
Repeatability & Workability for the Software Community:
challenges, experiences, and the future

D. Shasha1

1 (shasha@cs.nyu.edu) New York University, New York, USA

ABSTRACT
It’s much easier to test claims in computer science than in
natural science. So, we1 decided to give it a try in the
database conference ACM SIGMOD 2008. Specifically, the
repeatability committee volunteered to assess the results of
database experimental papers [1] if authors chose to submit
their code and data for the purpose. For SIGMOD 2009,
the testing expanded to “workability” – varying data and
parameters to see how the software behaves under conditions
that are different from the ones the researchers reported.
This short note describes what we have learned over the
past two years, the challenges we have faced, ones we still
face, and directions we suggest for the future.

1. THE GOAL
In natural science, repeatability allows one scientist to

verify the assertions of another, occasionally exposing fraud,
but more often simply providing a check against exhuberant
claims. Natural science papers conform to the repeatabil-
ity requirement by providing a complete description of the
protocol used in an experiment (reagents, equipment used
down to the model number, times, temperatures etc.). The
protocol must be described in sufficient detail for another
lab to replicate the experiment. The accuracy of repeata-
bililty is far from perfect. The biologists I work with often
talk about “biological variation” – the differences in results
that come about from the vagaries of living organisms or
(more embarrasingly) different laboratories.

Computer science papers can’t describe protocols in enough
detail for repeatability because software is far more complex
than laboratory procedures. Fortunately for computer sci-
ence, however, computational researchers can describe the
core of their algorithms in a paper and then provide software
and data to enable repeatability on another researcher’s
computer or cluster. Also, fortunately for computer science,

1Ioana Manolescu and Stefan Manegold have led the effort
over the past three years and have recruited outstanding
system researchers to help out

it is easy to change data in order to test “workability”: does
the software behave well and predictably for slight changes
in the data? Finally, and again fortunately for computer sci-
ence, preparing code and data for repeatability/workability
leads, without much additional work, to preparing the code
for archiving and distribution, thus greatly enhancing the
usefulness of the work done.

Almost everyone sees virtues in these goals. Shamelessly
taking advantage of my role as program chair, I requested
a hand vote in the opening session of SIGMOD 2008 on
the question: “If you had time, would you participate in a
repeatability effort on any system you built?” The vote in
favor of repeatability was overwhelming, something like 100
(we didn’t count) to 2.

There are however some challenges.
1. Intellectual property rights may prevent some researchers

from submitting code and/or data. For this reason, repeata-
bility or workability in the database community has been
and will continue to be voluntary.

2. Preparing code and data for repeatability testing en-
tails a lot of work on the part of authors. First it requires
documentation, the explicit rendering of all dependencies
on compilers, operating systems, and hardware. Second, it
requires incentives. In SIGMOD 2008, the incentive was a
sentence authors could add to the copy of their article in the
proceedings: “The results in this paper were verified by the
SIGMOD repeatability committee.” That was sufficient to
get 2/3 of the writers of accepted papers to attempt repeata-
bility. In SIGMOD 2009, validated authors were invited to
set up a Wiki on an ACM site. Academics are motivated by
reputation – designing repeatable software enhances one’s
reputation. We have to get the word out.

3. Assessing code and data for repeatability and work-
ability requires a lot of effort on the part of the testers.
Platforms differ. Computation time can be significant (e.g.
for parallel code). Documentation is rarely perfect. Par-
ticipating in a repeatability committee should count as an
important community service.

2. EXPERIENCES
When we first announced the repeatability initiative in the

SIGMOD 2008 webpage, we received some revealing excuses:
We cannot distribute code and data because the author

has moved, making the retrieval of code and data infeasible
at this point.

The subsets were chosen randomly from a large dataset,
and unfortunately no trace about the identity of the used
documents has been kept.



We received various positive comments:
This wasn’t too hard and I think it was definitely worth

it. We even found a mistake (thankfully a minor one, not
affecting our conclusions)...

Overall, of the 78 accepted papers, 53 attempted repeata-
bility (and 29 achieved it). After the process was over, we
sent a survey asking about experiences. Here were some
comments.

Some supported our main goal. I think this is a noble
effort and costs almost nothing for authors if they set up
experiments with repeatability in mind. The focus on re-
peatability will lead to better science in our community.

Others suggested that the “beneficial side effect” of archiv-
ing was even more important. Sharing experiments (code
and data) benefits a lot of researchers, especially small groups.

Some just thought repeatability required too much work.
I think experimental repeatability is an important thing, and
I support the motivation. But I believe that the current
mechanism is just plain wrong. Way too much work for
the benefit derived.

Unfortunately, the author did not suggest an alternative
mechanism, but since you might hear a similar objection if
you try this, here is at least part of the argument you might
use. The simple fact is that computer science is an engineer-
ing discipline not simply a mathematical one. Depending on
your subspecialty, you know that there is an enormous va-
riety of multidimensional data structures, machine learning
algorithms, and linear programming methods. Good engi-
neering or the right combination of engineering and problem
can determine the best choice of data structure or algorithm.
That is why experiments are necessary and why workabil-
ity tests can help to show the reach of an implementation.
Particularly in those systems fields where heuristics are nec-
essary, experiments and their variants are critical.

3. RECOMMENDED REPEATABILITY PRO-
TOCOL FOR THE COMPUTATIONAL SCI-
ENCES

1. Announce the specifications of the voluntary repeata-
bility and workability effort along with the call for pa-
pers. As the comments above reveal, researchers are
not always careful to record all the parameters they
set to get their results.

2. Test only accepted papers. This has two benefits: (i)
it reduces the workload for the testers and (ii) authors
seem willing to put in the extra work if their paper has
been accepted. The disadvantage is that waiting till
papers are accepted before performing the evaluation
makes it difficult to finish the evaluation before the
camera ready deadline, so the opportunity to trumpet
the success of the evaluation has to wait till after the
conference. In SIGMOD 2009, the results were avail-
able at the time of the conference, so authors were able
to announce their successes during their talks.

3. Ask authors to include in their submission information
the length of time their experiments are expected to
run. Also, ask them to give guidelines about how to ex-
tend their experiments beyond the contents of their pa-
per. Possibilities range from explanations of how to use
different data sets, query work loads, tuning and/or

configuration parameters to compilation, and instal-
lation instructions for alternative hardware/software
environments.

4. Assign papers to reviewers based on the compatibil-
ity of the papers’ hardware and software requirements
with the reviewers’ resources, while avoiding conflicts
of interest. Each paper should be assigned two review-
ers: a primary reviewer to do the actual repeatability
and workability evaluation, and a secondary reviewer
as back-up and to double-check the primary reviewers
report.

5. Adopt an anonymous web-based communication chan-
nel between reviewers and authors so reviewers can ask
questions. This is needed because successful repeata-
bility can be hindered or even prevented by minor
problems in setting up and running the experiments
due to missing details in the provided instructions.

6. Make sure the evaluation results are visible. The SIG-
MOD PubZone server [2] is an example venue for this
purpose.

4. RECOMMENDED TOOLS
Imagine that you have had your paper accepted and you

would like to ready your software and data for repeatability
and workability testing. What kind of tools would you need?
Here is a partial list:

1. A utility that runs through the source code detecting
machine dependencies (e.g. machine language), oper-
ating system dependencies (e.g. system calls), shell
dependencies (e.g. shell scripts), path dependencies
(e.g. absolute path names), compiler dependencies
(e.g. language constructs), and browser dependen-
cies. These should be identified and either corrected
or noted as constraints on the tester. As a start, a
CMakeLists file for all directories and two or more
tested build environments will help ensure portability.
A git repository may help distributing the software
and proposed workability changes.

2. A computational resource where code that has been
purged of dependencies can be tested by the author.
That resource should include a variety of platforms
perhaps as virtual machines.

3. A testing harness for workability that will allow the
execution and collection of results of software using
different parameters. This will be useful for both the
author and the tester.

5. SUMMARY
The computational community can be justly proud of its

practical impact over the years. This is due to a conflu-
ence of good ideas with good engineering. Repeatability
and Workability help to ensure the validity of good ideas
and provide paradigms and platforms for good engineering.
Systems researchers understand the value of the effort. It’s
the right thing to do.



6. ACKNOWLEDGMENTS
Ioana Manolescu and Stefan Manegold have realized the

repeatability vision through their leadership. The excellent
team they have recruited have made it a reality. Brad Bar-
ber made some very helpful suggestions to this manuscript.

7. REFERENCES
[1] I. Manolescu, L. Afanasiev, A. Arion, J.-P. Dittrich,

S. Manegold, N. Polyzotis, K. Schnaitter, P. Senellart,
S. Zoupanos, and D. Shasha. The repeatability
experiment of SIGMOD 2008. SIGMOD Record,
37(1):39–45, Mar. 2008.

[2] PubZone: scientific publication discussion forum.
http://www.pubzone.org.


