Q for smarties Professor Dennis Shasha
Pune 2011

q for smarties 3

https://code.kx.com/trac/wiki/QforMortals/tables
https://code.kx.com/trac/browser/kx/kdb+/sp.q

Sweet spots:

e Many columns where ordering (e.g. by time) is needed and operations on ordered data
are desirable.

e Historical data where need only a few columns per query but table has many columns.

e Transaction processing (over 10,000 per second read-write transactions) on data that
can fit into memory.

Sour spot: Transaction processing on data that cannot fit into memory (take some work).

0. Run setup setup.q

stock: ‘ibm ‘bac ‘usb ‘bac ‘bac ‘usb;
stock,: ‘ibm ‘bac ‘usb‘ibm ‘bac ‘usb;
stock ,: ‘ibm‘ibm ‘usb;

price: 1.1 2.4 3.3 3.0 2.8 1.8;

price,: 3.1 4.4 1.3 2.0 3.8 5.8;
price,: 5.1 4.3 3.3;

amount: 100 200 300 400 500 300;

amount ,: 300 200 400 600 700 800;

amount ,: 700 800 700;

time: 09:03:06.000 09:03:23.000 09:04:01.000 09:05:01.000 «
09:06:01.000 09:07:01.000;

time,: 10:03:06.000 10:03:23.000 10:04:01.000 10:05:01.000 «
10:06:01.000 10:07:01.000;

time,: 11:03:06.000 11:03:23.000 11:04:01.000;

trade:([] stock; price; amt:amount; time);

save ‘:trade.csv; / to write a csv file

Things to note:
1. Insert into a table by creating lists and then assigning.
2. The initial brackets are for key fields. There are none here.

3. Saving to a csv file is possible for small files (up to a few hundred megabytes).

https://code.kx.com/trac/wiki/QforMortals/tables
https://code.kx.com/trac/browser/kx/kdb+/sp.q

Find all the tables by

tables ¢

Task: Import a table of stock prices in csv format (‘trade.csv as written above) and find
the average price per stock and write that to a csv file

q readavg.q

Reading in uses a type field (S for strings, F for floats, and T for times) with a delimiter of
comma.

mytrade: (”SFFT”; enlist ”7,”) 0: ‘trade.csv

If you know SQL, then kdb will be easier to learn. It is a semantic extension (arrable model,
as I will explain) but has somewhat different syntax. Let’s look at the syntactic differences
first.

myavg: select avg price by stock from mytrade

update columns
In standard SQL the "group by” goes after the "from” and ”where” clauses. Here the
"by” clause goes before ”from”.

save ‘:myavg.csv

Exercise 1. (Middle) The volume weighted average price per trade is the average of
the price times the volume. Compute the volume weighted average price per stock

q vwap.q

Can create new columns by update, e.g.

mytrade: update weightedprice: pricexamt from mytrade

The very powerful semantic extension that kdb offers is that it is based on ordered columns
and therefore it can support queries that make use of that order. You can therefore create
functions that work on arrays and run them. Or you can use built-in ones when available.

/ given a list of prices, get the 2 way moving average

/ moving average version — roll your own
movavg2:{[x] (x[0]),avg each ((—-1) _ x),’(1 _ x)}
mytrade: (”"SFFT”; enlist ”7,”) 0: ‘trade.csv

myavg2: select movavg2 price by stock from mytrade

/ collective average version

mytrade: (”SFFT”; enlist ”7,”) 0: ‘trade.csv
myavg2: select avgs price by stock from mytrade
save ‘:myavg2

Note the different method of saving. It doesn’t work to save it to a csv file because the
output is not in first normal form.

Also note that this may not be meaningful unless you know that mytrade is ordered by
time. This is easily corrected in both the roll-your-own version

myavg2: select movavg2 price by stock from (‘time xasc mytrade)

and using the built-in moving average

myavg2: select mavg[2;price] by stock from (‘time xasc mytrade)

Exercise 2. Compute the 4 moving average per stock using mavg and optionally in a
roll-your-own way.

Hints for the roll-your-own crowd: Take care of the first three moving averages using the
avgs function and then go on from there using the difference of sums. Display the result and
save it as a q file. If possible, write a generic moving average function.

q readmovavglong.q

Note: You can load the table in another q file by saying

load ‘:myavg?2

Let’s say we want to generate a random table having 100,000 rows from the stocks ‘ibm ‘hp
‘amaz ‘goog ‘aapl, prices in the range 20 to 400, and volumes in the range 100 to 100000 but
multiples of 100, times arbitrary in the range from 10 AM to 4 PM.

q gendata.q

n: 100000;
stocks: ‘ibm‘hp ‘amaz ‘goog‘aapl;
rantrade: ([] stock: n?stocks; price: 20 + n?7380.0;amount: 100%(l+n«
71000) ;
time: 10:00:00.000 + n?06:00:00.000) ;

Points to note:
1. n ? stocks
2. 20 +n 7 380.0
3. n ? 06:00:00.000

save ‘:rantrade.csv

Use the table generated and select the name and last price of each stock into a new table
pricecol.

endofdayprices: select last price by stock from (‘time xasc rantrade)

Notes:

1. You do not have to put "stock” in the select clause since already in the by. In fact,
you shouldn’t do it.

2. Because the columns aren’t ordered in the original rantrade, this does not give us the
last stock by time. That is why we use xasc.

Exercise 3. (Easy) Find the average value of each trade where time > 12:00:00

q volweight.q

A few notes on inserting data.

/ get the prices column as a list.
/ price is the second column, but col numbers start at 0
(value flip rantrade)[1]

‘foo insert rantrade; / note that insert creates a table if it doesn’«
t exist

count foo
‘foo insert rantrade / or if it already exists

count foo

Another way to insert data. Can also insert into a table using columns:

newstocks: n?”stocks;

newprice: 20 + n?7380.0;

newamount: amount: 100%(14+n?1000);
newtime: 10:00:00.000 + n?06:00:00.000;

‘rantrade insert (newstocks; newprice; newamount; newtime);

Exercise 4. (Easy) Generate a second table having the same schema as in the random
table and bulk insert it into the random table. Then form columns corresponding to
this schema, each of the same length as the columns of the original random table. Bulk
insert those columns. Which is faster? Table insert or column insert? (Use before the
statement).

q bulkinsert.q

Tables can be sorted based on different fields. e.g. let’s sort the table rantrade based on
price.

ranprice: ‘price xasc rantrade

x: exec price by stock from rantrade
X

This gives a dictionary that has stock-price pairs. Because stock names are keys, you can
ask for their values.

x[‘aapl]

Exercise 5. (Optional, Hard) Compute the correlation of the prices of every pair of
stocks in time order of their trades. Use the trade.csv table. Each stock has the same
number of values in the trade table, but they are not necessarily in time order. You will
have to bring stock-price pairs out and then write a function to compute over them.

q findcorr.q

Excercise 5h. (Optional, Slightly Harder variant) Generate a random stock-trade
table and then compute correlations between every pair of stocks. If they don’t have
the same length then truncate to the smaller size. Ensure the two vectors are ordered in
time.

q findcorrharder.q

Sometimes, one may want to declare a key for a table. Suppose that each of these
companies is associated with a unique state which constains its headquarters.

stocks: ‘ibm‘hp ‘amaz ‘goog ‘aapl;
states: ‘ny‘ca‘wa‘ca‘ca;

Then declare a key for the table as follows.

stock:([mystock: stocks]| place: states);

Note that the first field is in brackets. That is a signal to show that no two rows should have
the same mystock value. Having these keys enables us to do table joins in an easier way.
(You can undo the keyness of the table by typing 0!‘stock.) First, though, note the new way
that the stock field in rantrade is specified. The construct ‘stock means that all elements
here should be subsets of the key of the stock table (the column entitled mystock).

n: 100000;
rantrade: ([] stock: ‘stock$n?stocks; price: 20 4+ n7380.0;
amount: 100%(1+n?1000); time: 10:00:00.000 + n?06:00:00.000) ;
/ first field must be called stock and must reference the key
/ field of the stock table. That field can be called something «
else.

select stock, stock.place from rantrade

Note that the field referencing the table stock must be called stock. This permits an
implicit join from rantrade to stock through the field stock in rantrade. The field stock in
rantrade refers to the foreign key mystock in stock. We know this because in the rantrade
schema we describe the field stock as

‘stock$n?stocks.

This says that the stock field of rantrade is a subset of mystock in stock and allows a row in
rantrade to be linked to a single row in table stock. (Many rows in rantrade may be linked
to the same row in table stock.)

Exercise 6. (Easy) Add an address table that links the stocks ‘ibm‘hp‘amaz‘goog‘aapl
with their state addresses and then find the stock-address pairs of all stocks whose average
price is above 80.

q findgoodaddress.q

Exercise 7. (Harder) Change the name of stock to johnstock in rantrade and do so
consistently. Also create a second level of hierarchy so that ca is warm, ny is cold, and
wa is tepid. Then use that.

q findgoodaddressvar.q

A little interlude on debugging:
Sometimes the errors messages can be challenging to figure out. For example, if you
declare rantrade as we did originally:

stocks: ‘ibm‘hp ‘amaz ‘goog‘aapl;
states: ‘ny‘ca‘wa‘ca‘ca;

stock:([mystock: stocks] place: states);
/ declare rantrade as before
rantrade : ([] stock:n?stocks;price:20+n?380.0;amount:100%(1+n?1000);

time:10:00:00.000+n?06:00:00.000) ;

/ Then try the statement
select stock, stock.place from rantrade

This will encounter an error:

k){ON!x y}
"type

"select stock, stock.place from rantrade”

To debug these, type y and you will tend to see the problem statement. In this case the
definition of rantrade fails to create an association between rantrade and the stock table.

Interlude: If you want more exercise, go to
https://code.kx.com/trac/wiki/QforMortals2/queries_q_sql#Parameterized-Queries
and start at section entitled Examples (section 14).

Interlude: eval and run Sometimes it is useful to assemble an SQL string and then just
execute it. One can do that in kdb. For example, put these statements in a file that has
rantrade defined and execute:

value ”"select stock, price from rantrade”

One can assemble such queries more formally by forming such strings on the fly.

Exercise 7. (Medium) Write a function that take an arbitrary table, an arbitrary
target column expression, and an arbitrary where clause and can apply to any table
having those columns and for which the where clause is appropriate. Test it on trade.csv.

q arbquery.q

Spreading Load:

When queries are expensive, it’s useful to spread them around on different servers. The
idea here is that we’ll have a generic server that will receive requests from application-specific
clients and send them to application-specific slaves.

Please look at https://code.kx.com/trac/wiki/Cookbook/LoadBalancing

Here might be a client:

h: hopen ‘:localhost:5001

[h]” select avg pricexamount by stock from rantrade”;
[h]” select max pricexamount by stock from rantrade”;
neg [h]” select min pricexamount by stock from rantrade”;
[h]” select var pricexamount by stock from rantrade”;

[= = R = g =

Here might be a slave server:

n: 100000;

stocks: ‘ibm‘hp ‘amaz ‘goog‘aapl;

rantrade: ([] stock:n?stocks;price:204+n?380.0;amount:100%(1+n?1000);
time:10:00:00.000+n706:00:00.000) ;

The generic router is mserve.q, copied from the website and that we will treat as a black
box.

https://code.kx.com/trac/wiki/QforMortals2/queries_q_sql#Parameterized-Queries
https://code.kx.com/trac/wiki/Cookbook/LoadBalancing

Exercise 8. (Middle) Communicate a set of read only requests to a master asyn-
chronously and then they are routed to slaves. Import into each slave the trade.csv table
and then have the client send several requests, each one about a single stock.

q mserve.q —p 5001 3 slaveserver.q
g masterclient.q

That’s all you do. No need to start slaveserver.q. mserve.q does this for you. Note that
the client issues async calls and then waits for the response with h]].

For future reference... It is sometimes useful to access a website, scrape the result, and
present the result as a table. https://code.kx.com/svn/cookbook_code/yahoo.q presents
a nice example. Let’s analyze it. I've added in some print statements that begin with ON!

Even more useful is a statement that creates a deliberate type error

1 + ‘x;

This causes an error, but from this error, one can inspect variables and even change them.
Then you resume by typing

Exercise 9. (Debugging and modification) Web access. Take yahoo.q and put in
a deliberate type error and then modify enddate. Modify the result to return the
Sym,Date,Close columns.

q yahoomod.q

https://code.kx.com/svn/cookbook_code/yahoo.q

