Heuristics

Lab Section 7

« Scrape the site

« and find all the restaurants in Brooklyn that have a critical problem
(CRITICAL FLAG == Ciritical)

* [f you don’t know about python-requests or BeautifulSoup, You can
follow the next slides for some help.

* You can not use the selenium tool

* You need to also output the request string that you modify/used to
get all rows.

* You can not download the data.

https://data.cityofnewyork.us/Health/DOHMH-New-York-City-Restaurant-Inspection-Results/43nn-pn8j

* We will explore these libraries:

* A brief intro to client-server architecture
* Briefly discuss HTTP

* Web Scraping

« HTML

* Requests library

 Beautiful soup library

« Simple exercise

e Client — Server architecture forms the basis of all of the internet and
its associated services.

* Cloud service providers such as AWS, Azure etc and loT devices are
modern-day examples that primarily utilize the client-server
architecture.

e Consists of two entities — Servers and Clients.

* SERVER
* A server is the entity offering the service.

* It could be any service — ranging in web hosting, processing, storage
etc.

* CLIENT
* A client is the one receiving the service.

* A client is usually a recipient connected to the service over the
internet.

Client — Server Architecture

SERVER SIDE |

SERVER CLUSTER

INTERNET

'Y
¥

| CLIENT SIDE |

0 & &
0 & &

@ANRZ29 — All Rights Reserved

Client-Server — Requests/Response

* Different protocols to do requests/response such as text HTTP or file
storage FTP

* The Hypertext Transfer Protocol (HTTP) is a request/response protocol
based on the client-server architecture for exchanging request and
response messages.

* HTTP clients such as web browsers or mobile applications send requests
to an HTTP server, and the server responds to them with messages
containing a status line, a header, and a body

 Status line or HTTP response status codes indicate whether a specific HTTP request
has been successfully completed or not.

* Aresponse header is an HTTP header that can be used in an HTTP response and
that doesn't relate to the content of the message. Response headers, like Age,
Location or Server are used to give a more detailed context of the response.

« HTTP Message Body is the data bytes transmitted in an HTTP transaction
message.

* The internet is an absolutely massive source of data — data that we can
access using web scraping and Python!

* In fact, web scraping is often the only way we can access data.

* There is a lot of information out there that isn’t available in convenient
CSV exports or easy-to-connect APIs. And websites themselves are often
valuable sources of data — consider, for example, the kinds of analysis
you could do if you could download every post on a web forum.

* To access those sorts of on-page datasets, we’ll have to use web scraping.
* Today’s assignment is also on Web scraping.

 When we visit a web page, our web browser makes a request (HTTP request) to
a web server.

* This request is called a GET request (HTTP GET request), since we’re getting page/files
from the server.

. ;cl'he server then sends back files that tell our browser how to render the page
or us.

* These files will typically include:

. — the main content of the page.
. — used to add styling to make the page look nicer.
e |5 — Javascript files add interactivity to web pages.

* Images — image formats, such as JPG and PNG, allow web pages to show
pictures.

After our browser receives all the files, it renders the page and displays it to us.

When we perform web scraping, we’re interested in the main content of the web
page, so we look primarily at the HTML.

10

https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript

* HyperText Markup Language (HTML) is the language in which web pages are
created in. HTML isn’t a programming language, like Python, though. It’s
a markup language that tells a browser how to display content.

 HTML has many functions that are similar to what you might find in a word
processor like Microsoft Word — it can make text bold, create paragraphs, and
SO on.

* HTML consists of elements called tags (opening <tag> and closing </tag>). The
most basic tag is the <html> tag. This tag tells the web browser that everything
inside of it is HTML.

* Right inside an HTML tag, we have two other tags: the head tag, and the body
tag.

* The main content of the web page goes into the body tag. The head tag
contains data about the title of the web page, and other information that
generally isn’t useful in web scraping:

11

<html>
<head>
</head>
<body>

Some tags related to content:
* p tag defines a paragraph.
* atag defines a hyperlink text.
* The href property of the tag determines where the link goes.
* div — indicates a division, or area, of the page.
* b — bolds any text inside.
* | — italicizes any text inside.
* table — creates a table.
e form — creates an input form.

</body>
</html>
Here is the full list of tags:

The tags elements also have relations (p arent,child sibling). with each other, html is the parent of body,
body and head are siblings and so on.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element

* Before we move into actual web scraping, let’s learn about the class and
id properties. These special properties give HTML elements names, and
make them easier to interact with when we’re scraping.

* One element can have multiple classes, and a class can be shared
between elements. Each element can only have one id, and an id can only
be used once on a page. Classes and ids are optional, and not all elements
will have them.

* Here is a paragraph with class and link with ID:
e <p class="bold italic">

» Learn Data Science
Online

o </p>

* The first thing we’ll need to do to scrape a web page is to download
the page. We can download pages using the Python requests library.

* The Requests library provides a simple API for interacting with HTTP
operations such as GET.

* The requests library will make a GET request to a web server, which will
download the HTML contents of a given web page for us

* The methods implemented in the Requests library execute HTTP
operations(GET) against a specific web server specified by its URL

* To install the requests library:
* pip install requests -- in windows
* pip3 install requests --in mac

14

* We use the get method to request data from a specific web server. Let’s
try it out:
* import requests
 url ="https://dataquestio.github.io/web-scraping-pages/simple.html"
e page = requests.get(url)
 print('Response Code:', page.status_code)
 print('Response Headers:\n', page.headers)
 print('Response Content:\n', page.content)

* Running the code above outputs a status code of 200, which indicates
that the URL is reachable. Then it returns the page’s header data
followed by the page’s content (page HTML).

* We won'’t fully dive into status codes here, but a status code starting with a 2
generally indicates success and a code starting with a 4 or a 5 indicates an error.

* We will also not go into headers as they are mostly unrelated to the content

15

* We can parse the content ourselves, but then we have to:

* Create a structure that will enable the parsing of content in a systematic fashion,
such as:
 finding all paragraph
* Finding the parent of the second paragraph
* Finding all tags with specific class or id

* To save us from this hassle, we have BeautifulSoup library — which creates a
parse tree for parsed pages that can be used to extract data from HTML in a
systematic fashion.

* To install it, use:

* pip install beautifulsoup4
e pip3 install beautifulsoup4

16

* To use the BeautifulSoup, we first have to import the library, and create
an instance of the BeautifulSoup class (object) to parse our document:

* from bs4 import BeautifulSoup
* soup = BeautifulSoup(page.content, 'html.parser’)

* Now you can perform actions on soup object by calling methods on it

 print out the HTML content of the page, formatted nicely, using the
prettify method on the BeautifulSoup object.

* print(soup.prettify())

* As all the tags are nested, we can move through the structure one level at
a time. We can first select all the elements at the top level of the page
using the children property of soup.

17

* Get the paragraph text in this page: https://dataquestio.github.io/web-
scraping-pages/simple.html using children

e children returns a list generator, so we need to call the list function on it

* html = list(soup.children)[2]
* Ignore the first two elements as they are not tag objects
* The third is a Tag object, which contains other nested tags.

* To select the item with the relevant tag, we could print the children of the
object at hand and find the location of the tag

* body = list(html.children)[3]
 p = list(body.children)[1]

* Once we've isolated the tag, we can use the get_text method to extract all of the
text inside the tag: print(p.get_text())

18

* What we did above was useful for figuring out how to navigate a page,
but it took a lot of commands to do something fairly simple.

* Finding all instances of a tag at once.

If we want to extract a single tag, we can instead use the find_all method, which
will find all the instances of a tag on a page.

Note that find_all returns a list, so we’ll have to loop through, or use list indexing,
it to extract text.

soup.find_all('p')[0].get_text()

If we only want to find the first instance of a tag, we can use the find method,
which will return a single BeautifulSoup object:

e soup.find('p")

19

Searching for tags by class and id
soup.find_all('p’, class_='outer-text’)

* Find all p tag elements with class of outer-text
soup.find_all(class_="outer-text")

* Find all elements with class of outer-text
soup.find_all(id="first")

* Find all elements with id of first

20

e Using CSS Selectors (pattern of elements and other terms)

We can also search for items using CSS selectors. These selectors are how
the CSS language allows developers to specify HTML tags to style. Here are
some examples:

* pa — finds all a tags inside of a p tag.

* body p a — finds all a tags inside of a p tag inside of a body tag.

* html body — finds all body tags inside of an html tag.

* p.outer-text — finds all p tags with a class of outer-text.

e p#first — finds all p tags with an id of first.

* body p.outer-text — finds any p tags with a class of outer-text inside of a body tag.

e soup.select("div p")

* Note that the select method above returns a list of BeautifulSoup objects,
just like find and find_all. What does it mean?

* Mean on each item we can call all beautiful soup methods. "

Exercise for Programming Novice

e Parse this website:

* And print Today’s day or night temperature.
* Also, print the weather describing text.

22

https://weather.com/weather/tenday/l/New+York+NY+USNY0996:1:US

End

	Heuristics
	For students with Programming background
	Today’s Lab
	Introduction – Client-Server
	Client-Server
	Client-Server
	Client-Server – Requests/Response
	What is HTTP?
	Web Scraping
	Web Scraping – Web page components
	HTML
	Typical HTML structure of a Web page
	HTML structure – Classes and IDs
	Python requests library
	Using GET Request
	BeautifulSoup Library
	BeautifulSoup Library – methods/use
	BeautifulSoup Library – methods/use
	BeautifulSoup Library – methods advanced
	BeautifulSoup Library – methods advanced
	BeautifulSoup Library – select
	Exercise for Programming Novice
	End

