
G. Le Lann UBIROADS Tutorial, July 2007 1

Gérard Le Lann

INRIA

Paris-Rocquencourt, France

Distributed Consensus and
Intelligent Transportation Systems

G. Le Lann UBIROADS Tutorial, July 2007 2

Contents

Part I: Basics in Distributed Consensus for
Static Networks *

Part II: Distributed Consensus in Mobile Networks
and Intelligent Transportation Systems

* See Proc. of ACM PODC, IEEE ICDCS, …

G. Le Lann UBIROADS Tutorial, July 2007 3

Distributed system & failure models

The DC problem (and Uniform DC)

A synchronous DC algorithm—Results for synchronous
systems

The FLP impossibility result

A non synchronous DC algorithm—Results for non
synchronous systems

Part I

G. Le Lann UBIROADS Tutorial, July 2007 4

Distributed System?

• Multiple entities
• Interconnection structure (message passing over a

network of nodes and links)
• An entity, a node, a link, may experience failures
• No unique statically designated controlling entity
• Global state not “naturally” available
• Bounds on message latency, on processing times?
• Global time (synchronized clocks)?

G. Le Lann UBIROADS Tutorial, July 2007 5

A distributed system (entities perform different functions)

Focus of this tutorial: Collective Distributed Agreement
Exact Agreement ≡ Consensus

G. Le Lann UBIROADS Tutorial, July 2007 6

1. Failure models

Fail-stop (“clean crash”)
– correct behavior until stop, eternal silence thereafter.

Byzantine
– no assumptions (arbitrary behavior).

Others “in between”
– omission (e.g., message not sent, not received),
– value (incorrectly valued variable or message),
– timing (early or late state transition),
– .../…

Essential models (assumptions)

G. Le Lann UBIROADS Tutorial, July 2007 7

A lattice of failure models

ν none ∧Ƭ arb νN ∧Ƭ arb ν arb ∧Ƭ arb

ν none ∧Ƭ L νN ∧Ƭ L ν arb ∧Ƭ L

ν none ∧Ƭ E νN ∧Ƭ E ν arb ∧Ƭ E

ν none ∧Ƭ O νN ∧Ƭ O ν arb ∧Ƭ O

ν none ∧Ƭ BK νN ∧Ƭ BK ν arb ∧Ƭ BK

ν none ∧Ƭ P νN ∧Ƭ P ν arb ∧Ƭ P

νnone ∧Ƭnone νN ∧Ƭ none ν arb ∧Ƭ nonestrongest
assumptions

no
assumptions

G. Le Lann UBIROADS Tutorial, July 2007 8

• A set of n processes in a distributed system want to reach
agreement, e.g., about:
– The value of a sensor reading,
– Whether to accept/reject the results of a computation,
– …/…
– Abstractly, on a value in some set V.

• Each process starts with some initial value in V, and processes
want to decide on a unique value in V.

• Properties:
Validity: Any value decided by a process is a value proposed
Agreement: No two correct processes decide differently
Termination: Every correct process eventually decides

The twist: A (presumably small) number of processes (f) might
be faulty, and might not participate correctly in the algorithm.

Distributed Consensus (DC)

G. Le Lann UBIROADS Tutorial, July 2007 9

• With DC, a faulty process is free to decide whatever it “wants”.
• Might be problematic for certain applications, notably safety-

critical ones.
• Uniform DC prevents such scenarios, replacing the agreement

property with its Uniform counterpart (Validity and Termination
remain unchanged):

Uniform Agreement: No two (correct or not) processes decide
differently

Uniform DC cannot be solved in the presence of Byzantine failure(s).

Why?

Uniform DC

G. Le Lann UBIROADS Tutorial, July 2007 10

• Stated as a generic problem, i.e. does not depend on application or
operational semantics (e.g., the “meanings” of values in set V)

• May be viewed as a system-level problem (e.g., middleware level)
• Therefore, is not equivalent to “agent-based” or AI or control

theory problems (e.g., sensor fusion, planning, etc.)

In distributed systems, a (Uniform) DC algorithm is an
essential “building block” that:
(1) supports any kind of system-wide decision process
(semantics-free),
(2) handles/masks “undesired” events (accidental failures,
variable delays, malicious “attacks”) that cannot be dealt with by
application level solutions.

(Uniform) DC

G. Le Lann UBIROADS Tutorial, July 2007 11

1. System models

Synchrony
– message latency is bounded, bounds are known,
– processing times are bounded, bounds are known,
– processes have synchronized clocks.

A DC algorithm can use these bounds (via timers) and/or
global time

Asynchrony
– no assumptions.

A DC algorithm can only rest on occurrence of events
(incoming messages)

Partial synchrony or augmented asynchrony
– some assumptions.

Essential models (assumptions)

G. Le Lann UBIROADS Tutorial, July 2007 12

R
ound

Lock-Step Round Model

• A DC algorithm comprises a sequence of rounds.

• Round # r at process p consists of:
– Send/multicast a message containing vp(r-1) to other processes,

vp(r-1) being the value computed by p at the end of round # r-1,
– Receive messages from current round,
– Do some local computation (either vp(r) or Decide (and Halt)).

Synchronous model: A round is “communication-closed”, i.e.
messages sent within a round are received within that round by all
correct processes.

Asynchronous model: Rounds are not “communication-closed”.

G. Le Lann UBIROADS Tutorial, July 2007 13

R
ound

Types of Round Models
(communication patterns)

n-to-n (peer-to-peer)

n-to-1 & 1-to-n (2 successive rounds), explicit “rotating
coordinator”

Typically: process k mod n is round k’s coordinator.

n-to-1 & 1-to-n (2 successive rounds), implicit “rotating
coordinator”

Eventual identical “discovery” of which process is the current
coordinator (unchanged unless it is suspected of having failed).

G. Le Lann UBIROADS Tutorial, July 2007 14

R
ound

DC Algorithms

Symmetric: all rounds are type

Asymmetric: all rounds are type or type

Hybrid: rounds of different types alternate

Three common “choice” schemes for selecting a value in a vector:

• Most frequent
• Simple functions (min, max, …) on ordered sets
• Reliance on a (rotating) “coordinator”

G. Le Lann UBIROADS Tutorial, July 2007 15

R
ound

An example of symmetric DC assuming synchrony (round
duration Δ) and crash failures (f < n)

Set V is totally ordered. Round number denoted r.
Process p: vp ≡ initial value, Vp ≡ decision value (final).

prev(p) ⊥ Vp vp

when r = 1, 2, …, f+1 do
begin_round

if {prev(p) ≠ Vp} then foreach j ≠ p: send Vp to j endif;
prev(p) Vp;
record values received during r in set rec_from(r) until timeout Δ;
if {rec_from(r) ≠ ∅} then Vp min [{Vp} ∪ rec_from(r)] endif;

end_round
return Vp

G. Le Lann UBIROADS Tutorial, July 2007 16

Works for up to f < n/2 crashes
1

2
3

4

• Processes are numbered 1, 2, …, n

• They execute asynchronous rounds

• In round r , the coordinator is
process (r mod n)

Solving Consensus using a type Rotating Coordinator Algorithm
assuming asynchrony

• In round r, the coordinator:
- tries to impose its estimate as the consensus value
- succeeds if it does not crash and it is not suspected

G. Le Lann UBIROADS Tutorial, July 2007 17

Synchrony and reliable communications

Time complexity (lower bound): f+1 rounds

DC under crash/omission failures: feasible if f < n

Uniform DC under crash failures: feasible if f < n

Uniform DC under omission failures: feasible if f < n/2

Weak DC under Byzantine failures: feasible if f < n/3

(Weak Validity: if all correct processes propose the same value v,
then v is the value decided by every correct process)

Essential results

G. Le Lann UBIROADS Tutorial, July 2007 18

Why is it easy?

Physical time can be used to know when to stop waiting for
(missing) messages (re. variable Δ in the example algorithm).

• Bad news:
“It is impossible or inefficient to implement the synchronous
model in many types of distributed systems”, Nancy Lynch,
1996.

• Stated differently:
Coverage of assumptions regarding upper bounds on delays

(computations, communications) is not high enough in many real
settings probability of violating Validity and/or Agreement is
too high.

Assuming synchrony usually leads to poor performance.

Hence the relevance of other models …

DC and synchronous models

G. Le Lann UBIROADS Tutorial, July 2007 19

FLP Impossibility Result

• [Fischer, Lynch, Paterson, J. of ACM, 1985] proved the
following: There is no deterministic solution for DC in
asynchronous systems in the presence of one faulty process.

• Proof works even for very limited failures:
– Communications are reliable.
– At most one process ever fails, and everyone knows this.
– The process may simply stop, without warning.*

Two ways out:Two ways out:
Weaken the DC problem Weaken the DC problem stochastic variationsstochastic variations
Consider partial synchrony, or augmented asynchronyConsider partial synchrony, or augmented asynchrony

* possibly in the midst of broadcasting …

G. Le Lann UBIROADS Tutorial, July 2007 20

Round-based algorithms. Rounds are not communication-closed:
a message received in round r may have been sent in round r’ < r

Round r terminates (no more waiting) when n - f messages
timestamped #r have been received.

Duration of a round is not determined solely by message transit
delays, depends on failure models to be tolerated.

Notion of “stabilization”: during a stable period, assumptions
stated in a DC specification are not violated; namely, failures
(that may occur) are “no worse” than those postulated.

A system may alternate between stable periods and unstable
periods, or may initially enter an unstable period, up to some
time t (GST), after which it enters a stable period forever.

Time complexity (lower bound): f+1 “stable” rounds (e.g.,
possibly after GST).

Non Synchronous DC

G. Le Lann UBIROADS Tutorial, July 2007 21

Limited information on upper bounds (e.g., duration of
computations performed by some processes) is available:

- Time bounds hold from time 0, or
- Time bounds hold only after GST, GST unknown.

Crash, omission, timing, process failures are accommodated.

Asymmetric (type) algorithms ([Dwork, Lynch, Stockmeyer, 1988],
[Lamport, 1989]):

Keep trying to choose a leader, who tries to coordinate agreement.
Many attempts can fail.
Once system stabilizes (possibly more than once), unique leader is

chosen, coordinates agreement.

The tricky part:
Ensuring failed attempts don’t lead to inconsistent decisions.

G. Le Lann UBIROADS Tutorial, July 2007 22

Ratio upper bound/lower bound Θ is known for some delays
the Θ–Model [Le Lann, Schmid, 2003]

Crash, omission, timing, process failures are accommodated.
Interesting feature with many systems: Θ is not violated when

(postulated) upper bound is violated.
Of interest for safety-critical applications.

Unreliable Failure Detectors [Chandra-Hadzilacos-Toueg, 1996]

An FD is a distributed oracle that provides hints about the operational
status of processes. LS: list of suspected processes at every
process. However, hints may be incorrect.

Crash process failures are accommodated.

G. Le Lann UBIROADS Tutorial, July 2007 23

FD defined after abstract properties
• Strong Completeness

– Eventually, every process that crashes is permanently suspected by
every correct process

• Weak Completeness
– Eventually, every process that crashes is permanently suspected by

some correct process

• Strong Accuracy
– No process is suspected before it crashes

• Weak Accuracy
– Some correct process is never suspected

• Eventual Strong Accuracy
– There is a time after which correct processes are not suspected by

any correct process
• Eventual Weak Accuracy

– There is a time after which some correct process is never suspected
by any correct process.

G. Le Lann UBIROADS Tutorial, July 2007 24

Failure Detectors Classes

Strong

Weak

Strong Weak Eventual Strong Eventual Weak

Accuracy
Completeness

Perfect
P

Q

Strong
S

Weak
W

Eventually Perfect
◊P

◊Q

Eventually Strong
◊S

Eventually Weak
◊W

◊S: Weakest FD for solving DC

G. Le Lann UBIROADS Tutorial, July 2007 25

Code for process pk 1 ≤ k ≤ n

estk ← initial value vk;
for r from 1 to f+1 do
if (r = k) then % pk is the coordinator of round k %

multicast <estk>
else wait until <estr> is received from pr or pr ∈ LS(pk)

% pr suspected by pk %
if <estr> received from pr then estk ← estr
endif

endif
endfor
decide estk

Solving DC using ◊S

G. Le Lann UBIROADS Tutorial, July 2007 26

Challenges
New frontiers in distributed computing theory

• Transient failure models
Lower bounds for permanent failure models to be revisited (too

much pessimistic).

• Timeliness (real-time) properties
Upper bounds (physical time) for executing DC fully

“Decision must be made by some strict deadline”
replaces “Eventual Termination”.

• Mobile wireless networks
Much worse behaved than traditional wired networks:

• No one knows who the participating processes are.
• The set of participants may change.
• Mobility models?
• Unreliable communications.

G. Le Lann UBIROADS Tutorial, July 2007 27

Some early results:

[DLS 1988], [Lamport 1989], assume that eventually there is a
connected majority of processes.

[Santoro, Widmayer, 1989/90]: DC is impossible if as few as n-1 of
the n2 possible messages sent in a round can be lost.

Wireless ad hoc networks

Wireless networks with common space/time referential (GPS, …)

Hybrid networks:
wireless (ad hoc) nets interconnected via a wired (backbone) net.

The same categorization applies to VANETs and ITS.
DC solutions for such systems apply accordinglyDC solutions for such systems apply accordingly.

DC and mobile networks

G. Le Lann UBIROADS Tutorial, July 2007 28

II.1. Some recent results on DC in mobile networks

II.2. DC in VANETs/ITS

(3 safety-critical scenarios)

Part II

G. Le Lann UBIROADS Tutorial, July 2007 29

II.1 – DC in mobile networks

1) Wireless ad hoc networks

Virtual Mobile NodesVirtual Mobile Nodes [Dolev et al., 2004]:
Derived from the idea of “compulsory” protocols, which

require a subset of mobile nodes to move in a specific manner.
Apply this constraint to abstract nodes (emulated by real nodes)

virtual mobile nodes (VMNs) that move in a predetermined,
predictable manner, possibly completely uncorrelated with the
motion of real nodes.

a VMN network may be connected even when the network of
mobile nodes is disconnected.

Hence, group communication is feasible within a network of
VMNs DC can be solved (under conditions valid with wired
networks, if so desired—depends on imposed VMN motion).

G. Le Lann UBIROADS Tutorial, July 2007 30

II.1 – DC in mobile networks

2) Wireless networks with geographical referential

Collision DetectorsCollision Detectors [Chockler et al., 2005]:
Single-hop MAC layer collision detectors (synchrony

assumptions), crash failures (except while broadcasting)
single-hop DC solved in up to 5 rounds of 2 phases each

(propose, veto).
Multi-hop DC: non-overlapping grid squares (global

knowledge), each node knows its approximate location in the
grid; step 1: single-hop DC is conducted in each grid square;
step 2: all nodes gossip the grid square consensus values;
it is proved that every correct node eventually receives a value
for every grid square decision is possible.

G. Le Lann UBIROADS Tutorial, July 2007 31

II.1 – DC in mobile networks

3) Wireless (ad hoc) networks

Overlays, clusteringOverlays, clustering, , dominating setsdominating sets
Network of dynamic cells, each cell “controlled” by a mobile

node (“leader”), with companion backups.
A node can move within a cell or between two cells.
Any node—hence a leader—may fail or become unreachable

leader (and backups) election required within a cell.
DC achievable:

within a cell (leader is the (“rotating”) coordinator),
across cells (among cell leaders): DC based on knowledge

of current virtual topology (ensuring that the network of leaders
remains connected).

G. Le Lann UBIROADS Tutorial, July 2007 32

II.1 – DC in mobile networks

4) Hybrid networks (wired/wireless)

Overlays, clusteringOverlays, clustering, , dominating setsdominating sets
Network of dynamic cells, each “controlled” by a base station.
A node can move within a cell or between two cells.
Possible assumption: a base station does not fail redundant

(diversified) design & implementation & proofs required.
Other possible assumption: a base station may fail group

membership is needed among base stations.*
DC achievable:

within a cell (base station is the (non “rotating” or
“rotating”) coordinator),

across cells (among base stations strictly identical to DC
in wired networks).

* Group membership is as hard as DC.

G. Le Lann UBIROADS Tutorial, July 2007 33

Some essential features

Motion of vehicles is
constrained (parkings,
streets, roads, highways)

Location awareness,
positioning, global time
referential (GPS, Galileo,
ground-based infrastructures).

Trajectories of vehicles can be monitored and enforced with high
precision (via on-board or roadside equipments).

Technologies are progressing constantly.

II.2 – DC in VANETs/ITS

G. Le Lann UBIROADS Tutorial, July 2007 34

II.2 – DC in VANETs/ITS
ESA, 2007: Future missions involving formation flying will require

very accurate measurements of the distances between spacecraft.
An ESA-funded study of high-precision optical metrology has
developed prototype systems capable of relative positional
accuracies of the order of 0.1 millimeter over distances of tens or
hundreds of meters.

For most safety-critical scenarios, vehicles are in close vicinity of
each other one may assume (i) 1-hop radio links, (ii) synchrony.

Moreover, all future vehicles will be equipped with sensors, radars,
etc. there is some additional “network” (pure signaling) that is
separate from a radio-based message passing network transient
communication failures can be compensated.

Note: The coincidental failure of both networks for a given vehicle is
to be proved extremely unlikely (this entails on-board redundancy).
A vehicle whose all equipments are down is still detectable by
neighboring vehicles.

G. Le Lann UBIROADS Tutorial, July 2007 35

II.2 – DC in VANETs/ITS

Given the above:
In most safety-critical scenarios, it is impossible to experience
unbounded communication delays and/or “long lasting” network(s)
partitioning.
For other scenarios, availability of accurate space-time coordinates
(and control laws) permits to compensate for communication failures
and/or unbounded communication delays.

Consequently:
Impossibility results for Impossibility results for ““traditionaltraditional”” DC DC

do/may not apply in many (future) do/may not apply in many (future) VANETsVANETs/ITS./ITS.

Conversely:
Safety properties must hold for some VANETs/ITS applications,
not addressed in the traditional DC literature (faultfault--tolerance does tolerance does
not imply safetynot imply safety).

G. Le Lann UBIROADS Tutorial, July 2007 36

II.2 – DC in VANETs/ITS

What about “Byzantine drivers”? It is demonstrably possible to
build provably correct Byzantine fault-tolerant embedded systems,
to be installed on vehicles. But a driver may behave arbitrarily
abnormally, no matter what.

Societal and legal issues interfere with technical/scientific issues.*
For example, is vehicle driving bound to resemble airplane piloting?
Namely, when it is provably safer to rely on embedded dependable
systems, should it be made physically impossible for a driver to
“intervene”? Who is to be held responsible in case of recurrent
accidents:
• A safety regulation authority which has been unacceptably “conservative”?
• A company which produces a flawed implementation of a system whose

design has been proved correct?
• A car maker which has contracted such a company?

* Security issues left out, due to lack of time.

G. Le Lann UBIROADS Tutorial, July 2007 37

II.2 – DC & On-Ramp Merging

G. Le Lann UBIROADS Tutorial, July 2007 38

Ramp Metering

Current solutions not efficient enough.
On-ramp merging should be possible at “high” speed,

under high density traffic conditions.

G. Le Lann UBIROADS Tutorial, July 2007 39

II.2 – DC & On-Ramp Merging
E: entrant car.
SG: group of vehicles on highway, within mutual radio range, which

are at least s seconds (or m meters) away from the merging ramp
endpoint at time t. Safety regulations ∃ lower bound for s.

G ⊂ SG, vehicles on rightmost lane L.
G’⊂ SG, vehicles on all lanes, except rightmost one.
A vehicle has a unique name id(x) for vehicle x.

DC initiated by E at time t:
Bcast M ≡ {start DC (ORM, id(E), …)}

Cars ∈ G’: starting when M received, merging with lane L is
prohibited until DC terminates (they need not participate in DC).

Cars ∈ {E ∪ G}: must agree on “where” to create a slot for E in
lane L they run DC.

Which DC algorithm?Which DC algorithm?

G. Le Lann UBIROADS Tutorial, July 2007 40

II.2 – DC & On-Ramp Merging

Let w denote the “winning” car (slot is created just behind)

• Car E appears to be a natural “coordinator” DC is of type
asymmetric, based on the non rotating coordinator scheme (?)

• Non rotating? If car E equipment fails while running DC, and E is
aware, car E is stopped on the ramp.

• The opposite scenario is safety-critical: car E equipment fails while
running DC, but E is unaware car E keeps proceeding with
merging, despite the fact that cars in lane L may believe that E has
stopped on the ramp (since they don’t hear from E).

• Therefore, once initiated by E, DC must be executed fully by all
cars involved, no matter what, i.e. there must be an agreement on
which car is w, ensuring that a slot is created for E.

G. Le Lann UBIROADS Tutorial, July 2007 41

II.2 – DC & On-Ramp Merging

• But E must be “replaced” in the safety-critical scenario
DC cannot be based on the non rotating coordinator scheme!

• The group of cars involved is unknown at time t, and learning
about the exact group membership may conflict with imposed
reaction times a rotating coordinator scheme is out of question

DC can only be a symmetric algorithm.

• Shortly after time t, some number (?) of cars in (unknown) set G
will have received M. Every such car must be able to identify a
convenient subgroup in charge of executing DC, subgroup denoted
Γ(x) for car x

The choice rule (in DC algorithm) must ensure that
any Γ(x) is sufficient approximate knowledge.

G. Le Lann UBIROADS Tutorial, July 2007 42

II.2 – DC & On-Ramp Merging

• We need to have at least n cars involved in every DC round
size of any set Γ(x) has lower bound (n + f).

Note the “natural” self-adaptive phenomenon:
This lower bound is not met when there are “not enough” cars in set G,

in which case there are many “natural” slots in L for car E.

• Cars within radio range synchronous DC.
lower bound: s > (f+1) Δ + σ

 Δ :: round duration σ :: safety margin

• Failures can be crash or omission. We want Uniform DC
f < n/2.

• Considering IEEE 802.11a broadcast mode, expectable values for
n in the order of 5 to 10, and σ = 2 (f+1) Δ, s’ lower bound is less
than 1 second m less than 40 meters for freeway speed in the
order of 140 km/h, which is within radio range capabilities.

G. Le Lann UBIROADS Tutorial, July 2007 43

II.2 – DC & On-Ramp Merging

• ∀x ∈ G, round 1 at car x is triggered upon receiving M from E.

• Every car wants to be the “winner” w initial value sent out by
car x is id(x).

• The biggest id received in a round by a car is the provisional
winner (one could have chosen the smallest).

• Group Γ for a car comprises the n-1+f other highest id’s received.
At round r, DC happens to be run by E ∪ {Γ’}, Γ’ being the union of

all Γs “in use” at round r (Γ’ is unknown to every single car).

• At the end of round 1, each car (x) computes its own vision of:
(1) provisional winning id, denoted w’(x), (2) set Γ(x).

• If not in set Γ(x), car x stops participating in DC (safe since there
are at least n other cars involved, and f < n/2).

G. Le Lann UBIROADS Tutorial, July 2007 44

II.2 – DC & On-Ramp Merging

Vx w’(x)
when r = 2, …, f+1 do
begin_round

foreach j ≠ x: send Vx to j
record values and id’s received during r
in set rec_from(r) until timeout Δ;
Γ(x) (n-1+f) highest id’s in set rec_from(r)
Vx max [{Vx} ∪ rec_from(r)];

end_round
return Vx

E merges between car w E merges between car w
[which may accelerate [which may accelerate
mildly] and car that mildly] and car that
follows w [which slows follows w [which slows
down, if necessary]down, if necessary]

Final value Vx

is id(w)
w = “winning” car

DC code for rounds 2, …

j: mute variable denoting every member of set {E ∪ Γ(x)}

G. Le Lann UBIROADS Tutorial, July 2007 45

II.2 – DC & On-Ramp Merging
• If required, one may consider a Byzantine fault-tolerant DC

algorithm.
• Under the synchronous condition (f < n/3), safety is ensured

despite up to f arbitrarily malicious cars (masquerading, cheating,
etc.). For example, a group Γ of 6 cars (E being the 7th one) would
be needed for tolerating up to 2 Byzantine cars (none of which can
be w or w’s successor).

• It is possible to envision future cars equipped with visual devices
that would “display” DC based decisions (drivers can learn about
decisions made by other cars’ on-board systems).

G. Le Lann UBIROADS Tutorial, July 2007 46

Positioning
system

(e.g., GPS&GIS
map)

In-Vehicle
Sensors

(e.g.,
braking,

speed, etc.)

Communications
(Transmitter,

Receiver)

Computations
(Dynamic Algorithms,

DC, …)

Driver
Vehicle

Interface

II.2 – DC & Safe Intersections

NO

S
I
G
N
A
L
I
N
G

G. Le Lann UBIROADS Tutorial, July 2007 47

II.2 – DC & Safe Intersections

G

R

B

radio
network

no network partitioning
and 1 hop between cars

synchrony assumptionssynchrony assumptions

n = 3; assume each car hears
from itself & from only 1
other car

f = 1 (omission failure)f = 1 (omission failure)

Can Uniform DC be solved?

G. Le Lann UBIROADS Tutorial, July 2007 48

II.2 – DC & Safe Intersections

G: initial value = R
Bcast “R”
receives “R” & “B”
value1 “B > R”

R: initial value = G
Bcast “G”
receives “G” & “R”
value1 “G > R”

B: initial value = B
Bcast “B”
receives “B” & “G”
value1 “B > G”

Round 1

(choice rule on car id’s is « min »)
Round 2
Since 2 cars Bcast “B > ”, value2 “B first” everywhere.
Since G appears in 2 value1 messages, value2 “G second” everywhere
Since f = 1, this is the last round Decision = value2 everywhere

car B crosses 1st, car G crosses 2nd, car R crosses 3rd.

G. Le Lann UBIROADS Tutorial, July 2007 49

Use right-of-way more efficiently and economically
Update to satisfy the dominant flow of traffic

II.2 – DC & Reversible Lane Control

G. Le Lann UBIROADS Tutorial, July 2007 50

II.2 – DC & Reversible Lane Control

Implies Situational Awareness, i.e. multiple monitoring stations

Currently:
• A few stations
• Human control

G. Le Lann UBIROADS Tutorial, July 2007 51

II.2 – DC & Reversible Lane Control

DC with current systems?
Helps in improving safety and efficiency (DC solved with
“traditional” algorithms (non mobile stations only are involved)).

Future systems:
• Many static and mobile stations (scattered along highways/roads)
• Fully automated (human supervision ≠ human made decisions)

Stations in charge of monitoring a given set of overlapping segments
must reach agreement on various decisions, such as, e.g.:

G. Le Lann UBIROADS Tutorial, July 2007 52

II.2 – DC & Reversible Lane Control

• Should traffic flows be switched to a new mode?
(yes/no Binary Consensus:: initial values are 0 and 1)

• If yes, which lane(s) should be reversed?
• If more than 1 lane at stake, all at once, or one after the other?
• If the latter, in which order, which latency between 2 given

consecutive reversals?
• …/…

These are examples of scenarios where DC arises on hybrid
networks. Note that some mobile stations might be in charge of
enacting decisions made (such as switching traffic lights), such
decisions being highly safety-critical.

G. Le Lann UBIROADS Tutorial, July 2007 53

The End

Of course, it is possible to derive “polarized” DC
algorithms from “plain” DC ones.

“Polarization” consists in applying a “choice function” or
a “filter” to the value vector built at the end of a round.

Consequently, rather than ending up with a decision
which is any initial proposed value, one may bias the
decision, according to application/operational
semantics.

See, e.g., the On-Ramp Merging scenario, where the
choice of which car is the “winner” may be
“optimized” (especially useful when many cars want to
merge).

	Distributed System?
	A distributed system (entities perform different functions)
	Lock-Step Round Model
	Types of Round Models�(communication patterns)
	DC Algorithms
	An example of symmetric DC assuming synchrony (round duration D) and crash failures (f < n)
	DC and synchronous models
	FLP Impossibility Result
	FD defined after abstract properties
	Failure Detectors Classes
	Challenges� New frontiers in distributed computing theory
	DC and mobile networks
	II.1 – DC in mobile networks
	II.1 – DC in mobile networks
	II.1 – DC in mobile networks
	II.1 – DC in mobile networks
	II.2 – DC in VANETs/ITS
	II.2 – DC in VANETs/ITS
	II.2 – DC in VANETs/ITS
	Ramp Metering

