
Heuristics
Lab Section 4



For students with Programming background

• Do the coin change exercises on last slide
• coins.py
• Send me code/output screenshots on different inputs
• Also send me an explanation of how did you approach/solve the 

problem



Today’s Lab
• We will explore these exercises and concepts:
• modules
• Random library
• Recursion
• Fibonacci 
• Factorial
• Coin change problem



Modules
• A module is a Python file that contains function 

definitions and other statements
• Named just like a regular Python file:

myModule.py

• Python provides many useful modules for us
• We can also create our own if we want



Importing Modules
• To use a module, we must first import it

• Where does Python look for module files?

• In the current directory
• In a list of pre-defined directories

• These directories are where libraries like 
random and calendar are stored



Importing Modules
• To import modules, use this command:

import moduleName

• This imports the entire module of that name
• Every single thing in the file is now available
• This includes functions, data types, constants, etc.



import

• To use the things we’ve imported this way, we need to append the 
filename and a period to the front of its name (“moduleName.”)

• To access a function called function:
moduleName.function()



Calendar Module Example

import calendar

exCal = calendar.TextCalendar()

printCal = exCal.formatmonth(2016, 11)

print(printCal)

November 2016
Mo Tu We Th Fr Sa Su

1  2  3  4  5  6
7  8  9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30



“Random” Numbers



Random Numbers

• Random numbers are useful for many things
• Like what?
• Cryptography
• Games of chance
• Procedural generation

• Minecraft levels, snowflakes in Frozen

• Random numbers generated by computers can only be pseudo 
random



Pseudo Randomness

• “Anyone who considers arithmetical methods of 
producing random digits is, of course, in a state of sin.” 
– John von Neumann

• Pseudorandom appears to be random, but isn’t
• Mathematically generated, so it can’t be
• Called a Random Number Generator (RNG)



Seeding for Randomness

• The RNG isn’t truly random
• The computer uses a “seed” in an 

attempt to be as random as possible

• By default, the seed is the system time
• Changes every time the program is run

• We can set our own seed
• Use the random.seed() function



Seeding for Randomness

• Same seed means same “random” numbers
• Good for testing, allow identical runs

random.seed(7)
random.seed("hello")

• 7 always gives .32, .15, .65, .07
• “hello” always gives .35, .66, .54, .13



Seeding with User Input

• Can allow the user to choose the seed
– Gives user more control over how program runs

random.seed(userSeedChoice)

• Can also explicitly seed the system time
– Give the seed() function None or nothing
random.seed(None)
random.seed()



How Seeds Work

• “Resets” the random number generator each time it is seeded

• Should only seed once per program
• Seeding and calling gives the same number

>>> random.seed(3)
>>> random.random() 0.23796462709189137
>>> random.seed(3)
>>> random.random() 0.23796462709189137



Generating Random Integers

• random.randrange()
• Works the same as normal range()

• Start, stop, and step

>>> random.seed("dog")
>>> random.randrange(2, 21, 4) 14
>>> random.randrange(2, 21, 4) 6
>>> random.randrange(2, 21, 4) 10
>>> random.randrange(2, 21, 4) 10
>>> random.randrange(6) 5
>>> random.randrange(6) 4



Generating Random Floats

• random.random()
• Returns a random float from 0.0 up to 

(but not including) 1.0

>>> random.seed(201)
>>> random.random()

0.06710225875940379
>>> random.random()

0.3255995543326774
>>> random.random()

0.0036753697681032316
>>> random.random()

0.28279809896785435



Generating Random Options

• random.choice()
• Takes in a list, returns one of the options at random

>>> dogs = ["Yorkie", "Xolo", "Westie", 
"Vizsla"]
>>> random.seed(11.2016)
>>> random.choice(dogs) 'Xolo'
>>> random.choice(dogs) 'Westie'
>>> random.choice(dogs) 'Vizsla'
>>> random.choice(dogs) 'Westie'



Shuffling Options randomly
• random.shuffle()
• Shuffling a list of objects means changing the position of the 

elements of the sequence
• Takes in a list and shuffles it, it does not return anything but 

change the original list

>>> dogs = ["Yorkie", "Xolo", "Westie", "Vizsla"]
>>> random.shuffle()
>>> print(dogs)
["Xolo", "Yorkie", "Vizsla“, "Westie“] 



Generating PINs

• Write a program that stores usernames 
and their PINs in a dictionary

• Ask the user for their username
• If it exists, tell them their pin code
• If it doesn’t exist, create one using random

• Tell the user what their new temporary pin is

• Pin should be between 0000 and 9999



Recursion
• Recursion is more than a programming topic, it is

– a method of problem solving
– a different way of thinking of problems - that’s the 

tricky part :)

• Recursion can solve some problems better than 
iterations (loops)

• Recursion can lead to elegant, simplistic and short 
code (when used well)

• Recursion is technically simply:
– A function that calls itself (recursive function)



Recursion in Text Books



Recursion on google.com



Motivating Example
• A key in a box in a box in a box in a box…

Source: www.freecodecamp.org

http://www.freecodecamp.org/


Motivating Example

Source: www.freecodecamp.org

http://www.freecodecamp.org/


Motivating Example

Source: www.freecodecamp.org

http://www.freecodecamp.org/


Another Example

• How to find out how many people are in the queue in front of you?
• Assumptions:

– Your vision is poor. You can not look far
– You are not allowed to move
– You are only allowed to speak to the person in front of you or behind 

you



Another Example

• Recursion is all about breaking a big 
problem into smaller instances of the same 
problem

• Each person can solve a small part of the 
problem

• Solution:
– If there is someone in front of you, ask him/her 

how many people are in front of him/her
• When he/she responds with a value N, then you will 

answer N+1
– If there is nobody in front of you, you will 

answer 0



Dry/Run Solution

• Suppose you are 4th in line, and you are 
determining how many people are in front 
to you

• Person 4: Tap person 3 shoulder, Ask 
people in front and wait
– Person 3: Tap and ask person 2 and wait

• Person 2: Tap and ask person 1 and wait
– Person 1 : As person 1 is in front and no one is there to 

tap their shoulder. Tell person behind it is 0
• Person 2: Tell person behind it is 0+1 = 1

– Person 3: Tell person behind it is 1+1 = 2
• Person 4: Just use the answer of person 3 

to find the final answer, which is 2 +1 = 3



Components of Recursion

• If we analyze our solution, there were 
two main things that were happening:
– Simplifying/Reducing the problem in terms 

of itself and then solving it using same 
logic (Recursive Case)

– Simplification doesn't go on forever, (Base 
Case)

• It breaks/stop when encounter a problem 
version which couldn’t be simplified further



Recursion algorithm
– Recursive Case: The set of instructions that will be used over and 

over
• Divide: Split the problem into one or more simpler or smaller versions of 

the problem
• Call: Recursive call to solve a simpler version of a problem
• Combine: Combining the solutions of the versions into a solution for the 

problem/complex version

– Base Case: The point where you stop applying the recursive case, 
the problem is simple enough to be solved directly

– In both cases, we return whatever answer we arrived on

– In the Queue Problem:
• Recursive case is: Tap person in front of you. Ask how many people are in 

front of them. Wait for their answer and add 1
– Tap person in front of you (Divide)
– Ask how many people are in front of them (Call)
– Wait for their answer and add 1 (Combine)

• Base case is: Person 1. You do not execute the above
• If someone asked, tell them how many people are in front of you (return)



Recursion is Simple

Example:
def greeting(): 

print(“Hello World”) 
greeting()

greeting()

Hello World
Hello World
Hello World
Hello World
.
.
.

Infinite loop
There is not way for the 
function to stop 
executing

Recursion is a function that calls itself



Recursion with Base Case

def greeting(repeat): 
if repeat > 0:

print(“Hello World”, repeat) 
greeting(repeat - 1)

greeting(3)

Hello World 3
Hello World 2
Hello World 1

Base case or 
Exit condition

Every recursion must have a base case!

General case 
(recursive function 
call)



Simple Recursion (Illustration)

def greeting(repeat): 
if repeat > 0:

print(“Hello World”, repeat) 
greeting(repeat-1)

def greeting(repeat): 
if repeat > 0:

print(“Hello World”, repeat) 
greeting(repeat-1)

repeat=3

repeat=2

repeat=1

repeat=0

1

2

3

4
6

7
greeting(repeat)  

repeat
repeat

greeting(repeat-1)

def greeting(repeat): 
if repeat > 0:

print(“Hello World”, repeat) 
greeting(repeat-1)

5

greeting(3)

8

Hello World 3
Hello World 2
Hello World 1



Simple Recursion (Illustration)

def greeting(repeat): 
if repeat > 0:

greeting(repeat-1) 
print(“Hello World”, repeat)

def greeting(repeat): 
if repeat > 0:

greeting(repeat-1) 
print(“Hello World”, repeat)

repeat=3

repeat=2

repeat=1

repeat=0

1

2

3

4
6

7
greeting(repeat) 

repeat 
greeting(repeat-1)

repeat

def greeting(repeat): 
if repeat > 0:

greeting(repeat-1) 
print(“Hello World”, repeat)

5

greeting(3)

8

Hello World 1
Hello World 2
Hello World 3



Solving a Simple Problem with 
Recursion

• A classic example to solve using recursion 
is factorial (n!)

• Factorial is the product of all positive
integers less-than or equal-to a given
integer

• Factorial of n! is defined as:
– If n > 0 then n! = 1 x 2 x 3 x 4 x 5 x …. x n
– If n = 0 then 0! = 1



Factorial: The Iterative Approach

• 4! = 4 x 3 x 2 x 1

• Iterative approach: 

n = 4
factorial = 1
for i in range(1, n+1): 

factorial = factorial * i



Factorial: The Recursive Approach

• 4! = 4 x 3 x 2 x 1

• Factorial is recursive by nature
– n! = n x (n -1)!
– 0! = 1

4! = 4 x 3!
= 4 x 3 x 2!
= 4 x 3 x 2 x 1!
= 4 x 3 x 2 x 1 x 0! Base case

Getting closer to 
the base case…



Factorial using Recursion

def factorial(n): 
if n == 0:

return 1

return n * factorial(n - 1)

Base caseGeneral case 
(decrement n towards 0)



Factorial using Recursion
factorial(4)

return 4*factorial(3)

factorial(3)
return 3*factorial(2)

factorial(2)
return 2*factorial(1)

factorial(1)
return 1*factorial(0)

factorial(0)
return 1

def factorial(n):
if n == 0:

return 1
return n * factorial(n-1)

1

1*1 = 1

2*1 = 2

3*2 = 6

4*6=24



Factorial using Recursion

This is called Linear recursion

• factorial(4)
• 4*factorial(3)

• 3*factorial(2)
• 2*factorial(1)

• 1*factorial(0)
• 4*6

• 3*2
• 2*1

• 1*1



Fibonacci Series

• The Fibonacci series is named after the Italian 
mathematician Leonardo Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

• Each number is the sum of the previous two 
numbers



Fibonacci Series
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

• Mathematically, the sequence fib(n) can be defined as:

fib(n) = 0
fib(n) = 1

– If n = 0
– If n = 1
– If n > 1

then
then
then fib(n) = fib(n-1) + fib(n-2)

where n is the nth term of the sequence

• The Fibonacci sequence definition by default has a 
recursion

• Exercise (ex_21.1): Write a recursive function for fib(n)
e.g. fib(6) => 8

Base case #1
Base case #2



Example: Fibonacci Series fib(5)

fib(1)fib(2)fib(2)

fib(0)fib(1)fib(1)fib(2)

01

1 1

01

1 1

2 1

fib(3)

1 0

fib(5) 5

3 2

fib(4) fib(3)

fib(1) fib(0)

This is called Binary recursion

fib(1) fib(0)

def fib(n):
if n == 0:

return 0
if n == 1:

return 1

return fib(n-1) + fib(n-2)



Efficiency of Recursion

• The execution takes long because it 
computes the same values over and over

• Computation of fib(5) calls fib(2) three 
times!

• Keeping previously calculated values, 
such as fib(2), to avoid computing the 
values more than once improves 
algorithm performance

• This technique is called Memoization



To understand recursion, you must 
first understand recursion!



Exercise: Fibonacci with 
Memoization

• Modify the recursive function for fib(n) 
so that it uses memoization

• Compare the execution time by using 
import time

start = time.time() 
print(fib(30))
end = time.time() 
print(end - start)



Common Errors

• Infinite recursion:
– A function calling itself over and over with no end 

in sight
– The computer needs some amount of memory for 

book keeping (stack call) during each call
– After some number of calls, all available memory 

for this purpose is exhausted
– Your program shuts down and reports a “stack 

overflow”
• Causes:

– The arguments don’t get simpler or because a 
special terminating case is missing



Reverse List

• Write a recursive function that 
reverses a list

• For example: 
print(recursive_reverse([1,2,3,4])) 
[4,3,2,1]





coins.py
• Given an amount and the denominations of coins available, determine how 

many ways change can be made for the amount. There is a limitless supply of 
each coin type. Optional: Also, modify your code to print the denomination 
used.

• Examples:  
• Input: coins[] = [8, 3, 2 , 1], V = 15
• Output: There are 35 different ways to make sum using the given 

denominations.
• Denomination used: All of them.
• Input: coins[] = {9, 1, 2, 3}, V = 4
• Output: There are 4 different ways to make sum using the given 

denominations.
• Explanation: there are four solutions: {1, 1, 1, 1}, {1, 1, 2}, {2, 2}, {1, 3}.
• Denomination used: 1,2,3



coins.py
• Break the coin change problem
• C() –> count()
• C({1,2,3}, 5) 
• / \

/ \
• C({1,2,3}, 2) C({1,2}, 5)

/ \ / \
• C({1,2,3}, -1) C({1,2}, 2) C({1,2}, 3) C({1}, 5)

/ \ / \ / \
/ \ / \ / \

• C({1,2},0) C({1},2) C({1,2},1) C({1},3) C({1}, 4) C({}, 5)
• / \ / \ /\ / \

/ \ / \ / \ / \
• . . . . . . C({1}, 3) C({}, 4)
• / \

/ \



coins.py
• Follow the below steps to Implement the idea:
• We have 2 choices for a coin of a particular denomination, either i) to 

include, or ii) to exclude.
• If we are at coins[n-1], we can take as many instances of that coin ( 

unbounded inclusion ) i.e count(coins, n, sum – coins[n-1] ); then we 
move to coins[n-2].

• After moving to coins[n-2], we can’t move back and can’t make choices 
for coins[n-1] i.e count(coins, n-1, sum). 

• Finally, as we have to find the total number of ways, so we will add these 
2 possible choices, i.e count(coins, n, sum – coins[n-1] ) + count(coins, 
n-1, sum );



End
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