
Heuristics
Lab Section 4

For students with Programming background

• Do the coin change exercises on last slide
• coins.py
• Send me code/output screenshots on different inputs
• Also send me an explanation of how did you approach/solve the

problem

Today’s Lab
• We will explore these exercises and concepts:
• modules
• Random library
• Recursion
• Fibonacci
• Factorial
• Coin change problem

Modules
• A module is a Python file that contains function

definitions and other statements
• Named just like a regular Python file:

myModule.py

• Python provides many useful modules for us
• We can also create our own if we want

Importing Modules
• To use a module, we must first import it

• Where does Python look for module files?

• In the current directory
• In a list of pre-defined directories

• These directories are where libraries like
random and calendar are stored

Importing Modules
• To import modules, use this command:

import moduleName

• This imports the entire module of that name
• Every single thing in the file is now available
• This includes functions, data types, constants, etc.

import

• To use the things we’ve imported this way, we need to append the
filename and a period to the front of its name (“moduleName.”)

• To access a function called function:
moduleName.function()

Calendar Module Example

import calendar

exCal = calendar.TextCalendar()

printCal = exCal.formatmonth(2016, 11)

print(printCal)

November 2016
Mo Tu We Th Fr Sa Su

1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

“Random” Numbers

Random Numbers

• Random numbers are useful for many things
• Like what?
• Cryptography
• Games of chance
• Procedural generation

• Minecraft levels, snowflakes in Frozen

• Random numbers generated by computers can only be pseudo
random

Pseudo Randomness

• “Anyone who considers arithmetical methods of
producing random digits is, of course, in a state of sin.”
– John von Neumann

• Pseudorandom appears to be random, but isn’t
• Mathematically generated, so it can’t be
• Called a Random Number Generator (RNG)

Seeding for Randomness

• The RNG isn’t truly random
• The computer uses a “seed” in an

attempt to be as random as possible

• By default, the seed is the system time
• Changes every time the program is run

• We can set our own seed
• Use the random.seed() function

Seeding for Randomness

• Same seed means same “random” numbers
• Good for testing, allow identical runs

random.seed(7)
random.seed("hello")

• 7 always gives .32, .15, .65, .07
• “hello” always gives .35, .66, .54, .13

Seeding with User Input

• Can allow the user to choose the seed
– Gives user more control over how program runs

random.seed(userSeedChoice)

• Can also explicitly seed the system time
– Give the seed() function None or nothing
random.seed(None)
random.seed()

How Seeds Work

• “Resets” the random number generator each time it is seeded

• Should only seed once per program
• Seeding and calling gives the same number

>>> random.seed(3)
>>> random.random() 0.23796462709189137
>>> random.seed(3)
>>> random.random() 0.23796462709189137

Generating Random Integers

• random.randrange()
• Works the same as normal range()

• Start, stop, and step

>>> random.seed("dog")
>>> random.randrange(2, 21, 4) 14
>>> random.randrange(2, 21, 4) 6
>>> random.randrange(2, 21, 4) 10
>>> random.randrange(2, 21, 4) 10
>>> random.randrange(6) 5
>>> random.randrange(6) 4

Generating Random Floats

• random.random()
• Returns a random float from 0.0 up to

(but not including) 1.0

>>> random.seed(201)
>>> random.random()

0.06710225875940379
>>> random.random()

0.3255995543326774
>>> random.random()

0.0036753697681032316
>>> random.random()

0.28279809896785435

Generating Random Options

• random.choice()
• Takes in a list, returns one of the options at random

>>> dogs = ["Yorkie", "Xolo", "Westie",
"Vizsla"]
>>> random.seed(11.2016)
>>> random.choice(dogs) 'Xolo'
>>> random.choice(dogs) 'Westie'
>>> random.choice(dogs) 'Vizsla'
>>> random.choice(dogs) 'Westie'

Shuffling Options randomly
• random.shuffle()
• Shuffling a list of objects means changing the position of the

elements of the sequence
• Takes in a list and shuffles it, it does not return anything but

change the original list

>>> dogs = ["Yorkie", "Xolo", "Westie", "Vizsla"]
>>> random.shuffle()
>>> print(dogs)
["Xolo", "Yorkie", "Vizsla“, "Westie“]

Generating PINs

• Write a program that stores usernames
and their PINs in a dictionary

• Ask the user for their username
• If it exists, tell them their pin code
• If it doesn’t exist, create one using random

• Tell the user what their new temporary pin is

• Pin should be between 0000 and 9999

Recursion
• Recursion is more than a programming topic, it is

– a method of problem solving
– a different way of thinking of problems - that’s the

tricky part :)

• Recursion can solve some problems better than
iterations (loops)

• Recursion can lead to elegant, simplistic and short
code (when used well)

• Recursion is technically simply:
– A function that calls itself (recursive function)

Recursion in Text Books

Recursion on google.com

Motivating Example
• A key in a box in a box in a box in a box…

Source: www.freecodecamp.org

http://www.freecodecamp.org/

Motivating Example

Source: www.freecodecamp.org

http://www.freecodecamp.org/

Motivating Example

Source: www.freecodecamp.org

http://www.freecodecamp.org/

Another Example

• How to find out how many people are in the queue in front of you?
• Assumptions:

– Your vision is poor. You can not look far
– You are not allowed to move
– You are only allowed to speak to the person in front of you or behind

you

Another Example

• Recursion is all about breaking a big
problem into smaller instances of the same
problem

• Each person can solve a small part of the
problem

• Solution:
– If there is someone in front of you, ask him/her

how many people are in front of him/her
• When he/she responds with a value N, then you will

answer N+1
– If there is nobody in front of you, you will

answer 0

Dry/Run Solution

• Suppose you are 4th in line, and you are
determining how many people are in front
to you

• Person 4: Tap person 3 shoulder, Ask
people in front and wait
– Person 3: Tap and ask person 2 and wait

• Person 2: Tap and ask person 1 and wait
– Person 1 : As person 1 is in front and no one is there to

tap their shoulder. Tell person behind it is 0
• Person 2: Tell person behind it is 0+1 = 1

– Person 3: Tell person behind it is 1+1 = 2
• Person 4: Just use the answer of person 3

to find the final answer, which is 2 +1 = 3

Components of Recursion

• If we analyze our solution, there were
two main things that were happening:
– Simplifying/Reducing the problem in terms

of itself and then solving it using same
logic (Recursive Case)

– Simplification doesn't go on forever, (Base
Case)

• It breaks/stop when encounter a problem
version which couldn’t be simplified further

Recursion algorithm
– Recursive Case: The set of instructions that will be used over and

over
• Divide: Split the problem into one or more simpler or smaller versions of

the problem
• Call: Recursive call to solve a simpler version of a problem
• Combine: Combining the solutions of the versions into a solution for the

problem/complex version

– Base Case: The point where you stop applying the recursive case,
the problem is simple enough to be solved directly

– In both cases, we return whatever answer we arrived on

– In the Queue Problem:
• Recursive case is: Tap person in front of you. Ask how many people are in

front of them. Wait for their answer and add 1
– Tap person in front of you (Divide)
– Ask how many people are in front of them (Call)
– Wait for their answer and add 1 (Combine)

• Base case is: Person 1. You do not execute the above
• If someone asked, tell them how many people are in front of you (return)

Recursion is Simple

Example:
def greeting():

print(“Hello World”)
greeting()

greeting()

Hello World
Hello World
Hello World
Hello World
.
.
.

Infinite loop
There is not way for the
function to stop
executing

Recursion is a function that calls itself

Recursion with Base Case

def greeting(repeat):
if repeat > 0:

print(“Hello World”, repeat)
greeting(repeat - 1)

greeting(3)

Hello World 3
Hello World 2
Hello World 1

Base case or
Exit condition

Every recursion must have a base case!

General case
(recursive function
call)

Simple Recursion (Illustration)

def greeting(repeat):
if repeat > 0:

print(“Hello World”, repeat)
greeting(repeat-1)

def greeting(repeat):
if repeat > 0:

print(“Hello World”, repeat)
greeting(repeat-1)

repeat=3

repeat=2

repeat=1

repeat=0

1

2

3

4
6

7
greeting(repeat)

repeat
repeat

greeting(repeat-1)

def greeting(repeat):
if repeat > 0:

print(“Hello World”, repeat)
greeting(repeat-1)

5

greeting(3)

8

Hello World 3
Hello World 2
Hello World 1

Simple Recursion (Illustration)

def greeting(repeat):
if repeat > 0:

greeting(repeat-1)
print(“Hello World”, repeat)

def greeting(repeat):
if repeat > 0:

greeting(repeat-1)
print(“Hello World”, repeat)

repeat=3

repeat=2

repeat=1

repeat=0

1

2

3

4
6

7
greeting(repeat)

repeat
greeting(repeat-1)

repeat

def greeting(repeat):
if repeat > 0:

greeting(repeat-1)
print(“Hello World”, repeat)

5

greeting(3)

8

Hello World 1
Hello World 2
Hello World 3

Solving a Simple Problem with
Recursion

• A classic example to solve using recursion
is factorial (n!)

• Factorial is the product of all positive
integers less-than or equal-to a given
integer

• Factorial of n! is defined as:
– If n > 0 then n! = 1 x 2 x 3 x 4 x 5 x …. x n
– If n = 0 then 0! = 1

Factorial: The Iterative Approach

• 4! = 4 x 3 x 2 x 1

• Iterative approach:

n = 4
factorial = 1
for i in range(1, n+1):

factorial = factorial * i

Factorial: The Recursive Approach

• 4! = 4 x 3 x 2 x 1

• Factorial is recursive by nature
– n! = n x (n -1)!
– 0! = 1

4! = 4 x 3!
= 4 x 3 x 2!
= 4 x 3 x 2 x 1!
= 4 x 3 x 2 x 1 x 0! Base case

Getting closer to
the base case…

Factorial using Recursion

def factorial(n):
if n == 0:

return 1

return n * factorial(n - 1)

Base caseGeneral case
(decrement n towards 0)

Factorial using Recursion
factorial(4)

return 4*factorial(3)

factorial(3)
return 3*factorial(2)

factorial(2)
return 2*factorial(1)

factorial(1)
return 1*factorial(0)

factorial(0)
return 1

def factorial(n):
if n == 0:

return 1
return n * factorial(n-1)

1

1*1 = 1

2*1 = 2

3*2 = 6

4*6=24

Factorial using Recursion

This is called Linear recursion

• factorial(4)
• 4*factorial(3)

• 3*factorial(2)
• 2*factorial(1)

• 1*factorial(0)
• 4*6

• 3*2
• 2*1

• 1*1

Fibonacci Series

• The Fibonacci series is named after the Italian
mathematician Leonardo Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

• Each number is the sum of the previous two
numbers

Fibonacci Series
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

• Mathematically, the sequence fib(n) can be defined as:

fib(n) = 0
fib(n) = 1

– If n = 0
– If n = 1
– If n > 1

then
then
then fib(n) = fib(n-1) + fib(n-2)

where n is the nth term of the sequence

• The Fibonacci sequence definition by default has a
recursion

• Exercise (ex_21.1): Write a recursive function for fib(n)
e.g. fib(6) => 8

Base case #1
Base case #2

Example: Fibonacci Series fib(5)

fib(1)fib(2)fib(2)

fib(0)fib(1)fib(1)fib(2)

01

1 1

01

1 1

2 1

fib(3)

1 0

fib(5) 5

3 2

fib(4) fib(3)

fib(1) fib(0)

This is called Binary recursion

fib(1) fib(0)

def fib(n):
if n == 0:

return 0
if n == 1:

return 1

return fib(n-1) + fib(n-2)

Efficiency of Recursion

• The execution takes long because it
computes the same values over and over

• Computation of fib(5) calls fib(2) three
times!

• Keeping previously calculated values,
such as fib(2), to avoid computing the
values more than once improves
algorithm performance

• This technique is called Memoization

To understand recursion, you must
first understand recursion!

Exercise: Fibonacci with
Memoization

• Modify the recursive function for fib(n)
so that it uses memoization

• Compare the execution time by using
import time

start = time.time()
print(fib(30))
end = time.time()
print(end - start)

Common Errors

• Infinite recursion:
– A function calling itself over and over with no end

in sight
– The computer needs some amount of memory for

book keeping (stack call) during each call
– After some number of calls, all available memory

for this purpose is exhausted
– Your program shuts down and reports a “stack

overflow”
• Causes:

– The arguments don’t get simpler or because a
special terminating case is missing

Reverse List

• Write a recursive function that
reverses a list

• For example:
print(recursive_reverse([1,2,3,4]))
[4,3,2,1]

coins.py
• Given an amount and the denominations of coins available, determine how

many ways change can be made for the amount. There is a limitless supply of
each coin type. Optional: Also, modify your code to print the denomination
used.

• Examples:
• Input: coins[] = [8, 3, 2 , 1], V = 15
• Output: There are 35 different ways to make sum using the given

denominations.
• Denomination used: All of them.
• Input: coins[] = {9, 1, 2, 3}, V = 4
• Output: There are 4 different ways to make sum using the given

denominations.
• Explanation: there are four solutions: {1, 1, 1, 1}, {1, 1, 2}, {2, 2}, {1, 3}.
• Denomination used: 1,2,3

coins.py
• Break the coin change problem
• C() –> count()
• C({1,2,3}, 5)
• / \

/ \
• C({1,2,3}, 2) C({1,2}, 5)

/ \ / \
• C({1,2,3}, -1) C({1,2}, 2) C({1,2}, 3) C({1}, 5)

/ \ / \ / \
/ \ / \ / \

• C({1,2},0) C({1},2) C({1,2},1) C({1},3) C({1}, 4) C({}, 5)
• / \ / \ /\ / \

/ \ / \ / \ / \
• C({1}, 3) C({}, 4)
• / \

/ \

coins.py
• Follow the below steps to Implement the idea:
• We have 2 choices for a coin of a particular denomination, either i) to

include, or ii) to exclude.
• If we are at coins[n-1], we can take as many instances of that coin (

unbounded inclusion) i.e count(coins, n, sum – coins[n-1]); then we
move to coins[n-2].

• After moving to coins[n-2], we can’t move back and can’t make choices
for coins[n-1] i.e count(coins, n-1, sum).

• Finally, as we have to find the total number of ways, so we will add these
2 possible choices, i.e count(coins, n, sum – coins[n-1]) + count(coins,
n-1, sum);

End

	Heuristics
	For students with Programming background
	Today’s Lab
	Modules
	Importing Modules
	Importing Modules
	import
	Calendar Module Example
	“Random” Numbers
	Random Numbers
	Pseudo Randomness
	Seeding for Randomness
	Seeding for Randomness
	Seeding with User Input
	How Seeds Work
	Generating Random Integers
	Generating Random Floats
	Generating Random Options
	Shuffling Options randomly
	Generating PINs
	Recursion
	Recursion in Text Books
	Recursion on google.com
	Motivating Example
	Motivating Example
	Motivating Example
	Another Example
	Another Example
	Dry/Run Solution
	Components of Recursion
	Recursion algorithm
	Recursion is Simple
	Recursion with Base Case
	Simple Recursion (Illustration)
	Simple Recursion (Illustration)
	Solving a Simple Problem with Recursion
	Factorial: The Iterative Approach
	Factorial: The Recursive Approach
	Factorial using Recursion
	Factorial using Recursion
	Factorial using Recursion
	Fibonacci Series
	Fibonacci Series
	Example: Fibonacci Series fib(5)
	Efficiency of Recursion
	To understand recursion, you must first understand recursion!
	Exercise: Fibonacci with Memoization
	Common Errors
	Reverse List
	Slide Number 50
	coins.py
	coins.py
	coins.py
	End

