
Database Systems I, CSCI-GA.2433-001

New York University, Fall 2019

instructor: Dennis Shasha

shasha@cs.nyu.edu

212-998-3086

Courant Institute

New York University

251 Mercer Street

NY, NY 10012 USA

Office Hours: On Mondays by appointment before class in Warren Weaver lobby

April 11, 2019

1 Goals

The course is divided into three major parts:

1. To understand the design of data intensive systems given an underly-
ing database management systems (i.e. entity-relationship conceptual
design, normalization theory, query languages).

2. To understand something about internals (indexes, query processing).

3. Some advanced topics (analytical processing, data cleaning and prepa-
ration, introduction to concurrency control and recovery and to dis-
tribution).

Most of the course notes we use were written by Professor Zvi Kedem,
though I’ve modified a little (and at times skip some slides). They are all
here on the website. Here is the order of presentation:

• 01 Goals Of The Course.pptx

1

• 05 SQL As Data Manipulation Language.pptx

• 06 SQL As Data Definition And Control Language.pptx

• 02 Modeling Enterprise With ER Diagrams.pptx

• 03 From ER Diagrams To Relational Databases.pptx

• 04 Relational Algebra With SQL Equivalents.pptx

• 07 Logical Design With Normalization.pptx

• 08 Physical Design And Query Execution Concepts.pptx

• 11 Online Analytical Processing.pptx

• Some introduction to data cleaning, transaction processing, recovery,
distribution etc.

2 Mechanics

YOU MUST BE ENROLLED IN THIS CLASS TO SIT IN ON THE LEC-
TURES.

2.1 Texts and Notes

There are no textbooks, but you will look up manuals (notably for mySQL
and for data structure libraries) on the web.

2.2 Prerequisites

Fundamental Algorithms I is a co-requisite.

2.3 Course Requirements

three problem sets (40%), project (60%). There are no exams in this course.

LATE HOMEWORKS OR PROJECTS WILL NOT BE ACCEPTED
without a note from your physician or from your employer. (We will discuss

2

the solutions on the day you hand in the assignment. That’s why I don’t
want any late homeworks. As for the project, this is a question of fairness.)

On the other hand, collaboration on the problem sets IS allowed. You
may work together with one other student and sign both of your names to
a single submitted homework. Both of you will receive the grade that the
homework merits. So, you may work alone or in a team of two, but no team
larger than two. Please choose your partner carefully.

2.4 How to Set Up MySQL

You will also need to set up a database using mysql as follows:

1. Go to this website: https://cims.nyu.edu/webapps/databases

2. Log in with your CIMS username (netID) and password

3. create a database. Take note of the password, which will be auto-
matically assigned (you should see it at the top of the webpage). In
my case, I created a database that I called db1 which then became
shasha db1. We’ll call the password PASSWD

4. Next ssh into access.cims.nyu.edu

5. Now, I typed (but your name will be different than shasha db1)

mysql -h warehouse.cims.nyu.edu -u shasha -p shasha_db1

and then typed in the password I was assigned.

6. Then I was good to go. I could create tables etc. Here are some
commands:

show databases;

show tables;

create table friends(name1 varchar(20), name2 varchar(20));

insert into friends values("bob", "alice");

select * from friends;

7. Now suppose that you have a file foo.csv with vertical bar delimiters
on your local machine (in my case in /dbcourse1.d/foo.csv)

3

carol|ted

susan|paul

tyler|cloe

You can then import that data into friends as follows:

LOAD DATA LOCAL INFILE ’~/dbcourse1.d/foo.csv’ INTO TABLE friends FIELDS TERMINATED

2.5 Project: A miniature relational database with order

This project is due on Monday Dec 2, 2019 at 4:30 PM.

Given ordered tables (array-tables) whose rows consist of strings and
integers, you are to write a program which will

• Perform the basic operations of relational algebra: selection, projec-
tion, join, group by, and count, sum and avg aggregates. The com-
parators for select and join will be = <, >, ! =, ≥, ≤

• Because the array-tables are potentially ordered, you can sort an array-
table by one or more columns, and running moving sums and average
aggregates on a column of an array-table.

• Import a vertical bar delimited file into an array-table (in the same
order), export from an array-table to a file preserving its order, and
assign the result of a query to an array-table.

• Each operation will be on a single line. Each time you execute a line,
you should print the time it took to execute.

• You will support in memory B-trees and hash structures. You are
welcome to take those implementations from wherever you can find
them, but you must say where.

• Your program should be written in python or java. You will hand in
clean and well structured source code in which each function has a
header that says (i) what the function deos, (ii) what its inputs are
and what they mean (iii) what the outputs are and mean (iv) any side
effects to globals.

• You must ensure that your software runs on the Courant Institute
(cims) machine crunchy5.cims.nyu.edu

4

• You may NOT use any relational algebra or SQL library or system
(e.g. no SQLite, no mySQL, no other relational database system, no
Pandas). Stick pretty much to the standard stuff (e.g. in Python:
numpy, core language features, string manipulation, random number
generators, and data structure support for in memory B-trees and hash
structures). You may not use anyone else’s code (other than for the
data structure implementation). Doing so will constitute plagiarism.

We will run your programs on test cases of our choosing. For ease of
parsing there will be one operation per line. Comments begin with // and
go to the end of the line. For example,

R := inputfromfile(sales1) // import vertical bar delimited foo, first line

// has column headers.

// Suppose they are saleid|itemid|customerid|storeid|time|qty|pricerange

R1 := select(R, (time > 50) or (qty < 30))

// select * from R where time > 50 or qty < 30

R2 := project(R1, saleid, qty, pricerange) // select saleid, qty, pricerange

// from R1

R3 := avg(R1, qty) // select avg(qty) from R1

R4 := sumgroup(R1, time, qty) // select qty, sum(time) from R1 group by qty

R5 := sumgroup(R1, qty, time, pricerange) // select sum(qty), time,

// pricerange from R1 group by time, pricerange

R6 := avggroup(R1, qty, pricerange) // select avg(qty), pricerange

// from R1 group by by pricerange

S := inputfromfile(sales2) // suppose column headers are

// saleid|I|C|S|T|Q|P

T := join(R, S, R.customerid = S.C) // select * from R, S

// where R.customerid = S.C

T1 := join(R1, S, R1.qty > S.Q) // select * from R1, S where R1.qty > S.Q

T2 := sort(T1, S_C) // sort T1 by S_C

T2prime := sort(T1, R_time, S_C) // sort T1 by R_itemid, S_C (in that order)

T3 := movavg(T2, R_qty, 3) // perform the three item moving average of T2

// on column R_qty. This will be as long as R_qty with the three way

// moving average of 4 8 9 7 being 4 6 7 8

T4 := movsum(T2, R_qty, 5) // perform the five item moving sum of T2

// on column R_qty

Q1 := select(R, qty = 5) // select * from R where qty=5

Btree(R, qty) // create an index on R based on column qty

5

// Equality selections and joins on R should use the index.

Q2 := select(R, qty = 5) // this should use the index

Q3 := select(R, itemid = 7) // select * from R where itemid = 7

Hash(R,itemid)

Q4 := select(R, itemid = 7) // this should use the hash index

Q5 := concat(Q4, Q2) // concatenate the two tables (must have the same schema)

// Duplicate rows may result (though not with this example).

outputtofile(Q5, bar) // This should output the table Q4 with vertical bar separators

Our tests may operate on different files with different column headers.
Our queries may use different paramter values (e.g. 14 way moving average).
Our joins may be on different fields.

Some constraints to make your life easier:

• There will be no syntax errors in our tests. However, white space may
vary from the above examples.

• The only aggregates are count, sum, and avg and the corresponding
countgroup, sumgroup, and avggroup.

• The only moving aggregates are movsum and movavg. There is no
group by for moving sums and averages.

• All data is in main memory.

• The joins are on single columns

• The selects will be all ors or all ands.

Here is an example of the first few lines of the sales1 file:

saleid|itemid|customerid|storeid|time|qty|pricerange

45|133|2|63|49|23|outrageous

658|75|2|89|46|43|outrageous

149|103|2|23|67|2|cheap

398|82|2|41|3|27|outrageous

147|81|2|4|92|11|outrageous

778|75|160|72|67|17|supercheap

829|112|2|70|63|43|supercheap

6

101|105|2|9|74|28|expensive

940|62|2|90|67|39|outrageous

864|119|12|38|67|49|outrageous

288|46|2|95|67|26|outrageous

875|83|59|56|59|20|outrageous

783|86|180|29|67|46|outrageous

289|16|2|95|92|2|cheap

Full example files can be found here:

http://cs.nyu.edu/cs/faculty/shasha/papers/sales1

http://cs.nyu.edu/cs/faculty/shasha/papers/sales2

You will hand in your code using Reprozip inside a Docker Virtual Ma-
chine so that it is reproducible across platforms.

7

