SHASHA & LAZERE: Natural Computing

Future of Computing: inspiration from nature

Dennis Shasha
Three years ago, Cathy Lazere and I began a study of computing on the edge of the possible.
 We expected to find scientists who would describe new computer architectures and a variety of new software techniques. They did just that. They described ways of controlling spacecraft from millions of miles away, embedding intelligence in smart bacteria, or building computers to run as fast as a million desktops combined. They work on the most challenging applications in science, engineering, and even finance. We expected this diversity, but we didn’t expect the common vision that has emerged across all of these fields: the future of computing is a synthesis with nature.

TTTH
The New Nature of Algorithms

Nature and biological thinking have inspired new ways to do computing. For example, computers control spacecraft throughout flight and after landing. Manual repair of onboard hardware, once in flight, is impractical to the point of impossibility; but innovative spacecraft engineers propose designing machines that will repair themselves. If you think about your first programming course, you will appreciate what a change in thinking this approach represents. Instead of ensuring that every case is covered in your software design, you would design an intelligent machine that will adapt itself to possibilities that you don’t know about and sometimes can’t even imagine.

In the process, the concept of “algorithm” -- a recipe for arriving at a correct answer to a question in guaranteed time on well-performing hardware – loses its central place. For one thing, the question may not be known or may be vague (survive and do your job). For another, the hardware may be damaged. Instead of an algorithm, there is an approach, evolutionary in inspiration (try, mutate, and evaluate, and repeat) and heuristic in guarantee (it will often work). The robots that carry out this approach will try to repair themselves and everything around them by what amounts to trial and error, but at electronic speed.

<http://cs.nyu.edu/cs/faculty/shasha/papers/quallsGenetic_algorithm.tif
Caption: The Basics of Genetic Algorithms. Design candidate solutions are changed by mutation and evaluated based on fitness to some task. Then the best (and some of the worst) are recombined to create a new candidate set, unless the candidate solution already meets all design constraints. Drawing by Aidan Daley.>

Can such an approach work in the real world? Does nuclear reactor design sound real enough? One of the people we interviewed was Louis Qualls who works at Oak Ridge National Laboratory. While much of what he does is classified, the approach and experiences are revealing. Qualls recalls designing a container for a spacecraft that also had to shield the spacecraft against gamma rays. The question was where to put the shielding material. There were effectively an infinite number of ways to make layers out of different materials. “The genetic algorithm said that putting the gamma shield in a thin layer in the middle yields the cheapest and lightest-weight solution,” Qualls told us. The shielding expert confirmed that this design could work. The genetic algorithm had discovered the solution by exploring thousands of possible designs.

 Surprisingly, evolutionary algorithms contribute to the health of human groups. Before he began using genetic algorithms, Qualls would take three weeks to come up with a preliminary design. Inevitably his design entailed compromises among design elements “and I made everybody real mad at me because nobody got what they wanted.” But when a genetic algorithm churns out 100 designs, the specialists begin to see a pattern of compromises. People’s attitudes improve. “The algorithm helps different subsystem experts understand the constraints of others,” says Qualls. As a result, there’s more cooperation among team members.

Further, unlike human designers, the genetic algorithm is willing to try designs very different from previous ones it has tried. The algorithm has no loyalty to historical designs. If you doubt that humans preserve their biases when technology changes, just remember how many years passed in the early 1900s before cars no longer looked like “horseless carriages.” Consider also that many recent business and technological innovations—express mail, microprocessors, and the Web—arose from people outside of the establishment who found better ways to perform existing services. The establishment was stuck in its initial design frame of mind.
Other people we have spoken to, who work in fields as far away as finance and space-exploring robots, mirror these experiences. When you need to explore an enormous and sometimes unknown search space, genetic algorithms along with a variety of other heuristic techniques (such as simulated annealing, gradient descent) can often find great designs or enable machines to repair themselves.

Computing on Natural Substrates

The fusion of nature with computing works in two directions. First, natural mechanisms such as evolution can be embedded in computer hardware and software as described above. But computational techniques can also be used to control nature. Consider viruses. Next to nuclear war, they constitute the most dangerous threat to human beings. Gaining immunity to viruses requires a slow-growing virus to use as an inoculant. Finding weak viruses is difficult when done by trial and error, as Jonas Salk discovered in the 1950s when he had to test the poliovirus on scores of monkeys.

Computer scientist Steve Skiena has designed viruses out of the DNA code itself. He makes use of the fact that the proteins, the virus produces, consist of amino acids and that each amino acid can be encoded by a variety of triplets of DNA bases. For example, GCT, GCC, GCA, and GCG all code for the simplest amino acid, alanine. Though multiple codings exist, it turns out that certain codons of a given amino acid are favored over others. The favoritism is species-specific. For example, in humans the GCC triplet is used 40% of the time for the amino acid alanine, making it by far the most popular choice. The more frequent triplets/codons translate to amino acids faster than the less frequent ones. So, making a gene with less popular codons means that the protein as a whole will be manufactured more slowly than otherwise, yielding a weakened virus that could work as an inoculant. It takes a pattern of thought consistently oriented towards optimization to conceive of designing an inefficient virus.

Skiena’s work shows how to change the speed of normal biological processes, but computer scientists have collaborated with biologists to develop entirely new computational substrates made of genetic soup. For example, Tom Knight, collaborating with Gerald Sussman and many talented students at MIT, has developed a concept of “biobricks” whereby logic gates can be implemented on top of synthesized promoter-gene constructs. The promise of computation at the subcellular level is that a little logic can interact with muscles or organs to repair injury or even enhance performance.

 Harnessing biological entities might strike most computer scientists as messy and imprecise. After all, cells die, proteins degrade, and many of us have bad memories from high school biology lab. But the potential benefits may outweigh this messiness. If we could compute with single-celled bacteria for example, billions would fit in a small dish and their entire power requirements would consist of a little sugar water. It might seem impractical to compute with such things until we look at the existence proofs nature presents. As Sussman observes: “The precision and reliability of embryogenesis in the face of constantly dying cells, their replacements, and changes in the environment—is enough to make any engineer green with envy.”

The Future is Open

Designing self-adapting computing platforms using evolutionary and other heuristic approaches is in its infancy. Yet autonomous computing is a natural outgrowth of a world in which computational devices are cheap, chatty, and increasingly naturalistic. Writing the seed programs for such autonomous swarms will require great care to ensure that they help the world instead of harming it. The baton will soon be yours.

Further Reading

Koza, John R., F. H. Bennett III, D. Andre, and M. A. Keane. Genetic Programming III—Darwinian Invention and Problem Solving. San Francisco: Morgan Kaufman, 1999.

Stoica, Adrian, Ricardo Zebulum, Didier Keymeulen, Raoul Tawel, Taher Daud, and Anil Thakoor. “Reconfigurable VLSI Architectures for Evolvable Hardware: From Experimental Field Programmable Transistor Arrays to Evolution-Oriented Chips.” IEEE Transactions on Very Large Scale Integration Systems 9, no. 1 (2001): 227–32.

Mason, Lee, David Poston, and Louis Qualls. “System Concepts for Affordable Fission Surface Power.” Paper presented at the Space Technology and Applications International Forum (STAIF–2008), sponsored by the Institute for Space and Nuclear Power Studies at the University of New Mexico, Albuquerque, NM, February 10–14, 2008.

Adleman, Leonard M. “Computing with DNA.” Scientific American, August 1998, 54–61.
Coleman, J. R., D. Papamichail, S. Skiena, B. Futcher, E. Wimmer, and S. Mueller. “Virus Attenuation by Genome-Scale Changes in Codon Pair Bias.” Science 320 (2008): 1784–87.

Weiss, Ron, Thomas F. Knight Jr., and Gerald Sussman. “Genetic Process Engineering.” Chapter 4 in Cellular Computing, edited by Martyn Amos. Oxford: Oxford University Press, 2004.

Dennis Shasha and Cathy Lazere, Natural Computing: DNA, Quantum Bits, and the Future of Smart Machines W. W. Norton, 2010, 288 pages ISBN-10: 0393336832 ISBN-13: 978-0393336832
AUTHOR’S BIO

Dennis Shasha is a professor of computer science at the Courant Institute of New York University where he works with biologists on pattern discovery for microarrays, combinatorial design, network inference, and protein docking; with physicists, musicians, and financial people on algorithms for time series; and on database applications in untrusted environments. He has written several books and co-authored over sixty journal papers, seventy conference papers, and fifteen patents. He has written the puzzle column for various publications including Scientific American.

�I think that it will be better to change the beginning to make the article appear to the student readers more than a book review. What is your opinion?

�May be the inclusion of a section name here will be good for readability.

�This portion is really well-written and convincing

�Can the figure be redrawn? It’s resolution is too low to look good into a magazine article. We can redraw it with your permission. SURE. PLEASE GO AHEAD

�I have shortened the bio as XRDS prefer to include 2-3 lines as author’s details. Is the mini version ok for you?

2

