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ABSTRACT

Modern search engines answer keyword-based queries ex-
tremely efficiently. The impressive speed is due to clever
inverted index structures, caching, a domain-independent
knowledge of strings, and thousands of machines. Several
research efforts have attempted to generalize keyword search
to keytree and keygraph searching, because trees and graphs
have many applications in next-generation database sys-
tems. This paper surveys both algorithms and applications,
giving some emphasis to our own work.

1. INTRODUCTION

Next-generation database systems dealing with XML, Web,
network directories and structured documents often model
the data as trees and graphs. These data modeling efforts
include Lorel [3], StruQL [38], and UnQL [17, 19], for semi-
structured data, XQuery [15], XML-QL [34], XPath [72] and
XSL [67], for XML data, and [45] for structured documents.
There have been several proposed approaches for querying
trees [8, 9, 40, 45, 53, 78] and for querying graphs [2, 3, 16,
29, 46, 47, 70, 71]. Besides applications over XML data,
these algorithms have applications to scientific databases
where data are naturally represented by trees (such as phy-
logeny) and graphs (such as molecular databases).

In Section 2 we present motivating query examples on trees
and survey algorithms for processing these queries. Section
3 describes algorithms for searching in graphs. Section 4
concludes the paper and suggests avenues for future work.

2. SEARCHING IN TREES
2.1 Approximate Containment Queries

Just as keyword searching matches words against sequences,
keytree searching matches tree patterns against underlying
data trees. The following two examples come from the lit-
erature.
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Figure 1: (a) & (b) XML trees. (c) A query tree.

XQuery [15]. Figure 1(a) and (b) show two XML trees de-
scribing universities maintained in a XML database. Con-
sider the query [8]: Find the universities that have a lecturer
teaching a data mining (DM) course and that have a profes-
sor teaching a database (DB) course. This query could be
expressed by a tree pattern, as shown in Figure 1(c). The
tree pattern is contained in the tree in Figure 1(b) and hence
the university in Figure 1(b) would be returned as an answer
to the query.

AQUA Query [62, 86, 87]. AQUA was an object-oriented
data model developed at Brown University for supporting
bulk types such as trees, sets, bags, etc. Consider, for exam-
ple, the family tree in Figure 2(a) [86]. Each node represents
a person object. Each edge stands for the relationship “a
child of” and a path in the tree stands for the relationship “a
descendent of”. Now consider the query supported by the
“select” operator in AQUA [86]: Find all nodes (persons)
who are ancestors of Aler and also descendants of Mary.
This query could be expressed by a tree pattern, as shown
in Figure 2(b). The node “+” in the tree pattern is a vari-
able length don’t care (VLDC) [93, 106], which would be
instantiated into (matched with) a path of nodes of a data
tree at no cost. In our example, the nodes in the family tree
matched by the VLDC “+” (here, Bill and Adam) would be
returned as answers to the query.

The preceding queries share some characteristics.
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Figure 2: (a) A family tree. (b) A query tree with
a VLDC.

e The query could be expressed as a tree pattern, termed
“query tree”. The database can be represented as a
single tree (as in AQUA) or as a set of trees (as in
XQuery).

e Fach tree could be ordered in which the order among
siblings is significant (as in the XML data model) or
could be unordered as in hereditary trees.
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e The queries are often concerned with the “parent-child’
“ancestor-descendant”, or “path” relationship among
the nodes of the trees.

e The queries can be expressed by a containment map-
ping. That is, one asks whether the query tree appears,
or approximately appears, in a data tree. Here, the
“approximation” is measured by the number of paths
in the query tree that do not appear in the data tree
[84], or by some other distance functions [22, 23, 24,
85, 96, 104, 107].

e The query tree may contain don’t cares or wildcards
[72]. There are fixed length don’t cares (FLDCs), “?”,
that may match a single node and variable length don’t
cares (VLDCs), “x” [84].

We shall refer to this class of queries as approzimate con-
tainment (AC) queries.

In general, a query tree may contain redundant nodes, re-
moval of which would not affect answers to the query. Amer-
Yahia, Srivastava, and colleagues [8, 9] developed algorithms
for minimizing a query tree, both in the absence and in the
presence of integrity constraints. Their algorithms are useful
for query optimization since the size of a query tree affects
the efficiency of tree pattern matching.

2.2 Path-Only Searches

Many AC queries are concerned with paths only [4, 18, 73],
e.g. find the descendants of Mary who is a child of John.
Since paths are represented as strings, existing algorithms
and tools such as AGrep for string searching are applicable
to processing these queries (see [10, 11, 12, 41] for a review).

XISS [64] is a XML indexing and querying system designed
to support regular path expressions. In each XML tree, each

node is associated with a pair of integers enabling the deter-
mination of ancestor-descendant relationships among nodes.
Each node in the tree is indexed according to its value and
the document to which it belongs. Further, all parent-child
edges are stored in an index. Processing a query consists of
the following steps: (1) decompose the query into parent-
child edges or ancestor-descendent paths; (2) for each query
edge, use the index to find the corresponding edges in the
data trees; (3) for a query path having a Kleene star (%)
(d1/%/d2), locate data node pairs (d1, d2) corresponding
to the ancestor-descendent of the query path and determine
whether d1 is an ancestor of d2 by using the pair of inte-
gers associated with d1 and d2; and (4) combine the results
to determine whether there is a match to the query path.
Additional techniques can be found in [7, 13].

2.3 Extension to Trees

When extending path-only searching to tree searching, one
has to combine path matches into tree matches. We describe
our algorithm, called pathfix, for processing AC queries on
trees as an illustration.

2.3.1 A Suffix Array Based Algorithm

The pathfix algorithm works in two phases. In the first
phase, the database building phase, the algorithm encodes
each root-to-leaf path of every data tree into a suffix array
database [66]. In the second phase, the on-line search phase
in which the query tree @ is given, the algorithm compares
Q@ with each data tree D in the database D allowing a dif-
ference DIF'F, i.e. at most DIFF paths in Q are allowed
to be absent in D in order to consider D to be a match.
When comparing @ with D, pathfix takes every root-to-leaf
path in @ and finds roots of that path in D by searching
in the suffix array database. (As a cutoff optimization, the
algorithm stops searching D if more than DIFF paths of
@ are missing from D.) Suppose there are k root-to-leaf
paths in Q. If a node n in D is the root of all k paths,
then the subtree D’ rooted at » matches @ with distance 0,
provided no siblings have the same label in either the data
or query tree. (If there are siblings having the same label,
then post-processing can verify the match. The technique
will never miss a match.) If n is the root of k — 1 paths,
then D’ matches Q with distance 1 and D approximately
contains ) with distance 1. If the sibling order in the query
tree (Q must be preserved in a putative match with D, then
the order among the paths in @@ must be checked against the
order among the paths in D (using the postorder number of
the leaves of the paths in D, for example).

2.3.2 Techniques for Queries with Don’t Cares
If the query tree @ contains don’t cares, pathfix works in
three steps:

e partition @ into connected subtrees having no don’t
cares;

e match each of those don’t care free subtrees with data
trees in D;

e for the matched substructures that belong to the same
data tree, determine whether they combine to match
Q@ based on the matching semantics of the don’t cares.



In general, for a query tree @ with don’t cares, a node z in
a data tree D is the root of a subtree that matches @ if all
of the following hold:

1. The partition of @) containing the root rq; of @Q (call
that the root partition of () matches D at x.

2. Consider the path p from the root 7, of a subtree in Q
t0 T4i- Suppose that rs,, matches D at possibly many
nodes 1, Z2,.... The path from at least one such node
in D, say x;, has the property that the ascending path
from z; to x matches (with appropriate substitutions

for “¥” and “?”) the path from 7sup to rou.

To avoid testing the roots of subtrees unnecessarily, the
matching uses heuristics like the following: if @ is to match
the data tree D at z, then the only relevant matches of a
subtree of @ rooted at rs,p are nodes that are descendants
of x.

When a distance DIFF is allowed in matching a query tree
Q@ with a data tree, for each don’t-care-free subtree Q' of
@, pathfix finds all subtrees of data trees that are within
distance DIFF of )'. The gluing process involves a test of
whether the glued tree as a whole is indeed within distance
DIFF of the entire query tree Q.

2.3.3 Filtering

The above search process can be heuristically improved by
using a hashing technique that works as follows on the non-
wildcard portion of data and query trees. Compute and
store all individual node labels and all parent-child label
pairs in each data tree into a hash table, associating each
parent-child pair with the set of data trees that contain the
parent-child pair. Now suppose a query tree @ is given with
a certain distance allowed in searching, DIFF. Take the
multiset of labels from @ and see which data trees have a
super-multiset of those possibly with DIFF missing labels.
Take the multiset of parent-child pairs from @ and see which
data trees have a super-multiset of those parent-child pairs,
again possibly with DIFF missing pairs. This heuristic
eliminates irrelevant trees from consideration at the begin-
ning of a search and yields a set of candidate trees to look
for.

2.3.4 Implementation

The search and filtering algorithms just described are collec-
tively referred to as ATreeGrep (whose name is shamelessly
adapted from AGrep [103] for approximate string searching
and SGrep [51] for structure grep). We have implemented
ATreeGrep in a XML search engine, called XML Query by
Example (XML QBE), which takes an example XML frag-
ment (query tree) and finds the XMLs in a XML database
that approximately contain the query tree. For example,
the query in Figure 3 is to find all the XML documents
describing movies in which Robert Redford is the director,
Brad Pitt is an actor, and the movies are made in California,
U.S.A. Shown in the figure are (counterclockwise, starting
from upper left) the main menu, the querying window, the
example XML (query) displayed via a Microsoft IE browser,
a matching XML containing the query displayed via the IE

browser, the query tree displayed via Java tree show ap-
plets, and the matching XML tree displayed via Java tree
show applets. The matched portions in the matching XML
tree are highlighted and marked with a bullet.

Figure 4 shows an application of ATreeGrep to searching
phylogenetic trees maintained in Harvard’s TreeBASE [80],
accessible from http://www.herbaria.harvard.edu/treebase.
The figure shows the search engine’s querying interface (in
the left window), a query tree (in the right, top window)
and a data tree (in the right, bottom window). In the fig-
ure, the query tree matches the data tree with distance 0,
“?” matches “Myriapoda” and “#” matches a path of the
data tree. This query finds all the phylogenetic trees in
TreeBASE that contain the query tree.

2.4 Related Approaches

2.4.1 Approximate Embedding Queries

Hoffman and O’Donnell [49], and later Ramesh and Ramakr-
ishnan [81], and Cole et al. [28] presented algorithms for
finding the occurrences of a wildcard-free ordered query tree
Q@ in an ordered data tree D. (In an ordered tree, the order
among siblings matters.) Both @ and D are ordered and the
occurrences of () in D refer to those subtrees of D that can
be obtained from @ by attaching new subtrees to the leaves
of @Q. This pattern-matching problem is also known as the
ezact ordered tree embedding problem [83].

While trees for XML and structured documents are ordered,
interesting queries are often based on unordered trees, be-
cause ordering in the data might not matter to the user.
That is why XQuery, for example, supports unordered queries.
Schlieder and Naumann [83] extended the exact embedding
problem and studied the approzimate embedding (AE) prob-
lem for unordered trees. Consider, for example, the query:
Find all books whose editor is John and that contain o chap-
ter with the title XML. Figure 5 shows the query tree and
a data tree in which the query tree can be approximately
embedded. Here, we allow a matching data tree to have
nodes between a parent-child pair in the query tree, pro-
vided the ancestor-descendant relationship is preserved in
the data tree. Figure 5 shows this: the matching data tree
has a “Name” node that is missing from the query tree.
This type of embedding is also known as tree inclusion as
defined in [57, 58, 59, 60], where Kilpelainen and Mannila
showed the problem to be NP-complete. The AE queries
complement the AC queries described in Section 2.1.

The notion of “approximation” can be further generalized
by introducing a cost function that assigns a low cost to em-
beddings in which none or only a small number of nodes are
skipped. Schlieder and Naumann [83] presented algorithms
to retrieve and rank search results using this cost function.
Their algorithm is based on dynamic programming and pro-
cesses the query tree Q in a bottom up fashion. For each
node q of @), each embedding of the query subtree @), rooted
at g is computed from the embeddings of the query subtrees
rooted at the child nodes of g. Among the valid embeddings
of @, in a data subtree Dg, the algorithm only maintains
the one with the minimal cost. Repeating the above steps
for each matching data node of ¢ yields a set of embeddings
of Q;. At the end of the algorithm, the embeddings of @
are sorted by increasing cost and presented to the user. The
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complexity of the algorithm is exponential though the algo-
rithm may run much faster depending on the data.

2.4.2 Selectivity Estimation

One technique for filtering trees out faster is to use selectiv-
ity estimation. In [69] McHugh and Widom describe Lorel’s
cost-based query optimizer, which maintains statistics about
subpaths of length < k, and uses it to infer selectivity es-
timates of longer path queries. Krishnan et al. [61] de-
scribed similar techniques for processing query strings con-
taining wildcards, i.e. estimating the number of strings in a
database that contain a given query string with wildcards.
Other relevant work can be found in [26, 52, 54, 99].

Chen et al. [25] generalized the selectivity estimation prob-
lem for unordered trees. Specifically, given a data tree D and
a wildcard-free query tree @), which the authors called a twig,
they estimate the total number of twig matches of @ in D.
The authors represent frequency information about small
twigs, called twiglets, in D using a correlated subpath tree
(CST). Processing a query consists of the following steps:
(1) parse each root-to-leaf path in @) into a set of subpaths
that have matches in CST; (2) for each twig node that is a
branch node, consider all subpaths obtained in (1) that are
rooted at the same node and that pass through the branch
node, and call each subtree induced by these subpaths a
query twiglet; and (3) estimate the number of matches of
@ by piecing together count estimates for the twiglets ob-
tained in (2) based on an independence assumption about
the occurrences of subpaths, and using probabilistic esti-
mation formulae. For each path of length n, finding all its
subpaths that have matches in CST takes O(n?) time. Thus
the time complexity of the algorithm is O(h%l) where h is
the height of @ and [ is the number of leaves of Q.

3. SEARCHING IN GRAPHS

A graph database can be viewed as either a single (large)
labeled graph (e.g. www) or a collection of labeled graphs
(e.g. chemical molecules). By keygraph searching we refer
to graph or subgraph matching in data graphs. The com-
plexity of the (sub)graph-to-graph matching problem and a
review of certain algorithms with potential applications to
keygraph searching in databases are discussed in Section 3.3.
Although (sub)graph-to-graph matching algorithms can be
used for keygraph searching, efficiency considerations sug-
gest the use of indexing techniques to reduce the search
space and the time complexity especially in large databases.

The keygraph search problem in a database consists of three
basic steps just as for keytree searching.

1. Reduce the search space by filtering. For a database of
graphs we find the most relevant graphs; for a single-

graph database we identify the most relevant subgraphs.

We confine ourself to filtering techniques based on the
structure of the labeled graphs (paths, subgraphs).
Since looking for subgraph structures is quite difficult,
most algorithms choose to locate paths of node labels.

2. Formulate query into simple structures. The keygraph
can be given directly as a set of nodes and edges or
as the intersection of a set of paths. Furthermore

the query can contain wildcards (representing nodes
or paths) to allow for more general searches. This step
normally reduces the query graph to a collection of
small paths.

3. Match. Matching is implemented either by traditional
(sub)graph-to-graph matching techniques, or by com-
bining the set of paths that result from processing the
path expressions in the query through the database.

Several systems for querying and indexing graph databases
have been implemented—both general-purpose [30, 46] and
application-specific [44, 55, 73]. The underlying techniques
are described in the next section.

3.1 Keygraph Searching in Graph Databases
Cook et al. [30, 35] applied an improvement of the inexact
graph matching method (algorithm A*) described by Nilsson
[79] based on an inexact graph matching algorithm proposed
in [21] to find similar repetitive subgraphs in a single-graph
database. Thus, their methods are primarily of interest for
the third step above. Their system, SUBDUE, has been
applied to discovery and search for subgraphs in protein
databases, image databases, Chinese character databases,
CAD circuit data and software source code. Furthermore
an extension of SUBDUE (WebSUBDUE [68]) has been ap-
plied to hypertext data.

Guting [46] proposed a general purpose object-oriented data
model and query language (GraphDB) for graph databases.
Nodes in a graph are classes representing data (objects)
and edges are classes linking two nodes. GraphDB contains
classes to store several paths in the database. Path classes
and indexing data structures (e.g. B-tree, LSD) are used to
index nodes, paths and subgraphs in the graph database.
Graph queries are specified using regular expressions and
they may restrict the search space to a subgraph of the
whole graph. GraphDB provides graph search operations
to find the shortest paths between two nodes or to find sub-
graphs from a starting node within a distance range. The
implementation is based on A*.

Daylight [55] is a system used to retrieve substructures in
databases of molecules where each molecule is represented
by a graph. Daylight uses fingerprinting to find relevant
graphs from a database (step 1). Each graph (of the database)
is associated with a fixed-size bit vector— called the finger-
print of the graph. Given a graph G, its fingerprint bits are
set in the following way: all the paths in G of length zero and
up to a limit length are computed; each path is used as a seed
to compute a random number; and the bit representation of
this number is added to the fingerprint. The fingerprint
represents structural features of the graph. The similarity
of two graphs is computed by comparing their fingerprints.
Some similarity measures are: the Tanamoto Coefficient (the
number of bits in common divided by the total number);
the Euclidean distance (geometric distance); and the Tver-
sky similarity—used to measure the similarity of a query
graph with a subgraph of a data graph. The search space
is filtered by comparing the fingerprint of the query graph
with the fingerprint of each graph in the database. Queries
can include wildcards. For most queries, the matching is
implemented using application specific techniques. However



queries including wildcards may require exhaustive graph
traversals.

Goldman, Widom [44] and colleagues [77] proposed a sys-
tem, called Lore, to store and query a semistructured database
(which is modeled as a large rooted labeled directed graph;
see [1, 88, 92] for a survey). Lore uses four kinds of indices
to accelerate (regular) path expression searching. For each
edge label ! in the graph, a value index (Vindex) is used to
index all the nodes that have incoming edges labeled with
| and with atomic values that satisfy some condition. A
text index (Tindex) is used for all nodes with incoming I-
labeled edges and with string atomic values containing spe-
cific words. A link index (Lindex) indexes the nodes with
outgoing l-labeled edges. A path index (Pindex—DataGuide)
indexes all the nodes reachable from the root through a la-
beled path. Each path query that starts at the root uses
the DataGuide. All other path queries use the other three
indexes in which case they find a set of candidates and then
traverse the graph to prune away paths that do not match
the query path. Because the other indexes are unselective,
there are potentially many more candidates than matching
paths.

Milo and Suciu [73] proposed a data structure, called T-
index, to index semistructured database nodes that are reach-
able from several regular path expressions. A T-index is a
non-deterministic automaton whose states represent (roughly)
the equivalence classes produced by the Rabin-Scott algo-
rithm and whose transitions correspond to edges between
objects in those classes. By relaxing the determinism re-
quirement imposed on DataGuides, a T-index can be con-
structed and stored more efficiently. They may represent a
more efficient DataGuide in both time and space. For ex-
ample the authors reported that in a graph of 1500 nodes,
the T-index size is 13% of the size of the graph database.

GraphGrep, presented in the next section, is a new hash-
based AC algorithm for finding all the occurrences of a query
graph in a database of graphs. A set of intersecting regular
path expressions is deduced by the query graph. GraphGrep
uses variable length paths (that may contain cycles) to in-
dex the database: this allows efficient filtering by directly
selecting the most relevant subgraphs of the most relevant
graphs.

Table 1 summarizes the features of several keytree and key-
graph searching techniques for tree and graph databases,
respectively.

3.2 GraphGrep: A Variable Length Path In-
dex Approach

For illustration purposes we focus on undirected graphs in
which edges do not have labels. The techniques generalize to
directed graphs with labeled edges. GraphGrep assumes that
the nodes of the data graphs have an identification number
(¢d-node) and a label (label-node). We define an id-path of
length n to be a list of n id-nodes with an edge between any
two consecutive nodes. A label-path of length n is a list of
n label-nodes. For example, in Figure 6(a), (C,A) is a label
path, and (3,1) is the id-path corresponding to it.

There are three basic components of GraphGrep: (1) build

Figure 6: A database containing 3 graphs. (a)
Graph g;. (b) Graph g¢;. (c) Graph gs. The labels
can be strings of arbitrary length.

the index to represent the database of graphs as sets of paths
(this step is done only once), (2) filter the database based
on the submitted query and the index to reduce the search
space, and (3) perform exact matching. We discuss these
components in turn.

3.2.1 Index Construction

For each graph and for each node, we find all paths that
start at this node and have length one (single node) up to
a (small, e.g. 4) constant value I, (I, nodes). We use the
same [, for all graphs in the database. Because several paths
may contain the same label sequence, we group the id-paths
associated with the same label-path in a set. The “path-
representation” of a graph is the set of label-paths in the
graph, where each label-path has a set of id-paths (see Fig-
ure 7(a)). The keys of the hash table are the hash values of
the label paths. Each row contains the number of id-paths
associated with a key (hash value) in each graph. We will
refer to the hash table as the fingerprint of the database (see
Figure 7(b)). Let |D| be the number of graphs in a database
D. Let n and m be the number of nodes and the maxi-
mum valence (degree) of the nodes in a data graph, respec-
tively. The worst case complexity of building the index and
the path representation for the database is O(ELDl (nimff’ ),

whereas the memory cost is O(ZLD‘(lpnimlp ).
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Figure 7: (a) The path representation of the graph
in Figure 6(a) with [, = 4. (b) The fingerprint of the
database showing only part of rows.

3.2.2 Filtering the Database

The query graph is parsed to build its fingerprint (hashed
set of paths). We filter the database by comparing the fin-
gerprint of the query with the fingerprint of the database.



System Application Database Path-Indexing Filter-out Wild- | Matching
Model From | Length Ttem | Sub-Ttem | cards
ATreeGrep General Many Trees Every Leaf Full Yes No Yes PC
XISS XML Many Trees | Every Node 1 Yes Yes Yes PC
Daylight Molecule Many Graphs | Every Node | Parameter | Yes No Yes AD
GraphDB General One Graph Some Nodes | Parameter | Yes Yes Yes | A*, PC-T
GraphGrep General Many Graphs | Every Node | Parameter | Yes Yes Yes PC
Lore Semistructured- | One Rooted- Root Full No Yes Yes PC-T
Data Graph Every Node 1
SUBDUE General One Graph No No No No No A*
T-index Semistructured- | One Rooted- Root Full No Yes Yes PC-T
Data Graph Some Nodes | Variable

Table 1: Comparison of tree and graph searching systems. Filter-out is divided into Item (whether an entire
tree or graph can be removed from consideration when matching a given query) and Sub-Item (whether

relevant portions of selected trees and graphs are identified by the filtering steps).

We use AD for an

“Application Dependent” matching algorithm (e.g. tailored for molecules), PC for “Path Combination” (e.g.
intersecting paths), and PC-T for a “Path Combination” matching algorithm which requires tree or graph
“Traversal”. Different systems have different expressive power using wildcards.

A graph, for which at least one value in its fingerprint is less
than the corresponding value in the fingerprint of the query,
is discarded when looking for an exact subgraph match. For
example, in the query graph in Figure 8 with [, = 4, the
graphs (b) and (c) in Figure 6 are filtered out because they
do not contain the label-path ABCA. Filtering the database
takes linear time in the size of the database. The remaining
graphs may contain one or more subgraphs matching the
query.

3.2.3 Finding Subgraphs Matching with Queries
After filtering, we look for all the matching subgraphs in the
remaining graphs. The branches of a depth-first traversal
tree of the query are decomposed into sequences of overlap-
ping label-paths, which we also call patterns, of length I, or
less (see Figure 8).

Overlaps may occur in the following cases:

1. For consecutive label-paths, the last node of a pattern
coincides with the first node of the next pattern (e.g.
ABCB, with I, = 3, is decomposed into two patterns:
ABC and CB).

2. If a node has branches it is included in the first pattern
of every branch (see node C in Figure 8(c)).

3. The first node visited in a cycle appears twice: in the
beginning of the first pattern of the cycle and at the
end of the last pattern of the cycle (the first and last
pattern can be identical, as in Figure 8(c)).

We use the path representation of the graphs to look for
occurrences of the query. Only the parts of each (candidate)
graph whose id-path sets correspond to the patterns of the
query are selected and compared with the query. After the
id-path sets are selected, we identify overlapping id-path
lists and concatenate them (removing overlaps) to build a
matching subgraph. For overlapping cases (1) and (2) a
pair of lists is combined if the two lists contain the same

=4

A"BCA"
cB

©

Figure 8: (a) A query graph. (b) The depth first tree
of the graph in (a). (c) A set of patterns obtained
with [, = 4. In this example overlapping labels are
marked with asterisks or underlining. Labels with
the same mark represent the same node.

id-node in the overlapping position. In overlapping case (3),
a list is removed if it does not contain the same id-node in
the overlapping positions; finally, lists are removed if equal
id-nodes are not found in overlapping positions.

Example. Let us consider the steps to match the query in
Figure 8(a) with the graph g; in Figure 6(a).

1. Select the set of paths in g1 (Figure 7(a)) matching the
patterns of the query (Figure 8(c)): ABCA= {(1,0,3,1),
(1,2,3,1)}, CB= {(3,0),(3,2)}-

2. Combine any list /; from ABCA with any list I of
CB if the third id-node in [; is equal to the first id-
node of > and the first id-node in [y is equal to the
fourth id-node of I;: ABCACB= {((1,0,3,1), (3,0)),
((1,0,3,1),(3,2)), ((1,2,3,1),(3,0)), ((1,2,3,1), (3,2))}.

3. Remove lists from ABCACB if they contain equal id-
nodes in non-overlapping positions (the positions in
each list not involved above). The two substructures in
g1 whose composition yields ABCACB are ((1,0, 3,1),
(3,2)) and ((1,2,3,1), (3,0)).

The matching algorithm depends on the number of query
graph patterns p that need to be combined; p is somewhat



difficult to determine for the average case. Roughly speak-
ing, it is directly proportional to the query size and to the
maximum valence of the nodes in the query. The larger [,,
the smaller p, though this relationship is data-dependent.
In general if 72 is the maximum number of nodes having the
same label, the worst case time complexity for the match-
ing is O(ELDil((ﬁimiP)p)) with |Dy| being the size of the
database after the filtering.

3.2.4 Techniques for Queries with Wildcards

Query graphs with wildcards are handled by considering the
parts of the query graph between wildcards as disconnected
components, just as we do for pathfix. For example, the
disconnected components of the graph in Figure 9 are the
path ABC and the single node D.

B C

3

A

Figure 9: The query graph matches a graph with
these properties: (1) a path between a C-labeled
node and a D-labeled node may exist; (2) there is
a two-edge path between an A-labeled and the D
node; (3) there is an edge between the A node and
a B-labeled node; and (4) there is an edge between
the B and C nodes.

The matching algorithm described above is done for each
component. The Cartesian product of the sets that match
each component constitute the candidate matches. An entry
in the Cartesian product is a valid match if there is a path
(of length equal to the wildcards’ values in the query) be-
tween nodes that are connected with wildcards. The paths
in the candidate graph are checked using a depth first search
traversal of the graph. This step may be optimized by
maintaining the transitive closure matrices of the database
graphs and searching in a candidate graph only if the wild-
card’s value is greater than or equal to the shortest path
between the nodes.

3.2.5 Experimental Results

To evaluate the performance of GraphGrep we conducted nu-
merical experiments on NCI [76] databases containing up to
16,000 molecules. We used a Linux workstation equipped
with a 1GHz pentium IIT processor. The NCI database
graphs have an average number of 20 nodes; several graphs
have up to 270 nodes. We report wall-clock querying time for
varied query sizes (13, to 189 nodes), database sizes (1,000
- 16,000 graphs), and I, values (4, and 10) (see Figure 10).

Different values of [, influence the query running time: for
the Q2 query, the matching algorithm performs better when
l, = 10 compared with I, = 4, which is consistent with
the time complexity analysis. In addition, in these exam-
ples we verify that the querying time is linear in the size
of the database, and exponential in p x l,. Recall that p
(the number of paths within size I, that have to be tested)
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Figure 10: The horizontal axis gives the size of the
database and the vertical axis the wall-clock time
measured in seconds (in logarithmic scale). Q1 is a
molecule with 13 nodes and 14 undirected edges.
Q2 is a molecule with 189 nodes and 210 undi-
rected edges. For the queries Q1 and Q2, 99% of
the database is discarded during filtering for both
values of /,. For the 16,000 molecules database, 640
subgraphs are found for Q1 and 612 for Q2.

is proportional to the query size. As expected, p decreases
substantially with larger 1,, but not always.

3.3 Subgraph Matching

In [105] Yannakakis surveyed traditional graph searching
problems with applications to data management, includ-
ing computing transitive closures, recursive queries, and the
complexity of path searching in databases. We review here
some classical subgraph matching techniques, mostly having
to do with step 3 of our query processing framework.

Figure 11: (a) A query graph G,. (b) A data graph
Gp.

A simple theoretical enumeration algorithm to find the oc-
currences of a query graph G, in a data graph G, (Figure
11), is to generate all possible maps between the nodes of the
two graphs and to check whether each generated map is a
match. All the maps can be represented using a state-space
representation tree: a node represents a pair of matched ver-
tices; a path from the root down to a leaf represents a map
between the two graphs. A path from a node at the k%
level in the tree up to the root represents a partial matching
between the graphs; only a subset (k) of vertices have been
matched. Only certain leaves correspond to a subisomor-
phism between G, and Gp (Figure 12). The complexity of
such an algorithm is exponential, but it is the best known
algorithm—the problem of subgraph isomorphism is proven
to be NP-complete [42].
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Figure 12: All the maps between G, and G;. The
leaves in the rectangular frames correspond to subi-
somorphisms between G, and G,.

There have been many attempts to reduce the combinatorial
cost of AC query processing in graphs or keygraph search-
ing. They can be classified as approximate, inexact, and
exact algorithms. Approximate algorithms [6, 27, 37, 43,
91, 101] have polynomial complexity but they are not guar-
anteed to find a correct solution. Exact and inexact algo-
rithms do find correct answers and therefore have exponen-
tial worst-case complexity [14, 48, 50, 63, 74, 79, 82, 102].
Inexact algorithms employ error correction techniques for
a noisy data graph. These algorithms employ a cost func-
tion to measure the similarity of the graphs. For example, a
cost function may be defined based on semantic or syntactic
transformations to transform one graph into another. (Of
course, approximate algorithms can also be used for noisy
data graphs.) Relevant work can be found in [20, 21, 31, 36,
39, 65, 75, 89, 97, 98]. The most popular exact (and inex-
act) subgraph matching algorithms are based on heuristics
on the state-space representation tree that corresponds to a
subisomorphism.

Ullmann’s Algorithm. Ullmann [90] presented an algo-
rithm for an ezact subgraph matching based on the state
space search with backtracking algorithm in [32]. A depth-
first search on the state space tree representation depicts
the algorithm’s progress. When a node (a pair of matching
vertices) is added to the tree, the isomorphism conditions
are checked in the partial matching. If the isomorphism
condition is not satisfied the algorithm backtracks (i.e. the
tree-search that would correspond to a full enumeration is
pruned). Upon termination only the paths with length equal
to the number of nodes in G, (corresponding to unpruned
leaves) represent a subisomorphism.

The performance of the above state-space representation al-
gorithm is improved by a refinement procedure called for-
ward checking: in order to insert a node in the tree not
only must the subisomorphism conditions hold, but, in ad-
dition, a possible mapping must exist for all the unmatched
vertices. As a result, the algorithm prunes the tree-search
more efficiently at a higher level (see Figure 13(a)).

Nilsson’s Algorithm (A*). Nilsson [79] presented an in-
eract subgraph matching algorithm. This time, a breath-
first search on the state-space representation tree depicts
the algorithm’s progress. Each node in the tree-search rep-
resents a vertex in GG, that has been either matched with a
vertex in G or deleted. If a vertex in G, has to be deleted,

root
14 @ T) (14) (15) (1 6 @) (L)
(2.6) (24 (2,6)(2,7) 2)

\

37) (34) 3
@ ®)

Figure 13: The tree search-space to reach the first
isomorphism. (a) The tree-search space pruned by
Ullmann’s algorithm. (b) The tree-search space
pruned by Nilsson’s algorithm. The match (1,.)
represents a tree-search node deletion. Here we as-
sume that an underlying evaluation function is used
to guide the state expansions. Different evaluation
functions prune the tree-search differently.

it is matched to a null vertex in G,. A cost is assigned to
the matching between two vertices. The cost of a partial
matching is the sum of the costs of the matched vertices. A
function evaluates the partial matching by summing its cost
to a lower bound estimation of the cost to match the remain-
ing vertices in G4. The tree search is expanded to states for
which the evaluation function attains the minimum value
(among all possible expansion states). The leaves of the
tree (that have not been pruned) represent final states, i.e,
states where all the vertices of G, have been matched (see
Figure 13(b)).

4. CONCLUSIONS AND FUTURE WORK

‘We have focused primarily on pattern-matching based algo-
rithms for fast searching in trees and graphs. These algo-
rithms could be used for direct support of queries on the
data types, or could be used as a preprocessor for join-like
algorithms [5]. Future work in this field includes:

e Improve the performance of existing keytree search-
ing algorithms (e.g. ATreeGrep) and keygraph search-
ing algorithms (e.g. GraphGrep) so that they can be as
fast as keyword searching engines like google. Many of
these algorithms are embarrassingly parallelizable so
will scale well.

e Develop indexes that trade time for space optimally
(storing all paths may be more than is needed, but
storing just parent-child pairs may be too little).

e Develop practically meaningful distance measures on
trees and graphs and approximate query processing
algorithms to support inexact matching.

e Develop a framework for selectivity estimation for queries
on trees and graphs with wildcards.

e Develop a framework for turning searching to pattern
discovery in trees and graphs [33, 94, 95, 100].



5.
We

e Develop support for semantic extensions: semi-flexible
or flexible queries [56] in which parent-child relation-
ships in queries may become ancestor-descendant or
even descendant-ancestor relationships in data graphs.
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