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My research over the last ten years has focussed largely on the application
of computer science to the life sciences. Most of that work has had to do
with systematic experimental design for biologists, visualization software,
and machine learning tools. The current thrust of my work has to do with
large scale inference and analysis of networks. My plan in Montpellier is to
continue that work. This will lead to a tool that may be useful to the analysis
of the data generated by the Integration of Nutritional Functions team (and
possibly others) at INRA.

1 Brief Review of the Most Relevant of My

Previous Work

My work in scientific computing is driven by the philosophy that the problems
and questions should come from the lab scientists themselves. I attempt to
solve those problems in a way that the scientist can use and to generalize
that solution as much as possible. The following branches of my work all
follow from that philosophy.

1. Adaptive Combinatorial Design for the Design of Experiments

Lab scientists would like to answer a scientific question as quickly (in
person time) and as economically (in lab equipment and materials) as
possible. A typical “search space” in a lab setting will include many
possible perturbations (e.g. light, carbon, nitrogen, knock-outs,...) and
the goal is to find the values of those purturbations that optimize a
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particular output (e.g. biomass, seed size). The expensive approach is
to explore the entire search space. An alternative is to design a small
number of experiments and then to use the results of those experiments
to design the next group with a view towards finding the optimal con-
ditions very rapidly. We have used and improved a technique from
statistics called combinatorial design to this end[24]. Our basic strat-
egy is to use combinatorial design (i) to design a well-spaced and very
small set of initial experiments and (ii) to use the results of that first set
of experiments to design a second set of experiments that focusses on
the features that seem most influential. Thus, combinatorial design is
used “recursively” to find the optimal values of the influential features
and the other features. We have used this successfully in our plant
biology group at NYU, but the method has been used by collaborators
looking at bacteria and bioenergy.

2. Visualization of Multiple Experiments

A frequent genomics question is “Which genes are most affected by all
of these experiments or a subset of those experiments?” A common way
to appreciate this visually is to use a Venn diagram. Because Venn dia-
grams generalize poorly beyond three experiments, we have developed a
visual representation known as a Sungear (http://virtualplant.bio.nyu.edu/cgi-
bin/sungear/index.cgi) that does generalize. Sungear is an interactive
search interface that supports statistical conclusions and that is partic-
ularly strong in performing metaanalyses of many different experiments[22],
[21]. For example, a sister lab is using Sungear for cancer studies. It
is a general tool and we have seen applications ranging from science to
marketing to the evaluation of sports teams.

3. Data Analysis to infer gene or module function

Most of my work with Gloria Coruzzi, Ken Birnbaum, and Phil Ben-
fey over the years has had to do with data analysis to discover gene
function. Sometimes, this has meant the inference of the individual or
combinatorial genetic causes of traits[26], sometimes in a cell-specific
manner[25]. Most frequently though, the idea has been to take a holis-
tic “systems biology” approach to try to understand the role of modules
of genes, often using machine learning [23], [19], [18], [16], [13]. Many
of the tools we have developed are now incorporated into our system
Virtual Plant[15].
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4. Network inference in genomic networks

The goal in this work is to determine which genes influence which other
genes and the strength of those relationships. In the case of genomics,
the experimental strategy consists of measuring the effect of perturba-
tions (such as the introduction of stress, genetic change, or the insertion
of nutrients) to organisms over time. The end result is a network that
predicts causal relationships among genes. We have just begun that
work [6, 4] and will outline our plan to continue it below.

5. Subgraph queries

Related to the question of network inference is what to do when one has
a large network or several large networks and one wants to find common
motifs. The paradigmatic question is “where is a certain labeled query
graph q in a large database D of graphs?” Our fundamental strategies
have been to use filters to prune away graphs from D that cannot match
q and then to use a location data structure to find good starting points
for searches in the graphs of D that remain. We have explored several
variants of this problem [7, 9, 20] Another question has to do with
clustering graphs that are similar.[17]

6. Time series analysis to find correlations and bursts among

tens of thousands of time series over sliding windows

A paradigmatic problem in this area is to find highly correlated instru-
ments in financial markets, where correlations can come and go over
time. The two central techniques are to use dimensionality reduction
techniques such as wavelets and sketches (random vectors) to avoid
comparing all pairs of instruments and to update previous correlations
efficiently. This work does not directly relate to our plant biology work,
but could be used for other scientific applications having far longer time
series [3, 11, 12].

2 The Basic Plan: Scalable Network Infer-

ence on a Workflow Platform

In our review of genomic network inference algorithms[29, 6, 32, 35, 38, 39],
we have observed that there are several stages of analysis depending on the
kind of data that is available. We can divide those data types along two
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dimensions: (i) whether that data is generated based on genetic perturbations
or not; and (ii) whether that data consists of steady state data or time series
data.

Example of genetic perturbations include the suppression of gene function
or its enhancement, whether cell-specific of not. In a non-genomic setting,
the equivalent of a genetic perturbation is any direct modification of a node
in a network. Non-genetic perturbations, by contrast, are analogous to ma-
nipulations of the inputs of networks.

What constitutes time series data depends on the system under exami-
nation. For example, formally, measurements taken every 4 hours constitute
a time series. For our purposes, however, time series data means a series of
experiments having the property that the state at experimental time point
k+1 depends on the state at time point k but not on the interaction among
data components at k+1. For us, then, for a series of experiments to be
considered a time series, causality edges flow from the state of elements (e.g.,
genes) at k to elements at k+1. Whether this is true for measurements taken
every four hours or not will depend on the rate of reaction of elements in the
organism under study. We might call the kind of time series we are interested
in causal time series.

From steady state experiments, algorithms can derive correlation, clus-
ters, and biclusters[31, 33, 37] Clustering reduces the number of nodes to
a small group of “super-nodes” that rise and fall together. From genetic
perturbations, one can determine the direct or indirect influence of a per-
turbed element on others.[29, 30, 39] From causal time series data, one can
determine causal links – if there is enough data relative to the number of
super-nodes.[34] The overall workflow can be represented in following Vis-
trails figure [36]

Whereas this offers a systematic way to infer networks, the resulting net-
works are not always so good. In our own work for example[6], we were able
to predict the direction of gene expression (whether expression rose or fell) on
out-of-sample data quite accurately, but not its magnitude. The main open
problems in my view then are to (i) improve the quality of the algorithms
given the data available and (ii) to determine which next experiment to do
to improve the prediction accuracy.
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Figure 1: Steps of the network inference workflow: each step contains several
optional algorithms and many parameters for each algorithm
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2.1 Algorithms

There are two issues regarding algorithms: quality and speed. They are
related, because faster algorithms make it possible to search more parameter
combinations and thus achieve better quality.

The quality of a network inference workflow depends on the algorithms
chosen and the parameters fed to those algorithms. For network inference
the main algorithms are Inferelator 2.0[29, 34], ARACNE[40, 32], TSNI[35],
BANJO[38], and NIR[39]. Different authors claim that each algorithm is best
overall, but we suspect that each has a “sweet spot” which we must find.
Finding the best parameters on the other hand will require an exploration
of the parameter space. For this, we will use genetic algorithms[41, 42] in
combination with combinatorial design. Here is where quality and speed
interact: fast algorithms permit more exploration of the parameter space.

The speed issue comes up when the inference problem concerns large
networks. The core problem concerns the identification of edges that could
cause changes in the value of a target element and assigning values to them.
This is essentially a regression problem. Luckily, there has recently been
a flurry of excellent work on machine learning algorithms which are both
sufficiently fast and parallelizable to be used on data sets with milions of
elements. Below, we list a few of the algorithms we think might useful in
training regression models on large-scale data.

• Random Forests [2]
Random forests are ensembles of decision trees which are constructed
from random subsets of the data. They’re fast to train, easy to paral-
lelize, and perform extremely well.

• Large-Scale SVM Regression [1]
Bottou demonstrated that a stochastic gradient descent solver for a va-
riety of learning problems (including support vector machine optimiza-
tion) is able to scale with extremely large datasets while converging to
the predictive performance of traditional optimization algorithms.

• Large-Scale ℓ1 Regularized Learning [10]
Stochastic coordinate descent can be used to learn sparse regression
models, with small training times even for data sets where both the
dimensionality and the number of training points is large.
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2.2 Experiments to Do Next

Regardless of the quality of algorithms, insufficient or excessively noisy data
can prevent an algorithm from inferring good networks. Because experiments
take time and expense, we want to guide the experimenter to do the “right”
experiment. One way to do this is to determine which existing experiment
has been most valuable and doing another one like that. To determine the
value of an existing experiment, one can remove that experiment, rerun the
inference algorithm and then re-compute prediction accuracy.

For example, in the case of our Arabidopsis time-course study[6], remov-
ing two replicate experiments from two different timepoints prior to 15 min-
utes was less harmful to the accuracy of out-of-sample prediction of the net-
work state at 20 min than removing both replicates from a single time-point
prior to 15 min. This suggests that measurements at different time-points
may be more valuable than replicates.

Whereas this rather naive approach may work well in some cases, it will
not lead to radically different experimental designs. One way to discover
better designs will be to simulate the data under different noise and variance
assumptions. Given such simulation results, one should be able to approach
a given application, characterize its noise and variance properties, and design
a series of experiments.

2.3 The Importance of Workflow

Workflow systems help solve two important problems in scientific computa-
tion:

1. Just as it is important for experimental procedures to be repeatable so
it is important for computational procedures to be repeatable. I have
been active in urging computer scientists in the large database commu-
nity to create repeatable experiments[47, 46] This year we featured the
use of Vistrails to help make this possible (http://www.sigmod2011.org/calls papers sigmod researc
By storing workflows along with associated software and data, experi-
menters ensure that a whole computational flow can be reproduced.

2. Workflow systems support a disciplined appoach to parameter explo-
ration. For example, Vistrails will soon have a genetic algorithms mod-
ule so that parameter values can be varied and optimized.
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For these reasons, our scalable network software will be wrapped in a
workflow system, probably Vistrails to start.

3 Expected Results

Over the course of my sabbatical year (July, 2012 to July, 2013), I expect to
design and build useful network inference software and apply it to important
problems, I also intend to keep my eyes and ears open as new problems
come to my attention. In my previous sabbaticals at INRIA Rocquencourt,
I consistently found that interactions with colleagues led to new research
directions and excellent publications[43, 44, 45]. I have every expectation
that serendipity will play an equally positive role this time.
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