their deadlines. The fact that s � 2 im-
plies that if a blue task instance missed its deadline
then the next occurrence of the same task must be red.
When s = 1 no skips are allowed. One can view the
skip parameter as a Quality of Service (QOS) metric.
(The higher s, the better the quality of service.)

1.2 Examples to Train Your Intuition

Allowing skips may permit us to schedule systems
that might otherwise be overloaded.

�Example 1. We have a set of 11 tasks all having
period 1, computation time 0.1, and skip factor
10. All 11 tasks can be accommodated provided
that at every period of length 1, one task instance
can be skipped.

�Example 2. We have two tasks: t1 has period
1, computation time 1 and skip factor 10; t2 has
period 1, computation time 0.05 and skip factor
in�nity. This system can't be scheduled because
t1 can't give time to t2 frequently enough even
though a naive calculation of utilization, taking
skips into account, (0:9 + 0:05) is less than 1.

�Example 3. We have two tasks: t1 has period 1,
computation time 1, and skip factor 10; t2 has

1



period 15, computation time 1 and skip factor
in�nity. This system can be scheduled because
every period of t2 overlaps at least one skippable
task instance of t1. Note that the utilization here
(0:9 + 1=15) is actually higher than in example 2
above.

1.3 Alternative Models

Our model captures the situation of periodic radar
signals entering a system where capturing every other
one makes sense. It also captures the video display
problem where we are willing to skip an occasional
frame but frame arrivals are periodic. We rejected the
following possible models because we considered them
to be too permissive. Since they allow more freedom
to the scheduler than our current model, however, our
algorithms will work for those models.

�Stale Skips: If a task skips the current period
while working on instance i, it can complete i
by the deadline of the following period and count
that as a single skip. In our model, an instance
which misses its period is not worth completing.

�Early Release: If a task instance is skipped, the
following red task may be released before the end
of the period. In our model, skipping a task in-
stance has no e�ect on the release time of the next
instance.

�Statistical Model: Another possible model is a sta-
tistical one which says that at least some fraction
of deadlines must be met during every some basic
period.

2 The Feasibility Problem for Skip-
pable Tasks

The feasibility problem amounts to the following
question. Can we �nd a collection of deadlines to
be skipped such that no skip parameter is violated
and the remaining tasks can be scheduled to com-
plete before their respective deadlines? In the basic
periodic model, in which all task instances are red
(s = 1 for all tasks) , it was shown [15] that a task
set fTi; 1 � i � ng is schedulable1 if and only if its
cumulative processor utilization (ignoring skips) is no
greater than 1. I.e.,

nX
i=1

ci
pi

� 1

1Also, if a set is feasible, it can be scheduled using the
Earliest-Deadline-First Algorithm (EDF) [15].

Task T1 T2

Period 100 50
Computation 100� 100� 100�
Skip 2 2

Table 1: The tasks for example 2.1.

Task T1 T2

Period 100 100=k
Computation 100� � �

Table 2: The tasks for example 2.2.

This result motivated us to look for a similar neces-
sary and su�cient (or at least su�cient) condition for
schedulability. Unfortunately no better su�cient con-
dition, based solely on cumulative processor utiliza-
tion, exists. To see that let us concentrate on the
special case where s = 2 uniformly for all tasks. That
is, every other task instance can be skipped. Consider
the following inequality:

nX
i=1

ci
pi

� U (1)

It is clear that for U = 2 equation (1) is a necessary
condition for schedulability because of the constraint
on s. Similarly, U = 1 is a su�cient condition, because
it implies that the task set is schedulable even when no
deadline is skipped. We tried to �nd a su�cient condi-
tion of the above form with U > 1. Unfortunately this
is impossible as the following example demonstrates:

Example 2.1 Consider the tasks of table 1. The
processor utilization of this set (ignoring skips) is U =
1 + �. It is schedulable (by for example, scheduling
the �rst occurrence of each task and then skipping
any other deadline). But enlarging the computation
time requirement of any of the tasks will render the
task set infeasible. Since this is true for all � > 0 the
claim is proved.

Surprisingly, the same observation holds even when
consecutive task instances may be skipped. Consider
for example the following example in which up to k �
1 consecutive instances of each task may be skipped.

Example 2.2 Consider the tasks of table 2. The

processor utilization of this set is U = 1+ �(k�1)
100 (which

can be as close to 1 as we want). It is schedulable (by
for example, scheduling every kth occurrence of T2 and
all occurrences of T1). However, any increase in the
computation of T2 renders the system unschedulable.

2



We do have the following necessary condition for
schedulability

Lemma 2.1Given a set � = fTi(pi; ci; si)gni=1of peri-
odic tasks that allow skips, then,

nX
i=1

ci(si � 1)

pisi
� 1 (2)

is a necessary condition for the feasibility of �, be-
cause that sum expresses the utilization based on the
computation that must take place.

3 Skip-Over for Earliest Deadline First

3.1 Processor Demand Criteria

After realizing that the parameter of cumulative
processor utilization was not itself su�cient for dis-
tinguishing between feasible and infeasible tasks sets,
we turned to another known form of schedulability test
for EDF: the processor demand criteria. Je�ay and
Stone [7] showed that a set of periodic tasks will be
schedulable if and only if for all L � 0,

L �
nX
i=1

�
L

pi

�
ci

Similar bounds can be found in our case.

Lemma 3.1Given a set � = fTi(pi; ci; si)gni=1of peri-
odic tasks that allow skips, then,

L �
nX

i=1

D(i; [0; L]) for all L � 0 (3)

Where,

D(i; [0; L]) = (b
L

pi
c � b

L

pisi
c)ci (4)

is a su�cient condition for the feasibility of �.
proof.

First assume that all tasks are released at time 0. Con-
sider the schedule in which for Ti, every si'th deadline
is skipped (that is, exactly the si'th, 2si'th, 3si'th
deadlines are skipped). All non-skipped instances are
scheduled according to EDF. Denote by D(i; [t1; t2])
the computation demand of Ti during the interval
[t1; t2] under the above schedule. That is the total
computation requirement of all tasks of type Ti that
were released and must complete within the interval
[t1; t2]. For an interval [0; L] the value of D is given
by equation 4 above. Condition 3 above is su�cient
since it actually shows that � is schedulable using the

schedule described above. Suppose � is not schedula-
ble, that is at some time d some task instance misses
its deadline. Let ta � 0 be the last time (prior to d)
that the processor was left idle by the above schedul-
ing algorithm (let ta = 0 if there is no such point). Let
tb � 0 be the last time (prior to d) that the processor
was busy executing any task instance with deadline
after d (let tb = 0 if there is no such point). Let
t = maxfta; tbg. The skip pattern of the algorithm
insures that D(i; [t; d]) � D(i; [0; d � t]). The time t
has the property that only task instances that were
released after t with deadline on or before d are ex-
ecuted during [t; d]. There is no idle time in [t; d].
Hence, the optimality of EDF [5] and the fact that a
deadline was missed means that the computation de-
mand during this interval is greater than the interval
length. That is,

d� t <

nX
i=1

D(i; [t; d]) (5)

Hence, we get

d� t <

nX
i=1

D(i; [t; d]) �
nX
i=1

D(i; [0; t� d]) (6)

This proves the claim for the case that all tasks start
at time 0. The case in which tasks may arrive at any
time is similar. Here, as above, the scheduler waits
si � 1 periods from Ti's �rst release before the �rst
skip and then skip in gaps of si periods. If an overload
occurred, choose d and t as above. Let D0 denote the
processor demand function for this system. Observe
that, for every t and d, the skip pattern followed by
the above scheduling algorithm satis�es

D0(i; [t; d]) � D(i; [0; d� t])

. Hence, we get

d� t <
nX

i=1

D0(i; [t; d]) �
nX
i=1

D(i; [0; t� d]) (7)

It is enough to check inequality 3 above for points
L that are periods' end points. Moreover there
is no need to check any point L beyond2 P =
lcm(p1; p2; � � � ; pn). Note that the value of P is not
the expected lcm(p1s1; p2s2; ::::::). Checking only for
L < P is enough because the algorithm skips at the
end of pisi intervals. This means that if the scheduler
succeeded for [0; P ] it will succeed forever.

2lcm(p1; p2; � � � ; pn) denotes the least common multiple of
p1; p2; � � �pn.

3



3.2 Feasibility With Skipping is NP-Hard

When the �rst task instance of some task is released
is it red or blue? For a task with skip factor s, which is
its �rst blue instance? The �rst, second or maybe only
the s'th. If the �rst blue instance of any task is the
s'th we say that the system is deeply red. Of course
when a system is schedulable assuming it is deeply red
it is also schedulable without this assumption. First,
we study the question of how hard it is to determine
the best schedule o�-line in the general case that tasks
may be blue when they enter.

Theorem 3.2Determining whether a set of periodic
occasionally skippable tasks is schedulable is NP-hard.

The reduction is from the Partition Problem [6]:

� instance: Finite set A and a (positive integer)
size s(a) for each a 2 A.

�question: Is there a subset A
0

� A such thatP
a2A0 s(a) =

P
a2A�A0 s(a)?

Given an instance of the partition problem, we can
construct (in polynomial time) a corresponding set of
occasionally skippable tasks such that the partition is
possible if and only if the corresponding set is feasible.
The corresponding task set A is de�ned as follows:
The number of tasks equals the number of elements
in A, for each a 2 A there is a task in A with com-
putation time s(a). All tasks have the same period

which equals
P

a2A
s(a)
2 and a common skipping pa-

rameter 2. In the speci�c case of A above, the schedul-
ing problem is reduced to the question of which tasks
will skip every odd deadline and which will skip every
even deadline. This partitioning of the tasks is possi-
ble if and only if it is possible to partition the original
set A.

Remark 3.1 Since the partition problem is NP-hard
in the weak sense we have proved here only that the
feasibility problem is NP-Hard in the weak sense.

Remark 3.2 We assume here that when tasks enter,
their task instances are blue to begin with. We con-
jecture that the o�ine scheduling problem is NP-hard
in the deeply red model, but we have no proof. The
RTO scheduling algorithm presented below is optimal
in the deeply red model (lemma 4.1 below). Hence, it
can be used as an o�ine feasibility test. Its complex-
ity however depends on the values of task periods and
may be exponential.

The complexity of the feasibility problem was stud-
ied by [14, 13, 1]. They look at scheduling a periodic
task set with arbitrary deadlines and arbitrary initial

o�sets. In addition to its period (p) and computation
requirement (c) a task is characterized by its deadline
(c < d < p) and �rst release point (r � 0). Given a
task set � with skips, consider a modi�ed task set �0

in which every task T = (c; p; s) is replaced by s � 1
tasks all with period ps, deadline p and computation
requirement c and initial o�sets 0; p; 2p; � � �; (s � 2)p.
The optimality of RTO in the deeply red case implies
that � is schedulable if and only if �0 is schedulable.
Baruah and Rosier [1] showed that the general prob-
lem of deciding schedulability of such task sets is co-
NP-complete in the strong sense.

4 Scheduling Algorithms

In the previous section we studied the problem of
checking the feasibility of a system. In this section
we would like to present some on-line scheduling algo-
rithms for such systems.

4.1 Red Tasks Only Algorithm

The �rst algorithm is the Red Tasks Only (RTO)
algorithm. This algorithm is a lazy algorithm in the
sense that it never attempts to schedule a blue task
(i.e., it never works unless it absolutely has to). The
red tasks are scheduled according to EDF. In the
deeply red model this algorithm is optimal, I.e.. all
feasible sets will be schedulable using RTO.

Lemma 4.1 In the deeply red model RTO is optimal.
proof.

In this special case the su�cient condition (equation 3)
becomes also a necessary condition. The task of a
scheduler is to choose which tasks instances to skip.
Once this is done it is clear from the optimality of
EDF [5] that scheduling the un-skipped tasks is done
best by EDF. The skipping policy of a scheduler deter-
mines its computation demand function. Note, that in
the deeply red case D(i; [0; L]) (of lemma 3.1) is the
minimal computation demand over the interval [0; L]
among all valid skiping policies. This holds because, in
the algorithm described in the lemma, the number of
skipped tasks is the largest possible for all task types.
In the deeply red case that algorithm behaves exactly
like RTO. Hence, if for some L > 0,

L <

nX
i=1

D(i; [0; L])

Then for all possible skipping policies, the computa-
tion demand over [0; L] will exceed the available com-
putation time L.

4



Task T1 T2

Period 10 5
Computation 7 3
Skip Parameter 2 2

Table 3: A task set schedulable by RTO but not by
EDF

Task T1 T2

Period 6 4
Computation 4 3
Skip Parameter 2 2

Table 4: The tasks for example 4.1.

RTO can schedule task sets that an EDF that doesn't
use skips will fail to schedule. (see for example the
tasks of table 3). We saw that RTO is optimal in the
deeply red case, but RTO is not optimal in general as
the following example demonstrates:

Example 4.1 Consider the tasks of table 4. If both
�rst releases are red then the system is not feasible:
the �rst deadline of T1 (at time 6) will be missed,
However, in all other cases the system is feasible but
RTO will fail to schedule the tasks in such a way that
they meet their deadlines.

� If both �rst releases are blue than RTOwill sched-
ule only the even occurrences of each task type.
The T1 task released at time 18 and the T2 task
released at 20 have both deadline at time 24
but their aggregated computation time (= 7) is
greater than 6 causing a red deadline miss.

� If the �rst occurrence of T1 is blue and the �rst
occurrence of T2 is red. RTO will schedule every
odd occurrence of T2 and every even occurrence
of T1. One can verify that the third occurrence
of T2 will miss its deadline.

�A similar phenomena happens when the �rst oc-
currence of T1 is red (and the �rst T2 is blue), in
this case both the second occurrence of T1 and
the third occurrence of T2 are released at time 12
causing an overload.

In all the above three cases the tasks would meet their
deadlines if we scheduled every even occurrence of T1
(when the �rst occurrence of T1 is blue) and skipped
every third occurrence of T2 (i.e., scheduled the �rst
and the second occurrences and then the forth and the
5th etc.).

RTO skips deadlines in a \regular fashion", that is the
distance between every two skips is exactly s periods.
RTO sets the �rst skip to be at the �rst blue period.
Is it possible that delaying the �rst skip (and then
continuing in a regular fashion) will lead to a feasi-
ble schedule? That is can we reduce the problem of
choosing which deadlines to skip to choosing the �rst
deadline (per task type) to be skipped? The answer
is \No!" as the previous example demonstrates. The
system is feasible but not by any regular scheduler.

4.2 Blue When Possible Algorithm

Another more 
exible algorithm is the Blue When
Possible (BWP) algorithm. Its philosophy is to sched-
ule blue tasks whenever this does not prevent any red
task from completing, thus putting idle time to good
use. (Think of this algorithm when you turn on the
Super Bowl instead of writing your paper for RTSS
96.)

The algorithm: schedule red tasks according to
EDF. If there are no ready red tasks, then dispatch
a blue task. If there are more then one such blue
tasks which one to dispatch? We can suggest several
heuristics:

�any one

� the blue task with latest deadline

� the blue task with earliest deadline

� some lookahead (that is add a blue task) and see
that it does not introduce an overload for some
future time3

� the blue task with the following property: the
deadline of its next red occurrence (yet to be re-
leased) is the earliest

It is easy to �nd examples in which BWP improves
on RTO. For example the task set of example 4.1 is
schedulable by BWP but not by RTO. But all we have
been able to show so far is that it is no worse.

Theorem 4.2For a given task set, if it is feasible as-
suming all tasks released at time 0 and are deeply-red
it is schedulable using BWF.
proof.

Lemma 4.1 implies that if a system is feasible as-
suming all tasks starts at time 0 and are deeply red,
it is schedulable using RTO.

3A feasble schedule for this future periodmust then be found.
The length of the schedule should depend on the blue task's
period.

5



We continue the proof by induction: If the system
was initially schedule by RTO, it will be so after the
�rst dispatch of blue task, and then after the second
and so forth.

The argument stands on the observation that the
worst case (from point of view of RTO) is that all tasks
are released at the same time and they are all deeply
red. We know that the system is schedulable under
these worst case assumptions.

Suppose at time t idle time occurs and BWP sched-
ules a blue instance of T1 (the next red deadline of
T1 becomes blue). Let t2; � � � ; tn denote the (future)
release times of the next instances of T2; � � � ; Tn re-
spectively. If the schedule is to continue according to
RTO, it is as if RTO is to schedule a task set with
initial release times at t; t2; � � � ; tn (deeply red or not).
RTO is guaranteed to succeed (because it does so even
in the worst case).

An avenue to explore is to consider scheduling a
blue task every time it is released (i.e, not waiting for
the time in which the idle time begins).

5 Rate Monotonic Red Tasks Only

Rate-Monotonic RTO (RM-RTO), like RTO, is a
lazy algorithm that schedules red tasks only, but in
this case the underlying scheduling algorithm is a �xed
priority scheduler where priorities are given according
to the Rate-Monotonic [15] priority scheme. Given
a task set, we are interested to know whether it is
schedulable using RM-RTO under all possible task
phasings. The critical instance test [15] for testing
schedulablity of a task set is applicable here as well.
That is, a task set is schedulable using the RTO-RM
algorithm if the �rst job of each task can meet its
deadline when it is initiated at a critical instant. (A
critical instance occurs when all tasks are simultane-
ously initiated and all tasks are deeply red.) This
holds because the worst case response time is obtained
at a critical instance. The characterization for RM
schedulablity given by Lehoczky, Sha, and Ding [12]
can be adjusted to our model, in the following way:
Suppose we are given a set of n periodic tasks with
skips T1; T2; � � � ; Tn, sorted by their periods 4 so that
p1 � p2 � � � � � pn. The expression

Wi(t) =
iX

j=1

cj � (dt=pje � bdt=pje=sjc)

4Hence the tasks are also sorted by their RM priorities.

gives the cumulative processor demand made by
T1; T2; � � � ; Ti when all tasks are �rst released at time
0. De�ne,

Li(t) = Wi(t)=t

Li = min
0�t�pi

Li(t)

L = max
1�i�n

Li

Theorem 1 of Lehoczky, Sha, and Ding [12] is apli-
cable in this case as well.

Theorem 5.1A set of periodic tasks with skips can be
scheduled using the RM-RTO algorithm if and only if
L � 1
proof.

(following Luhoczky, Sha, and Ding [12] nearly verba-
tim)

Task Ti will be preempted only by higher priority
tasks and will preempt all lower priority tasks. Thus
only higher priority tasks T1; � � � ; Ti�1 have to be con-
sidered in determining whether Ti can be scheduled.

Ti will complete at 0 < t � pi if and only if Ti and
all higher priority tasks released before t could com-
plete on or before t. As a matter of fact, since there
can be no idle time before t, the total computation re-
quirement of these tasks (given by W (t)) must equal
t. Note that, Wi(s) > s for 0 < s < t, hence Ti com-
pletes at the smallest t such that Wi(t) = t. That is
Ti completes on time if an only if Li � 1. It follows
that all the tasks are schedulable if and only if Li � 1
for all i, hence L � 1

Liu and Layland proved that any set of n tasks whose
utilization U =

Pn
1 ci=pi, satis�es:

U � U (n) = n(21=n � 1)

is schedulable using RM. Suppose T1; T2; � � � ; Tn is
not schedulable using RM-RTO. but the subset
T1; T2; � � � ; Tn�1 is schedulable using RM-RTO. Sup-
pose we modify the above task set so that skips are
not allowed but the computation requirement of each
task among T1; T2; � � � ; Tn�1 is reduced so that its uti-
lization is unchanged. That is, task Ti has a modi�ed
computation requirement of

c�i =
si � 1

si
ci

This would mean that from time 0 to pn the time
available for Tn's execution is increased by some � � 0.
That is, if the execution requirement of Tn is increased

6



Task T1 T2 T3

Period 6 7 19
Computation 1 4 5
Skip Parameter 2 2 2

Table 5: The tasks for example 5.1.

by � the resulting set of periodic tasks is guaranteed
to be unschedulable (using RM). Applying the Liu and
Layland utilization bound implies:

U =
n�1X
1

c�i
pi

+
cn
pn

+
�

pn
> U (n) (8)

We would like to estimate �. The contribution of task
Ti to � is at most c�i =

si�1
si

ci. Hence, � �
Pn�1

i=1 c�i =Pn�1
i=1

si�1
si

ci, which applied to 8 yields,

Un
def
=

n�1X
1

c�i
pi

+
cn
pn

+
n�1X
i=1

c�i
pn

> U (n)

Theorem 5.2 If for all 1 � i � n Ui � U (i), then the
the task set is schedulable using RM-RTO.
proof.

Suppose the set is not RM-RTO schedulable. Let i0
be the �rst i such that T1; T2; � � � ; Ti0 is not schedula-
ble using RM-RTO, but T1; T2; � � � ; Ti0�1 is schedula-
ble using RM-RTO. Then the discussion above implies
that Ui > U (i). Contradiction.

Corollary 5.3 If for all 1 � i � n Ui � 69% then
the the task set consisting of T1; � � � ; Tn is schedulable
using RM-RTO.
proof.

True since U (n) > 69% for all n.

The following example demonstrates the usage of the
utilization bounds found above.

Example 5.1 Consider the tasks of table 5. The
full-utilization (i.e., the utilization ignoring skips) of
this task set is above 1 hence it is unschedulable w/o
skips. However theorem 5.2 shows that the task set is
schedulable using RM-RTO:
i = 2:
U2 =

1
12 +

4
7 +

1
2�7 = 0:73 � u(2) = 0:82

i = 3:
U3 =

1
12 +

4
14 +

5
19 +

5
38 = 0:764 � u(3) = 0:779

Lehoczky [9] studies �xed priority scheduling of pe-
riodic tasks in which all deadlines are deferred (or ad-
vanced) by some �xed factor � > 0; the deadline of a
task is � times its period. The results described there

for 1
2 � � > 0 are applicable to our model in the spe-

cial case that all tasks share the same skip factor s
(� = 1=s). The utilization bound quoted there (due
to [11, 16]) is of 1=s for all s � 2. One can see that
even in this special case while the task set of exam-
ple 5.1 fails the test of [11, 16] (because its utilization
is greater than 1=2) it is still proven schedulable using
the bound derived above.

6 Conclusion

Like telemarketing solicitations and political
speeches, repeated signals arriving to a controller con-
tain a great deal of redundancy. It is therefore some-
times acceptable to skip some of these signals. The
question is: what can one gain by skipping them? This
paper has presented algorithms that can take advan-
tage of skipped task instances to schedule even over-
loaded systems under a fairly conservative model (no
two skips in a row and a task instance that meets the
current deadline must be the instance of the current
period). The paper has also shown that determin-
ing the best task instances to skip is NP-hard. Since
the Skip-Over algorithms allow idle time, we can use
all the standard tricks for �tting sporadic tasks into
that idle time, e.g., [17, 4, 10] and [2] for the Earliest-
Deadline-First Algorithm scheduling. Future theoret-
ical work includes:

1. In the �xed priority model, we must determine
how best to use idle time. For example, is there
a good variant of Blue When Possible for that
model? Or maybe one should give di�erent pri-
orities to blue and red instances of a task, so that
blue tasks will execute as long as they do not
harm red tasks. (for example use the Dual Prior-
ity Scheme [3])

2.Find an algorithm to deal with tasks whose skip
parameters change over time.

Exploiting allowable skips is a tantalizing possibility
for systems that experience overload. The two simple
algorithms we discuss here are just the �rst of many
that wait to be discovered and evaluated.

7 Acknowledgments

We would like to thank Doug Jensen, Doug Locke,
and H. R. Callison for suggesting variants of this prob-
lem over the phone, over dinner, and in a van.

7



References

[1]S. K. Baruah, L. E. Rosier, and R. R. Howell.
Algorithms and complexity concerning the pre-
emptive scheduling of periodic, real-time tasks on
one processor. The Journal of Real-Time Systems,
2:301{324, 1990.

[2]H. Chetto and M. Chetto. Some results of the ear-
liest deadline scheduling algorithm. IEEE Trans-
actions on Software Engineering, 15(10):466{473,
1989.

[3]R. Davis. Dual priority scheduling. Computer sci-
ence department technical report, York University,
UK, 1995. And in this proceedings.

[4]R. Davis, K. Tindell, and A. Burns. Scheduling
slack time in �xed priority preemptive systems.
In Proceedings of the 14th Real-Time Systems
Symposium, pages 222{231, Raleigh-Durham, NC,
Dec. 1993. IEEE.

[5]M. L. Dertouzos. Control robotics: The procedu-
ral control of physical processes. In Proceedings of
the 1974 IFIP Congress, pages 807{813, 1974.

[6]M. R. Garey and D. S. Johnson. Computers
and Intractability: a guide to the theory of NP-
Completeness. W. H. Freeman and Company, New
York, 1979.

[7]K. Je�ay and D. Stone. Accounting for interrupt
handling costs in dynamic priority task systems.
In Proceedings of the 14th Real-Time Systems
Symposium, pages 212{221, Raleigh-Durham, NC,
Dec. 1993. IEEE.

[8]H. Lawson, M. Lindgren, M. Str�omberg,
T. Lundqvist, K.-L. Lundb�ack, L.-�A. Johansson,
J. Torin, P. Gunningberg, and H. Hansson. BASE-
MENT: A Distributed Real-Time Architecture for
Safety Critical Applications. In J. Wikander, ed-
itor, Proc. SNART Symp. on Real-Time systems.
DAMEK, Royal Institute of Technology, Stock-
holm, 1993.

[9]J. P. Lehoczky. Fixed priority scheduling of peri-
odic task sets with arbitrary deadlines. In Proceed-
ings of the 11th Real-Time Systems Symposium,
pages 201{209. IEEE, Dec. 1990.

[10]J. P. Lehoczky and S. R. Ramos-Thuel. An
optimal algorithm for scheduling soft-aperiodic
tasks in �xed-priority preemptive systems. In

Proceedings of the 13th Real-Time Systems Sym-
posium, pages 110{123, Phoenix, Arizona, Dec.
1992. IEEE.

[11]J. P. Lehoczky and L. Sha. Performance of real-
time bus scheduling algorithms. ACM Perfor-
mance Evaluation Review, 14, 1986.

[12]J. P. Lehoczky, L. Sha, and Y. Ding. The rate
monotonic scheduling algorithm { exact character-
ization and average case behavior. In Proceedings
of the 10th Real-Time Systems Symposium, pages
166{171. IEEE, Dec. 1989.

[13]J. Y.-T. Leung. A new algorithm for scheduling
periodic, real-time tasks. Algorithmica, 3:209{219,
1989.

[14]J. Y.-T. Leung and M. L. Merrill. A note
on preemptive scheduling of periodic. real-time
tasks. Information Processing Letters, 11(3):115{
118, 1980.

[15]C. L. Liu and J. Layland. Scheduling algorithms
for multiprogramming in a hard real-tim environ-
ment. Journal of the ACM, 20(1):46{61, 1973.

[16]D.-T. Peng and K. Shin. A new performance mea-
sure for scheduling independent real-time tasks.
Technical report, Real-Time Computing Labora-
tory, University of Michigan, 1989.

[17]B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic
scheduling for hard real-time system. The Journal
of Real-Time Systems, 1:27{60, 1989.

8


