
GraphClust: a Method for Clustering Database of

Graphs

D. Reforgiato Recupero1, D. Shasha2

1Dipartimento di Matematica e Informatica

Università degli Studi di Catania

e-mail: diegoref@dmi.unict.it

2Computer Science Department

New York University

e-mail: shasha@cs.nyu.edu

Abstract

Any application that represents data as graphs may be interested in finding pat-

terns in those graphs. To do this in an unsupervised fashion requires the ability to

find subgraphs that are similar to one another. That is the purpose of GraphClust.

GraphClust is an algorithm and software that clusters directed and undirected labelled

graphs. The algorithm proceeds in three phases: it finds (first phase) highly connected

substructures in each graph and then (second phase) it uses those substructures to rep-

resent each graph as a feature vector. Clustering (third phase) itself can be done using

the k-means or the Antipole method, though other methods are of course possible. We

validate the cluster quality by using the silhouette method. Moreover, SVD decompo-

sition leads to the computation of highly co-occurring substructures.

Index terms - Text clustering, Document vectors, Graphs clustering, Graphs sub-

structure.

1

1 Related Work

In the last few years, developing algorithms for clustering data represented by graphs has

been recognized as a problem in the pattern recognition community [10]. Nevertheless,

graph clustering is still an open problem for two reasons. First, many interesting exact

graph matching problems, e.g. subgraph isomorphism, maximum common subgraph,

etc., are NP-complete and then exact graph clustering algorithms using graph matching

are extremely time consuming. Second, the proper distance metric between graphs is

a matter of debate.

In chemistry, the clustering of substances is of central interest [7]. Starting from

molecules of known properties, compounds that are structurally similar are likely to ex-

hibit similar properties [27]. Moreover, for having a successful clustering, an appropriate

description of molecule structures and an adequate clustering algorithm are both essen-

tial. Methods based on the relevant compound property space has been applied for the

prediction of physiochemical and biological properties of chemical compounds [8, 9], the

selection of diverse representative compounds and reagent sets for the design of com-

binatorial libraries [22], compound acquisition selection [37, 32] and the compilation

of screening sets [16]. Many methods mostly based on fingerprint descriptions have

appeared in literature [18]. The hierarchical Ward [45], the nonhierarchical Jarvis-

Patrick [26] and the k-means relocation methods [15] are the most popular. Ward’s

method outperforms the other two in chemical databases [7, 16, 18, 46]. Ott et al. [34]

proposed a sequential superparamagnetic clustering approach which clusters correctly

datasets composed of structures from seven chemically distinct compound classes.

There is an extensive literature on subgraph searching [40, 39]. Most of these meth-

ods are designed for specific applications. For example, Daylight [25], proposed a search-

ing system for molecular databases using fingerprints consisting of bit vectors, where

each position is associated to a small path. It outputs all the molecules that contain at

least one occurrence of the query.

Other methods for XML databases have been proposed [12, 31, 38, 19, 36].

Messmer and Bunke [33] proposed a method which indexes the graphs in a database

and computes a graph isomorphism. Both indexing and matching are based on all

possible permutations of the adjacent matrices of the graphs.

2

GraphGrep [20] is a method which finds all the occurrences of a subgraph in a

database of graphs. Its filtering process starts by computing for each graph and for

each node all the paths starting at that node and having length one up to a small

constant. An hash-table associates all the paths with their corresponding indexes.

Text retrieval [30, 13, 3, 29] has focussed on the need to locate textual information

efficiently. A classical text searching method [13] involves modelling a text collection

in document-term matrix, and evaluating a document’s relevance to a query using a

linear algebraic dot product. In a term-document matrix A, A[i, j] gives the number

of occurrences of term j in document i. Queries are normally represented as a bit

vector over the same set of terms. The similarity between document vectors (the rows

of document-term matrices) can be found by their inner product. This corresponds to

determining the number of term matches (weighted by frequency) in the respective doc-

uments. Another commonly used similarity measure is the cosine of the angle between

the document vectors. This can be achieved computationally by first normalizing (to

1) the rows of the document-term matrices before computing inner products. Singular

Value Decomposition (SVD) has been shown to work well for text retrieval over the

last fifteen years [14, 23]. The motivation is simple: large document-by-term matrices

have a significant amount of redundant data. Removing this information allows a more

precise and efficient search. Singular Value Decomposition achieves rank reduction by

breaking the matrix A in the product of 3 matrices T, S, DT which are truncated to r

dimensions.

Latent Semantic Indexing (LSI), [24], attempts to project term and document vec-

tors into a lower dimensional space spanned by the true “factors” of the collection. This

uses a truncated Singular Value Decomposition (SVD) of the term-document matrix.

Spectral methods try to represent the most interesting properties of the input graphs

using vectors, thus reducing the graph clustering problem to a problem in a vector

space [4, 5, 28]. This allows a new spectral method, closely related to latent semantic

indexing, to be used.

Subdue is another method to capture essential structure information from graphs.

The Subdue substructure discovery system, [2], discovers repetitive subgraphs in a

labelled graph representation by using the minimum description length principle. Ex-

periments show Subdue’s applicability to several domains, such as molecular biology,

3

image analysis and computer-aided design.

In this paper, GraphClust, a new algorithm for clustering labelled graphs, will be

presented. The problem of mapping the graphs as feature vectors is solved by creating

some substructures such that the frequency of substructure j in the graph i is stored

at A[i, j]. After this, the rows of the matrix A are finally clustered. According to the

kind of graph, GraphClust has two different methods for finding substructures: one

introduced in GraphGrep [20] for the paths generation, more effective when the input

graphs have many labels; the other technique is represented by the SUBDUE method [2],

which is more suitable in presence of sparse graphs having few labels compared to the

number of nodes, like e.g. chemical compounds. A list of highly correlated substructures

is at the end created by using the SVD reduction.

From Diego to DENNIS: the following paragraph is new. From Dennis to Diego:

edited, but still the question is: Algorithmically what are we doing that is different?

From Diego to Dennis: here as our innovation I want to claim our trade-off between

scalability and performance since the previous methods are focussed on small datasets of

chemical compounds. From Diego to Dennis: I mention the performance section where

we have a time-complexity graph on NCI database

In contrast to previous work ([27, 8, 9, 34]), where particular properties of the do-

main are taken into account (e.g. about the similarity of chemical structures), Graph-

Clust works with any kind of labelled graph. Clustering chemical compounds by using

the Jarvis-Patrick [26] or Daylight System [25] or the Ward’s method [45] could be

computationally prohibitive for large databases. The AllPairShortestPath procedure to

find important substructures and either k-means or the Antipole method for cluster-

ing the resulting feature vectors according to the underlined similarity measure makes

GraphClust a fast and effective method able to perform well also on large datasets as

shown in section 5.

2 Design

GraphClust assumes that each node of the database graphs has a unique identification

number and a label. Edges are unlabelled (for purpose of this paper).

GraphClust deals with either directed or undirected graphs. The substructures can

4

¡
¡

¡
¡

¡
¡

A C

AB

@
@
@
@
@
@

A B

C

(a) (b)

Figure 1: Dataset of two graphs.

Graph (a) Graph (b)

Initial Node Substructures generated Initial Node Substructures generated

top-left A {A,AC,AB,ABA} A {A,AB,AC}

B {B,BC,BA,BA} B {B,BA,BAC}

bottom-right A {A,AB,ABC,ABA} C {C,CA,CAB}

C {C,CA,CB,CBA}

Table 1: Patterns generated from the dataset of Fig. 1 using AllPairShortestPath with lp = 3.

C CA CB CBA A AB ABA B BAC

graph (a) 1 2 2 2 2 4 2 1 0

graph (b) 1 2 0 0 1 2 0 1 2

Table 2: Matrix A generated from the patterns of Table 1.

5

be discovered in two ways:

• by using the AllPairShortestPath algorithm as shown in [20]; in this case, for each

graph of the dataset and for each vertex v, all shortest paths whose lengths are at

most lp are generated from v. Each path is represented by the sequence of node

labels in that path.

• by using the Subdue substructure discovery system ([2]); in this case, for each

graph g of the dataset, Subdue finds common or approximately common sub-

structures of g.

These two techniques to find substructures work well regardless of the source appli-

cation domain of the graph as we show in our experimental section.

A matrix having a number of columns equal to the number of found substructures

and a number of rows equal to the number of the graphs in the dataset is created. Each

entry A[i, j] represents the number of times in which the substructure j is contained in

the graph i.

If AllPairShortestPath is run, it finds for each graph all the label sequences corre-

sponding to all paths whose lengths are at most lp and therefore it creates more columns

in the matrix A than Subdue. Experimentally we observed that lp = 4 is a good trade-

off between time and precision. However, if too many substructures are found with

either AllPairShortestPath or Subdue, GraphClust considers only the max sub most

frequent, where max sub is a constant of the system. For example, on chemical com-

pounds, where usually there are not so many nodes and edges, Subdue provides a better

solution in terms of clustering precision. For graphs with many edges, AllPairShortest-

Path outperforms Subdue.

Once that the matrix A is completed, we cluster its rows. There are two possible

clustering algorithms to use: one is the k-means algorithm in which the user chooses the

number of clusters k to create; the other is the Antipole clustering [11] in which the user

chooses a “tightness” measure (an integer value in the range 1 to 4) where the higher

the measure the smaller the cluster radius and hence the larger the number of generated

clusters. Antipole clustering [11] is much faster than k-means even if it is not possible

to know a-priori the number of clusters that will be created. The metric distance used

in both clustering algorithms just described can be either Euclidean distance or inner

6

product distance. Euclidean distance is appealing for applications having a natural

geometry. Inner product is better for non-spatial applications such as text-similarity.

The above clustering algorithms work well across all the domains we have tried.

In table 2 a matrix obtained from the patterns of table 1 generated by applying the

AllPairShortestPath algorithm with lp = 3 to the dataset in Fig. 1 is shown.

Another operation we perform when the matrix A is complete, is the creation of

correlated substructures. By using the SVD method, the substructure-graph matrix

AT is broken apart into the product of 3 matrices T, S and DT . Table 3 shows a SVD

of the matrix A in table 2. These matrices are truncated to r dimensions with r chosen

by the user. Dimensionality reduction reduces the noise present in the substructure-

substructure matrix revealing a more robust relationship between the substructures.

The substructure-substructure correlation matrix Xr is then computed by multiplying

Tr × Sr × (Tr × Sr)
T . Table 4 shows the substructure-substructure correlation matrix

Xr computed with the matrices Tr, Sr of table 3 reduced for r = 1. When the number

of substructures is too large and then it would be too expensive to compute the singular

value decomposition, GraphClust considers only the main substructures (the ones with

highest support).

















−0.20 −0.17
−0.40 −0.33
−0.26 0.35
−0.26 0.35
−0.33 0.01
−0.66 0.02
−0.26 0.35
−0.20 −0.17
−0.13 −0.68

















×
(

6.8 0
0 2.61

)

×
(

−0.89 0.46
−0.46 −0.89

)

T × S × DT

Table 3: Matrices T, S,DT generated by the Singular Value Decomposition of AT of Table 2.

3 Algorithms

It turns out that GraphClust consists of 16 different algorithms broken down along the

four binary dimensions described in the section 2. The main concept of GraphClust

is the mapping of the data graphs into k-dimensional vectors. To perform this step

7

















−0.20
−0.40
−0.26
−0.26
−0.33
−0.66
−0.26
−0.20
−0.13

















× (6.8 0) ×

































−0.20
−0.40
−0.26
−0.26
−0.33
−0.66
−0.26
−0.20
−0.13

















× (6.8 0)

















T

=

C CA CB CBA A AB ABA B BAC

C 2 4 2 2 3 6 2 2 2
CA 4 8 4 4 6 12 4 4 4
CB 2 4 4 4 4 8 4 2 0

CBA 2 4 4 4 4 8 4 2 0
A 3 6 4 4 5 10 4 3 2

AB 6 12 8 8 10 20 8 6 4
ABA 2 4 4 4 4 8 4 2 0

B 2 4 2 2 3 6 2 2 2
BAC 2 4 0 0 2 4 0 2 4

Table 4: Reduced correlation substructure-substructure matrix Xr = Tr × Sr × (Tr × Sr)
T

for r = 1.

we have introduced the concept of substructures and the methods used to find these

substructures.

In this section, the algorithms used by GraphClust in the three steps of its main

procedure will be discussed.

Subdue [2] discovers interesting and repetitive subgraphs in a labelled graph repre-

sentation using the minimum description length principle; Subdue discovers substruc-

tures that compress the original data and represent structural concepts in the data. By

replacing previously-discovered substructures in the data, multiple passes of Subdue

produce a hierarchical description of the structural regularities in the data. Subdue

uses a computationally-bounded inexact graph match that identifies similar, but not

identical, instances of a substructure and finds an approximate measure of closeness

of two substructures when under computational constraints. In addition to the mini-

mum description length principle, other background knowledge can be used by Subdue

to guide the search towards more appropriate substructures. Once the substructures

and the matrix A have been created, the clustering is performed by the k-means or

Antipole clustering method [11]. In our implementation of k-means, at the first iter-

ation (that is for t = 1), the initial k centroids q1
1, q

1
2, . . . , q

1
k are computed by using

the Gonzalez [21] algorithm; then, the rest of the objects are assigned to a class ac-

8

cording to the relation xl ∈ C1
j iff d(xl, q

1
j) ≤ d(xl, q

1
i), 1 ≤ j, i ≤ k, i 6= j. At the

generic iteration t, new centroids are computed in such a way that the performance

index, γi =
∑

x∈Ct
i
|x − qt

i |
2, i = 1, 2, 3, . . . , k, is minimized. This is achieved mak-

ing qt+1
i = 1

nt
i

∑

∀x∈Ct
i
x. If qt+1

i = qt
i , the process finishes, otherwise, the objects are

grouped again.

The Antipole clustering [11] algorithm of bounded radius is performed by a top-down

procedure starting from a given finite set of points S which checks if a given splitting

condition is satisfied. This condition asks for two points whose distance is greater than

the radius. If there are no two such points, then splitting is not performed and the

given subset is a cluster on which an approximate centroid is then found. Otherwise, a

suitable pair of points (A, B) of S called Antipole is generated and the set is partitioned

by assigning each point of the splitting subset to the closest endpoint of the Antipole

(A, B). As seen in [11] the randomized algorithms used by Antipole clustering makes

its construction much faster than k-means’s.

4 Complexity

Here is a description of the worst case complexity for the three steps of GraphClust.

Let |D| be the number of graphs in a database D. The first and second step of

the algorithm depend on which algorithm is used to create the patterns. If AllPair-

ShortestPath is used, then the complexity of the first step is O(
∑|D|

i (ni
3)), where ni

are the number of nodes of the graph i; in this case the complexity of the second

step is O(|D||pat|
∑|D|

i (nim
lp
i)), where |pat| is the total number of patterns gener-

ated and mi is the number of patterns starting from ni. If the Subdue algorithm is

used, then the complexity of the first step becomes O(
∑|D|

i (
∑nsubs

j=1 (ninstj × gmj))),

where ninsti is the maximum possible number of non-overlapping instances for sub-

structure j and gmj is the user-defined maximum number of partial mappings that

are considered during a graph match between substructure definition j and a poten-

tial instance of the substructure. In this case the complexity of the second step is

O (|D||pat|
∑|D|

i (
∑nsubs

j=1 (ninstj × gmj))), where ninsti and gmj have already been

described above. Details of the Subdue complexity analysis can be found in [35].

For the third step we will consider for first the clustering process and then the

9

SVD computation. The clustering process complexity depends on which algorithm is

used. K-means takes time O(tk|D|), with k the number of clusters and t is the number

of iterations. Normally, k, t << |D|. The Antipole algorithm [11] has a worst-case

complexity of τ(τ−1)
2 |D| + o(|D|) in the input size |D|, where τ is the bounded radius

(see [11] for further details).

The speed of AllPairShortestPath makes it preferable to Subdue in presence of big

datasets having large number of edges.

Finally, the SVD process complexity takes O (|pat|2 · |D| + |pat| · |D|2) so it would

not be pratical for big datasets. To make the process effective also with large datasets,

the SVD considers only the max sub substructures more interesting (more repetitive

in the database) where max sub is a constant of the algorithm.

5 Performance Studies

We start with a systematic evaluation of the quality of the clusters. The Silhouette

method [6] is used to show how good the clustering obtained is. Moreover, we want

to show how well the final clustering performed by GraphClust captures the graphs

present in different categories known a-priori. For this, we have used an artificial graph

generator [17] to create a database containing five different categories of undirected

graphs. The five categories includes randomly graphs, regular 2D-meshes, regular 3D-

meshes, irregular 2D-meshes, irregular 3D-meshes. For each category we have generated

1000 graphs with 30 nodes and 1000 graphs with 80 nodes. The number of edges vary

from 50 to 200. Each group of 1000 graphs differs for the 7% of the edges. Thus,

our artificial dataset contains 10000 graphs. An optimal clustering creates 10 clusters,

each one containing one structural group of graphs. Tables 5 and 6 depict the global

silhouette values, GSu, for our obtained clustering whose number of clusters c varies

from 10 to 15. Clustering in table 5 has been performed by using the Antipole Tree data

structure tuning properly the radius such that the resulting clusters ranged in [10, 15]

whereas clustering in table 6 has been performed by using the k-means algorithm with

k ∈ [10, 15]. For both clustering algorithms, the substructures have been discovered

by using the AllPairShortestPath fixing the constant lp = 4. In both tables c = 10 is

suggested as the best clustering configuration for the examined data set and this is also

10

the optimal number of clusters known for when the data set has been created.

c GSu

10 0.712

11 0.665

12 0.693

13 0.607

14 0.518

15 0.489

Table 5: Global Silhouette values for clustering obtained by using GraphClust with Antipole
Tree data structure.

c GSu

10 0.886

11 0.830

12 0.714

13 0.678

14 0.643

15 0.660

Table 6: Global Silhouette values for clustering obtained by using GraphClust with k-means
algorithm.

Now, we have to show that this clustering is also coherent with the a-priori clas-

sification of the data set. Recall that in the optimal clustering each cluster contains

a single structural group where in each group the graphs differ by 7% of their edges.

Table 7 shows the similarities in percent between the best clustering obtained in table 5

and 6 (that is for c = 10) and the optimal clustering. A value x% for the cluster Ci

obtained with GraphClust means that Ci is equal to x% of the optimal cluster Ci.

To measure the robustness of the clustering obtained, a pair of graphs g1 and g2 are

considered to be consistent in the two clusterings if they are in the same cluster in both

cases or in different clusters in both cases. Otherwise they are inconsistent. In table 8,

for c = 10, the output clustering generated by GraphClust has been compared with the

optimal clustering. The value consistent value shows the number of graphs pairs that

are consistent divided by the total number of graphs pairs for the output obtained.

From Diego to Dennis: I inserted a time-complexity graph on the same database

NCI used by graphgrep in icpr2002

GraphClust performs well on large datasets. In Fig. 2 we show the time complexity

(in seconds) of GraphClust on NCI databases up to 50000 molecules. We also report

the number of substructures created for each dataset. The graphs in these databases

11

Clustering Algorithm C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Antipole Tree 100% 100% 100% 100% 100% 100% 95.14% 66.0% 50% 28.9%

K-means 100% 100% 100% 100% 100% 100% 100% 54.4% 50% 45.6%

Table 7: Similarities in percentual between the best clustering found (c = 10) in Tables 5, 6
and the optimal clustering.

Clustering Algorithm Number of consistent pairs Total number of pairs consistent value

Antipole Tree 48704861 49995000 0.9741

K-means 48746936 49995000 0.9750

Table 8: Robustness between the best clustering found in Tables 5, 6 and the optimal clus-
tering.

have an average number of 20 nodes; several graphs have up to 270 nodes. GraphClust

has been executed by using AllPairShortestPath to find substructures and Antipole

algorithm for clustering.

 0

 100

 200

 300

 400

 500

 600

50000100001000100

t
i
m
e

i
n

s
e
c
o
n
d
s

number of graphs

time complexity
#substructures

Figure 2: Time complexity and number of substructures for NCI database.

6 Finding gene co-regulations in biological data

In this section we analyze how GraphClust substructure discovery process is effective

and present some results obtained on two biological datasets having to do with RNA

expression. Recent microarray analysis have demonstrated that the expression of many

regulatory genes are affected by nitrate [41, 44, 42]. In [43], microarray analysis of gene

expression revealed that 595 genes responded to nitrate in both wild-type and mutant

12

plants. We have used the outputs produced in [43] consisting of a list of correlated genes

pairs that responded to nitrate in wild-type plants and in NR-null (nitrate reductase)

plants. To study these two sets of correlation pairs at the functional level, we replaced

each gene with the the Gene Ontology (GO) terms that characterize it. At the end

we have obtained two Gene Ontology term graphs, one for the correlations of gene

expression values in wild-type experiments and the other for the correlations of gene

expression values in a (NR)-null double mutant of Arabidopsis. Each node of each

graphs corresponds to a gene involved in some correlation and is labelled by the set of

Gene Ontology terms associated with that gene. There is an edge between two nodes

if there is a correlation between the expression of the two genes.

Given the size of the two resulting graphs, (13867 nodes and 999658 edges for the

wild-types and 13428 nodes and 1022692 edges for (NR)-null double mutant), we have

used AllPairShortestPath instead of Subdue for building paths of length up to lp = 4.

Fig. 3 shows the GO-term paths resulting from administering nitrate on wild-type

plants whereas Fig. 4 shows the results on mutant plants whose ability to assimilate

nitrate is impaired. Our biological collaborator Rodrigo Gutierrez concludes from these

figures that transcriptional genes are co-regulated with genes involved in other processes

for the wildtype but not for the mutant. ”One interpretation of this result is that the

transcriptional response requires assimilation of nitrate into reduced forms of organic

N sources.”

From Diego to Dennis: I put this paragraph in a non-titled section and added the

info of the NCI database since we are talking about the experiments time and the pc

used

For all the experiments we used a Mobile Intel Pentium Processor 2.30GHz and 512MB

of RAM with the Linux operating system. For the syntethic experiments the algorithm

runs in about 10 minutes while for the real dataset it runs in about 20 hours. For the

NCI database it takes much less since the average number of nodes of graphs is much

smaller.

13

Figure 3: Correlations of gene expression values in wild-type experiments.

7 Conclusions

We have proposed a new general method for clustering labelled graphs that entails (i)

identifying interesting substructures, (ii) clustering the graphs by their substructures

and (iii) finding frequently co-occurring substructures pairs.

GraphClust performs efficiently and gives high quality results for both artificial and

real data sets across a wide variety of domains. GraphClust is implemented in ANSI C

and the software implementation is freely available at www.cs.nyu.edu/shasha/papers/graphclust/.

Suggestive biological results have been obtained by using GraphClust substructure cre-

ating method on the correlations of gene expression values in both wild-type and mutant

experiments.

8 Future Work

We are extending GraphClust to deal with nearest neighbor and range query search.

Also, a new version that makes use of the Berkeley Database to reduce the space com-

plexity is in progress. At the algorithmic level, we are working on new techniques for

14

Figure 4: Correlations of gene expression values in nitrate reductase (NR)-null double mutant
of Arabidopsis experiments.

15

finding common substructures and classifying the most important ones. A new Graph-

Clust extension will make use of data mining tools like k-min-hashing for identifying

important substructures. As far as bioinformatics is concerned, we are looking for

some way to incorporate GraphClust in Cytoscape [1] and doing a further analysis to

protein-protein interaction networks.

Acknowledgement

We thank Dr. Rodrigo A. Gutiérrez from the Department of Biology of New York

University for having provided us the biological datasets, giving extensive comments

and important suggestions. This work has been partly supported by the U.S. National

Science Foundation under grants NSF IIS-9988345, N2010-0115586, and MCB-0209754.

This support is greatly appreciated.

References

[1] Cytoscape. http://www.cytoscape.org.

[2] The subdue knowledge discovery system. http://cygnus.uta.edu/subdue.

[3] M.W. Berry, Z. Drmac, and E.R. Jessup. Matrices, vector spaces, and information

retrieval. SIAM Review, 41(2):335–362, 2003.

[4] B.Luo, R.C.Wilson, and E.R.Hancock. Spectral feature vectors for graph clus-

tering. Proceedings of joint Syntactical and Structural Pattern Recognition and

Statistical Pattern Recognition, 2396:83–93, 2002.

[5] B.Luo, R.C.Wilson, and E.R.Hancock. Spectral clustering of graphs. Proceedings

of 4th IAPR-TC15 Graph based Representations in Pattern Recognition, pages

190–201, 2003.

[6] N. Bolshakova and F. Azuaje. Improving expression data mining through cluster

validation. Information Technology Applications in Biomedicine, 2003, pages 19–

22, 2003.

[7] A. Brint and P. Willett. Algorithms for the identification of threedimensional

maximal common substructures. J. Chem. Inf. Comput. Sci., 27:152–158, 1987.

16

[8] R.D. Brown and Y.C. Martin. Use of structure activity data to compare structure-

based clustering methods and descriptors for use in compound selection. J. Chem.

Inf. Comput. Sci., 36:572–584, 1996.

[9] R.D. Brown and Y.C. Martin. The information content of 2d and 3d structural

descriptors relevant to ligand - receptor binding. J. Chem. Inf. Comput. Sci.,

37:1–9, 1997.

[10] H. Bunke. Graph-based tools for data mining and machine learning. Proceedings

of Machine Learning and Data Mining in Pattern Recognition, pages 7–19, 2003.

[11] D. Cantone, A. Ferro, A. Pulvirenti, D. Reforgiato, and D. Shasha. Antipole tree

indexing to support range search and k-nearest-neighbor search in metric spaces.

IEEE Transactions on Knowledge and Data Engineering (TKDE), 17(4):535–550,

2004.

[12] J. Clark and S. DeRose. http://www.w3.org/TR/xpath, 1999.

[13] D.R. Cutting, D.R. Karger, J.O. Pedersen, and J.W. Tukey. Scatter / gather: A

cluster-based approach to browsing large document collections. Proc. ACM SIGIR

92, pages 318–329, 1992.

[14] S. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman.

Indexing by latent semantic analysis. Journal of the Society for Information Sci-

ence, 41(6):391–407, 1990.

[15] G.M. Downs and J.M. Barnard. Clustering methods and their uses in computa-

tional chemistry. Reviews in Computational Chemistry, Lipkovitz K., Boyd D.B.,

Eds; VCH Publishers: New York, 18:1–40, 2002.

[16] M.F.M. Engels, T. Thielmans, D. Verbinden, J.P. Tollenaere, and R. Verbeeck.

Cerberus: A system supporting the sequential screening process. J. Chem. Inf.

Comput. Sci., 40:241–245, 2000.

[17] A. Ferro, R. Giugno, A. Pulvirenti, D. Reforgiato Recupero, and D. Shasha. Blast-

gen, a graphs generator for graph matching benchmarking. Preprint, 2005.

[18] E. Forgy. Cluster analysis of multivariate data: Efficiency vs interpretability of

classifications. Biometrics, 21:767–780, 1965.

17

[19] L. Galanis, E. Viglas, D.J. DeWitt, J.F. Naughton, and D. Maier. Following the

paths of xml data: An algebraic framework for xml query evaluation. Submitted,

2001.

[20] R. Giugno and D. Shasha. Graphgrep, a fast and universal method for querying

graphs. Proceeding of the IEEE International Conference in Pattern recognition

(ICPR), 2002.

[21] T.F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theo-

retical Computer Science, 38:293–306, 1985.

[22] T.F. Herpin, K.G. Van Kirk, J.M. Salvino, and S.T. Yu. Synthesis of a 10000

member 1,5 benzodiazepine-2-one library by the direct sorting method. J. Chem.

Inf. Comput. Sci., 2:513–521, 2000.

[23] David Hull. Improving text retrieval for the routing problem using latent semantic

indexing. In Proceedings of the 17th ACM/SIGIR Conference, pages 282–290,

1994.

[24] P. Husbands, H. Simon, and C. Ding. On the use of singular value decomposition

for text retrieval. Proc. of SIAM Comp. Info. Retrieval Workshop, pages 145–156,

2001.

[25] C.A. James, D. Weininger, and J. Delany. Daylight theory manual-daylight 4.71.

Daylight Chemical Information Systems, www.daylight.com, 2000.

[26] R.A. Jarvis and E.A. Patrick. Clustering using a similarity measure based on

shared near neighbors. IEEE Trans. Comput., C-22:1025–1034, 1973.

[27] M.A. Johnson and G.M. Maggioara. Concepts and applications of similarity. Wiley-

New York, 2000.

[28] S. Kosinov and T. Caelli. Inexact multisubgraph matching using graph eigenspace

and clustering models. Proceedings of joint Syntactical and Structural Pattern

Recognition and Statistical Pattern Recognition, 2002.

[29] G. Kowalski. Information retrieval systems: Theory and implementation. Boston:

Kluwer Academic Publishers, 1997.

[30] Steinbach M., Karypis G., and Kumar V. A comparison of document clustering

techniques. Proc. Text Mining Workshop, KDD 2000, pages 1–11, 2000.

18

[31] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database

management system for semistructured data. SIGMOD Record, 26:54–66, 1997.

[32] P.B. Menard, R.A. Lewis, and J.S. Mason. Rational design and compound selec-

tion: Cascaded clustering. J. Chem. Inf. Comput. Sci., 38:497–505, 1998.

[33] B.T. Messmer and H. Bunke. Subgraph isomorphism detection in polynomial time

on preprocessed model graphs. Proceedings of ACCV, pages 373–382, 1996.

[34] T. Ott, A. Kern, A. Schuffenhauer, M. Popov, P. Acklin, E. Jacoby, and

R. Stoop. Sequential superparamagnetic clustering for unbiased classification of

high-dimensional chemical data. J. Chem. Inf. Comput. Sci., 44:1358–64, 2004.

[35] S. Rajappap. Interactive biasing in graph-based data mining. Master Thesis in

Computer Science and Engineering, 2003.

[36] J. Shanmugasundaram, H. Gang., K. Tufte, C. Zhang, D. De Witt, and J.F.

Naughton. Relational databases for querying xml documents: Limitations and

opportunities. VLDB Journal, 1999.

[37] N.E. Shemetsukis, J.B. Dunbar, B.W. Dunbar, D.W. Moreland, and C. Humblet.

Enhancing the diversity of a corporate database using chemical database clustering

and analysis. J. Comput.-Aided Mol. Des., 9:407–416, 1995.

[38] L. Sheng, Z.M. Ozsoyoglu, and G. Ozsoyoglu. A graph query language and its

query processing. ICDE, pages 572–581, 1999.

[39] D. Suciu. An overview of semistructured data. SIGACTN: SIGACT News (ACM

Special Interest Group on Automata and Computability Theory), 29, 1998.

[40] J. Wang, B. Shapiro, and D. Shasha. Pattern discovery in biomolecular data. New

York Oxford, oxford university press edition, 1999.

[41] R. Wang, St. LaBrie, and Nm. Crawford. Genomic analysis of a nutrient response

in arabidopsis reveals diverse expression patterns and novel metabolic and potential

regulatory genes that are induced by nitrate. Plant Cell, 12:1491–1510, 2000.

[42] R. Wang, M. Okamoto, X. Xing, and Nm. Crawford. Microarray analysis of

the nitrate response in arabidopsis roots and shoots reveals over one thousand

rapidly responding genes and new linkages to glucose, trehalose-6-p, iron and sul-

fate metabolism. Plant Physiol, 132:556–567, 2003.

19

[43] R. Wang, R. Tischner, R.A. Gutierrez, M. Hoffman, X. Xing, M. Chen, G. Coruzzi,

and N. Crawford. Genomic analysis of the nitrate response using a nitrate

reductase-null mutant of arabidopsis. Plant Phisiol, 136:2512–2522, 2004.

[44] Y.H. Wang, Gf. Garvin, and Lv. Kochian. Nitrate-induced genes in tomato roots:

array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant

Physiol, 127:345–359, 2001.

[45] J.H. Ward. Hierarchical grouping to optimize an objective function. J. Am. Stat.

Assoc., 58:236–244, 1963.

[46] D. Wild and C.J. Blankley. Comparison of 2d fingerprint types and hierarchy level

selection methods for structural grouping using ward’s clustering. J. Chem. Inf.

Comput. Sci., 40:155–162, 2000.

20

