Outsafe ODBC pseudocode:
(Assumes multistep transactions.)
Variables:
Every client has a globally-unique ID: CID.
Every transaction is assigned a locally-unique ID by the initiating client: LTID.
Every transaction can be globally identified by the concatenation of CID and LTID. Let's call this GTID.
handle_ODBC_query:

argument is a string containing an SQL statement q

Returns standard ODBC response r

If there is no active transaction for this ODBC connection, generate new LTID.

if q is commit

return initiate_commit(LTID) ARTHUR: shouldn’t this be GTID? More important, the initiator should first check whether it has received a rollback command for this transaction from some other client. (That could have happened because the other client wanted to commit another transaction).

else if q is rollback

return initiate_rollback(LTID)

else

is_private_cloud := determine if op is on private cloud or replicated

if q is read-only

return initiate_RO_op(q, LTID, is_private_cloud)

else

return initiate_RW_op(q, LTID, is_private_cloud)
end handle_ODBC_query
initiate_RO_op:

arguments are:
SQL query

q

transaction ID
LTID,

boolean value
is_private_cloud

returns ODBC response r

If q is first op for this transaction

create virtual thread for trans.

Assign q to virtual thread.

If this is first op for this data source (private cloud or replicated)

submit XA START to that data source.

r := perform actual query

return r
end initiate_RO_op
initiate_RW_op

arguments are:
SQL query

q

transaction ID
LTID,

boolean value
is_private_cloud

if is_private_cloud

if q is first op for this trans

create virtual thread for trans

Assign q to virt thread

If this is first op for this trans for this data source

submit XA START to that data source.

r := perform actual query

return r

else

send op to conduit.

sleep until op has been received and executed locally

return r
end initiate_RW_op
initiate_commit

arguments are:
transaction ID
LTID

if transaction contains private cloud operations

submit XA PREPARE to private cloud

(DENNIS: ^^^^ Is this sufficient? In other words, can we ditch the commit manager that listens to the conduit and processes commits for the private cloud if we are using the XA distributed transaction system to enfore atomicity?) ARTHUR: Yes, we can ditch that stuff. This is standard XA.

if transaction is strictly read-only, accessing local replica

submit XA PREPARE to local replica

if transaction is replicated

submit PREPARE request through conduit

sleep until local replica has processed request.

if all requests are successful ARTHUR: This is a bit more subtle. We may not get responses back from everyone, so we have to wait a while and then decide whether to commit or not. This means that if a site has aborted this transaction even though the transaction ultimately commits, then that site is disobedient so has to catch up.

submit COMMIT requests for each data source.

else

submit ROLLBACK requests for each data source.

return results of transaction commit.
end initiate_commit
initiate_rollback

arguments are:
transaction ID LTID

if transaction contains private cloud operations

submit XA ROLLBACK to private cloud

if transaction is strictly read-only for local replica

submit XA ROLLBACK to local replica and return

if transaction has replicated operations

submit ROLLBACK request through conduit.

sleep until processed locally.
end initiate_rollback
receive_op_from_conduit

arguments are:
query

q

client ID

CID

transaction ID
GTID

if op is first in transaction

create new virtual thread for transaction

submit XA START to db connection thread

assign op to virtual thread

if op is abort or commit

If a prior abort or commit has been received for this trans

discard this op

if op is abort

delete all ops in this trans from wait queue

(should we kill active ops or wait nicely?) ARTHUR: You can kill if that’s safe.

if op is phase 1 commit

(???? How to schedule. See note below)

insert op into waiting queue (priority queue sorted by sequence #)

try_to_schedule_op() ARTHUR: You can just execute normal ops as they arrive respecting only the order within transactions (i.e. don’t execute the ith op of transaction t unless the i-1st op of t is done. You can ignore sequence #. All that matters is that everyone obeys the same commit order.
end receive_op_from_conduit
try_to_schedule_op

while
(the head of the waiting queue belongs to an inactive transaction thread

AND

the transaction # of this op == 1 + last scheduled transaction #) ARTHUR: I don’t get this. I think you just want to schedule normal ops after the last op of the same transaction unless the transaction is already aborted.

dequeue op from waiting queue and start executing.

end while
end try_to_schedule_op
replicated_op_finished_executing

mark my virtual thread as inactive

try_to_schedule_op()

if this is the initiating client for the op

wake up initiating thread.
end replicated_op_finished_executing
(Note: My first instinct was to design the system so that commit ops are scheduled for execution using the same logic as other ops from conduit. However, if we follow the rules of disciplined execution in this case and the transaction is deadlocked, the commit operation will never be reached. On the other hand, if this is called while prior operations are legitimately in the transaction pipeline, it could really screw things up. Not sure how to do it yet.): ARTHUR: You are right. There are some choices: if a prepare comes in and the transaction is blocked, we could simply send back an abort for the transaction and rollback the local one. Or we could rollback the transactions that block this one. Let’s say that we do the former for simplicity.
execute_phase_1_request

arguments are:
client ID

CID

transaction ID
GTID

If transaction is not blocked.

submit XA PREPARE to db

if transaction can commit ARTHUR: does this mean if transaction is alive and is unblocked on local site? I’m assuming so in what follows.

if waiting queue contains a rollback op for this transaction

rollback

else if this is initiating client

wake initiating thread (which will start phase 2)

else if transaction can not commit ARTHUR: why would this happen given that the transaction is not blocked? Only if we’ve already aborted this transaction.

if waiting queue contains a rollback op for this transaction

rollback

else if waiting queue contains a commit op for this transaction

invalid state! start recovery. ARTHUR: no. Invalid state only if this site has aborted this transaction.

else

if this is initiating client

wake initiating thread (which will deal with rollback)

else

send rollback message to conduit
(Dennis: ^^^^ I think this is the design we discussed. However, do we want replicating clients initiating rollbacks even if the initiator is able to commit?) ARTHUR: It depends why transaction cannot commit

else if transaction has a blocked operation

perform recursive rollbacks to clear way for transaction.

(Since we don't really know whether a transaction is deadlocked or if it just happens to be blocked because this client is catching up, should we use some kind of timeout? We can do a little bit of reasoning about the transaction state, which might be somewhat helpful: I believe the only way a series of transactions can become deadlocked without being detected by the local DB is if at least one of the transactions is locally initiated and has operations in both the replicated vanilla system and the private cloud. Knowing this could save us from killing certain transactions that are just slow) ARTHUR: Let me think about this
end execute_phase_1_request
execute_phase_2_commit

arguments are:
client ID

CID

transaction ID
GTID

if my local response to phase 1 was not successful

I am in an inconsistent state. Start recovery.

else

submit XA COMMIT to db.

if this is initiating client

wake initiating thread
end execute_phase_2_commit
