
Browser-based Mathematical Formula Editing

for The Web

Wei Sua,b, Paul S. Wangb, Lian Lia

aDepartment of Computer Science, Lanzhou University, China
bDepartment of Computer Science, Kent State University, USA

Abstract

MathEdit is an interactive tool for creating and editing mathematical expres-
sions on the Web. MathEdit is an open-source program implemented in stan-
dard XHTML and JavaScript to run in regular browsers. The tool supports
both WYSIWYG editing and command-line editing operations. MathML is
the primary internal representation for MathEdit. But other formats such
as infix, OpenMath, and LaTeX are also supported. A well-defined API en-
ables interactions between the editor and its hosting Web page. Preference
settings and customizations allow MathEdit to fit in different application
environments. The design, implementation, and application of MathEdit
are presented together with a comparison with several other mathematical
expression editors.

Key words:
MathML, OpenMath, LaTeX, Mathematical Formula Editing, Visual
Editing, Mathematical Expression

1. Introduction and Overview

The Web has come a long way since the early 1990’s and has become
ubiquitous in modern life. However, dealing with mathematical formulas is
still difficult on the Web. With the advent of MathML [30] as a standard
representation format for rendering (MathML Presentation) and semantics
(MathML Content) and browsers support for MathML, either natively or via
a plug-in [15], the foundation has been laid for mathematics on the Web. To
realize this goal, we still need a Web-based tool to allow users and Web pages
to interact with mathematical formulas in a convenient and natural way.

Preprint submitted to your journal January 5, 2009

The Web-based Mathematics Education (WME) project [17] at the In-
stitute for Computational Mathematics (ICM/Kent) was started in the mid
1990’s to build an innovative on-Web mathematics education environment for
middle school teachers and students. As part of WME, work also began on
an interactive visual editor for mathematical expressions that runs in stan-
dard Web browsers and works with standard mathematics representations
such as MathML, infix, and LATEX [9].

In this direction, Kent State University and Lanzhou University jointly
have developed MathEdit [22, 27, 28, 29], an open-source tool running in
standard browsers for entering and editing mathematical expressions for the
Web. MathEdit allows users to create and edit mathematical expressions
with a convenient and intuitive graphical user interface (GUI) as well as an
efficient command-line environment with character-string input. Using well-
defined API functions, MathEdit can also be embedded in the interactive
Web application systems by authors to create mathematical expressions.

Figure 1 shows the end-user view of the MathEdit architecture. Through
the GUI and character-string input box, user actions, mouse clicks, and key-
board input, are treated as commands. Commands invoke JavaScript [21]
functions that operate on HTML and MathML DOM [3] trees to support
editing and visual navigation of mathematical expressions. MathML Presen-
tation and Content codes are basic to the internal operations of MathEdit.
But MathEdit also provides format conversion that can convert the format
for the expressions among MathML, OpenMath [24], LATEX, and infix. Each
edit operation basically adjusts the DOM tree of MathML markup kept in-
ternally for the mathematical expression being constructed or edited. The
effect of each editing operation is reflected in the visual display immediately.

MathEdit provides different user input modes, convenient API for the
host Web page. Preference settings and customizations at the user and pro-
gram levels make it possible to use MathEdit for different purposes and at
different levels of mathematics. In the next sections, we will first discuss how
MathEdit is applied then discuss several important aspects of the design and
implementation of MathEdit.

2. Applications of MathEdit

MathEdit can be embedded in any Web page to enable users to easily
input and edit mathematical expressions. Such expressions may be displayed
and processed further as mathematical formulas. Before describing various

2

Figure 1: The architecture of MathEdit

design and implementation aspects of MathEdit, it is good to first see some
actual applications of MathEdit.

As one can easily image, MathEdit is applied extensively in WME: to
collect formula input in questions, exercises and tests, to support interactions
between formulas and geometrical objects or plots of curves and surfaces, and
to make interactive, step-by-step, solutions of equations possible.

Figure 2 shows another example: adding or changing mathematical ex-
pressions in a WME lesson page. Clicking the MathEdit icon pops up a
MathEdit window for entering a new mathematical expression or editing an
existing one which the user had selected from the WME lesson before in-
voking MathEdit. When the user is done, the formula created is returned
(in MathML) to the lesson page to replace the existing expression or to be
inserted anywhere in the lesson page. Every returned mathematical expres-
sion from MathEdit is given an HTML element ID. The HTML element ID

of any MathML expression can be passed to MathEdit through its API for
editing or format conversion. For example, a Web page may obtain infix,
MathML, or OpenMath of a formula by passing its ID to MathEdit and then
use the result to draw mathematical curves and surfaces or perform other
mathematical operations.

Another significant application of MathEdit is in MathPASS (Figure 3),
an interactive drill-and-practice system for remedial math classes at Kent
State University. These classes regularly enroll more than 800 students and

3

Figure 2: WME lesson author tool

involve multiple instructors. Teachers can easily create algebra questions in
MathPASS with the built-in MathEdit through infix input. Presentation
MathML code for rendering on the Web (Figure 4) will be generated auto-
matically. Students using MathPASS can choose between two answer input
styles offered by MathEdit: infix string input or GUI-based WYSIWYG in-
put. Through simple MathEdit API calls, MathPASS provides a button for
the students to select or change the entry methods. After entering an an-
swer via MathEdit, a student clicks the check answer button which triggers
JavaScript in the Web page to obtain the string representation of the formula
created via the MathEdit API. The formula string then becomes part of a
POST request to an answer checking program.

3. Editing Styles and Output Formats

It is essential for any mathematical expression editor to provide conve-
nient and intuitive operations to insert and delete mathematical constructs
including numbers, constants, variables, operators, functions and sub-expressions.
Two editing styles are supported: full-visual input and character-string input.
In full-visual input style the expression is edited by directly manipulating and
navigating its on-screen display. In character-string input style editing can
be done via infix or some other string representations of the expression.

4

Figure 3: The architecture of MathPASS

Figure 4: An screen shot of MathPASS

5

3.1. Full-Visual Input Style
In full-visual input, graphical templates of various mathematical con-

structs are used to enter expressions. The displayed expression grows and
shrinks as editing continues on a real-time basis. Templates available include
fractions, square roots, powers, and so on and can be customized for particu-
lar levels or areas of mathematics. Numbers, symbols, and simple operators
(+, -, *, and /) can be entered from the keyboard. In full-visual input, au-
thors edit in-place a mathematical expression as it is formatted and displayed
on the screen in the traditional 2D textbook form. The actual display is done
by the MathML renderer of the particular Web browser. Editing and dis-
playing occur simultaneously and the expression is reformatted immediately
after every modification.

An important user interface aspect of full-visual input is navigating to
the precise point within the expression where an editing operation is to take
place. Editing operations, such as insert, edit, delete, covert, and replace, are
relative to the current node (a node on the MathML Content tree in Content-
based editing and a node on the MathML Presentation tree in Presentation-
based editing). Current node expression (the current expression) is high-
lighted visually and visual navigation refers to moving the current expres-
sion to different positions in the expression being edited. Convenient visual
navigation is important and a user has multiple ways to visually navigate
the displayed expression: basic navigation, traversal navigation, and cursor
navigation.

The four arrow keys are used for the basic navigation. They move the
current sub-expression up to the parent node, down to the first child, or
left/right to sibling nodes. Because arrow key navigation is based on the
hidden internal tree structure, it can be non-intuitive to the average user.
MathEdit also supports a systematic traversal of the entire expression so the
user has a way of reaching any node on the tree. By pressing the PageDown

key, the current node is moved in a traversal sequence defined by DFS (depth-
first search) algorithm. The PageUp key, on the other hand, provides the
inverse-orient traversal. To make navigation more intuitive, MathEdit also
allows user to use the mouse click to select the current leaf node. Combining
mouse clicks with the arrow keys can make navigation more convenient.

The other important aspect of full-visual input is entering and editing
the expressions. In MathEdit the tokens (digit, letter, operator and sub-
expression) can be entered by keyboard or mouse. The command processor
analyzes the previous token and the input token incrementally as it is received

6

based on series editing rule. These editing rule could make sure the editing
expression in computer is convenient and coherent with writing an expression
in paper by pen. Based the analysis result, the command processor module
will adjust the DOM of MathML.

3.2. Character-String Input Style

Character-string input provides a natural and unambiguous editing method
in MathEdit. Multiple character-string input formats including infix, LATEX,
MathML, and OpenMath give user more ways to enter mathematical expres-
sions. Infix and LATEX are two common mathematical expression encoding
formats, which are compact and easy to understand. Users familiar with
LATEX may like use that notation to enter expressions. LATEX is a de facto
standard for research publications but not widely used in schools or colleges.
Advanced users can also view, enter, and edit MathML and OpenMath source
code directly.

During the character-string input, the 2D mathematical expression can be
shown immediately with each user modification (synchronous) or only after
the user clicks a button (asynchronous). In synchronous mode, the MathEdit
format conversion module monitors user input: analyzing the input syntax,
converting the input to MathML Presentation, and rendering it on the screen.
In asynchronous mode, all this work is only performed on the input string
after the button click.

By providing multiple input styles, user interactions in MathEdit can be
more flexible and user-friendly. Both character-string and full-visual input
styles are available to the user all the time. This means the user can use
one or the other input style as editing continues. In actual usage, this hybrid
input method proves most effective. In Figure 5, two infix strings, one for the
current sub-expression and the other for the whole expression, were created
and displayed via full-visual input. Now a user can edit either infix box
directly to replace the current sub-expression or the entire expression. The
character-string input method can also solve some problems which are hard
to implement in full-visual input, such as removing cube root or changing
the division symbol in a fraction to a plus sign.

3.3. Standard Infix Format

In all the character-sting input formats, infix is the most readable and
efficient for entering mathematical expressions. Infix is also most widely used

7

Figure 5: A customized user interface for MathEdit

in computing systems such as computer algebra systems [4, 5, 7], general-
purpose programming languages, and electronic calculators. Microsoft Office
2007 also begins to use a plain-text version of infix notation for entering
mathematical expressions in Unicode [16].

At Kent State University, a standard infix format for mathematical ex-
pressions was created to let users enter expressions through ASCII keyboard
efficiently. Unlike being concerned with presentation in [2, 16], the standard
infix format represents the semantic content of mathematical expressions
with proper typographical display. The standard infix of representations can
easily inter-operate with math-oriented programs.

Table 1 lists the five main syntax rules of standard infix format. In basic
operands, the symbols may be one or more characters or subscripted vari-
ables such as x[1], y[2] which will be displayed as x1 and y2. Our format
also defines special all-caps symbols for Greek alphabets and special symbols
such as ∞ (INF) and ∅ (NO). Operators observe the usual precedence and
associative rules. Sub-expressions could be grouped by parentheses. Fig-

ure 5 shows a typical example of sin(α)−cos(x2)√
x3+1

in standard infix format as
(sin(AL)-cos(x^2))/sqrt(x^3+1).

8

Table 1: The syntax rules of standard infix format

o::= numbers | symbols | constants basic operands
u::= + | - | not | ... unary operators
b::= + | - | * | / | ^ | % | > | in | => | and |... binary operators
f::= sqrt(e) | root(e,e) | sin(e) | diff(e,e) |... functions
e::= o | f | ue | ebe | (e) infix expression

Figure 6: The relationships of mathematical expression format

3.4. Output Format

Internally, MathEdit uses an operator-operand tree structure to support
editing. Once created, an expression can be converted to and output in differ-
ent formats: MathML Content, MathML Presentation, OpenMath, LATEX,
standard infix, and image formats. Each of these output formats has its
own unique demands on the authoring user interface. Figure 6 shows the
relationships of these formats. As mentioned before, the end user and pro-
grammer may choose and set the input method for any particular MathEdit
application instance. The fact that there are multiple output formats does
not affect interactive user input. The format conversion module in MathEdit
can also be called directly without opening a user interface. Through this
feature MathEdit can also offer a Web service for converting mathematical
expression formats.

9

4. Customization

Entering and editing mathematical formulas can be important for a broad
spectrum of users: students, teachers, scientists, engineers, and researchers.
The broad user groups have varied requirements, contexts, and purposes for
their mathematical expressions. For example, in education, requirements
for mathematical notations differ for different level students: for high school
students, notations for log, trigonometric functions, the Greek symbol π,
and the plus-minus sign (±) as in the roots of a quadratic equation are
needed while these are not necessary in elementary school. For engineers,
they would rather use infix or customized shortcut key to entering expressions
than operate in GUI mode. For researchers, they may want to add some new
function templates which are defined by themselves.

It is impossible to design a fixed system which is appropriate for all users
and all situations. Too complex a user interface can make the software a
distraction rather than a help. A useful technique for MathEdit to solve
these problems is to have end users tailor their editing environments and
methods to match their personal work practices.

MathEdit provides various user-customizable configurations, including (i)
GUI properties [27] such as the toolbar, the input palettes and other prop-
erties, (ii) input methods and output formats, (iii) editing mode [28] such
as Presentation-based editing, Content-based editing or mix editing mode,
(iv) initial mathematical expression for editing, (v) shortcut key for entering
and editing formula, (vi) templates and corresponding MathML, and (vii)
mathematical functions.

Figure 7 shows the working mechanism of customization MathEdit. MathEdit
provides an easy-to-use GUI window to set all the customizable configu-
rations. The customized result can be applied to current MathEdit win-
dow for temporary work environment, or generated MathEditCML code or
JavaScript API code which can be saved in the server through server-end
languages such as PHP for further use. MathEditCML is an XML-based
language for MathEdit to represent and store customization configurations.
Some advanced user or programmer could also edit MathEditCML code or
write JavaScript code to tailor their MathEdit instance.

We have four customization levels: (1) preference setting, (2) JavaScript
API codes, (3) MathEditCML, and (4) system defaults. The levels have an
internal precedence. If you set the same property with distinct values at
different levels a later level overrides a previous level. The level sequencing

10

Figure 7: Customization mechanism

is from 4 to 1.

5. Web API

The MathEdit API Library [27] is a collection of JavaScript functions to
help the Web application developer to create dynamic and engaging mathe-
matics for Web pages. The Web API library provides a rich set of methods
for creating interactive editing environments, dynamic demonstrations, and
online step-by-step expository material.

The matheditAPI.js file provides a JavaScript wrapper class mathedit

containing all the methods made available in the API. By using this API
library, authors can create sophisticated dynamic pages with a minimum of
programming. The following lists the source code of application example in
Figure 4: the first line created a MathEdit instance, the 2-6 lines were used
to set the edit mode, templates and GUI features, and the 7-8 lines got the
infix and MathML Presentation code.

var matheditWin2=new mathedit("matheditWin2");

matheditWin2.set("editmode","content");

matheditWin2.set("EditorSize","286,100");

matheditWin2.set("toolbarID","tnew,tundo,tredo,tcut,tcopy,tpaste");

matheditWin2.set("templateID","s1sqrt,s1root,s1sup,s1divides,s3log");

matheditWin2.display("embed2");

var mathmlpst=matheditWind2.get("mmlpresentation");

var infixm=matheditWind2.get("infix");

11

6. Content-based Editing vs. Presentation-based Editing

The two distinct needs for mathematical expressions are to visually dis-
play mathematical formulas and to perform computations indicated by the
formulas. The former is the presentation aspect whereas the latter is the
semantics aspect of a mathematical expression.

MathML supports both a presentation encoding and a content encoding
for these different purposes. LATEX is very good for the display layout of math-
ematical formulas whereas OpenMath, a semantic mathematical markup lan-
guage, focuses on their semantics.

MathEdit addresses both display and computational aspects of mathe-
matical expressions. The two requirements for editing mathematical expres-
sions have duality. On the one hand, we must improve the ability for captur-
ing semantic meaning in content-based editing and describing more layout
appearances in presentation-based editing, very different requirements in-
deed. But our editor should provide a uniform user interface, coherent user
interactions, and same output results in both of these modes.

6.1. Content-based Editing

Content-based editing enables the user to enter/modify well-formed ex-
pressions that represent meaningful mathematical operations. A well-formed
mathematical expression can be defined by the following description:

Given a set of mathematical tokens including numbers, π,∞, variables/parameters
(for example x, y, α, β); and a set of mathematical operators (for example
+, −, ∗, /, ^ , sqrt, =); a well-formed mathematical expression is:

• A mathematical token

• Or a mathematical operator applied to arguments which:

– are well-formed expressions

– are in the right number (correct aritary)

MathML Content encoding is central to MathEdit content-based editing.
Content encoding can be converted to and from infix and OpenMath for-
mats, can be converted readily to MathML Presentation for display in in-
teractive editing, and can be converted to LaTeX and image formats with
little difficulty (see Figure 6). MathEdit adopts many measures to keep the

12

Figure 8: Entering binary operator in MathEdit content-based editing

Figure 9: Deleting operation in content-based editing

expression being edited well-formed. For example, when a user, after se-
lecting an operand, enters a binary operator such as − (minus) the second
operand of the binary operator will be added as a placeholder automatically
(See Figure 8). Figure 9 also shows another example where a placeholder
replaces a deleted sub-expression. The template menu also provides common
expressions with explicit semantics for users to choose. Direct navigation of
the content expression tree further ensures meaningful editing that preserves
semantics.

In content-based editing the current sub-expression is also kept as a well-
formed mathematical expression. In other words the single operator can’t
be selected in content-based editing. There are both advantages and disad-
vantages for this navigation restriction. One advantage is that the user can
always see and edit the infix, OpenMath, or MathML content code of the
well-formed sub-expression. Another advantage is preventing the expression
becoming ill-formed by the user deleting an operator. But a disadvantage is
the user can’t select a + sign and change it directly to a −, say.

6.2. Presentation-based Editing

Unlike content-based editing, presentation-based editing is not concerned
with the semantics or well-formedness of the mathematical expression. In
presentation-based editing mode, users can create arbitrary expressions that
may or may not have widely accepted mathematical meaning or may not be
mathematical at all. The green part of Figure 6 shows the relationship of
mathematical expression formats supported in presentation-based editing.

In presentation-editing mode, MathEdit naturally use MathML Presenta-
tion encoding as its internal representation. And each edit operation, mouse
click, or keyboard input, basically adjusts the DOM tree of MathML Pre-

13

Figure 10: Some templates in presentation-based editing

Figure 11: Entering binary operator in MathEdit presentation-based editing

sentation markup. Because presentation-based editing only describes the
display layout of an expression, it allows the user to enter any symbol at
any position within an expression as long as the expression can still be rep-
resented by the MathML Presentation markup internally. LATEX, a format
designed for typesetting mathematical formulas, can be used to interactively
edit expression in the Presentation-based editing.

Presentation-based editing needs to describe the layout or appearance of
an arbitrary expression. Thus, MathEdit provides additional templates for
users to enter expressions with complex appearances (Figure 10). Selecting
an operator in the visual navigation as the current node is allowed. There is
also no need to use operand placeholders to preserve the well-formedness of
expressions. Figure 11 shows the results with the same input operations as
in Figure 8.

Offering two different editing modes has advantages and disadvantages.
The advantage obviously is increased editing capabilities for users. The dis-
advantage is having to learn the difference between the two and to know
when to use each mode. Depending on the application, one of these modes
can be disabled through customization.

7. Comparing MathEdit with Other Systems

In the past decade, many companies and research institutes have devel-
oped mathematical expression editors [8, 10, 11, 13, 14, 18, 19, 25, 26, 31].
Table 2 compared several well-known editors with MathEdit in full-visual in-
put, character-string input, output format, editing mode (Presentation-based
editing or Content-based editing).

14

Table 2: Compare the other editors with MathEdit

Item M
a
th

T
y
p
e

W
e
b
E
Q

M
a
th

E
X

A
m

a
y
a

L
y
x

T
E
X

m
a
cs

A
S
C

II
M

a
th

M
L

M
a
th

E
d
it

Full- Template
√ √ √ √ √ √

Visual Visual Navigation
√ √ √ √ √ √

Input Shortcut Key
√ √ √ √ √ √

Character- Infix
√ √

String MML Content
√ √ √

Input MML Presentation
√ √ √ √

OpenMath
√

LaTeX
√ √∗ √ √ √

Output Infix
√ √

Format MML Content
√ √ √ √

MML Presentation
√ √ √ √ √ √

OpenMath
√ √

LaTeX
√ √∗ √ √ √ √

Picture
√ √ √ √

Content-based Editing
√ √

Presentation-based Editing
√ √ √ √ √ √ √

Web-based
√ √ √ √

Web API
√ √ √

15

Let us first focus on input style and output format. Most of the editors
can support visual direct-manipulation: they provide well-defined templates,
visual navigation by mouse, arrow keys, and shortcut keys. But MathEdit,
MathEX [20], and WebEQ [26] support more flexible customizable templates.
Although many prefer to use templates and the mouse when first learning
an application, in the long run it is often more convenient to use keyboard
shortcuts for common operations. All the editors use either MathML Presen-
tation, or LATEX, or both as their main mathematical representation format.
For character-string input, LATEX is the most popular input format which is
supported in MathEdit, MathType [6] (MathType Version 6 begins to sup-
port LATEX input), TeXmacs [23], ASCIIMathML [2] and WebEQ (WebEQ
use WebTeX which syntax and commands are similar to the mathematics
mode part of LATEX). The table also shows us supporting for directly editing
MathML Presentation is also an important feature for the modern mathemat-
ical expression editor. Only MathEdit and MathEX can support OpenMath
which is a semantic markup language. MathEdit is only one which supports
combination of infix and direct-manipulation input editing method.

For the editing mode, the other editors usually aim either to capture the
meaning or to describe the visual appearance. The Amaya [1], LyX [12], TeX-
macs and MathType using MathML Presentation, LATEX, or native formats
to store expressions are suitable for describing the expression appearance.
Most Computer Algebra Systems, such as Maple [4] and Maxima [7], and a
few independent editors, such as MathEX, use infix and MathML Content
to capture the meaning of expressions. MathEdit is different which satisfies
both the need for visual display and the need for expression processing.

For the three Web-based visual editors, MathEX, WebEQ, and MathEdit,
the first two are Java Applets whereas MathEdit is a JavaScript object that
can interact with its hosting Web page seamlessly. Because MathEdit is open
source, application programmers can also create additional ad hoc APIs to
MathEdit for their own purposes.

8. Acknowledgments

We’d like to thank Dr. Xiao Zou of Kent State University for making
available his mathematics encoding converter for use in MathEdit.

The material reported here is based upon work supported in part by the
National Science Foundation of USA under Grant CCR-0201772, the Na-
tional Natural Science Foundation of China under Grant 90612016, 60773108,

16

and 60473095, and Ministry of Science and Technology of China under Grant
2005DKA64001. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily
reflect the views of the funding agencies.

References

[1] Amaya Homepage http://www.w3.org/Amaya/

[2] ASCIIMathML Homepage http://www1.chapman.edu/ jipsen/mathml/asciimath.html

[3] Document Object Model http://www.w3.org/DOM/

[4] Document of Maple http://www.maplesoft.com/Products/Maple/

[5] Document of Mathematica http://reference.wolfram.com/mathematica

[6] Document of MathType http://www.dessci.com/en/products/mathtype

[7] Document of Maxima http://maxima.sourceforge.net/

[8] Kehinde Alabi, Generation, Documentation and presentation of mathe-
matical equations and symbolic scientific expressions using pure HTML
and CSS, Proceedings of the 16th international conference on World
Wide Web, Banff, Alberta, Canada, May 08-12, 2007.

[9] LaTeX documentation http://www.latex-project.org/guides/

[10] Luca Padovani and Riccardo Solmi, An Investigation on the Dynamics of
Direct-Manipulation Editors for Mathematics, MKM 2004, LNCS 3119,
pp. 302-316, 2004.

[11] Jean-F. Nicaud, Natural Editing of Algebraic Expressions, Proceeding of
Mathematical User-Interfaces Workshop 2007, Schloss Hagenberg, Linz,
Austria, June 2007.

[12] LyX http://www.lyx.org/

[13] M. Pollanen, T. Wisniewski, and X. Yu, Xpress: A Novice Interface for
the Real-Time Communication of Mathematical Expressions, Proceed-
ing of Mathematical User-Interfaces Workshop 2007, Schloss Hagenberg,
Linz, Austria, June 2007.

17

[14] Mathmled http://www.newmexico.mackichan.com/MathML/mathmled.htm

[15] MathPlayer http://www.dessci.com/en/products/mathplayer/

[16] Murray Sargent III, Unicode Nearly Plain-Text Encoding of Mathemat-
ics, Unicode Technical Note, http://www.unicode.org/notes/

[17] P. Wang, M. Mikusa, S.Al-shomrani, D. Chiu, X. Lai, and X. Zou,
Features and Advantages of WME: a Web-based Mathematics Education
System, IEEE Southeast Conference, 2005.

[18] Paul Libbrecht and Dominik Jednoralski, Drag-and-drop of Formula
from a Browser, Proceeding of Mathematical User-Interfaces Workshop
2006, St Anne’s Manor, Workingham, United Kingdom, 2006 August.

[19] Samuel S. Dooley, Editing Mathematical Content and Presentation
Markup in Interactive Mathematical Documents, Proceedings of ISSAC,
2002.

[20] Samuel S. Dooley, MathEX: A Direct-Manipulation Structural Editor
for Compound XML Documents, Proceeding of Mathematical User-
Interfaces Workshop 2007, Schloss Hagenberg, Linz, Austria, June 2007.

[21] Standard ECMA-262 http://www.ecma-international.org/

[22] Su Wei, Paul S. Wang, Li Lian, An On-line MathML Editing Tool for
Web Applications, Proceeding of International Multi-Symposiums on
Computer and Computational Sciences 2007 (IMSCCS07), The Univer-
sity of Iowa, Iowa City, Iowa, USA, August, 2007.

[23] TeXmacs http://www.texmacs.org/

[24] The OpenMath Standard 2.0 Draft http://www.openmath.org/

[25] The W3C MathML software list http://www.w3.org/Math/Software/

[26] WebEQ Documentation http://www.dessci.com/en/products/webeq

[27] Wei Su, Paul S. Wang, Lian Li, Guanyu Li, and Yanjuan Zhao,
MathEdit, A Browser-based Visual Mathematics Expression Editor, Pro-
ceedings of ATCM 2006, Hong Kong, China, 2006.

18

[28] Wei Su, Paul S. Wang, Lian Li, Entering and Editing Mathematical
Expressions on the Web, Proceeding of Mathematical User-Interfaces
Workshop 2008, University of Birmingham, UK, July 2008.

[29] Wei Su, Paul S. Wang, Lian Li, Features and Advantages of MathEdit, a
Web-Based Visual Interactive Editor for Mathematical Expressions, Pre-
sentation in The 15th International Conference on Learning, University
of Illinois, Chicago, USA, June 2-6 2008.

[30] W3C Math http://www.w3.org/Math

[31] Y. Doleh and P. S. Wang, A System Independent User Interface for
an Integrated Scientific Computing Environment, Proceedings of the IS-
SAC’90, Addison-Wesley (ISBN 0-201-54892-5), Aug. 1990, pp. 88-95.

19

