Heuristics

Lab Section 4

* Do the coin change exercises on last slide
* COINS.py
« Send me code/output screenshots on different inputs

* Also send me an explanation of how did you approach/solve the
problem

* We will explore these exercises and concepts:
* modules

 Random library

* Recursion

* Fibonacci

 Factorial

« Coin change problem

* A module is a Python file that contains function
definitions and other statements

* Named just like a regular Python file:
myModule.py

* Python provides many useful modules for us
* We can also create our own if we want

* To use a module, we must first import it

* Where does Python look for module files?

* In the current directory

* In a list of pre-defined directories

* These directories are where libraries like
random and calendar are stored

* To import modules, use this command:

import moduleName

* This imports the entire module of that name
* Every single thing in the file is now available
* This includes functions, data types, constants, etc.

import

* To use the things we’ve imported this way, we need to append the
filename and a period to the front of its name (“moduleName.”)

* To access a function called £function:
moduleName. function ()

Calendar Module Example

calendar

exCal = calendar.TextCalendar ()
printCal = exCal.formatmonth (2016, 11)

(printCal)

November 2016

Mo Tu We Th Fr

1 2 3 4

7 8 9 10 11

14 15 16 17 18

21 22 23 24 25
28 29 30

Sa Su
5 6
12 13
19 20
26 27

“Random” Numbers

 Random numbers are useful for many things
* Like what?
e Cryptography
* Games of chance

* Procedural generation
* Minecraft levels, snowflakes in Frozen

* Random numbers generated by computers can only be pseudo
random

* “Anyone who considers arithmetical methods of
producing random digits is, of course, in a state of sin.”
—John von Neumann

* Pseudorandom appears to be random, but isn’t
 Mathematically generated, so it can’t be
* Called a Random Number Generator (RNG)

* The RNG isn’t truly random

* The computer uses a “seed” in an
attempt to be as random as possible

* By default, the seed is the system time
* Changes every time the program is run

 We can set our own seed
 Usethe random.seed () function

e Same seed means same “random” numbers
* Good for testing, allow identical runs

random.seed (7)
random.seed ("hello")

e 7 always gives .32, .15, .65, .07
* “hello” always gives .35, .66, .54, .13

e Can allow the user to choose the seed

— Gives user more control over how program runs
random. seed (userSeedChoice)

* Can also explicitly seed the system time
— Give the seed () function None or nothing
random. seed (None)
random. seed ()

e “Resets” the random number generator each time it is seeded

* Should only seed once per program

* Seeding and calling gives the same number
>>> random.seed (3)
>>> random.random () 0.23796462709189137
>>> random.seed (3)
>>> random.random() 0.23796462709189137

* random. randrange ()

* Works the same as normal range ()

 Start, stop, and step

>>>
>>>
>>>
>>>
>>>
>>>
>>>

random.
random.
random.
random.
random.
random.
random.

seed ("dog")

randrange (2,
randrange (2,
randrange (2,
randrange (2,
randrange (6)
randrange (6)

21,
21,
21,
21,

4)
4)
4)
4)

14

10
10

= O

* random.random ()

e Returns a random float from 0.0 up to
(but not including) 1.0

>>> random.seed (201)
>>> random.random ()
0.06710225875940379
>>> random.random ()
0.3255995543326774
>>> random.random ()
0.0036753697681032316
>>> random.random ()
0.28279809896785435

* random.choice ()

* Takes in a list, returns one of the options at random

>>> dogs =
"Vizsla'"]

>>>
>>>
>>>
>>>
>>>

random.
random.
random.
random.

random

["Yorkie", "Xolo",

seed(11.2016)
choice (dogs)
choice (dogs)
choice (dogs)

.choice (dogs)

"Westie'",

'Xolo'

'Westie'
'Vizsla'
'"Westie'

* random.shuffle ()

* Shuffling a list of objects means changing the position of the
elements of the sequence

* Takes in a list and shuffles it, it does not return anything but
change the original list

>>> dogs = ["Yorkie", "Xolo", '"Westie", "Vizsla'"]
>>> random.shuffle ()

>>> print (dogs)

["Xolo", "Yorkie", "Vizsla“, "Westiel“]

Generating PINs

* Write a program that stores usernames
and their PINs in a dictionary

* Ask the user for their username
* |f it exists, tell them their pin code
 |f it doesn’t exist, create one using random

* Tell the user what their new temporary pin is

* Pin should be between 0000 and 9999

Recursion

Recursion is more than a programming topic, itis
— a method of problem solving

— a different way of thinking of problems - that’s the
tricky part :)

Recursion can solve some problems better than
iterations (loops)

Recursion can lead to elegant, simplistic and short
code (when used well)

Recursion is technically simply:
— Afunction that calls itself (recursive function)

Recursion in Text Books

PRoGRAMM'NG LANGUAGE

EC

. iolization 102, 138
et 9167 198 Ptrdiff ¢t
",T,blzlraction s P henci,LYpe name 103, 147, 206
. 1o function 118, 147, 201 pushback, input 78
:w structure 136 pute library function 16] 247
er i oid » 93, 19(;3, 120, 199 l;ﬁ:c maco 176 :
rray 97, 99-100, 104, 1 char library functi |
or ¥8. MR version 198-199,]2305 puts library fuzctionu?z:;,lgi'} 5% 161, 241
bscripts 97, 99, 217

asort function 87, 110, 120

» : qsort library functi

il in, 1 A il
o quicksort 87, 110

PP bility 3» 37, 43, 49, 147, 151, 153, 185 quote character, * 19, 37-38, 193

sition of braces 10 o
:E‘;ni and -- 46, 105 quote character, " 8, 20, 38, 194

o library function 24, 251
we;nf:m;t;r;n o \r carriage return character 38, 193
pra raise li : 4
ccedence of operators 17, 52, 95, 131-132, EAee e fnarios 13
200 rand li i
s ++ and G A mglmryzt;uznmmn 252
eprocessor, macro 88, 228-233 read system call 170
eprocessor name, __FILE__ 254 readdir function 184
processor name, __LINE__ 254 readlines function 109
processor names, predefined 233 _realloc libra i
processor operator, # 90, 230 (i 3
borocessor operator, ## 90, 230 Tecursive-descent parser 23—
processor operator, defined 91, 232 redirection see input/output redirection
i register, address of 210
register storage class specifier 83, 210
intf conversions, table of 154, 244 relational expression, numeric value of 42, 44
intf examples, table of 13, 154 relational operators 16, 41, 206
lintf library function 7, 11, 18, 153, 244 removal of definition see #undef
ting character 249 remove library function 242
igram arguments see command-line renamne library function 242
arguments reservation of storage 210

gram, calculator 72, 74, 76, 158 reserved vaordtm:g. l9226 e
pram, L eturn from main 26,
: - qat 16T :eturn statement 25, 30, 70, 73, 225

return, type conversion by 73,225
reverspe l:u;:ctio.:ﬁ& A
pram, file co i reverse Polish notation
an e oy 16-17, 171, 173 rewind librar function 248
. c , M.
m format 10, 19, 23, 40, 138, 191 rilg!ll R i 49, 206

ram, keyword count 133 Ritchie, D. M. xi

T {inc count 19
am, list directory 179 call 187

::;: ::ngm‘““‘ 29, 32 :;ﬁ:gs)i(rslt;oﬂmcr arithmeﬁcim!‘o-i's;%z”
M, lower case conversion 153 scanf assignment :ppre::_ 158, 246

Recursion on google.com

GO @Ie recursion $, Q

All Books Images News Videos More Settings Tools

Did you mean: recursion

Dictionary

Enter a word, e.g. "pie"

re-cur-sion
/ra'karZHan/ 4
noun MATHEMATICS - LINGUISTICS

the repeated application of a recursive procedure or definition.
. arecursive definition.

Translations, word origin, and more definitions
Feedback

Recursion - GeeksforGeeks

https://www.geeksforgeeks.org/recursion/

The process in which a function calls itself directly or indirectly is called recursion and the
corresponding function is called as recursive function. Using recursive algorithm, certain problems can
be solved quite easily.

java Brownian 1

Recursion <

Computer science

Recursion in computer science is a method of solving a problem where
the solution depends on solutions to smaller instances of the same
problem. The approach can be applied to many types of problems, and
recursion is one of the central ideas of computer science. Wikipedia

Feedback

See results about

Recursion
Recursion occurs when a thing is defined in terms of itself
or of its type. Recursion is used in a variety of ...

Motivating Example
« Akeyinaboxinaboxinaboxin abox...

i 1 “
N
Y

BT e SRR

—

/
'

5
a’l
4
v
:'=."-
E

2

L

; - —'—'-r—“—-—-— .
B EmT 777 777 R T II I,

www.freecodecamp.org

http://www.freecodecamp.org/

Motivating Example

terative Approach

MAKE A PILE

OF BOXESHD
Loo & THRoLGH

WHLE THE PILE ISNT
EMPTY

GRAB A BoX

—F You FIND \F YOU FIND
ABON,APD A YREYX,
T TO THE PILE “ou'RE DC"‘”‘E!

OF BorkES

—

o BACK TD
THE FILE

http://www.freecodecamp.org/

Motivating Example

terative Approach

MAKE A PILE

OF BOXESHD
LOO K THPEUG'H

WHLE THE F"IL‘E ISNT
EMFW

lams A BoX !
: —

\F You FIND \F YOU FIND
ABON,APD A YREYX,
it To THE PLE

Nou'RE DonE!

—

OF BorkES

Recursive Approach

Go THROVLGH
EVERY | TEM
1IN THE BoX

¥ You ewp | | IF You FAND
A BOX... | |AKEY,
~aou ﬁ.E.E DONE L

PSR

www.freecodecamp.org

http://www.freecodecamp.org/

Another Example

« How to find out how many people are in the queue in front of you?
 Assumptions:

— Your vision is poor. You can not look far

— You are not allowed to move

— You are only allowed to speak to the person in front of you or behind
you

Another Example

 Recursion is all about breaking a big
problem into smaller instances of the same
problem

« Each person can solve a small part of the
problem

o Solution:

— If there is someone in front of you, ask him/her
how many people are in front of him/her

« When he/she responds with a value N, then you will
answer N+1

— If there is nobody in front of you, you will
answer 0

Dry/Run Solution

* Suppose you are 4t in line, and you are
determining how many people are in front
to you

 Person 4: Tap person 3 shoulder, Ask
people in front and wait

— Person 3: Tap and ask person 2 and wait

 Person 2: Tap and ask person 1 and wait

— Person 1 : As person 1isin front and no one is there to
tap their shoulder. Tell person behind itis 0

 Person 2: Tell person behind itis 0+1 =1
— Person 3: Tell person behind itis 1+1 =2

 Person 4: Just use the answer of person 3
to find the final answer, whichis 2 +1 =3

Components of Recursion

* If we analyze our solution, there were
two main things that were happening:

— Simplifying/Reducing the problem in terms
of itself and then solving it using same
logic (Recursive Case)

— Simplification doesn't go on forever, (Base

Case)

* It breaks/stop when encounter a problem
version which couldn’t be simplified further

Recursion algorithm

Recursive Case: The set of instructions that will be used over and
over

» Divide: Split the problem into one or more simpler or smaller versions of
the problem

» Call: Recursive call to solve a simpler version of a problem

« Combine: Combining the solutions of the versions into a solution for the
problem/complex version

Base Case: The point where you stop applying the recursive case,
the problem is simple enough to be solved directly

In both cases, we return whatever answer we arrived on

In the Queue Problem:

* Recursive case is: Tap person in front of you. Ask how many people are in
front of them. Wait for their answer and add 1
— Tap person in front of you (Divide)
— Ask how many people are in front of them (Call)
— Wait for their answer and add 1 (Combine)
« Base case is: Person 1. You do not execute the above

» |f someone asked, tell them how many people are in front of you (return)

Recursion is Simple

Recursion is a function that calls itself

Example:
def : Hello World
print(“Hello World”) ~ Hello World
Hello World
Hello World

Recursion with Base Case

Every recursion must have a base case!

def greeting(repeat):
If repeat > 0:
print("Hello World”, repeat)
greeting(repeat - 1)

Hello World 3
Hello World 2
Hello World 1

greeting(3)

Simple Recursion (lllustration)

repeat=3

greeting(

Hello Wor
reeting(| e O VVO['

greeting(‘

Hello Wor

greeting(

greeting(

 S—— repeat=0

greeting(

greeting()

greeting(

d3
d?2
d 1

Simple Recursion (lllustration)

repeat=3

, greeting(:)

Hello Wor

greeting(I"epeat—z

Hello Wor

greeting(:)

Hello Wor

ereeting(repeat=1

greeting(

greeting(3)

greeting()

greeting(

d 1
d?2
d3

greeting(repeat=0

Solving a Simple Problem with
Recursion

* A classic example to solve using recursion
is factorial (n!)

 Factorial is the product of all positive
integers less-than or equal-to a given
integer

 Factorial of n! is defined as:
—1fn>0 then NI=1x2X3xXx4x5x....Xn

—1fn=0 then 0! =1

Factorial: The Iterative Approach

e 41=4x3x2x1

 |terative approach:

n=4

factorial =1

for i in range(1, n+1):
factorial = factorial *

Factorial: The Recursive Approach

e 41=4x3x2x1

* Factorial is recursive by nature
—n!'=nx(n-1)!
-0 =1

4! =4 x 3!
=4 x3x2!
=4 x3x2x1!
=4 x3x2x1x0!

Factorial using Recursion

def factorial(n):
if n==0:

return 1

return n * factorial(n-1)

Factorial using Recursion

factorial(4)

return 4%*factorial(3) 4*6=24
factorial(3)

return 3*factorial(2)

_—~3%) =6

factorial(2)
return 2*factorial(1)

factorial(1)
return 1*factorial(0)

factorial(0)
return 1

2*

1*

def factorial(n):
ifn==0:
return 1
return n * factorial(n-1)

Factorial using Recursion

e 1*factorial(0)
e 4*6
e 3%2

¢ 2%1
This is called Linear recursion

¢ 1*1

Fibonacci Series

* The Fibonacci series is named after the Italian
mathematician Leonardo Fibonacci

0,1,1,2,3,5,8,13, 21, 34, 55, 89, 144, 233, ...

« Each number is the sum of the previous two
numbers

Fibonacci Series

0,1,1,2,3,95, 8,13, 21, 34, 55, 89, 144, 233, ...

 Mathematically, the sequence fib(n) can be defined as:

—1Ifn=0 then fib(n) =0

—Ifn=1 then fib(n) =1

—|fn>1 then fib(n) =fib(n-1) + fib(n-2)
where n is the nth term of the sequence

« The Fibonacci sequence definition by default has a
recursion

« Exercise (ex_21.1): Write a recursive function for fib(n)
e.g. fib(6) =>8

Example: Fibonacci Series fib(5)

5

def fib(n):
if n==0:
return O
if n==1:
return 1

This is called Binary recursion return fib(n-1) + fib(n-2)

Efficiency of Recursion

The execution takes long because it
computes the same values over and over

Computation of calls three
times!

Keeping previously calculated values,
such as , to avoid computing the
values more than once improves
algorithm performance

This technique is called Memoization

Tounderstand recursion, you must
first understand recursion!

Learn to B el Make
program A recursive
§ function

No exit
condition

Exercise: Fibonacci with
Memoization

 Modify the recursive function for fib(n)
so that it uses memoization

 Compare the execution time by using
import

start = time()
print(fib(30))
end = dime()

print(end - start)

Common Errors

 Infinite recursion:

— A function calling itself over and over with no end
In sight

— The computer needs some amount of memory for
book keeping (stack call) during each call

— After some number of calls, all available memory
for this purpose is exhausted

— Your program shuts down and reports a “stack
overflow”

« Causes:

— The arguments don’'t get simpler or because a
special terminating case is missing

Reverse List

e Write arecursive function that
reverses a list

 For example:
recursive_reverse([1,2,3,4])
[4,3,2,1]

* Given an amount and the denominations of coins available, determine how
many ways change can be made for the amount. There is a limitless supply of
eac(f;| coin type. Optional: Also, modify your code to print the denomination
used.

 Examples:
* Input: coins[] =[8, 3,2, 1], V=15

e Output: There are 35 different ways to make sum using the given
denominations.

 Denomination used: All of them.
* Input: coins[] =19, 1, 2,3},V=4

* Output: There are 4 different ways to make sum using the given
denominations.

* Explanation: there are four solutions: {1, 1, 1, 1}, {1, 1, 2}, {2, 2}, {1, 3}.
e Denomination used: 1,2,3

* Break the coin change problem
* C() —> count()

C({1,2,3}, 5)
\
/ |
C({1,2,3}, 2 c({1,2}, 5
/({ }\) y ({ <)
\ / \ /
\ /N /)

C({1,2/,0) C({1},2) C({1,2},1) C({1},3) C({1}, 4) C({}, 5)
/\ /\ \ \
ANV ARVARYAR
Ce e C({1}, 3) C({} 4)

/\
/\

* Follow the below steps to Implement the idea:

* We have 2 choices for a coin of a particular denomination, either i) to
include, or ii) to exclude.

* If we are at coins[n-1], we can take as many instances of that coin (
unbounded inclusion) i.e count(coins, n, sum — coins[n-1]); then we
move to coins[n-2].

e After moving to coins[n-2], we can’t move back and can’t make choices
for coins[n-1] i.e count(coins, n-1, sum).

* Finally, as we have to find the total number of ways, so we will add these
2 possible choices, i.e count(coins, n, sum — coins[n-1]) + count(coins,
n-1, sum);

End

	Heuristics
	For students with Programming background
	Today’s Lab
	Modules
	Importing Modules
	Importing Modules
	import
	Calendar Module Example
	“Random” Numbers
	Random Numbers
	Pseudo Randomness
	Seeding for Randomness
	Seeding for Randomness
	Seeding with User Input
	How Seeds Work
	Generating Random Integers
	Generating Random Floats
	Generating Random Options
	Shuffling Options randomly
	Generating PINs
	Recursion
	Recursion in Text Books
	Recursion on google.com
	Motivating Example
	Motivating Example
	Motivating Example
	Another Example
	Another Example
	Dry/Run Solution
	Components of Recursion
	Recursion algorithm
	Recursion is Simple
	Recursion with Base Case
	Simple Recursion (Illustration)
	Simple Recursion (Illustration)
	Solving a Simple Problem with Recursion
	Factorial: The Iterative Approach
	Factorial: The Recursive Approach
	Factorial using Recursion
	Factorial using Recursion
	Factorial using Recursion
	Fibonacci Series
	Fibonacci Series
	Example: Fibonacci Series fib(5)
	Efficiency of Recursion
	To understand recursion, you must first understand recursion!
	Exercise: Fibonacci with Memoization
	Common Errors
	Reverse List
	Slide Number 50
	coins.py
	coins.py
	coins.py
	End

