
 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 1

 First Derivatives plc

 KDB+ Reference Manual 3.0

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 2

First Derivatives plc
Kdb+ Reference Manual 3.0

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of First Derivatives plc, except in the case
of brief quotations embodied in critical articles or reviews.

First Derivatives plc has made every effort in the preparation of this document to ensure the accuracy of the
information. However, the information contained in this document is provided without warranty, either
express or implied. First Derivatives plc will not be held liable for any damages caused or alleged to be
caused either directly or indirectly by this document.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 3

Contents
INTRODUCTION 10

SAMPLE USES OF KDB+ 14

MARKET DATA CAPTURE AND DISTRIBUTION 14
RESEARCH AND MODELLING 14
EQUITY TRADING 14
FIXED INCOME TRADING 14
COMPLIANCE 15
OTHER SAMPLE FINANCIAL APPLICATIONS 15

HOW TO USE THIS MANUAL 16

ARCHITECTURE DISCUSSIONS 17

DATA CAPTURE AND CLEANSING 19
KDB+/TICK 20
MULTIPLE TICKER-PLANT ENVIRONMENTS 22
ANALYTICS 23
TRADE EXECUTION 23
STRAIGHT THROUGH PROCESSING & INTERFACING 24
AVAILABLE INTERFACES 25
DATABASE DRIVERS 25
WEB SERVER 26
APIS 26
Q 26
EFFICIENT PROGRAMMING 27
SERVER-SIDE QUERIES AND STORED PROCEDURES 27
DEDICATED SERVERS 27
QDBC V JDBC 28

GETTING STARTED 29

INSTALLATION 29
THE DEVELOPMENT ENVIRONMENT 30
COMMANDS 34
DEBUGGING 35
COMMON ERRORS 35

QUERIES 37

SAMPLE QUERIES 37
ROLLUPS 44

TOOLS FOR COMPLEX CALCULATIONS 45

DATATYPES 45

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 4

ASSIGNMENT 46
LISTS 46
DICTIONARIES AND ASSOCIATIONS 47
VERBS AND ADVERBS 49
MANIPULATING ATOMS, LISTS, DICTIONARIES AND VERBS 51

FUNCTIONS 62

ORDER OF EVALUATION 76

WORKING WITH THE DATABASE AND DATABASE DESIGN 77

CREATING TABLES 77
FOREIGN KEYS 78
DICTIONARIES AND TABLES 79
INSERT AND UPSERT 82
UPDATES AND UPDATE AGGREGATIONS 83
STORED PROCEDURES 84
TABLE ARITHMETIC 84
JOINS 85
PARAMETERS 87
Q AS AN EXTENSION OF SQL 89

DATABASE ADMINISTRATION 92

DATABASE LAYOUT 92
SMALL DATABASES 92
MEDIUM DATABASES 92
LARGE DATABASES 92
LOGS 93
NESTED DATABASES 93
PARALLEL DATABASES 93
LOADING TABLES 93
SAVING TABLES 94

DEVELOPING ANALYTICS IN Q 95

DEFINED FUNCTIONS 95
EXECUTION CONTROL 97

INTER-PROCESS COMMUNICATION 101

KDB+ DATA CLIENT 101
OPENING AND CLOSING A CONNECTION 101
ASYNCHRONOUS AND SYNCHRONOUS MESSAGES 101
MESSAGE FILTERS 102
EVALUATING MESSAGES WITH THE VALUE PRIMITIVE 103
THE CLOSE HANDLER 103
KDB+ HTTP SERVER 103
WORKING WITH FILES 103
KDB+ DATA FILES 104
TABLES 104

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 5

TEXT FILES 105
BINARY FILES 105
SPECIFYING FIELD TYPES WHEN READING FILES 105
INPUT/OUTPUT TO FILES 108
HANDLES 110
FILES 110
SOCKETS 110

INTERFACING WITH OTHER PROGRAMMES 112

GENERAL NOTES 112
DYNAMICALLY LINKED C FUNCTIONS 114
KDB+/C# API 115
KDB+/C# SAMPLE INTERFACE 118
KDB+/JAVA API 120
KDB+/JAVA INTERFACE EXAMPLE 125
KDB+/C++ API 127

TICK, TAQ AND TOW 130

KDB+/TICK ARCHITECTURE 130
COMPONENTS OF KDB+/TICK 132
FEED HANDLER 132
TICKER-PLANT 132
REAL-TIME SUBSCRIBERS 133
REAL-TIME DATABASE 133
CHAINED TICKER-PLANTS 134
HISTORIC DATABASE 134
CUSTOMISING KDB+/TICK 134
IMPLEMENTING KDB+/TICK 135
INSTALLATION 136
A BRIEF DESCRIPTION OF THE SCRIPTS 136
THE TICKER-PLANT SYSTEM 138
STARTING THE TICKER-PLANT 138
CONFIGURATION 140
THE SCHEMA FILE 140
TICKER-PLANT CONFIGURATION 140
FEED HANDLER CONFIGURATION 141
REUTERS FEEDHANDLER CUSTOMISATION 147
THE FEEDHANDLER FUNCTIONS 147
F FUNCTION 147
K FUNCTION 147
ADDING FIDS 148
CUSTOMISING THE FEEDHANDLER 149
DIADIC INITIALISATION 149
FILLING IN THE BLANKS 149
FILLING IN THE BLANKS USING DICTIONARIES 150
OTHER FUNCTIONS AND VARIABLES WITHIN THE FEEDHANDLER 150
DATABASE CUSTOMISATION 152
MESSAGE HANDLERS 152
RTD CUSTOMISATION 152
HDB CUSTOMISATION 153
REAL-TIME SUBSCRIBER AND CHAINED TICKER-PLANT DESIGN 155
WHEN TO USE WHICH 155
WRITING A CHAINED TICKERPLANT 156

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 6

PROGRAMMING CONSIDERATIONS 156
A VWAP PUBLISHER 157
THE UPD FUNCTION 157
SUBSCRIPTIONS 158
SUBSCRIBING TO MORE THAN ONE TICKERPLANT 158
PRIMING 159
MODIFYING .U.SUB 159
PUBLISHING A SNAPSHOT 159
UPDATING SUBSCRIPTION LISTS 160
.Z.PC 160
REAL-TIME SUBSCRIBERS CONTAINED IN C.Q 160
FAILURE MANAGEMENT 162
BACKUP AND RECOVERY 162
ACTIVE-ACTIVE BACKUP 162
FAILURE RECOVERY 162
BEST EFFORT RECOVERY STRATEGY 162
TICKER-PLANT FAILURE 163
REAL TIME DATABASE FAILURE 164
HISTORIC DATABASE FAILURE 164
FEED HANDLER FAILURE 165
MACHINE FAILURE 165
NETWORK FAILURE 165
REPLAYING A LOG AFTER DAY END 165
RECOVERING A CORRUPT LOG 166
OTHER CONSIDERATIONS 167
PERFORMANCE 167
USING MULTIPLE TICKER-PLANTS 167
MEMORY USAGE 167

APPENDICES 169

APPENDIX A: TROUBLESHOOTING KDB+/TICK AND KDB+/TAQ 169
MEMORY 169
CPU 169
DISK IO 169
ERRORS 169
MESSAGES 170
KDB+ LICENCE 170
APPENDIX B: TECHNICAL IMPLEMENTATION OF TICKER-PLANT 171
VARIABLES 171
FUNCTIONS CONTAINED IN U.K 171
FUNCTIONS CONTAINED IN TICK.K 171
APPENDIX C: BLOOMBERG TICKER-PLANT 172
APPENDIX D: THE REUTERS FEED HANDLER 174

KDB+/TAQ – HISTORICAL DATABASE 174

WHAT IS KDB+/TAQ? 174
HARDWARE REQUIREMENTS 176
INSTALLATION 177
RUNNING THE KDB+ TAQ LOADER 178
QUERIES 180
CORPORATE ACTIONS 181
HANDLING OTHER SOURCES OF HISTORICAL DATA 182
KDB+/TOW – REPLAY MODULE 183

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 7

IMPLEMENTING THE REPLAY 183

INDEX 185

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 8

About First Derivatives

First Derivatives plc (www.firstderivatives.com) is a recognised and respected service provider with a global
client base. FDP specialises in providing services to both financial software vendors and financial
institutions.

The company has drawn its consultants from a range of technical backgrounds; they have industry
experience in equities, derivatives, fixed income, fund management, insurance and financial/mathematical
modeling combined with extensive experience in the development, implementation and support of large-
scale trading and risk management systems.

About Kx Systems

Kx Systems (www.kx.com) provides ultra high performance database technology, enabling innovative
companies in finance, insurance and other industries to meet the challenges of acquiring, managing and
analyzing massive amounts of data in real-time.

Their breakthrough in database technology addresses the widening gap between what ordinary databases
deliver and what today's businesses really need.

Kx Systems offers next-generation products built for speed, scalability, and efficient data management.

Strategic Partnership

First Derivatives have been working with Kx technology since 1998 and accredited partners of Kx Systems
worldwide.

First Derivatives offers a complete range of Kx technology services:

Training

Systems Architecture & Design

q development resources

Kdb+/tick implementation and customization

Database Migration

Production Support

Feedhandler developments

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 9

First Derivatives Services

First Derivatives team of Business Analysts, Quantitative Analysts, Financial Engineers, Software Engineers,
Risk Professionals and Project Managers provide a range of general services including:

Financial Engineering
Risk Management
Project Management
Systems Audit and Design
Software Development
Systems Implementation
Systems Integration
Systems Support
Beta Testing

Contact

North American Office (NY): +1 212-792-4230
European Office (UK): +44 28 3025 4870

USA

John Conneely : jconneely@firstderivatives.com

Toni Kane: tkane@firstderivatives.com

Europe

Michael O’Neill : moneill@firstderivatives.com

Victoria Shanks: vshanks@firstderivatives.com

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 10

 Introduction

This manual draws extensively from documentation (in some cases the content is produced verbatim)
available on the KX Systems website including;

• Kdb+ Database and Language Primer
• Kdb+ Database Reference Manual
• Abridged kdb+ Database Manual
• Abridged q Language Manual
• q Language Reference Manual
• Entries on the kdb+ listbox

The purpose of this manual is to provide a reference guide which collates and organizes all publicly available
documentation related to kdb+. First Derivatives personnel will update the manual on a regular basis as new
features are added to the product. We have the largest concentrated pool of kdb+ expertise in the world and
we will be including practical examples from our work in the field. Should you wish to make any contributions
we will be happy to include them if they are appropriate. To receive the latest version of the manual e-mail
Victoria Shanks (vshanks@firstderivatives.com).

The KX Systems website provides a succinct introduction to kdb+ and it is reproduced below.

What is kdb+?
Kdb+, introduced in 2003, is the new generation of the kdb database. Like kdb, kdb+ is designed to
capture, analyze, compare, and store data -- all at high speeds and on high volumes of data. But
more than that, kdb+ was architected specifically to meet the emerging needs of leading-edge,
realtime business.

How is kdb+ suited for realtime business?
Most data management/data analysis solutions divide the world into realtime/in-memory/front-end
data and historical/on disk/back-end data. The division makes it easier for partial approaches to
claim proficiency at one or the other. Having separate front-end and back-end data management
worked all right until recently. Now enormous growth in the data volumes collected by business,
along with the need for instant analysis of data, and realtime comparisons of in-memory to
historical data, are becoming critically important to competitive differentiation. The firms that are
first to market with these realtime business applications are the ones who can maintain and
expand their competitive strategies.
With kdb+ there is no architectural split between the front end and the back end data management
and analysis. We provide a single architecture for managing and analyzing data across the entire
data management chain, maintaining exceptional performance throughout. In addition, kdb+ was
designed from the outset to use 64-bit memory, because 64-bit addressability is essential to
holding increasing volumes of streaming data in memory. It was also architected for extremely low
latency, enabling such time-critical applications as auto-trading and realtime risk management.
To assist customers transitioning from 32-bit to 64-bit architectures, we have added a binary-
compatible 32-bit version. But the fundamental design of the software takes full advantage of 64-bit
platforms. Kdb+ gives you unlimited room to grow.

Why is a unified architecture so important?
It enables leading-edge customers to rapidly develop and deploy realtime applications that deliver
high-performance for business-critical applications including: operational risk management,
backtesting of trading strategies, business activity monitoring, and other applications that quickly
identify out-of-range patterns so that the business can respond in realtime.
The greater performance lead that kdb+ gives our customers translates to increased capability to
create competitive strategies.

Why did you develop a next-generation database product?

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 11

Kx was founded in 1993, and our kdb database has been in use by leading firms since 1998. In
that time, we have seen customer needs evolve. A major business driver for the enterprise today is
the requirement to analyze increasing volumes of data – on financial or energy trading
transactions, for telecom usage analysis, for realtime CRM, in regulatory compliance/risk
management, and in other high-volume areas. Firms need immediate results on these analyses,
even when billions of records are involved. That’s what realtime business is all about: viewing and
analyzing what is occurring in the business right now and comparing it on the fly to historical
patterns. Developed for high data volume applications, kdb+ expands a firm’s ability to capture,
analyze, compare, and store enormous amounts of data -- both streaming and on disk -- with
analysis results in realtime.

Is kdb+ used only as an in-memory database?
No. Kdb+ provides a full relational database management system with time-series analysis that
handles data in memory as well as stored data on disk. For advanced applications such as
backtesting of auto trading strategies or operational risk management, it is essential to be able to
compare streaming data against history. You must be able to understand where the business has
been in order judge and act upon realtime occurrences. Approaches that handle in-memory data
alone or historical data alone can’t meet the needs of today’s realtime enterprise, where accurate
comparison on the fly is becoming increasingly important. Approaches that try to combine a
streaming or in-memory product from one vendor with a historical product from another can't
deliver the performance necessary for realtime business, because they have to cope with two
separate architectures. Excess overhead is unavoidable with multiple architectures.

Which platforms does kdb+ run on?
Kdb+ is available today for industry-standard 32- and 64-bit architectures (AMD Opteron, Intel
Xeon, and Sun) running Linux, Windows or Solaris

I've heard it's not possible to run SQL series on streaming data. Is that true?
That's untrue. Our customers have been running time-series or SQL queries on streaming data
since 2001 and achieving results in realtime, even on complex queries involving millions of
records.

What features contribute to the performance of kdb+?
We’ve refined the architecture in a number of ways, based on the company’s 10 years of
experience:
· We expanded the data types for greater flexibility, particularly in writing time-series
analytics. While other time-series companies supply a limited time-series language, kdb+ was
specifically developed to let leading-edge customers go beyond limits.
· We enhanced the speed and efficiency of application development by combining our
general programming, relational, and time-series languages into a single, concise programming
language – q. The q language is integrated into the database, contributing to very high query
performance. q uses English-like commands and a simple syntax. C++ or SQL programmers
typically learn q in less than a day. (See the Kdb+ Primer written by Dennis Shasha, Associate
Professor of Computer Science at NYU's Courant Institute.)
· We reduced overhead and latency to maintain leadership performance even as data
volumes keep rising. For example, data on many securities exchanges is doubling each year. Our
product strategy has always been to maintain the lead in performance for complex data analysis,
and with kdb+ we have further extended that lead for our customers.

As a relational database vendor, how do you handle streaming data?
Our product kdb+tick is a realtime ticker-plant application layered on kdb+. As data streams in from
a data feed or other source of streaming data, it becomes available for immediate relational
analysis. In addition, the data is logged so that, in case of a system failure, you do not lose the
day's data, as you would with products that support streaming or in-memory data only. Periodically,
the log file is written to the historical database -- a day's worth of realtime data (easily 50 million
records) can be written to the database in couple of minutes. In fact, kdb+tick is so fast at

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 12

managing streaming, in-memory, and stored data that some of our customers have used it to
eliminate the traditional end of day, where the database is taken off-line. Because kdb+ runs at top
efficiency 24x7, it can be used to program advanced applications such as global 24x7 trading.

Is it really necessary to save all that data?
Only if your firm's strategy is to offer highly competitive, leading products. One of the reasons we
developed kdb+tick originally was in response to trading departments asking us: isn't there a way
we can save the streaming data so we can analyze it later? While it's true that small trading
problems can be solved using a streaming data or in-memory database alone, big, strategic
problems require you to be able to save data and to compare streaming or in-memory and
historical data on the fly, without losing speed anywhere along the line.

Aside from kdb+tick, do you have other layered products for kdb+?
To date, we have two in addition kdb+tick:
· Kdb+tow is an application that enables traders to test sophisticated algorithms by replaying
historical ticks through their models.
· Kdb+taq is a fast loader for NYSE TAQ data (distributed via CD/DVD or FTP) that enables
you to create a full 10+ year history of NYSE TAQ data quickly, update it daily, and have it
immediately available for relational, time-series analysis in kdb+.
· Kdb+x is a family of eXchange loaders for other sources, for example the LSE Tick and
Best Price Data.

Why should development teams and IT departments invest in new
technologies such as kdb+, when the trend is toward standard technologies?
Doing business in real time demands new technologies and fast ROI. The volumes of data
encountered in business today are like nothing the world has seen before -- and they are growing
rapidly. In addition, firms need to understand how streaming data relates to historical patterns.
Conventional database paradigms are floundering, because the relational databases of the 1980s
are no longer able to keep up with escalating volumes of data. The old model of overnight reporting
is no longer acceptable in realtime business. The business intelligence/OLAP/data warehousing
structures that were built to make relational databases more efficient are also under increasing
pressure to deliver faster analysis -- and they can't. Newer in-memory databases and streaming
data products deliver speed as long as the data is in memory, but they don't meet the needs of
realtime business, because they solve only a small part of the data volume and data analysis
problem.

What if I've already invested considerable resources in developing Java, C,
and .net programs?
Kdb+ provides native C and Java interfaces. In addition, to make up for Java's inability to handle
large arrays, you can use our JDBC driver. To further assist you, the q language data types map
directly to Java and .NET.

Is it complicated to administer a kdb+ database?
Not at all. Kdb+ is remarkably simple to manage, because native operating system routines are
used for much of the file management, including backup and restore.

Do you need a big server to run kdb+?
No. Most of our customers begin with a 2- or 3-CPU system and grow from there. As you build a
historical database, you will need multi-terabyte storage, but kdb+ is flexible -- you can use local
storage, SANs or any combination.

But what if you need a high-availability environment?
No problem -- get as big and redundant as you want to. Many Kx customers have implemented
large, fully-redundant systems, including redundant ticker-plants for kdb+tick. We support failover,
so there is no loss of data or performance. We provide local logging as well as complete replication
between data centers. Through our relationship with Cassatt, we also enable IT organizations to

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 13

deploy kdb+ in distributed environments and dynamically allocate system resources to meet
realtime spikes, such as unusual peaks in market data. That way you don't need to over-invest in
big hardware dedicated to kdb+, but you also have extra capacity available instantly, when you
need it. Contact us for a demo.

Do you think the kdb+ database will replace Oracle, DB2, SQL Server and
other relational databases?
As long as another database meets your needs, use it. But for applications where you're waiting
too long for reports, or you don't have the data for implementing a realtime business application,
consider kdb+.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 14

Sample uses of kdb+

Kdb+ is used for a wide variety of purposes in many of the world’s largest institutions. Some sample usages
are given below.

Market Data Capture and Distribution

• Capture data from worldwide markets seamlessly
• Data feed agnostic – Reuters, Bloomberg, internal feeds, Opra
• Create feeds directly to kdb+ ticker-plant
• Easy data loading capabilities, e.g.TAQ
• Publish data to TIBCO, Triarch, etc.
• Calculate and republish real-time stats
• Decommission legacy systems such as FAME
• Unlock data in legacy systems such as Asset Control
• Cleanse and enrich data
• Create new internal tickers for back testing/program trading purposes
• No fault tolerance, replication or redundancy issues
• Model calibration
• Store large volumes of analytical data

Research and Modelling

• Store large volumes of historical data
• Replay strategies quickly
• Store large volumes of derived data
• Refine strategies
• Research and develop cross asset strategies
• Monte Carlo simulations
• Simulate quote and order scenarios
• Integrate with charting applications
• Kdb+ facilitates a distributed architecture using thousands of blades

Equity Trading

• Capture equities, futures and options from worldwide markets seamlessly
• Capture Level 2 order book data
• Pre-trade and post-trade analysis
• Market impact calculations
• Relative performance measures
• Develop and create customised indices
• Create volatility surfaces on the fly
• Arbitrary time interval vwaps, nbbo, hlcv
• Easy interface with Excel to allow on the fly pricer creation
• Price complex options in real-time
• Real-time model calibration
• Integrate OTC options with program trading framework

Fixed Income Trading

• Capture bonds, futures and options from worldwide markets seamlessly

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 15

• Facilitates statistical arbitrage trading
• Develop and create customised indices
• Create volatility surfaces on the fly
• Analytics such as yield curve construction, tree building, lattice methods readily available
• Price complex options in real-time
• Real-time model calibration – e.g.HW calibration with swaptions
• Integrate OTC options with program trading framework

Compliance

• Surveillance on trade quote and order flow data
• Search for specific potential violation of regulatory rules
• Search for fraudulent trading patterns with aggregate views of potential violations
• Real-time use to avoid future regulatory penalties
• Run on historical data to provide info and ammunition to compliance officers addressing existing

regulatory complaints
• Reduce the number of false positives from legacy systems
• Examine order books retrospectively
• Back test new surveillance algorithms
• Facilitate RegNMS compliance
• Facilitate pre and post trade analysis for MiFID compliance

Other Sample Financial Applications

• FX Correlation trading
• Data warehousing
• News delivery services
• Performance management
• Configuration management
• Pre-trade Risk Analysis
• Real-time PnL
• Convertible Bond Trading Systems
• Structured Products with Large Data Issues
• Mortgage Backed Securities Data Problems
• Credit Derivative Analytics
• Back Office Processing of High Trade Volumes
• Monte Carlo Simulations

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 16

How to use this manual

This manual can be used as a reference guide or as a means for learning kdb+.

In general users of kdb+ will be developing an application and the manual has been organized with this in
mind. When developing an application or a process in kdb+ there are a number of important considerations.
The following section entitled Architecture Discussions examines the considerations in the specific context of
building a financial application. Similar considerations apply when building applications in other areas.

The table below gives some ideas in terms of how to tackle building an application from scratch.

Reference
Getting Started Being comfortable with using the console and displaying data in a

web browser is crucial for prototyping. Scripts are also a valuable
development aid.

Queries A good place to start to see the power of kdb+ is to build queries.
The sample queries show the ease of syntax of kdb+ and how
vast amounts of data can be queried in milliseconds.

Tools for complex calculations Kdb+ has vector language properties which facilitates elegantly
expressing and rapid solving of complex algorithims. The various
datattypes can be organized as lists and dictionaries and
manipulated using powerful primitives.

Functions There are a number of standard logical and arithmetic functions.
Working with the database Kdb+ is a dialect of sql92 but has a number of extensions which

make it vastly more powerful and easier to perform complex
queries.

Database Administration This section will be useful to DBAs in particular.
Developing analytics in q Execution control and function definition are explored in this

section.
Interprocess communication Kdb+ has a number of features which make IPC tasks such as

messaging much easier than in other systems
Interfacing with other technologies Kdb+ can work alongside a number of other programmes such as

Java,C# and C++.
TICK,TAQ and TOW This section of the manual gives some details of three financial

applications of kdb+
Failure Management This section gives some guidance for redundancy, resilience and

failover.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 17

Architecture Discussions

The diagram (see Kdb+/tick) shows a simplified schematic representation of how a theoretical kdb+
implementation fits within an equity trading environment. The same principles apply for other trading
environments such as an FX or fixed income trading environment. In practice the implementation of kdb+ will
vary from institution to institution.

Trading decisions rely on the timely capture of market data from a multitude of sources and the cleansing
and enriching of this data to make it suitable for analysis. Kdb+ gives traders a competitive advantage in
terms of the speed and quality of data which can be accessed (see Data Capture and Cleansing).

The real-time analysis of this scrubbed data facilitates automatic trading based on pre-defined programme
trading and statistical arbitrage trading algorithms. The former generally requires historical trading
information as does the back testing of strategies. Kdb+ has a number of features facilitating the
implementation of real-time trading strategies which would be impossible under other architectures. The
historical database can also be used for internal and external reporting purposes (see Analytics).

The automatic execution of a transaction is vital otherwise the pre-defined event or profitable opportunity
may disappear in fast moving markets. Theoretically before a trade is executed certain checks must be made
to ensure for example that market and credit risk limits are not breached. In practice these are often
overlooked due to the time taken to undertake the checks. As well as capturing and analysing data kdb+
supports instantaneous transaction execution (see Trade Execution).

Each new transaction has associated consequences for other front, middle and back office functional areas
such as risk management, settlements, compliance, accounting and portfolio management. Kdb+ reduces
the problems associated with Straight Through Processing and interfacing with other internal and external
systems (see Straight Through Processing and Interfacing).

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 18

Data Feed 1 Data Feed 2 Data Feed 3

Feed Handlers

TAQ Loader Script

Analytics

 STP/Integration

 Settlements Risk Management Compliance

Client 3 Client 2 Client 1
Internal/External Reporting Programme Trading Stat. Arb. Trading

Trade Execution

Kdb_1

Captures intra-day data

Publishes to Kdb_2 every second

Publishes to Kdb_3 once daily

Kdb_2

Receives intra-day data from

Real-time database

Kdb_1

Accepts queries

Kdb_3
Historical database

Receives daily data from

Accepts queries

Kdb_1 at end of trading day

 Interfacing
 Alternatives

Other
Databases

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 19

re and Cleansing
he volume of market data needed by equity trading desks continues to grow rapidly. As well as stock prices

and),
inte t urces including exchanges,
spe li nd data collated internally.

Colle ti
inst io

•

•

ing, checking data integrity and correctness

a sources may have different ways of treating market depth which will lead to
parability issues

t there are no data gaps when transferring real-time data in batch
to historical databases

red and the operating system used

Data Captu

T

 quotes the data needed includes futures, options, index data (including index options and futures
res rate and foreign exchange data. The data is published by many so
cia sed market data organisations such as Bloomberg and Reuters a

c ng and cleansing market data poses a number of technical problems which must be resolved if the
itut n’s trading operation is to rely on the data:

There are a large number of sources of data which may span internal and external sources and
different time zones

• The sheer volume of data can lead to data storage issues and impossible demands on existing
system architecture including hardware and databases
There are peaks and troughs in data which may lead to unacceptable delay in capturing data during
peak flow times and may lead to stability and reliability issues

• Enriching captured data (e.g. adding a timestamp or calculating an implied volatility) may not be
possible in practice without slowing down the capture process

• Data is stored in different formats and may be needed in different forms for different purposes
leading to data mapping issues

• Implementing data cleansing procedures such as filter
and correcting data may slow down the overall process

• Different dat
consistency and com

• Consolidating streaming market data with data from multiple database sources can be extremely
difficult

• The captured data should be capable of handling corporate actions such as stock splits and
dividends

• The distinction between real-time and historical data can be blurred in organisations which trade
round the clock – it is important tha

• Procedures must be in place to handle feed failure and server process failures intraday
• It must be possible to query data as it is being stored
• End users should be capable of generating a wide range of ad hoc queries without recourse to

additional development resources
• Where possible the mechanism for displaying the data should be independent of how the data is

sto
• Migration of new data sources to the existing infrastructure should be relatively straightforward

Kx Systems (www.kx.com) offer a solution which overcomes all of the above issues in the form of the

ngle integrated product that enables trading firms to capture, store and
a that is required in order to gain a competitive

Kdb+/tick product. Kdb+/tick is a si
allow their traders to query the volume of market dat
advantage in today’s markets.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 20

-plant, Real-Time Database and Historical Database are operational on a 24/7 basis.

he ticker-plant then purges its
tables. So the ticker-plant captures intra-day data but does not store it.

base holds the intra-day data and accepts queries.
• In general, clients who need immediate updates of data (for example custom analytics) will subscribe

 could itself be a chained ticker-plant) and publishes to its subscribers.
• At the end of the day the log file is deleted and a new one is created, also the

n consists of several unique components:

dlers using the C-q interface to link into custom data feeds or even the
ustomer’s order and execution feeds. In practice multiple feed handlers can be used to gather data from a

-plant is a specialized kdb+ process that operates as a link between the client’s data feed and a

ained in the real time database. The real time database can be queried like any other

t startup, the real time database sends a message to the ticker-plant and receives a reply containing the

e many interfaces available on
db+, including C/C++, C#, Java, QDBC and the embedded HTTP server, which can format query results in

ave already stated, the real-time database can save market data daily from the real time streaming
pplication to disk and create a historical database. This enables the user to store and analyze virtually

Kdb+/tick

• The Ticker
• The data from the data feed is parsed by the feed handler.
• The feed handler publishes the parsed data to the ticker-plant.
• Immediately upon receiving the parsed data, the ticker-plant publishes the new data to the log file

and updates its own internal tables.
• On a timer loop, the ticker-plant publishes all the data held in its tables to the real-time database

and publishes to each subscriber the data they have requested. T

• The real-time data

directly to the ticker-plant (becoming a real-time subscriber). Clients who don’t require immediate
updates, but need a view the intra-day data will query the real-time database.

• A real-time subscriber can also be a chained ticker-plant. In this case it receives updates from a
ticker-plant (which

real-time database
saves all of its data to the historical database and then purges its tables.

The Kdb+/tick solutio

1 – The Ticker-plant

This is the core component, which is responsible for collecting the daily data from the specified market feed.
Currently there are ready built feed handlers for Reuters Triarch and Bloomberg. However it is relatively
simple to build custom feed han
c
number of different sources, both internal and external, and collate the data so that the user has access to all
the data that they require simultaneously.

The ticker
number of subscribers. It receives data from the data feed, appends a time stamp to it, and saves it to a log
file. On a timer loop it publishes new data to a real-time database and any clients which have subscribed to
it, and purges its tables of data. In this way the ticker-plant uses very little memory, whilst a full record of
intra-day data is maint
database.

All the data is logged to a log file as it is received to allow for disaster recovery events. The real time
database saves the data collected to the historical database on a daily basis.

2 – Real-Time Database

A
data schema, the location of the log file, and the number of lines to read from the log file. The real time
database reads the log file to obtain the historic data and subscribes to the ticker-plant to receive the
subsequent updates.

It is possible to have multiple real time databases, which are dedicated to specific tasks (see Real Time
Subscribers).

The real-time database can support hundreds of clients simultaneously with no noticeable effect on
performance. Clients can connect to a real-time database using one of th
k
HTML, XML, TXT, and CSV. Using the C-q Interface or TCP/IP socket programming, custom subscribers
can be created using virtually any programming language, running on virtually any platform.

3 – Historical Database

As we h
a

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 21

nlimited volumes of data. The only limitation on the volume of data that can be stored is hard disk size. With
ne growing to greater than 60 million records per day
 the scalability of any solution will become more and

ond per drive and because the historical database is composed of

w drive

4 - Real Time Subscribers

Real-time subscribers are processes that subscribe to the ticker-plant and receive updates of the requested
data, similar to the real-time database. A real time subscriber can subscribe to all the data or a subset of the
data. Generally subscription is on a table and list of symbols basis, although table, columns and list of
symbols is also possible.

Typical real-time subscribers are kdb+ databases that process the data received from the ticker-plant and/or
store it in local tables. The subscription, data processing, and schema of a real-time subscriber can be
easily customized.

Kdb+/tick includes a set of default real-time subscribers, which are in-memory kdb+ databases that can be
queried in real-time, taking full advantage of the powerful analytical capabilities of q and the incredible speed
of kdb+. Each real-time database subscribing to the ticker-plant can support hundreds of clients and still
deliver query results in milliseconds. Clients can connect to the subscribers using the same interfaces
available to real-time databases.

Multiple real-time subscribers to the ticker-plant may be used, for example, to off-load queries that employ
complex, special-purpose analytics. The update data they receive may simply be used to update special-
purpose summary tables. Data-cleansing processes such as filtering and corrections can also be created in
this way.

Real-time subscribers are not necessarily kdb+ databases. Using the C-q Interface or TCP/IP socket
programming, custom subscribers can be created using virtually any programming language, running on
virtually any platform.

5 - Chained Ticker-plants

Real-time subscribers can also be chained ticker-plants. This means that they have subscribers themselves
which they publish updates to on a timer loop. In most cases, the chained ticker-plant will be publishing
processed data. The timer should be tuned to minimize the latency through the system whilst still coping
with the potentially large volumes of data.

If a real-time subscriber services a lot of queries every second from the same set of clients, it may be
advisable to make it a chained ticker-plant. This will reduce load on the real-time subscriber by reducing the
number of queries per second, whilst still providing all clients with the up-to-date information that they
require.

However, this may not be a possibility if some of the clients require information as soon as it is available (for
example arbitrage program trading), as the chained ticker-plant will increase the latency from the feed due to
the extra timer loop. If the timer loop cannot be made short enough, a real-time subscriber which publishes
data immediately to clients but is not a ticker-plant may be the better option.

Another reason to use a chained ticker-plant would be if the system infrastructure allowed for ad-hoc ticker-
plant subscriptions from potentially many clients. The processing load on the main ticker-plant should be
clearly defined to cope with volumes at peak-times comfortably, to guarantee service to mission critical
applications. Since ad-hoc subscriptions may substantially increase the load, the subscriptions should be to
a chained ticker-plant, ideally residing on a separate server to avoid processor conflict with the main ticker-
plant.

u
typical volumes of daily trading data for the NYSE alo
greater than 2GB of storage) and continuing to grow(

more crucial.

Kdb+/tick analytical performance keeps up with this massive amount of data. For example, Kdb+/tick can

nalyze one million prices per seca
independent segments then we can make use of additional disk drives and CPUs beyond the standard
configuration. The recommended minimum configuration for a full tick system is 4 CPUs with 16GB RAM per
machine (2 CPUs per machine). Having two disk drives then moving half the segments to the ne
would double performance on multi-day queries by doubling the throughput.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 22

er-Plant Environments

feeds. It may not be possible to
onsolidate the data at the feedhandler level and if this is the case multiple ticker-plants should be used, one

to captu

Rea scribe to multiple different ticker-plants. The real-time subscribers can then be
use quired. An example of this would be a risk
manage sses.

ultiple TickM

It may often be the case that data is captured from multiple different
c

re the data from each feed.

l-time subscribers can sub
d to consolidate and/or process the data however is re

ment application would require data across multiple asset cla

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 23

tical application of

•

• additional market data such as implied volatilities

e actions

In practi

•
own. This eliminates statistical arbitrage opportunities in practice.

• tics may be too complex and too slow to develop in practice – for example most
programming languages cannot elegantly handle certain types of queries such as recursive queries

ta is problematical for many programming
languages.

eding additional development

is ideal for analysing ordered information such as tick data. The power of q and the ease with which it can
the database, thereby eliminating

r than with other databases. This can often make the

apid price changes mean that often there is only a small window of opportunity to execute a trading
stra omplex OTC equity derivatives can be priced over a longer period of time and long-

Analytics

eal-time accurate market data is used as input parameters to analytics used in the pracR
trading decisions and strategies. These calculations are needed in:

• Statistical arbitrage trading
• Program trading
 Benchmarking
• Back testing of trading strategies (see Kdb+/tow)

Publishing
• Retrospective adjustment of market data – for example in adjusting indices as constituents change

or for corporat
• Implementing hedging strategies
• Pricing complex equity derivatives

ce some of the issues associated with applying analytics include:

 The calculation response time is too slow and the market data has changed by the time the result of
the calculation is kn

• The volume of data needed in many calculations is too large for the system to handle.
The analy

which are widely used in program trading.
• Analytics developed in different languages (e.g. C, C++ and Java) cannot be combined easily.

Migration of existing analytics to new systems is also often not possible.
• Meaningful interpretation and analysis of time series da

• Data mapping issues arise when translating stored and captured data as input parameters for
applying analytics.

• Unwieldy legacy architectures mean that only certain front end GUIs can be used.
• Often the required market data is in multiple databases and in multiple formats.
• It is often difficult to allow users to create ad hoc queries without ne

resources.
• Integration of the analytical features of an application with the trade execution mechanism is often

not possible.

Kdb+ includes a range of powerful features that enable the easy integration of existing analytics and the
rapid development of new functionality. These include:

• Support for database connectivity standards.
• APIs.
• A built in web server.
• Time series extensions to SQL that are incorporated in q.

q
be extended mean that complex analytics can often be performed within
the need to extract data into a separate application.

Perhaps the most important factor which makes kdb+ extremely useful for analysing equity data is that its
design allows it to handle the huge quantities of data required (often several gigabytes per day) and to
perform queries that are 100 to 1000 times faste
difference between being able to run the queries in real-time as opposed to having to run them as an
overnight batch process or between querying the full set of historical tick data and only being able to use end
of day data.

Trade Execution

R

tegy. Whilst more c

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 24

term v e, in the short-term the execution of programme trading strategies is
best do statistical arbitrage trading can only be traded automatically as
ny arbitrage opportunities are generally quickly traded away, especially in liquid markets.

arket data, the challenges facing
any organisation implementing an automatic trading infrastructure include:

• iggers is often difficult in practice due to speed constraints and data

• tandards must be

• t with efficiently to avoid misstatement of positions, risk,

• positions must be updated to ensure that subsequent calculations

•
• hould not breach designated limits such as credit or risk limits – in practice these

db+ offers a solution to this through the way that it can store and manage the data required to satisfy the
emand in the current trading cycle. Kdb+ offers the ability to build analytics into its triggers, this fact coupled

 the ideal platform upon which to build
ading strategies that can provide trading decisions in real time.

A trig e
of the v he purpose of a trigger is to have side effects, such as setting the value of
another
executio
trading

Becaus
imp e
leverag

In addit
form of
be chec ime so that further checks are based
on accu

Also, Fi
kdb+.

Straight Through Processing & Interfacing

he driv ght Through Processing is based on a number of substantive benefits such as a
duction in costs and risks, a reduction in settlement failures, the potential to increase trading volumes and

ronic channels

ne of the major problems in implementing STP is that in general front office technology is more modern
. The move towards STP has lead to an increase in the use of newer technology
ributed client/server) such as middleware-centric architectures. The Enterprise

 in estments are less price-sensitiv
ne automatically. Strategies based on

a

Apart from the development of robust analytics and the timely capture of m

Execution of trades based on tr
storage constraints
To take full advantage of trade matching opportunities the various protocols and s
observed
Cancelled and corrected trades must be deal
margins, etc.

• Trade execution based on market quotes must ensure that account is taken of market depth
Once a trade has been executed
are using current figures
Only authorised users should be permitted to enter into transactions
Transactions s
calculations are often based on approximation or done ex post due to the complexity or speed of the
analytics involved

• With the move towards T+1 settlement interfacing and integration issues are becoming increasingly
important

K
d
with the speed and performance of these analytics, means that kdb+ is
tr

g r is an expression associated with a global variable that is executed immediately whenever the value
ariable is set or modified. T
 global variable, updating a table or making a function call to another program, such as a trade
n system. By using triggers on columns of the real time database then we can execute certain

strategies every time that an update is received from the feed handler.

e kdb+ adheres fully to open standards, runs on Linux, Unix and Windows, it can easily be
lem nted into existing trading architectures, including risk management systems. Developers can

e their existing knowledge, communicating with kdb+ tables using one of the interfaces provided.

ion to building analytics into the triggers it is also possible to link to other database tables so that a
pre trading checks can be built into the functionality so that counterparty limits, permissions, etc. can
ked prior to transaction completion and updating the data real t
rate updated information.

rst Derivatives have developed a FIX interface to enable automatic electronic trade execution from

T e towards Strai
re
to support expansion into new elect

O
than back office technology
e.g. the Internet and dist(

Application Integration technology (which facilitates for example the use of queuing technology, guaranteed
delivery and rule-based data transformation) needed to enhance legacy technology and to deal with
increasing transaction volumes includes:

• Middleware

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 25

• XML type technology and;
• Object technologies such as CORBA

cal issues such as variations in national regulations, practices and legal issues there

• There are a number of competing messaging standards such as ISO5022, the FIX protocol and
mber of different standards including FpML.

d environments, middleware encompass numerous different pipes (e.g., RPC, MOM,
ORB) and platforms (e.g., TCP/IP, TIBCO).

data over the Internet must address issues such as encryption, data integrity, authentication and
data integrity.

• Wireless devices are becoming increasingly more common and ideally the infrastructure developed
must cater for transactions and operations originating from wireless based applications

h of the data processing can be done within kdb+ reducing the quantity of data that needs to be
passed between applications and providing the necessary performance and scalability.

ted with kdb+ initially, it is possible to gradually transfer
much of this functionality into the database itself allowing for a reduction in the number of different

ystem architecture.
• The vector based q programming language can be used for converting large quantities of data

quired
for wireless communication. This can take advantage of kdb+'s bulk operators to work with

ughput than
traditional databases. The application itself is very small (the setup file is about 200K) and this

 is less possibility for errors compared to other databases that are
hundreds of Megabytes in size.

• to develop suitable

vai

dified to work with the new

here is an ODBC database loader which can load data from an existing database.

side from non-techniA

are a number of technical barriers to the goal of achieving T+1 settlement:

• The chain of systems including point-of-trade to point-of-settlement and cross border trade matching

utilities is currently fragmented

XML. Even within XML there are a nu
• In multi-tiere

• Legacy code may have to be turned into objects
• Any application developed to facilitate STP requires robustness and scalability to cope with

increasing transaction volumes
• Security over the Internet is a key issue and any mechanism such as PKI or VPN used to transmit

• Consideration may be given to the use of an ASP model and shared back office facilities to reduce
cost and complexity

• Disaster recovery and high availability is a key issue

Kdb+ includes many features that can address some of these issues:

• Database drivers and easy integration with various programming languages make it ideal for a
integrating the range of different technologies and languages that typically need to work together
within an STP framework

• Muc

• While legacy systems can be easily integra

middleware applications and simplified s

between different formats, such as for generating XML, encryption or producing the formats re

multidimensional data to perform high-speed manipulations that are difficult or impossibly slow in
other languages.

• Data can be exported from the database in a range of formats.
• Kdb+ has been proven to be extremely robust and can handle much higher level of thro

simplicity means that there

Kdb+'s logging and replication features and simple file management make it easy
disaster recovery procedures.

• Database administration is extremely straightforward and therefore there is less risk of error or mis-
configuration.

A lable Interfaces

Database Drivers

db+ includes a JDBC driver that can allow existing applications to be easily moK
database. However there is also a lower level QDBC driver that is straightforward to use with Java and C/
C++/C# and which can offer higher performance and additional features such as bulk inserts.

T

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 26

db+ comes with a built in web server which can be used to return query results in multiple formats - HTML,
le, provide options for integrating with Microsoft Excel (using its web
rl analytics.

here are a number of simple APIs that can be used to connect between kdb+ and Java, C/C++ and C#,
example, a custom

nalytic function could be written in C and included in a database query as if it was a built in part of q.
Thr

perset of standard SQL which
as many advantages over the standard version. It is usually

ossible rn q in a matter of days and to be able to quickly write their own

articularly useful for dealing with time-series data.
relational databases is that data is stored in an

rdered ult or impossible in standard SQL to be written

 date:

nds of queries.

.g. ten minute roll-ups on a stock:

ze by 10 xbar time.minute from trade where sym=`MSFT

FT

vg;price);ex]

The cts/averages/minimums/maximums, standard deviation,
vari well as a range of mathematical functions.

Web Server

K
TXT, XML and CSV. This can, for examp

ueries functionality) or connecting to Peq

APIs

T
which allows these languages to be used for the development of analytics if desired. For
a

ough the languages mentioned above, one can easily connect to Matlab, Mathematica, R etc.

q

db+ comes with the built in programming language q. This incorporates a suK
is extended for time-series analysis and h

 for anyone familiar with SQL to leap
ad-hoc queries.

Please note that English sentences will be in black, whilst q-language expressions will be in blue.

 contains a number of features and functions that are pq
One of the key ways in which kdb+ differs from standard

 form. This allows the use of queries that are diffico
simply in q.

e.g. select the closing price for each stock by

select last price by date,sym from trade

his approach can also be used to query the best 5 stocks over an interval, median values, rank, etc. T

Another useful feature is that dates and times are stored in an enumerated format that allows their
component parts to be used in queries. This allows components of dates and times (like weeks or quarters)
to be easily used in aggregation expressions, such as for calculating running totals. In a traditional database

andling dates and times can often require the use of multiple tables for these kih

e

select last price, sum si

q also includes a number of built in functions that can be particularly useful in writing simple queries to
retrieve information that is often required for analysing equity data.

e.g. Volume Weighted Average Price:

select size wavg price from trade where sym=`MS

Trading volume above average price by exchange:

elect above:sum size by date, sym from trade where price > fby[(as

re are also q key words for moving sums/produ
ance, covariance, correlation, ratios and deltas, as

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 27

 operations to be performed on lists of data.

fficient Programming

-side queries and stored procedures

s much work as possible should be done on the kdb+ servers. This is for two reasons:

nd efficiency of kdb+.

e entire trade table across the network and
tion to find the maximum price. On a kdb+ server, this is simply:

 e by sym from trade

and the t table, which will consist of two columns (sym and price) and a number of

ent to the number of distinct symbols. At all times, whether it be in querying a database or
ould be made as small as possible. For example, assuming

myt e

select col1, col2, col3 from mytable where col4 = x

is always better practice than

 select from mytable where col4 = x

Transmitting data across a network is a common bottleneck. Most networks in production environments
(including gigabit Ethernet) will not be able to keep up with kdb+’s maximum data transfer rate of 100Mb/s.

Common queries should be put into stored procedures whenever possible. A stored procedure gives the
programmer greater control over the way the server will be used, as malformed ad-hoc queries can block the
server. Also, greater restrictions can be placed on a user when the only form of query are stored procedures
– a user may be allowed to execute some stored procedures but not others.

Dedicated Servers

If certain time consuming queries are executed often it is usually better to create a dedicated server (real-
time subscriber) to handle such queries. For example, consider querying for the volume weighted average
price (VWAP) of a given symbol during the trading day. Every time this is calculated the entire trade table
must be searched for all the entries for symbol x and the calculation done on the result. The trade table
could be millions of rows long. The query would look like this:

 select size wavg price from trade where sym = x

A better approach would be to implement a dedicated VWAP Server as a subscriber to the ticker-plant. For
each symbol, the VWAP server would store three things:

1. sum of size * price for all previous trades;
2. sum of size for all previous trades;
3. the VWAP – this is simply (1) divided by (2).

The q language can often allow additional functions to be written more concisely and to often perform
significantly faster than when written in other languages. Much of the power of q is due to the vector-based
nature of the language which allows

E

Several things should be noted when attempting to build a system which is as efficient as possible.

Server

A

1. To take advantage of the speed a
2. To minimize the amount of data being transmitted across the network.

For example, consider the case of finding the maximum price from a trade table for each symbol for one day

 trading. Doing this in a client program would entail pulling thof
writing a func

select max pric

n transmitting the resultan
rows equival
exec tinu g a function, the data being used sh

abl has 5 columns but only the first 3 are used, then:

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 28

hen a new trade is published the calculation to update the table consists of one multiplication, two
dditions and one division. The query to get the VWAP for a symbol then becomes a look up, greatly
creasing the speed of execution.

When dealing with intra-day data it ca a table by symbol – a lot of queries
have the form:

… from … where sym = x

 this data is nested by symbol then one row of data is required to perform this query. If the data is stored in

db+ supports interfacing with java via either JDBC or QDBC. JDBC can be useful for quickly interfacing
+ with existing front ends and applications. When building applications from scratch, QDBC should

sed, as it is faster, simpler and more powerful.

structure
ere is no access to source code

W
a
in

n often be beneficial to nest data in

 select … by

If
a non-nested, unordered form the whole table must be searched to get all the relevant entries for this
symbol.

QDBC v JDBC

K
kdb
always be u

QDBC pros:

• Faster
• Easier to use
• More powerful & flexible

JDBC pros:
• Can use with existing infra
• Useful for interfacing with 3rd party applications where th

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 29

Getting Started

nse
s. When received, copy the license file ‘k4.lic’, into

e q/ directory.

 the top level directory for Unix and Linux or in C:\
indows).

stall

Installation

To install kdb+ you need to have a valid licencing agreement with KX Systems. The installation and lice
files for Kdb+ must be obtained directly from Kx System
th

The installation of Kdb+ creates the q directory in
(W

In

64> unzip s64.zip (executable file is q/s64/q)
N64> unzip l64.zip (q/l64/q)

s q (on linux/solaris), and q.exe (windows). Put QHOME/{s64|l64|s32|l32} on PATH.

Unzip kdb+ (and k4.lic) in QHOME (default: q).

SOL
LI
SOL32> unzip s32.zip (q/s32/q)
LIN32> unzip l32.zip (q/l32/q)
WIN32> w32.exe
WIN64> unzip w64.zip (install w32.exe beforehand, see WIN32)

Executable i

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 30

he development environment

is either a Unix/Linux
ommand Prompt. After kdb+ is started, the shell becomes a q shell, or q console, in
e entered and evaluated. The activity of entering and evaluating expressions in a q

shell is called a q session; the entered expressions and their results are maintained in a q session log. Data
created and assigned a name remains available during the current session. The data created during a
session are collectively referred to as the workspace.

Using the console

T
q is a programming and runtime environment that starts from and runs in a shell, which
shell or a Windows C
which expressions ar

To start using Kdb+ you must start a q session.

An MS Dos Command Prompt terminal can be started on Windows by clicking Start/Run. Follow this by
typing cmd in the ‘Open’ textbox and click OK.

he simplest q startup command is simply q. That is, type

ell has now become a q shell with a blinking cursor indented 2 spaces. Type
n press [Enter]. The expression you entered will be evaluated and the result (if any)
 typed, starting at the left side of the shell window. After the result display is complete

T

>q

alone on a shell command line and press [Enter]. When q starts up you will see a copyright notice and
license information. The OS sh
any expression and the
will be displayed below
you will see the blinking cursor again, indented 2 spaces, ready for the next input.

For example:
) 2+3 / you type this

5 / the result is displayed (result displays are not indented)
 _ / a blinking cursor is waiting for the next input expression

q

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 31

he annotations on the right are q language comments. A q comment starts with a slash (/). There must be

mand \\ (double backslash).

sing script files

T
whitespace to the left of the slash. This entry-result format is used throughout this manual to display
examples. You can repeat these examples in your shell, or you can make up some of your own.

o exit from the q session at any stage simply enter the comT

U

Many users prefer to use script files. They are easier to edit and can be stored for reuse. These can be
ated using textpad or notepad for example and then called from the console. For example a simple trade cr

ta
e
ble has been created in a text file and saved.

trade:([]time:();sym:();price:();size:())

`trade insert(09:30:00.000;`IBM;10.75;100)

`trade insert(09:31:00.000;`MSFT;11.00;200)

This text file can then be loaded from within the console using the following command:

\l [pathname]trade.q

The text file must be given the extension .q (or .k). The pathname used for loading the script in the console is

lative to the current working directory. Subsequent commands in the console can refer to data, functions,
cuted from top to

loaded by another

sing a Web Browser

re
etc. created in the script. Scripts can contain any expressions or commands, which are exe
bottom when the script is loaded. A script can also be named in the startup command or
script with a load command.

U

It is possible to view kdb+ tables in a web browser and to use the browser for prototyping and rapid
evelopment. A http port (e.g., 5001) needs to be set and this can be done in a number of ways.

-Through the console on start up

d

q trade.q –p 5001

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 32

hrough the console once some data has been created -T

\p 5001

Once the data has been created and the port set, simply open a Web browser and type http://localhost:5001

er. You will then see a browser display of the trade table. For larger databases you will see a list
f tables displayed to the left along with other information.

at the brows
o

Another alternative is to create a batch file which will automatically execute the relevant commands and

rowser. The scrip ile is shown below. launch the b t for such a batch f

start q trade.q -p 5001
start iexplore.exe http://localhost:5001

 be tested by ente the url bannQueries can
symbol ?. N

ring them them in
 is lost once the re

er, always preceded by the question mark
ote that the query sults are returned.

http://localhost:5001/?select from trade where sym=`IBM

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 33

The results can be directly exported to Excel by prefixing the query with .csv as follows.

http://localhost:5001/.csv?sel om trade where sym=`IBM ect fr

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 34

m
Command nvironment. All commands have a

g ba ent i d then the command
displays its lection of the main commands.

an Syntax and Examples

Com ands

s are special statements for interacting with the programming e
ck-slash. The brackets indicate optional content. If the cont
 current value. The table below gives a se

leadin s omitte

Comm d
Tables \a
This comm space. and is used to show the tables in the current work
Views \b
This comma rrent workspace. nd shows the views in the cu
console display \c
This comm to show in the console. It can

s
and shows the number of horizontal and vertical lines

also be u ed to set them to whatever the user requires.
browser display \C
Same as \c lay. except for the browser disp
dictionary \d [dict]
This command is used to specify the current dictionary / directory within namespace.
Error flag \e

Functions \f
This comm e current workspaand displays the names of the functions in th ce.
variables \v [dict]
This comm he specified d ionary and displays the names of all global variables in t ict
load \l file
This c
manual

omm to the current q session. In most s in these
s the command. However, it is also possible to

d a scri mple,
.q

se use changes can be made and repeatedly
 with om the kdb+ process. Also, commands can be included in scripts.
ue tions can be partitioned into sets of scripts, all of which are loaded by the

and line.

and loads the named script in
script to be loaded is given in the startup

example

loa pt from within the kdb+ console. For exa
 \l sp
 This is u ful when testing changes to a script beca
loaded out exiting fr
Conseq
top-level scri

ntly applica
pt given in the comm

Offset \o
Get or set the offset from Greenwich Mean Time (GMT).
port \p [digits]
Set the list in this manual we have set the port with the -p
ommand line option. It can also be set (or changed) in a console, e.g.
p 5001

ening port. As with script loading,
c
 \
Precision \P [digits]
Get or set the number of significant figures displayed in the console.
Slaves \s [digits]
Get or set the number of slaves.
timer \t [milliseconds]
Set the timer to the number of milliseconds given by the integer represented by digits, or display
the current setting if any arguments are not present. If the setting is a positive integer n then the
function .z.ts is called every n milliseconds. No calls are made if the setting is 0 (the default). The
function .z.ts is user defined and has no arguments.
time \t expression

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 35

The execution time of the expression, in millis ted out when execution
completes. It often happens that the result is 0 can execute the expression a
ufficient number of times to get a positive result, with which you can compute the average
umber of milliseconds required for one execution. For example,

he last result shows that, on average, execution of sum til 15000 takes 0.075 milliseconds (on

econds, will be prin
, in which case you

s
n
 \t sum til 15000
0
 \t do[10000;sum til 15000]
750
T
the author's PC).
workspace \w
This command displays 4 longs summarizing the memory usage of the current kdb+ session. For
example,
 \w
57904 1056784 0 0j

esent time. The second number
 the number of bytes allocated by the kdb+ process. The third is the max used memory. The

urrent mapped file space.

 The first number is the number of bytes actually in use at the pr
is
fourth number is the size of the c
First day of the week \W
Gets or sets the first day of the week, with Saturday = 0. The default
day of the week is Monday.

 is 2, meaning that the first

o/s command \text
When the text following the back-slash is not

 the operating system for evaluation.
 the text of one of the above commands, it is passed

to
Exit kdb+ \\
End the kdb+ session.
Interrupt Ctrl-C
This interrupts the current session.

Debugging

rrors are reported in the console by displayinE g the error type, generally type or length, the failed primitive

w.

rror Meaning Recreate

function, and its argument(s). If you see the default prompt “q)”, you can simply continue with your work. If
you see a leading ")" on the prompt, type "\" and press [Enter]. You should then see the default prompt.

ome common errors are shown in the table beloS

mmon Errors Co

E

'(

')

'x You have referenced a var that hasnt been instantiated 1+a

'access
trying to access an protected (-u) database without a valid
username and password

'assign trying to assing a built in q function to your own function abs:2

'branch Too many statements in a do or if statement

'cast
s:`a`b`c; a:([]s:`s$`a`b`c`a;b:2
3 4 5); `a insert (`e;1)

'cpu too many cpus for licence

'char invalid character

'conn Can't connect - server is down or doesn't exist h:hopen`:2000

'constants Too many constants in a q function

'domain

'exp expiry date passed

'from Badly formed select statement select price trade where sym=`A

'globals Too many global variables in a function. Max of 31.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 36

 'host invalid host

'k4.lic k4.lic file not found, check QHOME/QLIC

'length a:([]a:());`a insert 2 3;

'limit via IPC (in 2.2 the message has to be less then 536 million
bytes in 2.3 less than 2147 million bytes)

key -1
enumerate negative number, trying to send too big a message

'locals Too many local variables in a function. Max of 26.

'loop dependency loop a::a

'mismatch columns that can't be aligned for R,R or K,K

'Mlim more than 999 nested columns in splayed tables

'mq Multi-threading not allowed.

'nyi not yet implemented load `:a.csv

'os Operating System error OR wrong os (if licence error)

'params
Too many params in a function - max of 8. Use a dictionary or
array as a workaround.

f:{[a;b;c;d;e;f;g;h;i]}

'Q7 nyi op on file nested array

'parse invalid syntax ?1

'part something wrong with the partitions in the hdb

'pn
I got this by loading a splayed db, then deleting the files on
disk before trying to inspect the table.

'rank applying too many arguments to a function {x+y}[3;4;5]

'splay nyi op on splayed table

'srv attempt to use client-only license in server mode

'stack ran out of stack space {.z.s[]}[]

'type argument of wrong data type 1+"d"

'u Trying to partition non-partitioned data `p#1 2 1 1

'upd
The update date in your license is before the date of the
current q version. (2nd date in .z.l<.z.k)

'user invalid user

'value no value

'vd1 attempted multithread update

'view Trying to re-assign a view to something else a::2;a:2;

'wha invalid system date

'wsfull Workspace full - out of memory.

Debugging is explored further once functions have been examined in greater detail.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 37

Queries

s the capabilities of sql but the expressions are generally shorter and simpler. The
ain query expression is the ‘select expression,’ which creates new tables from existing ones. In their

n extract subtables; however, it is also possible for them to create new columns. Select
al form:

here conditions

eyword is called the ‘select phrase’. Analogously, there is a
 phrase’ following the by keyword (columns), a ‘from expression’ following the from keyword (table) and a

ord (conditions). Note that only the ‘from expression’ is required.

hese all run at several million records per second. In general:

pdate [a] [by b] from t [where c]

but more powerful than) the equivalent sql

elect [b,] [a] from t [where c] [group by b order by b]

 sql the where and group clauses are atomic and the select and update clauses are atomic or aggregate if
ate clauses are uniform or

take advantage of
rder. Sql can't tell the difference. Sql repeats the group by expressions in the select clause and the where

n. The q where clause is a cascading list of constraints which nicely obviates
 also gets rid of some parentheses. q relational queries are

enerally half the size of the corresponding sql. Ordered and functional queries do things that are difficult in

The q language extend
m
simplest form, they ca
expressions have the following gener

select columns by columns from table w

The subexpression columns following the select k
‘by
where phrase following the where keyw

T

select [a] [by b] from t [where c]
u

These are similar to (

s
update t set [a] [where c]

In
grouping. In q the where and by clauses are uniform and the select and upd
aggregate if grouping (by). All clauses execute on the columns and therefore q can
o
clause is one boolean expressio
some complex sql correlated subqueries and
g
sql. See http://www.kx.com/q/e for examples.

Note that i is a special token that indicates record handle (row index). Unspecified column names default to

elect count i,sum qty by order.customer.nation ..

elect x:count i,qty:sum qty by nation:order.customer.nation ..

d on a standard TAQ (Trade and Quote) database schema. To help with this
pt and load.

the last token in the expression or x, e.g.

s

is short for

s

Sample Queries

The following queries are base
ection save the following scris

/ build test trade/quote database – increase n to increase the database size

sym:asc`AIG`CITI`CSCO`IBM`MSFT,100?`4;
ex:"NTA";
dst:`$":c:/fdplc/data/"; /Destination of database – can be changed to whatever the user desires
@[dst;`sym;:;sym];
n:1000000;
trade:([]sym:n?`sym;time:09:30:00.0+til n;price:n?2.3e;size:n?9;ex:n?ex);
quote:([]sym:n?`sym;time:09:30:00.0+til n;bid:n?2.3e;ask:n?2.3e;bsize:n?9;asize:n?9;ex:n?ex);

{@[;`sym;`p#]`sym xasc x}each`trade`quote;

d:2006.08.07 2006.08.08 2006.08.09 2006.08.10 2006.08.11; /Date vector can also be changed by the user

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 38

dt:{[d;t].[dst;(`$string d;t;`);:;value t]};
d dt/:\:`trade`quote;

Introduction to queries

Q
w

ueries can be performed in the q-console or in the FD IDE/qDBA (The qDBA cab be obtained from the FD
ebsite www.firstderivatives.com/html/dba_reg.asp). Either the IDE or the qDBA application can be used to

s in the Query
f available

rid/table or text result format. In short it is much more
w:

edit queries in a word-processing style environment, allowing for instance, multiple statement
window, execution only of highlighted text etc. Other functionality includes a Query Log, lists o
functions, variables, tables and the choice of either a g
versatile than the q-console. A brief overview of the application is given belo

Active database
and directory.

Query Builder

Database explorer – shows
available db’s, variables,

Quer
to

y Window – Tabs
 Tables, Variables

and Functions as well. functions, dictionaries and views.

and Query Log.

Query timer.

Execute
buttons.

Results pa
can be sh

What follows is a number of queries, showing the scope and power of the q-language. They range from
simple requests for prices to calculating full trade information, for example High Price, Low Price, Standard

eviance etc. From the above script prices will be generated for the dates 7th to the 11th of August 2006 (this

ase, if a ‘by clause’ is being used it should be of

ed

tions are dates, but theoretically it could be months etc). The solution is

D
can be easily changed).

t should be noted that when querying a TAQ historical databI
the form “…by date, sym, x, y, z …” This offers great speed up in query time, due to the way the data is
formatted. The data is partitioned by date (hence the date clause appearing first), and enumerated by sym
(hence the sym clause appearing second). All other clauses can be in arbitrary order.

A caveat to the previous paragraph is that a real time database does not have a date column, as it would be
superfluous, therefore the “..by date..” construct is not required. In the following queries, the ones which have
to be run on a historical database will be prefixed by an asterisk *.

A final note concerning queries is that some q functions do not work over splayed databases, for instance
‘exec’ and ‘median’. A splayed database is a historical database saved to disk where the data is partition
over several folders (usually the parti
to load the data into memory first.

ne –
own

in text or grid
format.

Results grid
navigation
buttons.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 39

Queries with constraints

* Denotes HDB query.

>100
M, price>100.0

elect all IBM trades between 9.30 and 9.40, in the morning, on a certain date

trades in ascending order of price
rice xasc select from trade where sym=`IBM

des in descending order of price in a certain time frame

elect all IBM or MSFT trades

* Calculate count of all symbols in ascending order within a certain time frame

umsym xasc select numsym: count i by sym from trade where date within 2006.08.07 2006.08.11

Calculate count of all symbols in descending order within a certain time frame

Select all IBM trades
select from trade where sym in `IBM

* Select all IBM trades on a certain day
thisday: 2006.08.11
select from trade where date=thisday,sym=`IBM

Select all IBM trades with a price
select from trade where sym=`IB

Select all IBM trades with a price less than or equal to 100
select from trade where sym=`IBM,not price>100.0

* S
thisday: 2006.08.11
select from trade where date=thisday,sym=`IBM,time>09:30:00.000,time<09:40:00.000

Select all IBM
`p

* Select all IBM tra
`price xdesc select from trade where date within 2006.08.07 2006.08.11, sym=`IBM

S
select from trade where sym in `IBM`MSFT

`n

*
`numsym xdesc select numsym: count i by sym from trade where date within 2006.08.07; 2006.08.11

* What is the maximum price of IBM stock within a certain time frame, and when does this first happen?
select time,ask from quote where date within 2006.08.07 2006.08.11,sym=`IBM,ask=max exec ask from
quote where sym=`IBM

Select the last price for each sym in hourly buckets
select last price hour:time.hh, sym from trade

Queries with aggregations

* Calculate vwap (Volume Weighted Average Price) of all symbols

 trade

) for a certain month
elect trade:1e-6*count i by date.dd from trade where date.month=2006.08m)+select quote:1e-6*count i by
ate.dd from quote where date.month=2006.08m

or CSCO in a certain month
 price,close:last price by date.dd from trade where

de where date.month=2006.08m,sym=`CSCO

select vwap:size wavg price by sym from

* Count the number of records (in millions
(s
d

* HLOC – Daily High, Low, Open and Close f

irstselect high:max price,low:min price,open:f
date.month=2006.08m,sym=`CSCO

* Daily Vwap for CSCO in a certain month
select vwap:size wavg price by date.dd from tra

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 40

e where
ym=`AIG

ckets
hour:time.hh from trade

d (average bid-ask) for CSCO in a certain month
vg bid-ask by date.dd from quote where date.month=2006.08m,sym=`CSCO

alues for all syms in a certain month
ize by date,sym from trade where date.month=2006.08m

te vwap for CSCO
elect size wavg price 5 xbar time.minute from trade where sym=`CSCO

* Extract 10 minute bars for CSCO

 for MSFT in 1 Minute Intervals for the last date in the database
ate=last date, sym=`MSFT

bove query performed, as one can see it took 31ms on

* Calculate the hourly mean, variance and standard deviation of the price for AIG
select mean:avg price, variance:var price, stdDev:dev price by date, hour:time.hh from trad
s

Select the price range in hourly bu
select range:max[price] – min price by date,sym,

* Daily Sprea
select spread:a

* Daily Traded V
select dtv:sum s

Extract a 5 minu
s

select high:max price,low:min price,close:last price by date,10 xbar time.minute from trade where
sym=`CSCO

* Find the times when the price exceeds 100 basis points (100e-4) over the last price for CSCO for a certain
day
select time from trade where date=2006.08.11,sym=`CSCO,price>1.01*last price

* Full Day Price and Volume
select last price,last size by time.minute from trade where d

he screenshot below from the FD IDE, shows the aT
the author’s PC.

* Average 30 minute trade volume over the last date in the database for MSFT

rvol:avg(sum;size)fby 30 xbar time.minute from trade where date=last date,sym=`MSFT

 week, for each 30 minute bucket for MSFT
8.07 2006.08.11,sym=`MSFT)%

Average total trade volume over the month for each 30 minute bucket for MSFT

select halfhou

* Average total trade volume over a certain
(select sum size by 30 xbar time.minute from trade where date within 2006.0

 date within 2006.08.07 2006.08.11 sum

*

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 41

Monthly total trade volume average between 09.30 and 12.30 each day for MSFT
elect intradayavg:sum size from trade where date within 2006.08.01 2006.08.31,sym=`MSFT,time within
9:30:00.000 12:29:59.999)%sum date within 2006.08.01 2006.08.31

cks
elect sym from 2# desc select sum size by sym from trade

 in each 30 minute bucket for all syms. This query is
function denoted by curly brackets {}. Functions will be explained later

d]sy 00000<exec avg size by sym from select sum size by date,sym from trade where date

quired number of days

lect func[price] by sym from select last price by sym,date from trade

Select the spreads that are below the average for every sym over a certain time period
,spread:bid-ask from quote where date within ((first date),last date),sym in sym)

ere spread<(avg;spread)fby ([]date;sym)

Select the 3 smallest spreads for every sym and each date.
:bid-ask from quote where date within ((first date),last date),sym in sym)

ad<({(asc x)[3]};spread)fby ([]date;sym)

lect start:first price,close: last price,high:max price,low:min price,change:last[price] – first price,range
 price,vwap:size wavg price by

(select monthavg:sum size by 30 xbar time.minute from trade where date within 2006.08.01;
2006.08.31,sym=`MSFT)% sum date within 2006.08.01 2006.08.31

*
(s
0

Select the two heaviest traded sto
s

* The average, over a certain month, of the total volume

ching advs using a made faster by ca
in the document.

{[sd;e ms:where 10
within(sd;ed);(select monthlyavg:sum size by sym,30 xbar time.minute from trade where date
within(sd;ed),sym in syms)% sum date within(sd;ed)}[2006.08.01; 2006.08.31]

* Construct a table of (closing price – closing price N days ago)/(closing price N days ago) – set x to the
re
func:{[y] p:x xprev y;(y-p)%p}
se

*
select from (select date,sym
wh

*
select from (select date,sym,spread
where spre

* Hourly trade details for all stocks
se
max[price]-min price,mean:avg price, variance:var price,stdDev:dev
date,sym,hour:time.hh from trade

Queries involving table joins

* Generate a NBBO table for a certain month: (National best bid and offer)
bbo: select ask: min ask,bid: max bid by date,sym,time from quote where

06.08m,asize>0,bsize>0

CSCO
 from update inside:price within(bid;ask)from

ere sym=`CSCO;select date,time,bid,ask from nbbo where

t bid, best ask) view on the data for CSCO and MSFT
r a certain date
[`sym`time;select sym,time,price,size from trade where date=2006.08.07,sym in `MSFT`CSCO;select
ym,time,bid,ask from nbbo where date=2006.08.07,sym in `MSFT`CSCO]

More information on table joins can be obtained from the JOINS or FUNCTIONS section.

Grouping Without Aggregating

n
date.month=20

* RegNMS - trades inside and outside of NBBO for
elect sum inside,outside:sum not inside by date.dds

aj[`date`time;select date,time,price from trade wh
sym=`CSCO]

* Synthesize and extract a Level1 (last, quantity, bes
fo
aj
s

Usually the biggest cost in execution time for evaluating an aggregation, particularly for large tables, is the
grouping caused by the "by phrase". Moreover, that cost may occur repeatedly because the same grouping
may be done for many different aggregations. In q it is possible to precompute the grouping and save it in a

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 42

separate table to whi ed differently than
in an ordinary select-

ists as columns, as long as the columns all have the same length. In particular, the
nt, which groups but does not aggregate, is valid and produces a q table.

) `trade insert(09:30:04.000;`MSFT;10.45;100)
) `trade insert(09:30:05.000;`IBM;10.35;100)

 inse 00;`MSFT;10.75;40
dtrad ,size by sym from t

ch aggregations are applied later. The aggregations must be comput
by expression, but a few examples will show you what to do.

q tables allow any l
following q stateme

q) trade:([]time:();sym:();price:();size:())
q) `trade insert(09:30:00.000;`AIG;10.75;200)
q) `trade insert(09:30:01.000;`IBM;10.55;500)
q) `trade insert(09:30:02.000;`IBM;10.75;100)

) `trade insert(09:30:03.000;`AIG;10.75;400) q
q
q
q) `trade
q) neste

rt(09:30:06.0
e:select price

0)
rade

 nestedtrade
 sym| pric size

can se t the items of the price and e co ns are sim ts, not s. For ple, co
ct ion that follows.

ested
.75 10. 00)

e
--
AIG 10.75 10.75 200 400
IBM 10.55 10.75 10.35 500 100 100

T 10 10.75 100 400 MSF .45

You e tha siz lum ple lis atom exam mpare
the row of nestedtrade for the sym `AIG to the result of the sele express

nested: e flip value nestedtrade)[;1] q) flip
) flipn

(valu
 q

(10.55 10
q) newnes

35;500 100 1
:selected t price,size from trade where sym=`IBM

newnested
price size

------------- --
10.55 500

 s e price column i his r lt is tic price item the row table nes dtrade
ym imilarly, the siz olum th l en ical to the item in flipnested. The table

dtrad ple of group g wit t ag egat an we can sa it is partit ned on n sted by

) r1:select avg price by sym from trade where sym in `AIG`IBM

r1

10.75 10
10.35 100

0

You can
here s

ee that th
 is `IBM. S

n t
e c

esu
n in

 iden
is resu

al to th
t is id

e
t

 in
size

of te
w
neste e is an exam in hou gr ing, d y io e
sym. Columns price and size of nestedtrade are called nested columns.

Now the question is, how are queries formulated for table nestedtrade? We'll show two representative
examples. Here is the first.

 q

IG 10.75

he equivalent query for nestedtrade is as follows.

r2:select sym,each[avg] price from nestedtrade where sym in `AIG`IBM

Without the Each modifier, the query would average the simple price list for the sym `AIG with the simple
price list for the sym `IBM, resulting in another simple list if those two had the same count, or a length error if
not. What we want, however, is to average the items in each list separately, which is what each[avg] does.

sym| price
A
IBM 10.55

T

q)

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 43

2

 r

m price

y difference in the t of r1, but not r2.
e seen that the two me results (apart from the key) look

ution time, we can see the execution time for a statement by preceding it with \t, this gives the

862

 to

aggregation on the partitioned table each
me, this is merely to illustrate the time differences. By avoiding having to regroup the trade table each time

ation where part of the "where phrase" in the trade query applies to a
artitioned column in flipnested.

he

 r3
sym | price

| 10.75

lies to the sym column, can be done as usual. Consequently the query will look like

select <exp> from nestedtrade where sym in `AIG`IBM

s

for the sym `AIG and separately to those

here sym in `AIG`IBM

s keyed by sym.

by sym from trade where sym in `AIG`IBM,size>200]

from nestedtrade where sym in `AIG`IBM]

sy
AIG 10.75

M 10.55 IB

Note that the onl

e hav
wo results is that sym is a primary key

thods of querying produce the same Now that w
ecat the ex

execution time in milliseconds as in

q) \t do[10000;r1:select avg price by sym from trade where sym in `AIG`IBM]
1

compared

q) \t nestedtrade:select price,size by sym from trade
0
q) \t do[10000;r2:select sym,each[avg] price from nestedtrade where sym in `AIG`IBM]
180

note that above we have looped 10000 times and used the same
ti
and instead storing this grouping, we can significantly reduce overall execution time.

The second example is an aggreg
p

q) r3:select avg price by sym from trade w

re sym in `AIG`IBM,size>200

---------------- | --
AIG
IBM | 10.55

The restriction size>200 cannot be done in the "where phrase" for table nestedtrade because the size
column is not a simple list; it must therefore be done in the "select phrase". The other part of the "where
phrase", which app

where the <exp> to be applied to items from price and size i

 avg price where size>200

That is, the expression must be applied to the price and size items

e define items for the sym `IBM. To do that w

q) af:{[price;size]avg price where size>200}
 and then

dtrade w q) r4:select sym,ap:price af’size from neste

Again the difference between r3 and r4 is that r3 i

s before And comparing times a

price q) \t do[10000;r3:select avg
1892
q) \t do[10000;r4:select sym,ap:price af'size
220

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 44

ollups
he expressions below show examples of rollups.

s

R

T

q) select last price by time.minute from trade / 1 minute bars

) select last price by 5 xbar time.minute from trade / 5 minute barq
q) t:([]date:2000.01.01+til 9;size:til 9) / 2000.01.01 is saturday
q) select last size by date.week from t / monday week bars

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 45

lex calculations
Datatypes

s an ordered
at positive type numbers (given below) are related only to lists, the

ective negative numbers.

Tools for comp

The table below summarises the various types in kdb+ with some comments where appropriate and their
equivalents in other languages. Individual numbers, character strings, binary vectors etc. A list i
collection of atoms. It should be noted th
type numbers for atoms are the resp

Name Example char type size null sql java .net Xml
bool 1b b 1 1 boolean bool boolean
The bool atoms are denoted 0b and 1b. A bool occupies 1 byte. Bools have no null.
byte 0xff x 4 1 byte byte byte
Bytes have no null.
short 23h h 5 2 0Nh smallint short short short
Shorts are used to functionally determine the types of objects and to cast objects from one type to another. Shorts (2

, but with a trailing h. bytes) are written like ints
int 23 i 6 4 0N int int int int
Int (4 bytes) atoms are written in the usual way
long 23j j 7 8 0Nj bigint long long long
long atoms (8 bytes) are written like ints but also have a trailing j.
real 2.3e e 8 4 0Ne real float float single
Real atoms (4 bytes) are written like floats or ints but with a trailing e.
float 2.3 f 9 8 0n float double double double
float atoms (8 bytes) can be written in the usual decimal and exponential formats.
char “a” c 10 1 “” char char char

varchar `ab s 11 * ` varchar String string string
Varchars are character strings preceded by back-quote, as in `abc. (Not all syms can be formed simply by putting back-
quote in front a sequence of characters.) Syms are also called symbols and varchars.There must be no spaces in sym
lists, e.g. `a`b`c . Symbols can have any non-zero characters (e.g. `$"a_b") but identifiers must be alphanumeric.
Varchars are interned in a hash table.
month 2003.03m m 13 4 0Nm

date 2003.03.23 d 14 4 0Nd date Date date
Date atoms must be specified in the form yyyy.mm.dd. For example, 2003.03.23 for March 23 2003 is correct whereas
2003.3.23 is not. Date units are days.
datetime 2003.03.23T15:32:37.271 z 15 8 0Nz timestamp timestamp DateTime dateTime
Datetime units are days.u
minute 08:31 u 17 4 0Nu

second 08:31:53 v 18 4 0Nv

time 09:10:35.000 t 19 4 0Nt
Time values have millisecond resolution and are specified in the form hh:mm:ss.uuu. For example 09:10:35.021
enum `s$`b,where s:`a`b * 20 4 `s$..
Enumerations are foreign keys. They are like atomic types, in that individual enumerated values can be atoms or simple

s, and simple lists have positive values. lists, atoms have negative datatype value

Note that each type can be specified in a list; as in the following nested list;

000.02m;2000.01.01 2000.01.02)

 the q-console, gives output identical to the input.

 2 3f) is equivalent to (1.0 2.0 3.0)

 1j;0 1e;0 1.0;"ab";`a`b;2000.01 2q) (01b;0x00ff;0 1h;0 1;0

which when typed into

t (1In particular, the lis

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 46

truct Details and Example

Assignment

Cons
Assignment Assignment in q is denoted by colon.
For example,

of a data object can be displayed simply by typing its name, as follows.

 that there is no result display following the specification of w, even though specification has a result (the value given to the name).

 w:3.141
 The value
 w
3.141
 Note
This is simply the way the q console is designed.

Lists

A list is an ordered collection of atoms or other

d in th
 types including lists. Lists are denoted by atoms separated by

e previous section, an atom of whatever type has a
ms has positive type value n. For example, `abc is a

d the simple varchar list `abc`s has datatype value 11h . Lists do
e same data types). Heterogeneous lists are permitted
s of type 0h.

lists of lists etc. The lists, in a list of lists, are separated by semi-
. The individual atoms in the list are called the atoms of

s and Example

semi-colons all within parentheses. As mentione
f those atonegative value, say –n, and a simple list o

varchar atom with datatype value -11h , an
not have to be homogeneous (i.e., all items have th

 are alwaysuch as (23;`abc;27). Heterogeneous lists

Lists of lists can be created as can lists of
colons and the result is surrounded by parentheses
the list.

Lists:((`abc,`cfe;1,2,3);(`des;1,2))

Construct Detail
One Item Lists and Enlist The various forms of list notation in kdb+ do not provide a way to create

a one-item list. The monadic primitive function enlist enables one-item
lists to be created.

For example,
enlist 34.5
 is a one-item simple float list whose item is 34.5 If you en
 enlist 34.5

ter this expression in a kdb+ console you will seen the following.

es to all data objects; the result for any data

 12)

,34.5
 As you can see, a one-item list is displayed with a leading ral, enlist appli
object is a one-item list whose item is that object. For example,

 comma. In gene

 enlist(2 5;3.5 10
,(2 5;3.5 10 12)

Extract from Denis Shasha Primer: Atom and List Formation
/ Note that comments begin with a slash "/" and cause the parser
/ to ignore everything up to the end of the line.
/ (The / operator is overloaded
/ however and has a different meaning if it follows a two argument operator.
/ We will see how.)
x: `abc / x is the symbol `abc (a symbol is represented internally as a number).
y: (`aaa; `bbbdef; `c) / a list of three symbols
y1: `aaa`bbbdef`c / another way to represent this list (no blanks between symbols)
y2: (`$"symbols may have interior blanks";`really;`$"truly!")

y[0] tu/ re rns `aaa
y 0 / juxtaposition eliminates the need for brackets
 / T ahis lso returns `aaa
y 0 2 / returns `aaa `c as does y[0 2]
z: (`abc; 10 20 30; (`a; `b); 50 60 61) / lists can be complex
z 2 0 / returns (`a`b;`abc) because z[2] is `a`b and z[0] is `abc
z[2;1 re] / turns `b
 e/ Th second element of z[2]
z[2;0] / returns `a
 e/ Th first element of z[2]
x: "pa allo to" / a list of characters
x 2 3 / gives "lo"

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 47

onaries and Ass
ise dictionaries is to view them as maps of lists to lists. The concept of dictionaries

entary algebra that a mathematical function has a domain
t in the domain has a single corresponding element in the range. So, f(x) =

e
 0, 1, 2, ... and the range of a location is the list

ay
nts rather than indexes. Dictionaries are created with the primitive dyadic function

te a dictionary by writing the domain then an exclamation

Dicti ociations

An easy way to conceptual
can be further understood by recalling from elem

menand a range, where each ele
x*x is a function because for every domain element (i.e., x value) there is a single f(x) value. Lists can b
viewed as functions where the domain is a set of locations
element at that location.

Dictionaries are a kind of function (as are keyed tables) and very much like lists except that the domain m
be any set of unique eleme
denoted by ! and called Xkey – in other words crea
point and then the range.

Extract from Denis Shasha Primer: Dictionary Formation and Access
fruitcolor: `cherry`plum`tomato!`brightred`violet`brightred
fruitcolor `plum / gives `violet
stringfruit: ("cherry"; "plum"; "tomato") !`brightred`violet`brightred
/ so the domain can be a list of lists
stringfruit "tomato" / returns `brightred

/ Dictionaries are combined using "upsert" semantics.
/ An upsert will do an update if the keys match and otherwise
/ will do an insert.
fruitcolor2:`grannysmith`plum`prune!`green`reddish`black
fruitcolor,fruitcolor2
`cherry`plum`tomato`grannysmith`prune!`brightred`reddish`brightred`green`black
/ You notice that plum has simply had its color updated, but
/ the other entries from fruitcolor2 are new.

Tables viewed as dictionaries

ple, complex calculations and manipulations to be
ry can be viewed as having a domain column

f the range. For example from above

ctionary having list elements in the range,

harry is the range element corresponding to `name. The

ed as - and sometimes created from - a flipped dictionary
the keys are just shown once at the top:

This is a very useful relationship as it facilitates, for exam

A dictionaperformed on uploaded data before creating a table.
and a range column. Pictorially, the domain is to the left o
`cherry `brightred
 `plum `violet
`tomato `brightred

Because the range need not be a singleton, we could imagine a di
e.g.,
`name `tom`dick`harry
`salary 30 30 35

The domain is `name and `salary. The list `tom`dick`

nding to `salary list 30 30 35 is the range element correspo
A table is just a list of similar dictionaries but is stor
of lists. Since the dictionaries all have the same keys
`name `salary
`tom 30
`dick 30
`harry 35

Dict and Flip
As stated earlier dictionaries are maps of lists to lists. A flip is a list of dicts (records).
d:`x`y!(`a;2) / a dict is a map from a list to a list

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 48

rchange the top two
id indices i and j. In

articular, all items of b must have the same count in order that b can be flipped. For example,

f b has 2 items, and the

use each item of b has 2 items; each item of c has 3 items because b has three

f:(d;`x`y!(`b;3)) / a flip is a list of dictionaries
([]x:`a`b;y:2 3) / a column notation for the same flip

Flip is a monadic primitive that applies to lists and associations. The effect is to inte
levels of it argument. That is, if c:flip b then b[i][j] and c[j][i] are identical for all val
p

 b:((1;2 3);(4 5 6;7);(8;9 10 11 12))

Each item o refore can be flipped.

 c:flip b
 c
((1;4 5 6;8);(2 3;7;9 10 11 12))
 b[1][0]
4 5 6
 c[0][1]
4 5 6

The list c has 2 items beca
items.

Associations, Xkey, Key and Value

Associations are the only
f

primitive datatype that has no syntactic form; associations are created with the
unction denoted by ! and called Xkey. Associations are associative lists; the items of the left

gument are the values. The left and
ve the sam left
ctive. An asso

dictionary.

Note that, as with other datatypes, the console display of an association is an executable form from which
the data can be recreated.

Construct Details and Example

primitive dyadic
argument to Xkey are the indices, or keys, and the items of the right ar
right arguments must ha
argument lists are ineffe

e length. The arguments can be any lists, although duplicate items in
ciation whose left argument is a simple varchar list is called a

Associations Associations are associative lists
For example, the following associations relate type values to type names.
 n2v:"csif"!10 11 6 9h / type values associated with type names
 n2v["i"] / select an item
6h
 n2v["sf"] / select multiple items
11 9h
 v2n:10 11 6 9h!"csif" / type names associated with type values
 v2n[9 6h]
"fi"
 An example in Processing Nulls uses the following expression to replace a leading null with another value. The example assumes that
v is a simple float list.
if[null first v;v[0]:0.0]
 Associations provide an easy way to extend this expression to handle more than one datatype. For example, the following association
provides initial values for simple lists of type char, varchar, int and float.
 iv:10 11 6 9h!("f";`first;0;0.0)
 The replacement expression then becomes
if[null first v;v[0]:iv type v]
 which applies to simple lists of those four types. For example,
 v:``a`c`h
 if[null first v;v[0]:iv type v]
 v
`first`a`c`h
 This association is easily extended to apply to all lists.
Key function The Key function gives a list of the keys and the Value

function gives a list of the values, in the same order as the
keys.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 49

ther one (`e) is not.

mple list of all ints from 0 to n-1, in order. In particular, if n is the count
 that list. For example,

 key n2v
"csif"
 value n2v
10 11 6 9
 The following association has a duplicate key (3).
 d:1 2 3 4 3 5!`a`b`c`d`e`f
 The first value item keyed by 3 (`c) is accessible by key indexing; the o
 d[3]
`c
The result of selecting the value of an association for a non-existent key is the null of the value list. For example,
 n2v["X"]
0N
 v2n[0h]
" "
 d[`abc]
()
The Key function also applies to a positive integer n, giving the si
of a list then key n contains all indices of
 key count (1;2.00 3.50 7.00;`a;"xyz")
0 1 2 3
Indexing at depth The following example illustrates indexing at depth in

associations.
 d:`a`0x`dc`ch!(1; 2 3.5

7;`a;"xyz") / d is a dictionary
 / select individual values

er way to do it

] / select a list of value items
;"xyz")
] / select items from each value in a list

 d[`a]
1
 d[`0x]
2 3.5 7 / this value item is a list

 / select an item of this value item d[`0x][1]
3.5

 / anoth d[`0x;1]
3.5
 d[`0x`ch`a`ch
(2 3.5 7;"xyz";1
 d[`0x`ch;1 0 0

")(3.5 2 2;"yxx

Primitive functions and
associations

Here are examples of primitive functions applied to
associations.

 count d

 / the number of items of d

 / the value list of d

 / string applies to all the values

4
 value d
(1;2.00 3.50 7.00;`a;"xyz")

 / the key list of d key d
`a`0x`dc`ch

 string d
`a`0x`dc`ch!(,"1";("2.00";"3.50";"7.00");,"a";(,"x";,"y";,"z"))
Append Unlike non-associative lists, new items can be appended to an association

with indexing.
For example, the byte datatype can be adde v2n associations as follows.
 v2n[4]:"x"

d to the n2v and

 n2v["x"]:4h
 v2n
10 11 6 9 4!"csifx"
 n2v
"csifx"!10 11 6 9 4

Verbs and Adverbs
Syntactically, kdb+ has nouns, verbs and adverbs.

that can be evaluated with infix notation, as in a+b. If Plus
nction and t that Plus

s way because, operationally, it's a function. Syntactically, whenever Plus
appears in an infix expression, it is a verb. Otherwise, syntactically, it is a noun.

- Verbs, juxtaposition for monadic functions and indexing, and function projections enhance readability
by reducing the number of square brackets and parentheses in expressions.

- Adverbs modify dyadic functions and verbs to produce new, related verbs. The functions produced
by adverbs are called derived functions or derived verbs, depending on context.

- All data objects are nouns, as are all functions.
- Verbs are primitive symbols and names

were a dyadic fu
can be evaluated in thi

 not a verb, it would have to be evaluated as +[a;b] . It turns ou

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 50

mean
c functions) or whole list op whole list (for non-atomic

le

- Kdb+, like any vector language needs adverbs because one doesn't always want list op list to
element-by-element application of op (for atomi
ones).

Construct Details and Examp
Each The adverb Each, denoted by quote ('), modifies dyadic functions and

verbs to apply to the items of lists instead of the lists themselves.
For example,
 1 2 3,4 5 / join

-Each (,')

on derived from Each must be lists of the same length, or either argument can be an atom. Actually,
, but then each has no effect. For example,

 to need to join a list, not an atom, to every item in another list. For example, suppose, in the last example, instead of
ach item, you wanted blanks

", "

r monadic functions that uses the keyword "each". For example,
/ Reverse

1 2 3 4 5
 (1 2 3;"abcd"),'(4 5;"e") / Join
(1 2 3 4 5;"abcde")
 The arguments of a dyadic functi
both arguments can be atoms
 ("one";"two";"three"),'"," / append comma to each item
("one,";"two,";"three,")
 It's common
appending comma to e to append comma-blank, as in ", ". To do that with Each, a 3-item list of comma-
must first be created, as follows.
 v:("one";"two";"three") / give the list a name for convenience
 v,'(count v)#enlist
("one, ";"two, ";"three, ")

oThere is a form of Each f
 reverse (1 2 3;"abc")
("abc";1 2 3)
 each[reverse](1 2 3;"abc") / Reverse-Each

 (3 2 1;"cba")

Each-Left and Each-Right There are two variants of Each for dyadic functions called Each-Left and
Each-Right that simplify cases like this.

Here is Each-Left (\:) used to append comma-blank to each item of v.
 v,\:", "
("one, ";"two, ";"three, ")
Each-Right is analogous.

Extract from Denis Shasha Primer: Adverbs
x: 10 30 20 40
y: 13 34 25 46
x,y / returns 10 30 20 40 13 34 25 46
x,'y / (each) returns (10 13;30 34;20 25;40 46) that is, a list of pairs
x,\: y / (each left) returns a list of each element from x with all of y.
/ (10 13 34 25 46;30 13 34 25 46;20 13 34 25 46;40 13 34 25 46)
x,/: y / (each right) returns a list of all the x with each element of y
/ (10 30 20 40 13;10 30 20 40 34;10 30 20 40 25;10 30 20 40 46)
x: 1 _ x / drops the first element
x / returns 30 20 40
y: -2 _ y / drops the last two elements
y / returns 13 34
/ Combine each left and each right to be a cross-product (cartesian product)
x,/:\:y / returns ((30 13;30 34);(20 13;20 34);(40 13;40 34))
/ So a cross-product combines each element from x with each from y
/ Because the above format may not be convenient there is a special
/ unary operator that undoes a level of nesting: "raze"
raze x,/:\:y / returns (30 13;30 34;20 13;20 34;40 13;40 34)
/ Sometimes a function is meant to be applied to each element of a list.
/ That is, it is unary with respect to each element of the list.
reverse (1 2 3 4;"abc") / reverses the two elements of this list:
/ returns ("abc";1 2 3 4)
each[reverse](1 2 3 4;"abc") / reverses each list within this pair
/ returns (4 3 2 1;"cba")
reverse each (1 2 3 4;"abc") / returns the same (4 3 2 1;"cba")
/ Here is an example that shows how you can use your function with this.
/ Suppose we want to compute a random selection of the elements
rockroll: `i`love`rockandroll
/ for each element of a numerical list, e.g.
numlist: 4 7 3 2
/ We define a function
myrand:{[n] n ? rockroll}
/ Then we can apply myrand to each element of numlist.
myrand each numlist
/ one output: (`rockandroll`rockandroll`love`rockandroll;`i`i`love`love`i ...
/ The point is that it creates a list for each element in numlist.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 51

/ The fact that this function performs on each element is why this is
/ called each.

Manipulating Atoms, Lists, Dictionaries and Verbs

ists, dictionaries and verbs. As all the data types
ne to the other. The table below outlines a

ss data.

Kdb+ provides a variety of tools for working with atoms, l

rhead in going from ocoexist in the same process, there is no ove
variety of ways to transform, add to, join and acce

Construct Details and Example
Index Index has the syntactic form []. Indices start at 0. That is, the index of the

first item of a list is 0.
 (`8n3;2245;-3.5)[0]
`8n3
 A:(`8n3;2245;-3.5) / give the list a name for convenience

 A[1]

roduce lists of selected items.

and fifth positions of the index list 0 2 1 2 0 0 . The 0-th item of the list A, which is `8n3, is
rth and fifth positions of result. Similarly, the index 1 is located at the third position of the index list and A[1], or

ral,
ys.

ns that equal values in the index correspond to equal values in the result (but not necessarily vice versa).
ies to any index list, not just to simple lists. For example,

1)]

 1) and the resul

2245
 A[2]
-3.5

es p Lists of indic
 A[0 2 1 2 0 0]
(`8n3;-3.5;2245;-3.5;`8n3;`8n3)

d at the first, fourth The index 0 is locate
t, foulocated at the firs

2245, is located at the third position of the result. Likewise for the index 2.We say that the result is congruent to the index. In gene
the index and result are conforming lists in the sense of atom functions. That is, the structures of the two match up in certain wa
Congruency mea

 applCongruency
B:`x`y`z

2 2;0 0 B[(0 1 2;
(`x`y`z;`z`z;`x`x`y)
 The index list (0 1 2;2 2;0 0 t (`x`y`z;`z`z;`x`x`y) are congruent, as before.
Index Assignment Index assignment replaces specified items of a list with new values.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 52

 with any data value
d; the cursor (blinking _) is waiting for the next input.

[2 0]:(`a`b`c;173.45) / multiple items can be replaced in any order

t into simple lists is strict with regard to the type of the new value. The replacement atoms must have the same

e that are replaced. For example,

place an item of a simple float list with an int

rted in the console
acing an item with another float atom is permitted

exampl

20 30 40

t rule for a simple list of indices (0 1 0 2 in this case) is that the indices and corresponding values are used in index
ing individual steps give the same result as above.

ce multiple items with a single atomic value.

 value of the identifier. For example,

w 17 .

 A / show A's value (assigned above)
(`8n3;2245;-3.5)
 A[0]:("asdq";2 3 4) / an item can be replaced
 Assignment results are not displaye
 A / show A's new value
(("asdq";2 3 4);2245;-3.5)
 A
 A
(173.45;2245;`a`b`c)
 Index assignmen
datatype as thos
 v:`x`y`z
 v[2 0]:`a`b
 v
`b`y`a
 w:10 2.5 0 -8.34
 w[2]:5 / re
 A type error is repo
 w[2]:5.0 / repl
 w
10 2.5 5 -8.3
 Duplicate indices are permitted. For
 s:3 -2 5 -6

e,

 s[0 1 0 2]:10
 s

 30 20 40 -6
 The replacemen
order. That is, the follow
 s:3 -2 5 -6

 v:10 20 30 40
 i:0 1 0 2
 s[i 0]:v[0]
 s[i 1]:v[1]
 s[i 2]:v[2]
 s[i 3]:v[3]
 s
30 20 40 -6
 Finally, you can repla
 x:1010101010b
 x[1 3 5 7 9]:1b
 x
1111111111b
 The result of index assignment is the value to the right of the colon, not the new
 b:8 -3 5
 10+b[2]:7
17
 If the result of the assignment was the ne value of b, which is 8 -3 7 , then the result of 10+b[2]:7 would be 18 7

Amend Items of a list can be modified with a combination of indexing and index
assignment

Items of a list can be modified with a combination of indexing and index assignment. For example,
 s:3 20 -4 10
 s[0 2]:s[0 2]+100
 s
103 20 96 10
 This can be expressed more concisely, and often executed more efficiently, as follows.
 s:3 20 -4 10
 s[0 2]+:100
 s
103 20 96 10
 The value of the right does not have to be an atom. The rule is that the value on the right must conform to the index of the left, in the
way of atom functions.
 s:3 20 -4 10
 s[0 2]+:100 1000
 s
103 20 996 10
 As before, modifying simple lists is strict; the new items must be the same type as the old. s:3 20 -4 10
 s[0 2]+:100h / causes a type error
Any dyadic primitive atom function can be used in place of +.

Indexing at Depth Items of lists of lists can be accessed using indexing at depth

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 53

ith the indices that

 9;10;11 12);(13 14;15 16 17 18;19 20))
-level item, as in

item 1

n item and an item of an item of an item.

d.

 the result in the same order as the atoms in (2 0;0 1). There is no limit on the structure of

The following list has several levels. Example results may be displayed on multiple lines to aid comparisons w
created them.
 d:((1 2 3;4 5 6 7);(8
 You can select a top
 d[1] / select
(8 9;10;11 12)
 You can select an item of a
 d[1;2] / select item 2 of item 1
11 12
 d[1;2;0] / select item 0 of item 2 of item 1
11
 If the indices are lists then the result is a cross-section of
 d[2 0;0 1]
((13 14 / item 0 of item 2
 15 16 17 18) / item 1 of item 2
 (1 2 3 / item 0 of item 0
 4 5 6 7)) / item 1 of item 0
 Note that the selected items are arranged in
the indices.
Elided Indices An example of an elided index is the item index expression d[].
There are more interesting situations when indices in an index at depth expression are elided. For example, d[;0] denotes the 0th item

plicated when an index other than the top-level index is elided. For example, in d[0 2;;1 0] , the elided index
ds to 0 1 when indexing d[0], but to 0 1 2 when indexing d[1].

1 0]
 / items 1 and 0 of item 0 of item 0
 / items 1 and 0 of item 1 of item 0
 / items 1 and 0 of item 0 of item 2
 / items 1 and 0 of item 1 of item 2

ms 1 and 0 of item 2 of item 2

of each item of d.
 d[;0]
(1 2 3 / item 0 of item 0

 8 9 / item 0 of item 1
 13 14) / item 0 of item 2

ation is more com The situ
oncorresp

;; d[0 2
((2 1
 5 4)

 (14 13
 16 15
 20 19)) / ite
Functional forms of Amend There are functional forms of Amend based on @ and Dot.
The @ form, @[d;i;f;y] is analogous to d[i]f:y and @[d;i;:;y] is analogous to d[i]:y . Repeating an example from above,
 s:3 20 -4 10
 @[s;0 2;:;5 6]
5 20 6 10
 @[s;0 2;+;100]

f Amend, s is not modified; the result is a copy of s with the specified modifications. This form of Amend is

 select and update expressions. And like select and update, the modifications are applied directly to s if the first argument is `s.
2;+;100]

rm is also more general than the bracket form because the function f can be any dyadic function, not only primitive

tom functions.

 s:(1 3 -5;"xyzw") / initialize s again
 .[s;0 2;+;3] / Dot Amend
(1 3 -2;"xyzw")
 .[`s;0 2;+;3] / update s
`s
 s
(1 3 -2;"xyzw")

103 20 96 10
 Unlike the bracket form o
more like
 @[`s;0
`s
 s
103 20 96 10
 The functional fo
a
The functional form using dot is .[d;i;f;y] . The difference is that a list i represents indexing at depth. For example,
 s:(1 3 -5;"xyzw")
 s[0;2]+:3 / the bracket form
 s
(1 3 -2;"xyzw")

Type The Type function is a monadic function that gives the numeric datatype
value of its argument

bghi.. / letters
1 4 5 6h.. / shorts
`bool`byte`short.. / names
`sym`s`sp.. / user enum types
 For example,
 type 100
-6h / an int atom
 type 0.4 -2 10.76e
8h / a simple real list
 type(`a;2h;3 4)
0h / a list of mixed types
 Note that values of the Type function are shorts. These examples illustrate a general rule. For datatypes that come as both atoms and
simple lists, the type value of an atom is the negative of the type value for a simple list.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 54

Cast Cast (a$b) is a dyadic primitive that converts the atom b to the type
specified by the atom a.

"I"$"23" / use capital letter for data from string
"i"$23.4 / use small letter for data from data

time fragments) `hh$12:34 / or use type names (incl. date
`sym$`a / check referential integrity
`sym?`a / append if necessary

onsider, for example, the case in which the leC ft argument a is one of the values in the datatype name column of the table in the

te from a datetime value

e time from a datetime value

e added to a date to give the date d days ahead or -d days previous. The concept of a day
xample, casting a date as an int gives the day count for that date; casting an int as a date

datatypes summary. For example,
 "x"$97 / cast the int 97 using the datatype name x for a byte
0x61

 byte "x"$"a" / cast a char to a
0x61
 "c"$0x41 / cast a byte to a char

 "A"
 "d"$2003.03.23T08:31:53 / extract the da

 2003.03.23
 "t"$2003.03.23T08:31:53 / extract th

 08:31:53.000
 An int d, representing a day count, can b

ecount is also associated with a date. For
gives the date for that day count.
 "i"$2003.03.23
1177
 "d"$1177
2003.03.23
 "d"$0
2000.01.01
 Cast is an atomic function. For example,
 "x"$(0 100 200;255)
 (0x0064c8;0xff)
The positive value of the Type Value column of the table in the datatypes summary can also be used as a left argument to Cast. For
example,

 -4.2 3.78 6h$1
1 -5 3
 8h$1b
1e
Creating varchars This is a very important operation, used, for example, for importing text

(varchar) data into tables.
Casting simple char lists to varchars There is a special case of Cast t
example,

hat does it, where the left argument is the empty sym `. For

 than the forms in the preceding section. Those forms, with left argument "x"
rgument, giving an atom result for each one. However, when the left argument
he right argument, giving an atom for each one.
layed in the console with back-quote followed by the varchar's contents.

 `$"varchar"
`varchar
 `$("varchar0";"varchar1";"etc")
`varchar0`varchar1`etc
 This form of Cast applies to right argument lists differently
or "d" or 6, apply independently to all atoms in the right a
is `, Cast applies independently to all simple char lists in t
Note that, as these examples show, all varchars are disp
Casting with Computed
Types

Casting with datatype values is particularly useful when associated with
computed type values.

Casting with datatype values is particularly useful when associated with computed type values. For example, replacing an item in a
hat the datatype of the replacement value (short, float, etc.) must be the same as the simple list. There may be

hich more latitude can be allowed. For example, if a simple list has type int, a replacement of type bool, byte, short or int
 general expression that accepts all such values is c[i]:(type c)$d , which casts the replacement value d to the

For example,

simple list is strict, in t
situations in w
may be acceptable. A
datatype of c.
 c:10 345 -20 11
 c[2]:(type c)$0xab
 c[0]:(type c)$23h
 c
23 345 171 11
Extracting Data from Text kdb+ provides primitive functions for extracting data from text files, but

sometimes you have to do it yourself.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 55

er
. For example,

ype of the result

 of Cast is upper case "S" instead of the lower case type name "s". Other conversions can

th "D" will also extract dates in other standard formats.

"

A text file is read into the workspace as a list of simple char lists. The simple char lists are processed by partitioning them into small
lists containing the text of individual values. If the values can be extracted with a special form of casting
 "S"$"abc012" / extract a symbol
`abc012
 type "S"$"abc012" / check the t
-11h / a varchar atom

Note in this example that the left argument
also be done this way.
 "I"$"271828"
271828
 "D"$"2003.03.23"
2003.03.23

Casting wi
 "D"$"2003-03-23"
2003.03.23
 "D"$"03/23/2003"
2003.03.23
 "D"$"03/23/03
2003.03.23
Creating Text from Data The primitive function named String produces simple char lists from

atomic data.
For example,
 string 345
"345"
 string`xyz
"xyz"
 string 23h
"23"
 string 4294967296j
"4294967296"
 This function is used to produce char strings for display or export to text files. Consequently, the results contain none of the special

istinguishes types in q. For instance, in the above examples the resulting string for the short 23h drops the type name "h".
esult for long value 4294967296j. You must use Cast with the appropriate left argument to retrieve the q values. For

 5 and string`a are the one-item simple lists ,5 and ,"a" , respectively.

notation that d
e rSo does th

example,
 string 4294967296j
"4294967296"

7296" "J"$"429496
4294967296j
 Like an atom function, the string function applies independently to every atom in a list argument. However, unlike an atom function, the

 atom is a simple char list, not an atom. For example, result when applied to an
w`xz) string(5;23h;`a`uv

(,"5";"23";(,"a";"uvw";"xz"))
ing Note that the result of str

Join or Concatenation The join of two data objects a and b is denoted by a,b.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 56

 or lists can be joined (concatenated). For example,

.4 5,-7.9

10.00e) / one is float, the other real.

placing items in a simple list, there may be situations in which more latitude is required. For example, if the left argument is
t list then a right argument of type int, bool or byte may also be acceptable.

t to a re

 v)$0xab
567.1 20 171e
can be joined. The result has all the columns of the two tables. Columns with same names are joined as lists. For example,
 2 3;b:`a`b`c)
d`e`f;a:10 11 12)

f the result is the order of the left argument. If the datatypes of
neral lists. If column names don't match then the both sets of

lumns are in the result. For example,
[]c:10 20 30;d:1.2 3.4 5.6)

 uj r

 a

ases cannot be mixed. That is, the operands cannot have
 not match.

ypes.

Any two atoms
 1 2 3,4
1 2 3 4
 1 2,3 4
1 2 3 4
 (0;1 2.5;01b),(`a;"abc")
(0;1.00 2.50;01b;`a;"abc")
 Join provides another important example of casting with computed types. When two simple lists are joined, or an atom and a simple
list, the result is a general list unless the types of the two operands are the same. For example,
 1 2.4 5,-7.9 10
1.00 2.40 5.00 -7.90 10.00 / both operands are simple float lists
 1 2
1.00 2.40 5.00 -7.90 / one is a simple float list, the other a float atom
 1 2.4 5, -7.9 10e
(1.00;2.40;5.00;-7.90e;
 As when re
a simple shor
 v:1 2.34 -567.1 20e
 v,(type v)$789 / cast an in al
1 2.34 -567.1 20 789e
 v,(type v)$1b / cast a bool to a real

-567.1 201e 1 2.34
pe v,(ty

1 2.34 -
s Table

 t:([]a:1
:` s:([]b

 t uj s
a b
-
1 a
2 b
3 c
10 d
11 e
12 f
 The order of the columns in the two tables doesn't matter; the order o
orresponding columns don't match then the resulting columns are gec

co
r:(
 t
a b c d
--
1
2 b
3 c
 10 1.2
 20 3.4
 30 5.6

ength, these two c Since the columns of a table must all have the same l
some columns with matching names and some that do
Join for key tables is strict; both the key and data columns must match in names and datat
Enumeration The process of enumeration is a form of cast. The general form is`d$v

where d is the name of an existing data object.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 57

on defines a foreign key of that table, whether or not the enumeration is a column in another
he product distribution script sp.q,

dividual enumerations are distinguished datatypes; enumerations with different domains have different datatype values. Datatype
ed, starting at +-20. (As for the primitive atomic types, an

d simple list has a positive datatype value. For example,

 / e has type +-20

tatype value +-22, and so on.
vely few distinct items is an important optimization technique. Kdb+

 bytes of descriptive information followed by the int atoms in a
 the same format. When read from disk it is simply mapped into memory, a

ext, which means that their storage requirements vary. When a simple varchar list is
ts of its items are written end-to-end. When read from disk the individual varchar atoms are recreated. This is

m read, say only when an application is initialized. But select expressions can be applied directly to
roblems due to repeated creation of the varchar atoms in varchar columns.

g varchar columns; a column c would be replaced by the enumeration

 e; e is a list because c is a list
 also an enumeration

e ways as non-enumerated ones. For example, compare the following results for c and e.

10011110001011b
e in `a`b

ndices into d; the enumerated
ritten to a file, the name of the domain and the index list k are actually written.

ing a file of an enumerated simple varchar list is nearly instantaneous.
ed value, must be present in the workspace when the file is read.

There are two possibilities for d, either a key table or a simple list of unique atoms. The object v is either an atom whose value is a key
value or item of d, respectively, or a list of those atoms. We say that the projection `d$ is an enumeration, d is an enumeration domain,
and `d$v is an enumerated value.
If `d names a key table then the enumerati
table. For example, using the table s from t
 v:`s$`s2`s4`s3`s1`s5
 v.name / dot notation works
`jones`clark`blake`smith`adams

In
values are assigned in the order in which the enumerations are defin

erateenumerated atom has a negative datatype value and an enum
 s:`a`b`c
 t:1 2 3 4

s defined first e:`s$ / enumeration of s i
 f:`t$

 type e `b
-20h
 type e `b`a
20h
 type f 1 / f has type +-21
-21h
 type f 1 3 1
21h
 If another enumeration is subsequently defined it will have da
Enumerating simple varchar lists with large item counts and relati

mple int list is stored as a fewdata is self-describing. For example, a si
contiguous array. When saved to disk this list has essentially
nearly instantaneous operation.

rchars are different because their contents are tVa
saved to disk, the conten
not a problem when files are seldo

 performance pstored tables, which can cause
The performance problem is overcome by enumeratin
 `u$c

or example, where u is a list of the unique items in c, e.g. distinct c . F
 c:`c`b`c`c`a`b`a`a`c`c`c`b`c`b`a

 u:distinct c / the distinct items of c
 e:`u$c / e is the enumeration of c on u
 e / view the console display
`u$`c`b`c`c`a`b`a`a`c`c`c`b`c`b`a
 k:0 1 0 0 2 1 2 2 0 0 0 1 0 1 2 / k is the list of indices

ntical to u[k] c~u[k] / c is ide
1

rom e[9 3 11] / select f
`u$`c`c`b / the result is

 u[k[9 3 11]]
`c`c`b
 c[9 3 11]
`c`c`b
 Enumerated values can be used in the sam
 c=`a
000010110000001b
 e=`a
000010110000001b
 c in `a`b
0

010011110001011b
 Internally, an enumerated value is a pair of objects, the name of the domain, say `d, and an int list k of i
value is identical to d[k]. When an enumerated value is w
For simple varchar lists, k is a simple int list. As a result, read
Note the domain d, which is not written to disk with the enumerat
Find The function named Find is a dyadic function whose left argument is a

list and right argument is any data object.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 58

function) an item of the left argument (the so-
f the left argument. For example,

ce of 3

of a simple list left argument, the right argument can also be a list whose
rgument item-by-item. For example,

s and the right argument is simple list, then items of the left argument are matched with the entire right

owever, if the right argument is a general list then items of the left argument are matched with items of the right argument. For
ample,

o explicitly

nary or list) or table. That is, each column of the left
. For example,

The result is the lowest index for which the right argument matches (using the Match
called "first occurrence"). If there is no match the result is the count o
 w:10 -8 3 5 -1 2 3
 w?-8
1
 w[1]
-8
 w?3 / the first occurren
2
 w?17 / not found
7
 w[7]
0N
 "abcde"?"d"
3
 Find is type-specific relative to the left argument. In the case
atoms are all the same type as the left argument. The result corresponds to the left a
 rt:(10 5 -1;-8;3 17)
 i:w?rt
 i
(0 3 4;1;2 7)
 w[i]
(10 5 -1;-8;3 0N)
 r
(10 5 -1;-8;3 17)
 If the left argument is a list of list
argument. For example,
 u:("abcde";10 2 -6;(2 3;`ab))
 u?10 2 -6
1
 u?"abcde"
0
 H
ex
 u?(2 3;`ab)
3 3

ft argument with 2 3 and `ab, not (2 3;`ab) . In order to find (2 3;`ab), one has t In this case Find matches items of the le
check each component of u using the match function, that is
 where u~\:(2 3 ; `ab)
,2

 the left argument is a table then the right one must be a compatible record (dictio If
argument, paired with the corresponding item of the right argument, must be valid arguments of Find
 sp?(`s1;`p4;200)
3
 sp?`s`p`qty!(`s2;`p5;450)
12
Reverse Reverse applies to lists and gives their items in the opposite order
For example,
 reverse `a`b`c
`c`b`a
 Reverse comes into play when it is more efficient to work with a list in its reverse order. For example, suppose that an application calls

e created and both b and l to be copied into it. That is, the list l must be
d of l, as in

s copied onto the end of a. This is due to the fact that the chunk of memory allocated
. To specify this behavior use the form of amend that modifies l in place. The computation

is:

for many joins to the front of a long list l, as in
l:b,l
 This expression causes a list of size (count b)+count l to b

 encopied for every join. However, when the joins go to the
l:l,b

ly b i then it is possible to do it so that (usually) on
ce at the endfor a list usually has unused spa

 thwould proceed something like
 l:reverse l
 .[`l;();,;reverse b]
 ...
 .[`l;();,;reverse b]
 l:reverse l
Associative Arithmetic Arithmetic is defined for associations with numeric value lists

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 59

r example,
:10 20 30!25 38.5 17

 e:10 30 45!11.5 24 -18
 d+e
10 20 30 45!36.50 38.50 41.00 -18.00
 d*e

!287.50 38.50 408.00 -18.00
ou can see that the keys of the sum are the union of the keys of the arguments. Also, if a key is in both arguments then the value for

 key in

d
ows.

 i:(k)i
 v: u
 v[i] $d
The ul

Fo
 d

10 20 30 45
 Y
that key in the result is the sum of the values in the arguments. Otherwise, the value in the sum for that key is the value for that
whichever argument it appears.
The other primitive atom functions apply in the same way. For example,

Some applications such as sparse arrays may prefer the non-boolean items of the last result to be 0b. One way to do this is as foll
 u:(k d)ey union key e

ey d nter key e
!u=-1

:”b” [i]
res t of the expression u=-1 is 0000b; the assumption is that all keys of sparse arrays are non-negative ints.

IEEE NaNs and Infinities
The IEEE by 0w
and -0w.
 0%0
0n
 1%

w

 arithmetic NaN (not-a-number) for floats is a float denoted by 0n. Plus-infinity and Minus-infinity for floats are denoted
For example:

0
0
 -1%0
-0w
 NaNs serve as nulls in q tables
Nulls Working with nulls
Null values often represent missing values. Null values are used in tables to represent missing values. Some null values

l values, such as n for floats. Others are actual values, such as 0b for bools. Nulls for all datatypes can be
y ist with an out-of-range index produces the null value for the datatype of the list. For

nctions manipulate nulls: fill, fills and null.

are exceptiona
found in the da

 the IEEE Na
. Indexing a ltatypes summar

example,
 1 -2 12h[3]
0Nh
Three fu

Extract from Denis Shas :Operations on Atoms and Listsha Primer
x: 5
x / returns 5
y: 6
x+y / returns 11
x,: 9 2 -4 / returns a type error because x is not a list so concatentation
 / is not well defined.
x: enlist x
x / returns ,5 which means the list having the single element 5
x,: 9 2 -4 / now it works
x / returns 5 9 2 -4 (we don't need the initial comma because
 / any entity having several elements must be a list.
x+y / returns 11 15 8 2 (result of adding 6 to each element here)
z: x*y / form the product
z / returns 30 54 12 -24
z + 3 2 4 1 / gives 33 56 16 -23 by element by element addition
/ Operations are processed in right to left order.
/ Others think of operations as being evaluated in left OF right
/ order (by analogy to sum of f(x)).
/ Whichever way you think of it, there is no operator precedence,
/ only position precedence. Thus,
5 * 4 - 4 / returns 0, first do 4 - 4 and then multiply that result by 5.
 Here are some other binary op ts in the same set (atom op atom; atom op list; list op atom; list op erations that can apply to atoms or lis
list if the same length).
a+b Plus
a-b Minus
a*b Times
a%b Divide
a=b Equal
a>b More
a

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 60

There are also a few other very common binary operators (you may have noticed that only the unary operators are English words; the
binary ones are normally just keyboard characters).
~ asks whether two entities have the same contents.
, concatenates two lists.
_ drops elements of a list.
selects elements of a list.
? finds the positions of elements of a list.
? is overloaded to generate random numbers.
bin supports binary search.

/ Note that the where operator finds the positions where there is 1b.
ii _ a / returns (" the";" people";" of";" the";" United";" States")
 / That is a list where each element is the part of the list between
 / one blank and the next.
Examples K: Binary operators
x: 2 4 3 5
y: 2 5 3 4
x = y / returns a boolean vector 1010b
x ~ y / returns 0b because these are not identical
z: 2 4 3 5
x ~ z / returns 1b because conte cal nts are identi
z,z,y,z / returns 2 4 3 5 2 4 3 5 2 5 3 4 2 4 3 5 the concatenation
w: z, (2*z), (3*y)
w / returns 2 4 3 5 4 8 6 10 6 15 9 12
5 _ w / returns 8 6 10 6 15 9 12 dropping the first 5 numbers
-5 _ w / returns 2 4 3 5 4 8 6 having dropped the last 5 numbers
a: "We the people of the United States"
a = " " / returns 0010001000000 1000000b 10010001000000
ii: where a = " " / finds the positions of the blanks

 5 # a / returns "We th"
-5 # a / returns "tates" (the last 5)
7 # "abc" / returns "abcabca"
a ? "p" / returns 7 which is the first position with a "p"
a ? "ptb" / returns 7 3 34 becaus n of "p" e 7 is the first positio
 / 3 is the first position of "t"
 / and "b" is never present so its position is the length of the string
 / which is 34.
/ When the left object is a scalar and the right number is a scalar
/ we can generate random numbers that can be float:
7 ? 5.2 / generates 7 numbers between 0 and 5.2
/ returns 0.9677783 4.321816 3.661838 2.394824 2.102985 0.9226833 2.556388
/ or whole numbers
9 ? 18 / returns 15 1 1 8 6 11 10 8 9
/ without replacement
-9 ? 18 / returns 13 9 10 2 3 0 15 1 7
/ Permutations
-15 ? 15 / 13 0 1 3 7 10 6 4 14 11 9 8 2 5 12

7 ? `cain`abel`job`isaac
/ returns `job`job`abel`abel`job`cain`isaac
evens: 2 * key 20
evens / returns 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
evens bin 4 / returns 2 because 4 is at position 2
evens bin 5 / also returns 2 bec is at the next position ause 5 < 6 which

Extract from Denis Shas mer: Some Binary Operations on Dictionariesha Pri
schoolfriends: `bob`ted`carol`ali 30 24 ce ! 23 28
rockfriends: `sue`steve`alice`bob`allan ! 19 19 24 23 34
/ multiplication applies to each element of the domain
2*rockfriends / returns sue`steve`alice`bob`allan!38 38 48 46 68
/ for each common element in the nge parts are added. domain, the ra
schoolfriends+schoolfriends / re carol`alice!46 56 60 48 turns `bob`ted`
/ Same as above and in addition there is a union of the domains.
/ So bob and alice are doubled, but everyone else goes in as they were
/ in the base dictionaries.
schoolfriends+rockfriends
/ returns `bob`ted`carol`alice`sue`steve`allan!46 28 30 48 19 19 34
schoolfriends = rockfriends
/ returns `bob`ted`carol`alice`sue`steve`allan!1001000b
/ Note that in spite of the fact that bob and alice
/ are in different positions in the two dictionaries, the fact that
/ they have the same value is recognized.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 61

Extract from Denis Shasha Primer: Type and Cast
The operator type determines the type of a q object.
type 100 / returns -6h
type 100 99 88 / returns 6h (in general lists of type T are positive
/ whereas a scalar of type T is the same negative value).
type 1.2 3.1 / returns 9h

Here are some further examples:
"x"$97 / cast the int 97 using the datatype name x for a byte
/ returns 0x61
/ representation of 97 in hex
"x"$"a" / cast a char to a byte
/ return 0x61
/ "a" also happens to be encoded in hex 97
"c"$0x41 / cast a byte to a char
/ returns "A"
"d"$2003.03.23T08:31:53 / extract the date from a datetime value
/ returns 2003.03.23
/ the year.month.day value
"t"$2003.03.23T08:31:53
/ returns 08:31:53.000

Casting to and from strings is special. There one should use the upper case character corresponding to the type. Here are some
examples.
"I"$"67" / returns 67
"S"$"abc 012" / returns `abc 012
"D"$"2003.03.23" / returns 2003.03.23
"D"$"2003-03-23"
"D"$"03/23/2003"
/ We have a means to create text from data too:
string "D"$"03/23/2003" / returns "2003.03.23"

Extract from Denis Shasha Primer: String identifiers
 The operator like determines whether a string matches a pattern. The operator ss finds the positions of a pattern.
a: "We the people of the United States"
a like "people" / returns 0b beca hole string use people doesn't match the w
a like "*people*" / returns 1b because the * is a wildcard.
a ss "the" / returns 3 17 which are the positions where the word "the" starts

There are a number of other impo unctions such as string,first, reverse, key and group. rtant unary f
 The string function converts a bols) to strings. The first function returns the first element of a list (or the domain of a toms (incl. sym
dictionary or the first row of a table). The reverse function reverses a list. The key function is a way to generate a sequence of numbers.
The group function on a vector returns a dictionary whose domain is the list of unique elements in the vector and whose range is a list of
their positions.
string `ILoveNY / returns "ILoveNY"
reverse string `ILoveNY / returns "YNevoLI"
key 15 / returns 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
reverse key 15 / returns 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
z: 50+ key 5
z / returns 50 51 52 53 54
zdup: z, reverse z / Note that the comma is concatenation.
zdup / returns 50 51 52 53 54 54 53 52 51 50
group zdup / returns a directory with the unique elements
/ of zdup in the domain and their positions in the range
/ 50 51 52 53 54!(0 9;1 8;2 7;3 6;4 5)
d:`name`salary! (`tom`dick`harry 30 30 35) ;
first d / returns `tom`dick`harry
key d / returns `name`salary
e: flip d / names are domains and values are column
first e / returns `name`salary!(`tom;30)
`name xkey `e
key e / returns +(,`name)!,`tom`dick`harry

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 62

Functions
 seen ways of manipulating atoms, lists and dictionaries. Some of these are in fact

s. This section introduces further functions.1

ys of classifying functions. For example they can be either:
uments and produce atomic results

Aggregate (atom from list)

lists. The count of the argument list equals the count of the corresponding result list. Unlike
 result is not solely dependent on the

 the argument. The relationship between the argument and result is

lled
ion.

Details

We have
function

There are a number of different wa

- Atomic – these apply to atomic arg
-
- Uniform (list from list) – these extend the concept of atom functions in that they apply to

an atom function, an item of a uniform function
corresponding item of

neral. more ge
- Other

Binary operations in mathematics are called dyadic functions in q, and unary operations are ca

c functions. For xample, + is a dyadic function and floor is a monadic functmonadi e

Function
Absolute value abs x
The Absolute Value function is a seful companion to the arithmetic functions.

nchanged and negates negative numbers. For example,

 u
Absolute Value leaves non-negative numbers u

-4.7 abs
4.7
acos acos x
This is a un

s 0.1
ary function that returns the arcos (or inverse cosine) of x, with the result in radians.

29
 aco
1.4706
The arguments must be within -1<=x<1, otherwise the null value 0n is returned.
aj Asof join
Gene
speci

rally, this is used to get the table) as of th prevailing quote (one
rrectly. In order to work

e time of the trade (other table). The columns must be
fied for this join to work co with two columns the first must be either parted by (`p#) or grouped by

quote] /Trade and quote are the names of the two tables here & and two columns are sym and time.

(`g#) the key; if neither q will attempt to force conversion to `p#. Realtime data is sorted by time and `g# by sym and Historical data
is `p# by sym.
Syntax:
 aj[`sym`time;trade;
all Logical AND (numeric min)
This is an aggregate monadic function. For numeric types this function is equivalent to the min function.
 all 3 4 0 -2
-2
And, Or and
Logical Negation

The logical functions () do not have separate symbols

The logical functions () do not have separate symbols; they are, respectively, the restrictions of Min, Max and Not to bool
arguments. For example,
 1b&1b / And (Max)
1b
 1b|0b / Or (Min)
1b
 not 1b / Logical Negate (Not)

 0b
any Logical OR (numeric max)

1 has verbsSyntactically, q

onally, verbs are d
 and functions. Verbs are primitive symbols and names that can be evaluated with infix notation, as in a+b .

yadic f n be evaluated in the functional form f[a;b], but rarely are. For example, +[2;3] . Monadic
e functions appear in the rm of monadic function evaluation.

Functi
primitiv

unctions that ca
 juxtaposition fo

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 63

is is an aggregate monadic function. For numeric types this function is equivalent to the max function. Th
 any 9 2.0 -3.2 1.0
9f
asc Order list ascending
This monadic function simply sorts a numeric list from smallest to largest. If a non-numeric is included the appropriate numeric null
value is returned. Duplicates are allowed making this a uniform function.
 asc 1 4 7 -2 3
`s#-2 1 3 4 7
asin asin x
This is a unary function that retu sin (or inverse sine) of x, with the result in radians. rns the arc
 asin -1.0
-1.570796
The arguments must be within -1<=x<=1, otherwise the null value 0n is returned.
atan atan x
This is a unary function that returns the arctan (or inverse tangent) of x, with the result in radians.
 atan 3.14159%4
0.6657733
Valid arguments must be approximately of the order +10^9 to -10^9. If this is not the case then the function will not evaluate.
attr attribute
The attr function gives the attributes of data, which describe how it is sorted. `s denotes fully sorted, e.g `s#2 3 3, `u denotes
unique, e.g. `u#2 4 5 and `p and `g are used to refer to lists with repetition, with `p standing for parted and `g for grouped. As an
example of their usefulness, `s#table marks a table to use binary search and marks its first column as sorted.

Attribute flags are descriptive, not prescriptive; amends and appends preserve flags iff the attribute is preserved. In other words, a
sorted list remains sorted until a element is inserted in such a manner to disrupt the sort. n
avg Average
This function returns the arithme s. The numeric value can be a vector as well. tic average of a list of numeric value
 avg (2 4 ; 3 6)
2.5 5
The syntax for a usual list is
 avg 3 5 7 9
6f
bin Binary search
 a:asc key 10 /Create an ordered list
 a bin 5 / Perform a b rch on the list. inary sea
by Groups rows in a table at given sym
The ‘by’ keyword allows rows to ven sym. It can make keyed or nested tables. For instance one can be grouped in a table at a gi
have
 select sum amount by sym from trade /Finds total amount for each sym
ceiling ceiling x
The Ceiling function is the complement to the floor function. Given a float or real the ceiling function always rounds up to the
nearest integer, e.g.
 ceiling 2.7
3
 ceiling -3.4
-3
It is equivalent to 1+ Floor x.
cols Lists columns
This keyword allows columns of for example cols trade. a table to be listed,
cor correlation
This function gives the correlatio between two numeric lists of the same length. If each list only has one member, the float null 0n n
is returned. The function output is between 1 and -1, with 1 denoting perfect correlation and -1 denoting perfect anti-correlation.
 cor[3 2 1 ; 2 -1 0]
0.6546537
cos cos x
This unary function returns the cosine of x, where x is in radians.
Note that cos x repeats itself every 2*pi and consequently valid values of x are of the order + 10^9 to -10^9. For example:
 cos 3.14159 / 3.14159 is Pi to 5 dps
 -1f
count Count list
This aggregate function counts the elements in a list and returns a single int value.
 count 1 2 3 4 5
5
 count “abcdefg”
7
 count `sym`trade 1 2 3 /If the list is not simple, i.e. all of the same type then the count only applies to the last type in the list
3
 count (`sym`trade;1;2;3) /In this case, the list is heterogeneous, with 4 atoms not all of the same type.
4
cov covariance
This function gives the covariance between two numeric lists of the same length. Attempting to find the covariance between two
single numbers produces the null float value 0f.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 64

 cov[1 2 ; -9 4]
3.25
cross cross[x;y] returns the cartesian product
x: 3 4 5
y: `a`b`
cross[x;y] / returns (in the browser) the cartesian product:
((3;`a);(3;`b); (4;`a);(4;`b); (5;`a);(5;`b))
csv
This command allows queries in a browser to be exported to Excel by prefixing the query, such as
 http://localhost:5001/.csv?select from trade where sym=`IBM. Can be used with the port command \p as well as when saving and
loading.
cut
This command allows a table or list to be cut at a certain point, with the syntax being (0 5 10)cut “safAasdfAasdf?”
The above example would equate to
 (0 5 10)cut “safAasdfAasdf?”
(“safAa”;”sdfAa”;”sdf?”) /The argument is split at the 0’th 5’th and 10’th atoms (letters)
A single number such as
 5 cut “safAasdfAasdf?”
would result in the ‘word’ being split into 5 atom (letter) parts until its end, with the same result as above. Putting in a single
negative number results in an e r, whilst putting in a single zero leads to q shutting down. Putting in a number larger then the rro
number of atoms results in the argument being returned as a single element list, for example:
 8 cut (1 2 3)
,1 2 3
delete Delete rows/columns
This command enables rows or columns from a table to be deleted. The syntax is similar to that of a query, for instance
 delete from table where a<2 /Deleting rows where a>2
 delete cols from table /Deleting cols
deltas deltas a b c
The deltas function is another primitive uniform function, which produces the differences of neighboring items in its argument. For
example,
 deltas 4 9 -5 1 2
4 5 -14 6 1
 The ith item of the result of deltas v is v[i]-v[i-1] for i greater than 0. Note that the first item of the result is identical to the first item
of the argument.
desc Order list descending
This monadic function sorts a numeric list from largest to smallest. If a non-numeric is included the appropriate numeric null value
is returned. Duplicates are allowed making this a uniform function.
 desc 1 4 7 -2 3
7 4 3 1 -2
dev Deviation
This function gives the mathem values, it is therefore an aggregate function. The numeric list atical deviation for a list of numeric
needs to have at least 2 values or else the null 0f is returned.
 dev 4 8 3 -0 2.0 -4 3
3.410668
differ Difference
This uniform function checks each member of a list to see if it differs from the preceding element. It returns a list of bool values
with 1b indicating that the curre t a 0b indicates the opposite. The first atom of a list nt value and the preceding one do differ whils
returns 1b by default.
 differ 1 1 2 3 3 3 4 5 6
101100111b
 differ `mars`mars`jupiter`mars`earth`uranus`uranus
1011110b
 differ (1 2 ; 3 4 ; 3 4 ; 5 4 ; 5 4)
11010b
distinct
This monadic function returns th nts of a list; that is, the output has no repetition. e distinct eleme
 distinct 1 1 1 1 1 2 2 3
1 2 3
 distinct (1 2 ; 1 2 ; 1 2 ;`sym;`s ”) ym;”a”;”a
(1 2;`sym;”a”)
If it is used with a single positive number x of type type, then a random number, of type type, between 0 and x is generated (x-1 for
an int or long).
 distinct 8
1 / An int produces an int result.
 distinct 0
67214319 /Produces a random long in the valid domain.
Divide a%b
Divide is a dyadic arithmetic function.Note that Divide is denoted by %, not /. Numeric datatypes can be mixed in arithmetic
expressions and required conversions from one to another are automatic. The arguments of % are converted to float before the
operation is performed.
. For example,
 4%2
2.00

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 65

The result type is int if there are no occurrences of % and all the datatypes are bool, byte, short or int. Everything is converted to
int before the operations are performed. For example,
 1b+1h
2
 10*0xab
1710
If long integers are included among the arguments and there are still no occurrences of % then the results are always of type long.
 1b+1h+1j
3j
 10j*0xab
1710j
Do Do loop
The usual DO construct with syntax as follows
 Do[10;foo[]] /Performs the foo function 10 times.
Each ‘
The each keyword (adverb), denoted by quote ‘, modifies dyadic functions and verbs to apply to the items of lists as opposed to
the lists themselves. More information is in the Dictionaries and Associations section.
enlist
A monadic primitive function which enables one-item lists to be created.
 enlist 34.5
,34.5 /A one-item simple float list
 enlist (1;”as”;`sym)
, (1;”as”;`sym) /A one item list is displayed with a leading comma.
Equal a=b
This is a dyadic relational function. This function produces boolean values, where 1b means that the relation holds, or is true.The
relational functions in q use a multiplicative tolerance when applied to floats. This makes arithmetic work better.
except
This function deletes items from a list.
 (2 3 4 5 6)except 2 4
3 5 6
 (“a”;”b”;”c”)except “a”
“bc”
exit
This keyword exits from a process, e.g. exit 0.
exp Exponential (exp x)
This function returns e^x (e to the power of x) where ‘e’ is the natural number and is approximately equal to 2.718282.
 exp 1
2. 718282
fby
This function can take the place of ‘common by phrases’, thereby simplifying them – useful in where clauses.
For instance:
 select count I by sym from trade where price>(avg:price)fby sym
fill used with nulls
There are three functions for processing null values. The dyadic function named fill replaces null values in the right argument with
the atomic left argument. For example,
 0^1 2 3 0N
1 2 3 0
 100^1 2 -5 0N 10 0N
1 2 -5 100 10 100
 1.0^1.2 -4.5 0n 0n 15
1.20 -4.50 1.00 1.00 15.00
 `nobody^`tom`dick``harry
`tom`dick`nobody`harry
 Integer left arguments are prom ted when the right argument is float or real. For example, o
 10^1 2 3 0n 4.5 0n
1.00 2.00 3.00 10.00 4.50 10.00
/ Suppose we have a sales vector and some days have an unknown number of sales.
/ We could fill in those unknown days with 0s:
sales: 45 21 0N 13 0N 11 34
adjsales: 0^sales
adjsales / returns 45 21 0 13 0 11 34
/ Or we could choose to fill in wi on-null values: th the n
x: avg sales where not null sales
adjsales2: x ^ sales
adjsales2 / returns 45 21 24.8 13 24.8 11 34
fills used with nulls
This function fills in nulls with the previous not null value.
 fills 1 0N 2 0N 0N 1 2 0N
1 1 2 2 2 1 2 1 2
first First atom
This command returns the first atom of a list.
 first 1 2 3 4

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 66

1
 first (`first;1;”sad”;`candle;4)
`first
flip
Flip is a monadic primitive that a s to interchange the top two levels of its argument. That pplies to lists and associations. The effect i
is if we perform c:flip b, then b[i][j] and c[j][i] are identical for all valid indices i and j. In matrix terminology c is the transpose of b. In
particular all items of a list must have the same count in order to be flipped.
 flip ((1 2;3);(4;5);(3 3 3;5 6))
((1 2;4;3 3 3);(3;5;5 6))
floor floor x
The Floor function is a useful co plies to floats and reals and produces their integer mpanion to the arithmetic functions. Floor ap
parts as ints. For example,
 floor 2.7
2
 floor -3.4
-4
Floor is often used to truncate and round floats to a specified number of decimal places. For example, the first expression
truncates the float 72.277 to 2 decimal places and the second expression rounds it to 2 decimal places.
 0.01*floor 100*72.277
72.27
 0.01*floor 0.5+100*72.277
72.28
from from clause
The from clause as in ‘select from trade’.
Get
This allows one to memory map a file, as in get`:./2007.02.14/trade/price.
getenv Get environment variable
Get an environment variable, for example getenv DISPLAY.
group Group a list
This function returns an association of the distinct atoms of a list with their positions in the list.
 group 2 3 4 5 3 4 5
2 3 4 5 ! (,0;1 4;2 5;3 6)
 group “abcdddeeee”
“abcde” ! (,0;,1;,2;3 4 5;6 7 8 9)
gtime GMT
Converts time to Greenwich Mean Time (GMT), such as gtime .z.Z
hclose Handle close
This keyword closes an ipc connection or file handle. For example
 hclose h
hcount Handle count
Handle count, also returns the size of a file in bytes. For example,
 hcount q.exe
143360
hdel Handle delete
Handle delete, useful for files. For example,
 file:`:oracle.exe
 hdel file
hopen Handle open
This keyword opens an ipc connection or file handle, such as
 H:hopen(`::2000)
hsym
This keyword converts a symbol to a file or process handle, such as
 hsym `file.txt
iasc Index ascending
This is a uniform function which returns the indices of the ascended sorted list relative to the input list.
 iasc 5 4 3 6
2 1 0 3
idesc Index descending
This is a uniform function which returns the indices of the descended sorted list relative to the input list.
 idesc 5 4 3 6
3 0 1 2
in In a list
This dyadic function can be use y lists (on the right-hand side) about their contents. The output is a bool list indicating d to quer
whether or not a specified atom is in the queried list.
 (2 4)in 1 2 3
10b /2 is in the right-hand list, 4 isn’t.
 “me” in “team”
11b /Both “m” and “e” are in the right-hand list.
insert Insert statement
This keyword is used to upload new data into a table. For instance

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 67

 `trade insert(2005.05.12;.z.z;`IBM;1.5;100)
inter Intersection
This dyadic function returns the intersection of two lists; that is the atoms they have in common.
 1 2 3 inter 2 3
2 3
 “carthorse” inter “orchestra”
“carthorse”
inv Matrix inverse
This monadic function returns the matrix inverse, but it should be noted that it only works on floats.
 inv(1.0 2.0;3.0 4.0)
(-2 1f;1.5 -0.5)
key
This keyword has three different functions, firstly it enumerates an int as follows:
 key 10
0 1 2 3 4 5 6 7 8 9
it can also obtain the contents of a directory, for example:
 key `:c:
and it can also be used to get the key of a table/dictionary
 key tbl
keys
This function obtains the keys of a table, for example,
 keys trade
,`price /Possible answer.
last Last atom
This keyword returns the last atom in a list.
 last 1 2 3 4 5
5
last (`sym;”abc”;(1 2);9.0)
9f
Like
This function performs a string match, where list1[i] matches pattern in list2[i].
 list1[i] like list2[i] /The [i[notation emphasises that the strins should match atom for atom.
Example
 select from stock where company like “M?c[rR][n-p]s*” /? means any char and * denotes anything, so Microsoft would pass filter.
lj Left join (x lj y)
The left join is a special case of the asof join, where either the y argument is keyed or both are. X must have a column of the
same name as the key of y. As a result x fills out with any valid values from y and any rows not in y are filled with nulls.
load Load data file
This keyword loads a q data file, such as
 load `:trade
log Natural logarithm (log x)
This function returns the natural logarithm of a non-negative numeric value.
 log 1
0f
 log 0
-0w /minus infinity
lower Convert to lower case and floor
This function converts Upper case letters to lowercase in chars and varchars and applies the floor function to numeric values.
 lower(-2.3;”ABC”;`SYM;1.0 2.8 3.4)
(-3;”abc”;`sym;1 2 3)
lsq Least squares
The least-squares approximatio sq notation can also form associations n. The l
 “abc” lsq 1 2 3
 “abc” ! 1 2 3
ltime Local time
Converts to local time, as in ltime.z.z
Match a ~ b
Match is not an atom function, but is related to Equal and is so useful whe experimenting with the language that we'll define n it
here.
It often happens that you want to compare two results to determine whether or not they are identical. This is often done in this
manual simply by looking at them, but that doesn't always work, e.g. when the console display doesn't contain all the details.
Sometimes Equal can be used, but not always. The primitive function called Match is the function to use. For example,
 (1 2 3+4 5 6)~4 5 6+1 2 3
1b / the arguments are identical
 (1 2 3-4 5 6)~4 5 6-1 2 3
0b / these are not
 1 2 3 ~`a`b
0b / any two data objects can be compared
 Comparison tolerance is used when matching floats.
Match depends on the datatype of the arguments, not just the values. For example,
 1~1h
0b

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 68

 3~3.0
0b
mavg Moving Average (n mavg list)
Computes the n-number moving st of numeric values. The function is uniform, so that the moving average builds up average of a li
to the n-number one as the function goes along the list. The upshot of this is that the first atom of the output is the 1-number
average of the input (first atom , the second is the 2-number average of the first and second atoms of the output and so forth and)
so on until the n-number moving average is reached.
 3 mvg 2 4 5 8
2 3 3.666667 5.666667 /2 is the average of 2, 3 is the average of 2 and 4, 3.666667 is the average of 2, 4 and 5 etc
If the count of the list is m, and we perform n mvg list with n>=m, the moving average just builds up in the usual manner, so the i’th
atom of the output is the i-number moving average starting from the beginning of the input list.
Max and Min a|b and a&b
The comparison functions are | for Max and & for Min.
 9|5 / Max
9
 9&5 / Min
5
 The arguments can be of any numeric types, or both can be chars, or both syms. When the numeric types are different the result
is one of the types, always the one to which the other argument can be safely converted. For example,
 9.0|5
9.00
 9.0e&5
5.00e
 0x18|1b
0x18
 The Max of 2 chars is the one w est byte order. For example, ith the high
 "z"|"a"
"z"
The | gives the maximum no matter what the domain, so
x: "algebras"
y: "calculus"
x | y / returns "clleurus"
x & y / returns "aagcblas"
/ The max and min also apply to boolean results, e.g.
(x > y) | (x < y) / returns 11111110b
(x > y) & (x < y) / returns 00000000b
maxs maxs a b c
The maxs function is a primitive uniform function. The nth result is the maximum of the first n items in the argument.
maxs 1 2 3 -4 5
1 2 3 3 5
md5 Encrypt
This function encrypts text using the “Message-Digest algorithm 5”. For example
 md5”I know where you live”
0x8adc84de2ef391a352c5ca5366a8a450
mdev Moving Standard Deviation (n mdev list)
This uniform function computes the moving standard deviation of a list of numeric values. The first atom of the output is always 0,
as this is the measure of the deviation of a single number. The next atom of the output is the deviation of the first and second
atoms of the input and so forth until the n’th atom of the input list is reached. After that, the first atom of the input is dropped from
consideration and the next one is added etc.
 2 mdev 2 4 3 9 -3 2
0 1 0.5 3 6 2.5
med Median value
This function returns the mathem meric values. atical median of a list of nu
 med 2 4 0 7
3f
meta
Displays table meta data.
 show meta `trade
mins mins a b c
The mins function is a primitive uniform function. The nth result is the minimum of the first n items in the argument.
mins 1 2 3 -4 5
1 1 1 -4 -4
Minus a-b
Minus is a dyadic arithmetic function. Numeric datatypes can be mixed in arithmetic expressions and required conversions from
one to another are automatic.
The Sum, Product and Differenc ols are ints. e of two bo
 1b-1b
 0
The difference of two ints is alw 232 value of the mathematical result. ays an int, the modulo
Analogously the difference of two longs or a long and an int is always a long, the modulo 264 value of the mathematical result.
mmax Moving maximum (n mmax list)
This uniform function is the n-number moving maximum of the input list of numeric values. If n is greater than or equal to ‘count list’
then the output is the same as that of the maxs function. Until the n’th atom of the input list is reached the corresponding atom in

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 69

the output is simply the corresponding maximum. After that the first atom of the input is dropped and the next one added, and the
maximum of these numbers is the next atom of the output and so forth and so on.
 3 mmax 2 4 -1 9 0 4 7 8 12 4 -7 2
2 4 4 9 9 9 7 8 12 12 12 4
mmin Moving minimum (n mmin list)
This uniform function is the n-number moving minimum of the input list of numeric values. If n is greater than or equal to ‘count list’
then the output is the same as that of the mins function. Until the n’th atom of the input list is reached the corresponding atom in
the output is simply the corresponding minimum. After that the first atom of the input is dropped and the next one added, and the
minimum of these numbers is the next atom of the output and so forth and so on.
 3 mmin 2 4 -1 9 0 4 7 8 12 4 -7 2
2 2 -1 -1 -1 0 0 4 7 4 -7 -7
mmu Matrix multiplication (a mmu b)
This dyadic operator only works on matrices of type float. If ‘a’ is a l x m matrix and ‘b’ is a m x n matrix, then (a mmu b) is a l x n
matrix. This function works for a case of a column vector times a row vector – this is because both types ll matrices, except for the
of vectors are represented in the same way and mmu distinguishes between them according to the situation, that is:
 a:(2.0 3.0) /Looks ow vector. like a is assigned to be a 1 x 2 r
 b:(2.0 3.0 ; 4.0 5.0) /b is assigned to be a 2 x 2 matrix.
 a mmu b
16 21f /A normal 1 x 2 by a 2 x 2 matrix calculation with the result, mathematically being a row vector.
 b mmu a
13 23f /In this case q performs a 2 x 2 by a 2 x 1 matrix calculation (a is now a column vector!), technically giving a column
/vector output, though its representation is indistinguishable from that of a row vector.

Multiplying 2 vectors always results in the sum of the scalar product::
 (1.0 2.0 3.0) mmu (1.0 2.0 3.0)
14f /In this case it is not o get a 3 x 3 matrix, the operation is performed as possible to multiply a 3 x 1 vector by a 1x 3 one t
a 1 x 3 vector by a 3 x 1 one, to obtain a 1 x 1 matrix, or a scalar.
mod m mod n returns the remainder of dividing m by n
26 mod5 / returns 1
More(Less) a>b (a<b)
These are relational dyadic functions. These functions produce boolean values, where 1b means that the relation holds, or is true.
For example,
 3>5 / 3 is not greater than 5
0b
 "z">"a" / chars have byte order
1b
 `abc>`def
0b
The relational functions in q use lerance when applied to floats. This makes arithmetic work better. a multiplicative to
More examples;
x: 3 2 6 3
y: 7 1 4 6
x < y / returns 1001b because 3 < 7 (first positions of
 / x compared to first of y)
 / 2 < 1 is false, 6 < 4 is false and 3 < 6 is true
 / So true is 1b and false is 0b.
x: "algebras"
y: "calculus"
x > y / returns 01010100b because "a" > "c" is false, "l" > "a" is true etc.
msum Moving sum (n msum list)
This uniform function is the n-number moving sum of the input list of numeric values. If n is greater than or equal to ‘count list’ then
the output is the same as that o he n’th atom of the input list is reached the corresponding atom in the f the sums function. Until t
output is simply the corresponding sum. After that the first atom of the input is dropped and the next one added, and the sum of
these numbers is the next atom of the output and so forth and so on.
 3 msum 2 4 -1 9 0 4 7 8 12 4 -7 2
2 6 5 12 8 13 11 19 27 24 9 -1
neg Negative
 3.0 * (neg 0.2)
-0.6
next Next
Useful for selecting next `variable in a table for instance:
 select (price + next price)%2 by sym from trade
It can also be used to cycle through a list
 next 2 3 4
3 4 0N /This use of next is uniform, with the first atom 2 being dropped and the null int being tacked on the end.
not not x
There is one monadic relational function, named not. This function gives the relationship of all numeric values to zero: the result is
1b if the argument is identical to 0 and 0b if it is not. For example,
 not 34.56
0b
 not 0
1b
Less or Equal in q is not a>b, G not a<b and Not Equal is not a=b . reater or Equal is
x: "algebras"

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 70

y: "calculus"
x > y / returns 01010100b because "a" > "c" is false, "l" > "a" is true etc.
/ The expression x <= y can be simulated by not x > y.
not x > y / returns 10101011b
The relational functions in q use a multiplicative tolerance when applied to floats. This makes arithmetic work better.
null null a
The monadic function named Null is an atomic function whose result has the same structure as the argument, with each atom
replaced by 1b if the atom is a null, or 0b otherwise. For example,
 null 1 2 3 0N
0001b
 null 1 2 -5 0N 10 0N
000101b
 null 1.2 -4.5 0n 0n 15
00110b
 null `tom`dick``harry
0010b
 This function is useful when replacing null values in a way other than that defined by Fill. For example, suppose you want to
replace the null values with their previous values. The Where function used with Null, gives the indices of the null values.
 where null 1 2 3 0n 4.5 0n
3 5
 The replacement can then be done as follows:
 v:1 2 3 0n 4.5 0n
 v -1+where null v
3.00 4.50
 v[i]:v -1+i:where null v
 v
1.00 2.00 3.00 3.00 4.50 4.50
 There are two cases not handled by this expression. The first case is when the first item in v is null, and the second is when there
are successive null values. The first case must be handled separately, depending on circumstances. For example, if you know the
simple list will always be a float list and that a null first item should be replaced with 0.0, then the following expression will do.
 if[null first v;v[0]:0.0]
 The second case can be handled in a While loop or with the kdb+ construct called Over. The while loop is used here. Let's first do
all the iterative steps explicitly.
 f:{r:x;r[i]:r[-1+i:where null r];r}
 v:10 -3.1 0n 0.1 0n 0n 0n 3.4
 v:f v / fill the nulls
 v
10.00 -3.10 -3.10 0.10 0.10 0n 0n 3.40
 v:f v / fill the null
 v
10.00 -3.10 -3.10 0.10 0.10 0.10 0n 3.40
 v:f v / fill the last null
 v
10.00 -3.10 -3.10 0.10 0.10 0.10 0.10 3.40
 The test we need for a While statement is whether or not any item of v is a null; if so, another pass through the loop must be
made. Again, if we know that the simple list is a float list, then the test can be done with
0n in v
Here is the While statement.
 v:10 -3.1 0n 0.1 0n 0n 0n 3.4 / reset v
 while[0n in v;v:f v]
 v
10.00 -3.10 -3.10 0.10 0.10 0.10 0.10 3.40
peach Parallel each
This function, whose name is a hybrid of ‘parallel’ and ‘each’, allows process across slaves. The syntax is
 foo peach list 1 /foo i 1 s a function applied across the slaves named in list
Plus a+b
Plus is a dyadic arithmetic function. Numeric datatypes can be mixed in arithmetic expressions and required conversions from one
to another are automatic.
The Sum, Product and Difference of two bools are ints.
 1b+1b
 2
The sum, difference and product of two ints is always an int, the modulo 232 value of the mathematical result. For example,
 a:256
 b:a+a*a
 b
65792
 c:65792j
 c*c
4328587264j / long result of long arithmetic
 b*b
33619968 / int result of int arithmetic
 (c*c)-b*b
4294967296j / 232, as a long
 Analogously, the sum, differenc and an int is always a long, the modulo 264 value of the e and product of two longs or a long
mathematical result.
prd Product (prd list)

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 71

This function produces the product of a numeric list.
 prd 1 2 3 4 5 6
720
prds prds a b c
The prds function is a primitive u he nth result is the product of the first n items in the argument. niform function. T
prds 1 2 3 -4 5
1.00 2.00 6.00 -24.00 -120.00
prev Previous
The complement of the next function. Used with a numeric list, it pushes the list forwards, that is:
 prev 1 2 3 4
0N 1 2 3
It is also useful in lists
 select (price + prev price)%2 by sym from trade
rand Pick an item from a list or generate a random number
The function rand with an atom works like 1? Atom, for example
 rand 1.0
0.6398249 /Random number between 0 and 1 (of type float)
whereas
 rand 3
2 /Random integer between 0 and 2, importantly 3 cannot be returned!
However with a list it picks out one member at random
 rand `a`b`c`d
`a
 rand `a`b`c`d
`d
random n ? list
kdb+ provides a convenient way to generate random test data, which is very useful when experimenting with the language or
modeling applications. The primitive function called Rand produces random sequences of ints and floats. For example, the
expression 20?5 produces an int vector of length 20 whose items are random ints between 0 and 4, as follows.
 20?5
4 3 3 4 1 2 2 0 1 3 1 4 0 2 2 1 4 4 2 4
 If the right argument is a float, say 4.5, then the result is a simple float list whose items are random floats between 0.0 and 4.5.
For example,
 10?4.5
3.13239 1.699364 2.898484 1.334554 3.085937 2.437705 2.540967 3.445748 1.838425 0.6240313
 Sequences of random selection ues can also be generated. To do that, first form a list of the values, say s from a specific set of val
`Arthur`Steve`Dennis
 The ints 0, 1 and 2 are the valid indices of this list. Consequently, 10?3 is a list of random indices into this list. A list of random
selections from this list is generated as follows.
 v:`Arthur`Steve`Dennis
 v[10?count v]
`Dennis`Arthur`Steve`Arthur`De teve nnis`Steve`Arthur`Arthur`Steve`S
rank Returns ranks of elements when they are known
This function returns the indices of the ordered list, therefore if the list is numeric the output matches that of the iasc function.
 rank `a`c`d`b
0 2 3 1
 rank “movie”
2 3 4 1 0
ratios Pairwise ratios (a% prev a)
This is a uniform function which ous one in the list. produces the ratio of an atom to the previ
 ratios 2 3 7 8 4 6 100 2
2 1.5 2.333333 1.142857 0.5 1.5 16.666667 0.02
raze Flatten a list of lists
This monadic function removes a layer of indexing from a list of lists, for instance:
 raze ((1 2;6 7) ; (“ads”;7 8);1 2)
(1 2;6 7;”a”;”d”;”s”;7;8;1;2) /One layer of indexing removed
 raze raze ((1 2;6 7) ; (“ads”;7 8);1 2)
(1;2;6;7;”a”;”d”;”s”;7;8;1;2) /Final layer of indexing removed, further razes will perform no function.
read0 Read in a text file
This function can be used to read in a text file:
 read0`:file.txt
read1 Read in a q data file
This function can be used to read in a q data file:
 read1`:trade
reciprocal invert x
x:7
reciprocal x / returns 0.1428571
reverse Reverses a list
This uniform function simply reverses a list.
 reverse 3 1 4 1 5 9
9 5 1 4 1 3
 reverse “abracadabra”
“arbadacarba”

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 72

rload
A Kdb function to load a table to the q workspace, it works currently but will eventually be phased out.
rotate n rotate z rotates z by n
z:`a`b`c`d`e`f`g`h`i
4 rotate z / returns the rotation `e`f`g`h`i`a`b`c`d
3 rotate z / returns the rotation `d`e`f`g`h`i`a`b`c
rsave
A Kdb function that saves a spla ill eventually be phased out but currently yed table, for instance one partitioned by dates. It w
works.
save Save q data
This function allows q data to be saved.
 save `trade
select Select statement
The select keyword is vital in querying tables via the select .. by .. from .. construct.
set Set value of a variable
The set function can be used to assign a value to a variable
 `a set 2 /Assigns the value 2 to a.
It can also be used to save data to disk
 `:/data/2007.01.01/quote set quote /Saves tbl as a single file.
 `:/data/2007.01.01/quote/ set quote /Saves tbl splayed.
show Display data
This allows a table to be shown in table format within the q console – similar to what would what be shown on a browser.
show `table
signum Returns the sign of a number
This uniform function returns a numeric list whose atoms have the int value 1, -1 or 0. If the atom in the input list is greater than
zero then the output value is 1, the input list is less than zero then the output value is -1 and finally if the atom in the if the atom in
input list has value 0 then the corresponding output value is 0.
 signum 1 2 0 0 -3 -89999 23000
1 1 0 0 -1 -1 1
sin Sin x
This unary function returns the sine of x, where x is in radians.
Note that sin x repeats itself every time its argument increases by 2*pi. Consequently valid values of x are approximately of the
order + 10^9 to -10^9. For example:
 sin 3.14159 / 3.14159 is Pi to 5 dps.
2.65359e-006 /Sine of pi is zero, this approximation is close.
sqrt Square root
This function returns the positive square root of a non-negative number. Attempting to find the square root of a negative number
will produce the null float 0f.
 sqrt 2
1.414214
ssr String search and replace
This function allows an input list to be probed for a specified ‘search string’, and then if it is found the search string is replaced with
a specified ‘replace string’.
 ssr[“thecatinthehat” ; “cat” ; “mouse”]
“themouseinthehat”
Usefully, the third parameter can be a monadic function:
 ssr[“thecatinthehat”,”the”,reverse]
“ehtcatinehthat”
string Converts to string
This function converts all types to a string format. For example
 string(1 2 3;`abc;”XYZ”;0b)
((,”1”;,”2”;,”3”) ; ”abc” ; (,”X”;,”Y”;,”Z”) ; ,”0”)
sublist m n sublistz returns items m->n in z
This function produces a sublist of list x depending on condition y.
n sublist x /First n elements of list x.
-n sublist x /Last n elements of list x.
n m sublist x /m elements of list x beginning at index n.
If the condition requests more elements than x has, the function will still work and return only the valid elements asked for.
 x:”abcdefghijklmnopqrstuvwxyz”
 9 10 sublist x
“jklmnopqrs” /10 elements of x beginning at j.
 9 1000 sublist x
“jklmnopqrstuvwxyz” /The valid given, the invalid other 983 elements are not given. 17 elements of x are
sum sum list
This aggregate function adds all the elements of a numeric list and ouputs it in the appropriate type
 sum 3.0 3.0 4.0
10f
 sum 1 3 5
9
sums sums a b c
This is a primitive uniform function.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 73

sums 1 2 3 -4 5
1.00 3.00 6.00 2.00 7.00
 This function is also called Running Sums. The relationship of result items to an argument list is that the nth result item is the sum
of the first n items of the argument. For example, the third item, 6.00, is the sum of the first three items of the argument. Similarly,
the fourth result item, 2.00, is the sum of the first four items of the argument.
sv Scalar from vector
This function performs different tasks dependent on its arguments. It evaluates the base representation of numbers, which allows
us to calculate the number of seconds in a month or convert a length from feet and inches to centimetres etc.
 24 60 60 sv 12 30 59
45059 /The number of seconds elapsed in a day at 12:30:59 in the afternoon.
 3 12 2.54 sv 5 10 0
177.8 /The approximate height in cm of someone who is 5’10”.
When used with text the left argument is placed between each right argument except for the case when the left arg is `, then line
breaks are replaced by newline chars (“\n”).
 “|” sv (“abc”;”def”)
“abc|def”
 ` sv (“abc”;”def”) /With the show keyword the output would look like: abc
“abc\r\ndef\r\n” / def
system
This allows a system command to be sent, for example
system “dir”
tables Lists all tables
 tables ‘
tan Tan x
This unary function returns the tangent of x, where x is in radians.
Note that tan x is approximately equal to tan (x+n*3.14159) where n is an integer and 3.14159 is Pi to 5 dps. Valid values of x are
of the order + 10^9 to -10^9. For example:
 tan 3.14159
2.65359e-006 /Tan of pi is zero, this approximation is close to zero.
The tangent function however heads to plus or minus infinity at multiples of pi%2
 tan 3.14159%2
753696f /If the approximation of pi was improved then the answer would tend closer to + infinity (0w).
Temporal
Arithmetic

Working with dates

Ints representing day counts can be added to and subtracted from dates. As a result, dates can be added to and subtracted from
dates to give day counts. For example,
 2001.11.21+3 / date +/- day count equals date
2001.11.24
 2001.11.21-23
2001.10.29
 2002.12.31-2001.11.21 / date +/- date equals day count
405
Ints representing milliseconds can be added to and subtracted from times. For example,
 05:30:20.100+15100 / time +/- milliseconds equals time
05:30:35.200
 Floats can be added to and subtracted from datetime values. The integer part of a float represents a day count and the fractional
part represents a fraction of a day. For example, 2 hours and a half can be added to a datetime as follows.
 2002.12.31T09:10:35.000+2.5%24 / % is Divide in q
2002.12.31T11:40:35.000
 2002.12.31T09:10:35.0+5.0 / Add 5 days to a datetime
2003.01.05T09:10:35.000
 Dates and datetimes can be compared to one another, while times can only be compared to times.
 2002.12.31T09:10:35.005
til Enumerate
On int’s, til performs the same function as key
 til 10
0 1 2 3 4 5 6 7 8 9
Times a*b
Times is a dyadic arithmetic function. Numeric datatypes can be mixed in arithmetic expressions and required conversions from
one to another are automatic.
The Sum, Product and Difference of two bools are ints.
 1b*1b
 1
The product of two ints is always an int, the modulo 232 value of the mathematical result.
Analogously, the product of two longs or a long and an int is always a long, the modulo 264 value of the mathematical result.
trim Eliminate string spaces
This function eliminates any trailing or leading spaces from a string.
 trim “ beard “
“beard”
txf Foreign key chasing
Deprecated function.
type
See type in the section entitled Manipulating Atoms, Lists, Dictionaries and Verbs.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 74

ungroup Flatten a nested table
This function can produce a flat table from a nested one, for example:
 ungroup select b by a from ([]a:1 2 1 2 3 3 1;b:1 2 3 4 5 6 7f)
+`a`b ! (`p#1 1 1 2 2 3 3 ; 1 3 7 2 4 5 6f)
union Joins tables
This function allows us to join two tables together.
 tbl1 union tbl2
update Update table data
This function can be used to update certain information in a table, for instance:
 update price:2 by sym from trade
See the Dictionaries and Tables section for more information on update.
upper Converts to upper case
This function converts lower case letters to uppercase in chars and varchars.
 upper(”abc” ; ”sym”) /Turning char list to uppercase
(”ABC” ; ”SYM”)
 upper ‘tim`tam /Turning varchar to uppercase. No type mixing is allowed.
`TIM`TAM
uj Union join
This function joins two tables together such that the columns in the new table are the union of the two sets of columns from the
original tables. As such, no duplicates are allowed and if required the new table is filled out with null values.
Uj will not work with keyed tables unless both tables have the same key.
 tbl1 uj tbl2
value
The value function has two main uses, one is to execute a string such as
 value”a:2” /’a’ now has the value 2.
and the other is the get the value of a dict
 value `a`b ! 1 2
1 2
var Variance (var list)
This aggregate function computes the mathematical variance of a list of numbers.
 var 2 3 4 2 3
0.56
 var 2 2 2 2
0f
vs Vector from scalar
This dyadic function produces a vector quantity from a scalar quantity, with the left-hand string being the identifier for the individual
vector . atoms
 “|” vs “20050202|IBM|20.23”
(“20050202” ;” IBM” ; “20.23”)
xasc Order table ascending
This dyadic function allows a table (right-hand argument) to be sorted such that one column (left-hand argument) is in ascending
order. For example
 `price xasc trade /Orders the table ‘trade’ such that the price column is ascending.
xbar x xbar y
For ints and floats, this dyadic function acts as a scaled type of the floor function, such that (x xbar y) is the same as x*(floor y%x).
 2 xbar 1.7 5.0 6.3
0 4 6
xcol Renames columns of a table
With this function the columns of a table can be renamed, for instance to rename the first two columns of table ‘tbl’ all one has to
do is:
 `newCol1`newCol2 xcol tbl
and the first two columns are now called newCol1 and newCol2.
xcols Reorders the columns of a table
This dyadic function allows the user to reorder the columns of a table, as well as repeat some columns if necessary. For instance,
consider the following trade table:

time sym price size

09:30:00.000 MSFT 10.75 100
09:31:00.000 FT 20 400

and put the last two columns first by performing
 `price`size xcols trade

price size time sym /No actual assignment has been made to trade, so change is not permanent.

10.75 100 09:30:00.000 MSFT
20 400 09:31:00.000 FT

It is possible to repeat columns, but in that case the others are always put in, i.e.
 `size`size`size xcols trade

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 75

size size size time sym price

100 100 100 09:30:00.000 MSFT 10.75
400 400 400 09:31:00.000 FT 20
xdesc Order table descending
This dyadic function allows a table (right-hand argument) to be sorted such that one column (left-hand argument) is in descending
order. For example
 `price xdesc trade /Orders the table ‘trade’ such that the price column is descending.
xexp m xexp n raises m to the power of n
2 xexp5 / returns 32f (2 to the power 5)
5 xexp2 / returns 25f (5 to the power 2)
-2 xexp 3 /returns -8f
2.1 xexp 5.2 / returns 47.37403
xgroup Creates nested table
This dyadic function allows the creation of a nested table, for instance
 `a xgroup ([]a:1 2 1 2 3 3 1;b:1 2 3 4 5 6 7f)
produces

a	b
1| 1 3 7
2| 2 4
3| 5 6

xkey Set key on table
This dyadic function allows a key to be set on a table, for instance
 `orderid key trade /orderid is now a key, assuming it was a valid column in the first place.
xlog x xlog y
This dyadic function computes the logarithm of y to the base x.
 10 xlog 100
2f
 3 xlog 100
4.191807
xprev Vector shift
This dyadic function shifts a vector by n elements, for example
 select price-5 xprev price from trade where sym=`IBM /5 tick delta – allows the user to track changes in the IBM price
xrank Generalised rank (n xrank list/table etc)
Whereas rank gave each atom of a list, for example, its own unique index, xrank groups the entire list/table etc into n distinct
groups. For instance, splitting the first ten natural numbers into 2 groups gives the unsurprising result
 2 xrank 1 2 3 4 5 6 7 8 9 10 /xrank[2;1 2 3 4 5 6 7 8 9 10] - different syntax but works the same
0 0 0 0 0 1 1 1 1 1
 10 xrank 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 /Forcing a list of 10 atoms into 10 distinct groups results in the same behaviour as rank.

It can also be useful in grouping data, for instance
 t:flip `val`name!((100?100);(100?(`MSFT`CSCO`ORCL)))
 show select MinVal:min val,MaxVal:max val, NumItemsInBucket:count I by xrank[4;val] from t
val	MinVal MaxVal NumItemsInBucket
0 | 0 28 25
1 | 28 51 25
2 | 53 74 25 /Because of the random generation of the table there is no guarantee that this
3 | 74 97 25 /exact table will be replicated with the given code.
wavg Weighted average
Can be used to compute a weighted average of a certain variable dependent on a certain condition. This obviously lends itself to
table queries such as:
 select size wavg price by sym from trade /Calculates weighted average of price conditional on size.
where Result filter
This is used to filter a result, for example
 select from trade where sym=`IBM
within Result filter
This is used as a filter on a range, as in
 select from trade where price within 1.5 1.7
wsum Weighted Sum
This function computes the weighted sum of a certain variable dependent on a certain condition. This lends itself to table queries
such as:
 select size wsum price by sym from trade /Calculates weighted sum of price conditional on size.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 76

h, ort d re has no precedence among functions. Unlike SQL and
t, e.g. write x*1+rate instead of x*(1+rate) .

ons, integrals (sums prds ..) and derivatives
se neg x (not -x) .

Order of Evaluation

q is a ric hogonal language an therefo
conventional mathematical notation functions execute left OF righ
Uniform functions preserve length. They include the atomic functi
(deltas ratios ..) . Q has no ambivalence so we must u

Extract from Denis Shasha Primer: Procedures

As we are starting to develop some expressions of non-trivial length, it is time to show how to define
procedures that embody those expressions. Forming a procedure is like assigning an expression (in
programming language terminology, a "lambda expression") to a variable. Because set manipulation occurs
all over most application, we define set primitives first.

/ the [x;y] indicates the name of the arguments (the formal parameters)
/ The unary operator distinct removes duplicates from a list.
intersect:{[x;y] distinct x where x in y}
a: 4 2 6 4 3 5 1
b: 3 5 4 6 7 2 8 9
intersect[a;b] / returns 4 2 6 3 5
/ Next we define a function that determines whether one list
/ is a subset of the next.
/ The function min returns the minimum element of a vector.
/ If a boolean vector, then min will return 1 only if all boolean
/ elements are 1.
subset:{[x;y] min x in y}
subset[a;b] / returns 0b
subset[a;a] / returns 1b
c: `a `a es in symbol lists `b `b`d`e / remember no spac
d: ` `ab`d `e`f
subset[c;d] / returns 1b
subset[d;c] / returns 0b
/ Set difference is the discovery of all elements in a first list
/ that are not in a second.
/ This function produces a boolean vector of the elements in x
/ that are in y (x in y).
/ Flips the bits so 1 goes to 0 and 0 goes to 1 (not x in y).
/ Then it finds the locations of those bits (where not x in y).
/ Finally, it indexes x with those locations.
difference:{[x;y] x where not x in y}
difference[c;d] /returns 0#` because there is no such element
difference[d;c] / returns ,`f because f alone is in d but not in c.
 Now we resume our exploration of other functionality. Suppose we want to create a basic set of statistical
procedures: average, variance, standard deviation, and correlation.
Examples H: Statistical functions
var:{[x] (avg[x*x]) - (avg[x])*(avg[x])}
std:{[x] sqrt[var[x]]}
a: 4 3 6 13 1 32 8
std[a] / returns 9.839529

The built in primitives avg and sqrt are joined by other familiar ones:
log exp count sum prd min max

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 77

 created by using the syntactic form to initialise the table with empty columns and then
cations of the insert function. Tables are collections of data whose items, or "columns",

mes. Following the SQL convention, tables are created by naming the items and initializing the items
data can be inserted in this empty

 trade:([]time:();sym:();price:();size:())

ary
 list,

d
s. Note that the definitions of these columns are separated by a semicolon.

t this point, the datatypes of the columns are unspecified, this can be seen this by using the meta function
ows the datatypes of a table), as in;

0 attr0

ypes of the columns will be fixed the first time data is inserted into the table, which can be done
sert function.

rade](09:30:01.000;`AIG;59.25;2000)

n alternative notation, performing the exact same insertion is:

) `trade insert(09:30:01.000;`AIG;59.25;2000)

the output in this case is 1, as opposed to the earlier 0; this is because the output denotes the
 row (with the index beginning at zero).

Assuming now that only the first row was inserted gives:

price`size!(,09:30:01.000;,`AIG;,59.25;,2000)

 table.2 Now the column datatypes are more specific and henceforth
ed is limited in type. The insert function is a dyadic function, taking the table name

d data to be inserted as arguments, (note that above we have used the insert function and table name to

 Working with the Database and Database Design

Creating Tables

Tables can be
opulate it with applip

have na
as empty lists. Since all simple lists are also general lists, any type of
table.

)q

q) trade
+`time`sym`price`size!(();();();())

Colon (:) denotes specification. The above expression defines a table named trade with items named time,
sym,price and size. The square brackets are used to define primary keys. If there is nothing between the
square brackets then there are no primary keys; as in the situation above. If there is more than one prim
key then those definitions would be separated by semicolons. The parentheses pair () denotes an empty
which means that each of the table items is defined to be an empty list. The columns time, sym, price an
size are the data column

A
(which sh

0 fkeyq) show meta tradecol	type
time |
sym |
price |
size |

The datat
with the in

q) insert[`t
,0

A

q
,1

Notice that
index of the inserted

q) trade
+`time`sym`

The symbol `trade holds the name of the
the data that can be insert
an
create the function projection insert[`trade], see Defined Functions). The return value of the insert function
are the indices of the inserted rows .The new data for a column is automatically cast to the datatype of the
olumn (e.g., an int will be converted to a float) or an error is reported if that is not possible. This type of

c

In general, data objects in the q workspace can be referred to in two ways, simply by their names or by symbols whose contents are
those names. In the case of insert, using the name instead of the symbol will produce a new table with the new data, while using the
symbol causes the named object to be modified with the new data. The above insert statement modifies the table trade, which now has
one row

2

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 78

lace cannot be performed by the ‘update’ keyword,
a method like those in the previous sentence would have to be employed.

appropriate
datatypes. This is necessary for foreign keys. Null values can be used, as in

) trade

 200)

all tables. Large amounts of data are often read from files and
 have been created as a list,

 10:15:02.000;`AIG`IBM;65.0 88.0;100 200)
e`size!listofdata

`time`sym`price`size!(09:30:01.000 10:15:02.000;`AIG`IBM;65.0 88.0;100 200)

 is covered in more detail below.

ch it is defined to the rows of the table with
in SQL provide referential integrity. In other words, an attempt

primary key will fail. This is also true in q. Consider the following
ed to record the industry to which a particular company or sym
key as each sym only appears once in the table. The trade table is

m is defined as a foreign key relating it to the sym in the industry table.The
d below with some valid data.

m:`industry$();price:();size:())
.000;`AIG;59.25;2000)

IG;59.50;1000)

 corresponding entry in the industry table, will fail. In the
stry table. In SQL one says that a foreign

 table; hence the term referential integrity. In
apping from one table to the other; it may be more accurate to use the term

simply indicates the problem mentioned at the start of the

of trade, which denotes the mapping of trade to
in the expression refers to the industry table. You

de table and the expression
y sector, then the

insertion can only be done in place, a similar construct using ‘delete’ is not allowed. To delete certain rows
the trade table would have to be overwritten with an amended version of itself either using the assignment
operator ‘:’ or the Amend function. Similarly, updates in p

q) 0#trade
+`time`sym`price`size!(`time$();`symbol$();`float$();`int$())

If no data is available it may be best to initialize the tables with empty lists to indicate the

) trade:([]time:0#0Nt;sym:0#`;price:0#0n;size:0#0N) q

q
+`time`sym`price`size!(`time$();`symbol$();`float$();`int$())

It is also possible to initialise and populate a table at the same time, as follows.

q) trade:([]time:09:30:01.000 10:15:02.000;sym:`AIG`IBM;price:65.0 88.0;size:100 200)
q) trade
+`time`sym`price`size!(09:30:01.000 10:15:02.000;`AIG`IBM;65.0 88.0;100

ven so, this is usually done only for smE
organized in lists. For example, the data for the trade table might

q) listofdata: (09:30:01.000
q) trade:flip `time`sym`pric
+

Above we have used the fact that a dictionary is the flip of a table, this

Foreign Keys

s of the table in whiA foreign key defines a mapping from the row
 the corresponding primary key. Foreign keys

e to insert a foreign key value that is not in th
nexample where an industry table is defi

a primary belongs. The sym is defined as
t sydefined as before except tha

two tables have been populate

q) industry:([sym:())]ind:())
q) `industry insert(`AIG;`Insurance)
q) `industry insert(`IBM;`Consulting)
q) trade: ([]time:();sy
q) `trade insert(09:30:01
q) `trade insert(09:30:02.000;`A
q) `trade insert(09:30:04.000;`IBM;54.25;200)

Attempting to insert a trade for a sym, which has no
example below an entry for MSFT must first be inserted in the indu
key represents a reference from its host table to the primary key
q the reference is actually a m
domain integrity here. The error message ‘cast
paragraph.

q) `trade insert(09:30:06.000;`MSFT;79.25;250)
‘cast

The foreign key expression `industry$() in the definition
industry, is called an enumeration. The symbol `industry
can rename column sym in the industry table or column sym in the tra

e of the industry table to, sa`industry$() remains the same. However, if you change the nam
sion must be changed to `sector$(). foreign key expres

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 79

ch corresponding column of the primary key table as a
 For example, the ind column of the industry table is a virtual

attempts to illustrate:

n see that wherever two items of the sym column
lumn are identical. For example, according to the

 in the above industry column wherever

 virtual columns in queries called dot notation. Consider the

00 200)

ows;

te that the industry is accessed simply using the general notation select a.b from c

• a is the foreign key (sym)
y key table (ind)
e (trade)

ictionaries and Tables
ble can be thought of as consisting of a dictionary or some dictionaries, known as record(s).This close
tionship between dictionaries and tables is fortunate in that it allows us to take advantage of the

me`sym`price`size!(09:30:02.000;`industry$;`AIG;59.5;1000)
e first row, as a record

0:01.000;` ;`industry$;`AIG;59.25;2000)
ives the first row

0;` ;`industry$;`AIG;59.25;2000)
rows

range index gives a record of the null values for each column

price`size!(();`industry$;();())
] / indexing at depth applies to tables

 another syntactical alternative
4.25

$`AIG`IBM;59.5 54.25;100 200)

The mapping represented by a foreign key defines ea
so-called virtual column in the foreign key table.
column of the trade table, as the following display

time sym price size ind
--
09:30:01.000 AIG 59.25 2000 Insurance
09:30:02.000 AIG 59.50 1000 Insurance
09:30:04.000 IBM 54.25 200 Consulting

The first 4 columns are identical to the trade table. You ca
are identical, the corresponding items of the industry co
industry table the AIG is an Insurance stock, and Insurance appears
AIG is in the sym column.

q has a simple mechanism for specifying
following example:

q) select sym.ind,size from trade
q) +`ind`size!(`Insurance`Insurance`Consultancy;2000 10

as follIn a console (using the show keyword) the result appears
ind size

Insurance 2000
Insurance 1000
Consulting 200

No

• b is a field in the primar
• c is the foreign key tabl

In the case above, we used just one foreign key relationship, but if the ind column in the industry table had
itself been a foreign key, we could have accessed columns in the corresponding primary key table through
the dot notation as well as sym.ind.col.

D

A ta

lare
structural primitives, such as indexing, which apply to lists.

Here are some examples.

 q) trade[1] / any record (row) with an atom index
`ti
q) first trade / th
`time`sym`price`size!(09:3
q) trade[0] / this also g
`time`sym`price`size!(09:30:01.00
q) count trade / the number of
3
q) trade[10] / An out-of-
`time`sym`
q) trade[2;`price
54.25
q) trade[2][`price] /
5
 q) trade[1 2] / A simple list of indices gives a sub-table.
+`time`sym`price`size!(09:30:02.000 09:30:04.000;`industry

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 80

rm for defining
. Everything to the right of the leading + is the definition

tionary. That dictionary has the column names of the trade table as its keys and the contents of the
s as its value list. The leading + denotes the flip function, or transpose. We have already observed

a dictionary of lists to a table, we use the unary (single argument) verb "flip".If you apply
et back to where you started, which means that the flip of a table is a dictionary.

 09:30:02.00 009:30:04.000 ;`industry$`AIG….)

btle when viewed in the console – the table is denoted by a leading +, whereas the
ped table isn’t. The difference is more easily visualized using a browser. The first display

s t ble whilst the second shows the flipped table/dictionary x. The word flip can be thought of
apping of columns for rows in the geometrical sense described here. If you are familiar
ink matrix transposition. The reason this "flipped" representation is convenient is that we

n, tables may have
in for the non-key

elds. So, these keyed tables are again dictionaries. In this case there is a functional relationship from key
elds to non-key fields.

 with items from its key list. In particular,

le), we can use the same indices of trade, but

It is instructive to note that the console display of a table corresponds to the functional fo
tables. We are now in a position to discuss this form
of a dic
olumnc

that to convert from
flip twice in succession you g

For example,

q) trade

00+ `time`sym`price`size!(09:30:01.0
) flip trade q

`time`sym`price`size!(09:30:01.000 09:30:02.00 009:30:04.000 ;`industry$`AIG….)

on is very suThe distincti
dictionary or flip
show he trade ta
as suggesting the sw

ith linear algebra thw
can index the table as if were an array. There are other advantages as well. In additio
ome columns (also known as fields) which are "key fields". These again form a domas

fi
fi

(trade)
time sym price size

09:30:01.000 AIG 59.25 2000
09:30:02.000 AIG 59.5 1000
09:30:04.000 IBM 54.25 200

(dict:flip trade)
time ..
sym ..
price ..
size ..

Since dict is a dictionary it can be indexed

q) dict[`sym]
`industry$`AIG`AIG`IBM \ or equivalently
q) dict[`sym;]
`industry$`AIG`AIG`IBM

Since dict is the flip of trade (and trade is not a keyed tab
eversed. r

q) trade[;`sym]
`industry$`AIG`AIG`IBM

Note that any dictionary can be flipped and a table will result, as long as the items of its value list are all lists
with the same count. For example,

q) flip 1 2 3 4!(1 2; 3.2 4;`x`y;"ab")
+1 2 3 4!(1 2;3.20 4.00;`x`y;"ab")

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 81

ed 1, 2, 3 and 4. This is not a relational table, however; q select and
e the flips of dictionaries whose keys are valid simple names
abetic).

eaking, a key table is not a table, but a pair of tables instead. The primary key columns form one
he data columns the other. For example, the key table industry has the primary key ind and data

sym. There are two tables namely +(,‘sym)!,`AIG`IBM`AIG and
sultancy`Insurance. On the console industry displays as follows:

Consultancy`Insurance

ry key(s) in parentheses, followed by the Xkey function (!) followed by data
ary its primary key table can be extracted with the key function and its data

The result is a table with columns nam
update expressions only apply to tables that ar

ll alphanumeric characters and a leading alph(a

Strictly sp
table and t
column
+(,ind)!,`Insurance`Con

q) industry
(+(,‘sym)!,`AIG`IBM`AIG)!+(,ind)!,`Insurance`

To the left is the table of prima
table. Since industry is a diction
table, with the value function.

 q) key industry

,‘sym)!,`AIG`IBM`AIG +(
 q) value industry
+(,ind)!,`Insurance`Consultancy`Insurance

We can index keyed tables with the primary key value as below

q) show industry`AIG

Extract from Denis Shasha Primer: Table Formation and Access
/ I have a dictionary where the left column is the key
/ and the right column is a list of two vectors (each having three elements)
d:`name`salary! (`tom`dick`harry;30 30 35)
/ This returns (if we look through the http browser, see appendix)
/ name ..
/ salary ..
e: flip d / list of dicts instead of dict of lists
/ Again looking through the http browser:
/ name salary
/ -------------
/ tom 30
/ dick 30
/ harry 35
e[1] / returns `name`salary!(`dick;30) the second row of the table.
/ Now try:
select name from e
select sum salary from e
/ Now let's look at the implications of having a key field.
e2: e
`name xkey `e2 / creates a key.
/ (Note that salary cannot be a key because 30 appears twice.)
keys e2 / returns ,`name
cols e2 / returns `name`salary
edouble: e2+e2 / returns
edouble / (+(,`name)!,`tom`dick`harry)!+(,`salary)!,60 60 70
/ Note that all fields are updated.
d3:`name`salary!(`bob`alice`dick`ted;130 15 235 11)
e3: flip d3
`name xkey `e3
ecombine: e3-e2
ecombine / returns
/ (+(,`name)!,`bob`alice`dick`ted`tom`harry)!+(,`salary)!,130 15 205 11 -30 -35
/ Now let us say that we append information to e and to e2.
`e insert(`ann;50)

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 82

e / +`name`salary!(`tom`dick`harry`ann;30 30 35 50)
/ Tables can be formed directly as well.
/ We will start with non-keyed tables (thus the []).
mytab:([]x: 1 2 3; y: 10 20 30)
mytab / returns +`x`y!(1 2 3;10 20 30) where the + here means flip
mytab.x / returns 1 2 3
mytab.y / returns 10 20 30
select x from mytab where y = 20 / returns +(,`x)!,,2
select x,y from mytab where y < 21 / returns +`x`y!(1 2;10 20)
/ These last two return tables, single and double column.
/ Sometimes we don't want to return a table, but some simpler type.
/ In that case, we use the verb exec
exec rom m x f ytab where y < 21 / returns 1 2 directly
/ Here are two create table statements.
/ Bot ave ch h olumns a and b as keys, as indicated by the brackets.
/ The closing right bracket omits the need for a
/ semi-colon.
t:([a:2 3 4 5; b:30 40 30 40] c:10 20 30 40)
u:([a:2 3 2 3; b:30 30 40 40] c:4 2 8 9)
/ t returns (+`a`b!(2 3 4 5;30 40 30 40))!+(,`c)!,10 20 30 40
/ Thus it's like two tables with the left one being the domain.
t-u / returns
/ (+`a`b!(2 3 4 5 3 2;30 40 30 40 30 40))!+(,`c)!,6 11 30 40 -2 -8
/ The first entry in the result of substracting 10-4.
/ The second is 20-9. In both cases the keys match.
/ The next two entries (4;30) and (5;40) are present only in t.
/ The last two are present only in u.
z: 0!t / eliminates the keys from t. This is sometimes useful.

Insert and Upsert

Kdb+ has two distinct primitive datatypes to which q applies: tables and keyed tables. With regard to

pt for the key check on inserts. Tables can be
reated functionally with q primitive functions or with the syntactic form ([PrimaryKeyCols]Cols).

sert (update existing and insert new) for keyed tables t and u, the schemas of t and
atch in either case.

 we have trade and industry as before i.e

de

:30:02.000 AIG 59.5 1000

d newindustry

traditional RDBMS's treat both datatypes as tables exce
c

Inserts have been dealt with previously and are similar to SQL92 type inserts. q adds the notion of upserts.If
necessary it will cast incoming data to match the columns and it will check primary key violations.

The q statement

t,u

is insert for tables and up
u must m

Suppose

q) show tra
time sym price size

09:30:01.000 AIG 59.25 2000
09
09:30:04.000 IBM 54.25 200
q>show industry
sym	ind
AIG | Insurance
BM | Consulting I

And the new tables newtrade an

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 83

e:([]time:(09:30:01.000;09:30:06.000);sym:(`industry$`AIG`IBM);price:(59.25;60.1);size:(2000 400)
stry:([sym:(`AIG`MSFT)];ind:(`Insurance`Software))

de,newtrade
sym price size

09:30:01.000 AIG 59.25 2000

09:30:06.000 IBM 60.1 400

nd fourth rows of this new table are identical since an insert was performed

 industry,newindustry
| ind

--- | ----------
| Insurance
| Consulting
| Software

This time an upsert was performed because the arguments to “,” were keyed tables.

q) newtrad
q) newindu

Then

) show traq

time

09:30:02.000 AIG 59.5 1000
09:30:04.000 IBM 54.25 200
09:30:01.000 AIG 59.25 2000

hat the first aNotice t

q) show
sym

AIG
IBM
MSFT

Extract from Denis Shasha Primer: Modifying Tables
We've already seen how to build tables from dictionaries or from direct statements. SQL 92-style inserts, updates and deletes are also
possible. Q adds the notion of upserts.
book:([book: ()] language: (); numprintings: ())
insert[`book](`forwhomthebelltolls; `english; 3)
insert[`book](`salambo; `french; 9)
book: update language:`French from book where book=`salambo
book2:([book: ()] language: (); numprintings: ())
/ An alternate insert notation
`book2 insert (`secretwindow; `english; 4)
`book2 insert (`salambo; `Fch; 9)
/ go back to the classic insert, just for fun
insert[`book2](`shining; `english; 2)
book3: book, book2 / book2 adds all rows where the key field is
/ new and replaces values where the keyfield is not present.
/ These upsert semantics (insert rows having new keys and replace
/ range values of exsiting keys) are due to the fact that book
/ and book2 are both keyed tables.
select language from book3 where book=`salambo
/ Returns +(,`language)!,,`Fch
count select from book3 / returns 4 because book has two rows, book2 has 3
/ rows but one of those rows has the key `salambo.
book3: delete from book3 where book=`secretwindow
count select from book3 / return 3

Updates and update aggregations

In SQL, update statements modify existing tables. This is also true in q, but q has also extended the

lumns. It also permits update expressions to produce
ons are an alternative

rm of select expressions. Here is an example comparing an aggregation within a select expression to an
gation within an update expression.

traditional definition to include the creation of new co
new tables instead of modifying the source tables in place. In effect, update expressi
fo
aggre

q) trade:([]time;sym;price;size)
q) `trade insert(09:30:00.000;`AIG;10.75;200)

;10.55;500) q) `trade insert(09:30:01.000;`IBM
q) `trade insert(09:30:02.000;`IBM;10.75;100)
q) `trade insert(09:30:03.000;`AIG;10.75;400)
q) `trade insert(09:30:04.000;`MSFT;10.45;100)
q) `trade insert(09:30:05.000;`IBM;10.35;100)

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 84

0.75;400)
e by sym from trade

) avgpricetrades2: update ap:avg price by sym from trade

) show avgpricetrades2
me sym price size ap

 IBM 5
 IBM
 AIG
 MSFT
 IBM

9:30:06.000 MSFT 10.75 400 10.6

 will see that the aggregations in the select result are
stributed in the aggregation column of the update result according to the sym column. For example, the

gation value for `AIG, which is 10.75, appears in every row of the update result where the sym value is
IG.

pdate expressions that include aggregations are called update aggregations, or update-by expressions.

 are
istributed. For example, the following aggregation computes the percent change in prices for each sym.

q) tradetbl3:update pct:100*(deltas price)%price by sym from trade

IG 10.75 400 0

 in
n

 example, a server function to subtract a client table p

 the section Developing Analytics in Q

q) `trade insert(09:30:06.000;`MSFT;1
q) avgpricetrades1:select ap:avg pric
q

q) show avgpricetrades1
sym ap
--
AIG 10.75
IBM 10.55
MSFT 10.6

q
ti
--------------- --------------------------
09:30:00.000 AIG 10.75 200 10.75
09:30:01.000 10.55 500 10.5
09:30:02.000 10.75 100 10.55
09:30:03.000 10.75 400 10.75
09:30:04.000 10.45 100 10.6
09:30:05.000 10.35 100 10.55
0

If you compare the ap columns of the two results you
di
aggre
`A

U

Uniform functions are effective in update aggregations because of the way aggregation results
d

q) show tradetbl3
time sym price size pct

09:30:00.000 AIG 10.75 200 100
09:30:01.000 IBM 10.55 500 100
09:30:02.000 IBM 10.75 100 1.860465

3.000 A09:30:0
09:30:04.000 MSFT 10.45 100 100
09:30:05.000 IBM 10.35 100 -3.864734
09:30:06.000 MSFT 10.75 400 2.790698

The pct value for the first or only occurrence of a sym is 100.00. Otherwise the value of pct is the change
the price from the previous price, expressed as a percentage of the current price. Taking the sym `IBM as a
example; the value of pct in the third row is difference of the values of price in the second and third rows
shown as a percentage of the value of price in the third row.

Stored Procedures

Server functions and procedures are written in q. For
from a server table P is f:{[p]P-:p}
For more detailed information on q functions see

 the Q ref manual – section 22 – defined functions. We need at least that much.

 tables. The simplicity of q’s arithmetic is in stark contrast to the
ng and outer joins needed in sql.

This needs lots of things.
For a start, from

Table Arithmetic

It is common to want to do arithmetic with
convoluted coalesci

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 85

q) table1:([sym:`AIG`IBM]size:200 400)
q) table2:([sym:`AIG`MSFT]size:600 700)
q) table3:table1+table2
q) show table1
sym	size
AIG | 200
IBM | 400
q>show table2
sym | size
---------- | ----
AIG | 600

 MSFT | 700
table3
sym	size
AIG | 800
IBM | 400

 MSFT | 700

Similar results are obtained for the other arithmetic dyadic functions. q will attempt to perform the arithmetic

ou should ensure that such operations make
s

econd. Joins do not require there to be foreign key
olumns with dot notation as above in the

a ‘,’. In this case the two tables have to be type
order, and the same key if necessary. This
to automatically reassign a table when

he value of a field in one table asof the time in
xample). Asof Join has been abstracted so

me field in another table. This is shown in

 with (3,4) as the a and b values.

d table and the first argument
mns of both tables as in the

operation on each of the non primary key fields in the tables, y
sense, for example you will not want to attempt addition of two varchar field

Joins

Joins generally run at 10 to 100 million records per s
relationships predefined, in that case you can use use virtual c
section on foreign keys.

Simple Join
This is the most basic type of join, performed with a comm
conformant, in other words have the same columns in the same
is also used for in- and upserting. Conveniently, ‘,:’ can be used
joining, for example

table,:table2 /table is assigned the value of table2

Asof Join
As implied by the name Asof Join (aj) can be used to get the t

 eanother table, (the bid price asof the time of the last trade for
that we can get the value of a field in one table asof the value of so
the example below, where time does not come into it

q) table1:([]a:(1 1 3 1);b:(4 5 4 4);d:(7 8 9 6))
q) table2:([]a:(1 2 3);b:(4 5 6);c:(7 8 9))
q) show aj[`a`b;table1;table2]
a b d c

1 4 7 7
1 5 8 7
3 4 9
1 4 6 7

 a rowNotice how a null valued is filled in for c where table2 doesn’t contain
ns At present asof joins can only be performed on one or two colum

Left Join
Left Join (lj) is a special case of aj where the second argument is a keye
contains the columns of the right argument’s key. The result is a table with colu
following example

q) table1:([]a:(1 1 3 1);b:(4 5 4 4);d:(7 8 9 6))
q) table3:([a:(1 2 3);b:(4 5 6)];c:(7 8 9))
q) show table3 lj table1 /or if you prefer show lj[table1;table3]

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 86

f two tables with distinct schemas, this creates null values in
able1 and table2 are as above).

 not really done anywhere in the doc. Include some basic examples

r to implement than the equivalent joins in SQL, as the folowing example from the

a b d c

1 4 7 7
1 5 8
3 4 9
1 4 6 7

Union Join

Union Join (uj) allows you to create a union o
columns in the result, as in the example below (where t

q) show table1 uj table2
a b d c

1 4 7
1 5 8
3 4 9
1 4 6
1 4 7
2 5 8
3 6 9

if using uj on keyed tables the primary keys must match.

Need to explain dot notation first. It’s

Joins in q are much easie
kx.com website illustrates.

There are 8 tables. we've changed the names to reduce code mass.
 (c.. various comment fields)

 l - lineitem(o,p,s,v(flag),u(status),mode(h),shipdate(ds),commitdate(dc),
 receiptdate(dr),q(quantity),x(price),xd(discount),xt(tax))
 o - order([o]c,d,j(priority),k(clerk),i(shippriority))
 c - customer([c]name,n,x(acctbal),m(market),c...)
 p - part([p]name,b(brand),t(type),z(size),e(container),x(price),c...)
 s - supply([s]name,n,x(acctbal),c...)
 n - nation([n]name,r)
 r - region([r]name)
 ps - partsupply([p,s]x(cost))

tpcd queries can also be written in q.(execute at the same speed)

q is simpler/more expressive than sql, e.g., query 8 (8-way join)

revenue share of suppliers(s) in BRAZIL by order(o) year to customers(c) in region AMERICA
in 1995 and 1996 for parts(p) of type(t) 'ECONOMY ANODIZED STEEL'.

q:

select rev avg s.n=`BRAZIL by o.d.year from l where
 o.c.n.r=`AMERICA, o.d.year in 1995 1996, p.t=`$"ECONOMY ANODIZED STEEL"

sql:

select year,sum(case when name='BRAZIL' then rev else 0 end)/sum(rev) from(
 select extract(year from o.d)as year,l.x*(1-l.xd) as rev,n2.name
 from p,s,l,o,c,n n1,n n2,r
 where p.p=l.p and s.s=l.s and l.o=o.o and o.c=c.c and c.n=n1.n and n1.r=r.r and r.name='AMERICA'
 and s.n=n2.n and o.d between date'1995-01-01' and date'1996-12-31' and
 p.t='ECONOMY ANODIZED STEEL')t

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 87

 group by year order by year

Parameters

Functions can have queries and queries can have funct le layouts for trade

sym price size date sym bid ask

2006.06.03 IBM 54.25 200 2006.06.0
0
0

) mid:{[t;s]exec .5*(bid+ask)time bin t from quote where sym=s}

en

ny times per day the trade price was higher than the midpoint for sym s.

ions, e.g. given the following tab
and quote, we can have:

Trade Quote

date
-- -------------

0

2006.06.01 AIG 59.25 2000 2006.06.
2006.06.02 AIG 59.5 1000 2006.06.0

1 AIG 59.4 60.9
2 AIG 59.2 60.1
3 IBM 52.7 55.0

2006.06.04 AIG 59.25 2000 2006.06.
2006.06.05 IBM 60.1 400 2006.06.

4 AIG 53.0 57.3
5 IBM 59.2 60.6

q

th

q) f:{[s]select sum price>mid[time;s]by date from trade where sym=s}

will calculate how ma

Extract from Denis Shasha primer: Q's Semantic Extensions to SQL
Q views tables as a set of named columns having order. (Because their data representation resembles
arrays and their use of named columns suggests tables, I like to describe them using the neologism arrables,
but I'll use table in the rest of this primer.) The order allows a class of very useful aggregates that are
unavailable to the relational database programmer without the cumbersome and poorly performing temporal
extensions.
Note:
In these examples, we make use of uniform functions, both built-in (deltas and mins) and user-created
(myavgs). A uniform function applies to one or more lists of the same length L. The output list has length L.
The arithmetic plus operator is uniform. Atomic operators like plus are special because the element at each
position p of the output depends on the elements of the inputs at position p and on them alone. Uniform
functions don't make that restriction. For example, consider the running minimum function the value of the
running minimum function (mins) at position p depends on all elements of the input up to position p. Here is a
table of the built-in uniform (and non-atomic operators in q) slightly simplified from Don Orth's manual:
Func Example Result
--
sums sums 1 2 3 -4 5 1 3 6 2 7
deltas deltas 1 2 3 -4 5 1 1 1 -7 9
prds prds 1 2 3 -4 5 1 2 6 -24 -120
ratios ratios 1 2 3 -4 5 1.00 2.00 1.50 -1.33 -1.25
mins mins 1 2 3 -4 5 1 1 1 -4 -4
maxs maxs 1 2 3 -4 5 1 2 3 3 5

Copy the following to a file (e.g. frenchtrade.q) keeping indentations as is. Then invoke q on that file (e.g. q
frenchtrade.q).
Examples
/ Create a list of French stocks where name is the key.
stock:([name:`Alcatel`Alstom`AirFrance`FranceTelecom`Snecma`Supra]
 industry:`telecom`engineering`aviation`telecom`aviation`consulting)
/ get a list of distinct stocks are there?
stocks: distinct exec name from stock
ns: count stocks

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 88

n:10000
/ stock is a foreign key foreign key.
/ We are taking n stocks at random.
/ Then n prices up to 100.0 at random, then n random amounts
/ then n random dates.
trade:([]stock:`stock$n?stocks;
price:n?100.0;amount:100*10+n?20;exchange:5+n?2.0;date:2004.01.01+n?449)
/ Sort these in ascending order by date.
/ We will need this to make the following queries meaningful.
`date xasc `trade
/ Now find the dates when the price of Snecma went up
/ regardless of time of day.
/ The deltas function subtracts the previous value in a column with
/ the current one.
select date from trade where stock=`Snecma, 0 < deltas price
/ Find the average price by day.
aa: select aprice: avg price by date from trade where stock=`Snecma
/ An aside: Find the weighted average price by day where prices associated with
/ bigger trades have more weight.
/ wavg is a binary function that takes two columns as arguments:
select wavg[amount;price] by date from trade where stock=`Snecma
/ Here is an infix form giving the same result.
select amount wavg price by date from trade where stock=`Snecma
/ Find the dates when the average price went up
/ compared with the previous day.
select date, aprice from aa where 0 < deltas aprice
/ Suppose we wanted to do the above but for every stock.
/ Basically we replace the where stock= part by putting stock
/ into the by clause.
/ First we get the average price for each stock and date.
aaall: select aprice: avg price by stock, date from trade
/ Now find dates having rising prices for each stock
/ Note that stock is the key of each row and there is a vector
/ of dates and aprice associated with each stock.
xx: select date, aprice by stock from aaall where 0 < deltas aprice
/ See which are those dates for Snecma (same as before)
select date from xx where stock = `Snecma
/ See which are those dates for Alcatel
select date from xx where stock = `Alcatel
/ Suppose that we do this on a monthly basis.
/ Note that the date arithmetic is very flexible and
/ that a field is created called month by default from the by clause.
aaallmon: select aprice: avg price by stock, date.month from trade
xxmon: select month, aprice by stock from aaallmon where 0 < deltas aprice
select month from xxmon where stock = `Snecma
/ Here we do a compound statement.
/ The idea is to find the profit of the ideal transactions for each stock.
/ An ideal transaction is a buy on a day x followed by a sell on day y (x < y)
/ such that the sell - buy price is maximal.
/ To do this, we want to find the time when the difference between
/ the actual price and the minimum of all previous prices is greatest.
/ Read this as follows: compute the running minimum of prices.
/ This gives a vector v1 of non-increasing numbers.
/ Then consider the vector of prices v2.
/ Find the value where v2-v1 is maximum.
bestprofit: select best: max price - mins price by stock from trade
/ One of the very powerful features of q (shared with KSQL) is that
/ a programmer can add his own procedures to the SQL and things just work.
/ Let's start with something simple:
mydouble:{[x] 2*x}
select mydouble price from trade where stock = `Alcatel
/ Some functions can take several arguments. Suppose that we were

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 89

/ interested in the moving average of double the prices.
myavg:{[x] (sum x) % (count x)}
/ Therefore, I invent a binary operator myavg and then take
/ the running averages ending at each point in the vector.
/ The vector is prefilled with n 0s.
/ Reasonable people may disagree about this initialization strategy.
myavgs:{[n;vec] x: (n # 0), vec; each[myavg]x[n+(key (count vec)) -\: key n]}
select myavgs[3; mydouble price] from trade where stock = `Alcatel
/ Or we could do this for every stock.
select myavgs[3; mydouble price] by stock from trade
/ Even better, these procedures can go into any clause.
select date by stock from trade where 70 < myavgs[3; mydouble price]
select date b myavgs[3; myd rice] from y stock, ouble p trade
/ Functions c in sql. The onl ion is that an conta y limitat you
/ may not inc in an lude field names argument.
f:{[mytable] c mytabount select from le}
f[stock] / returns 6
f[trade] / returns 10000
/ The last feature we want to introduce is the fact that q
/ can store a vector in a field of a row.
/ This non-first normal form capability can contribute to performance.
t: select date, price, amount by stock from trade
/ In the browser window this gives:
/ stock date price amount
/ ----------------------------------
/ Alcatel
/ Alstom
/ AirFrance
/ FranceTelecom
/ Snecma
/ Supra
/ This means that we get a vector of dates for Alcatel as well
/ as a vector of prices and amounts.
/ Now unary functions work using each meaning for each row.
select stock, each[first] price from t
select stock, first each price from t / these two are equivalent
/ Now suppose that for each stock, we want the volume weighted price.
/ That is a binary operator so the each becomes a '
select stock, amount wavg' price from t
select stock, wavg'[amount;price] from t / these two are equivalent
/ We can go to higher level of valences by using the second syntax.
f:{[x;y;z] (avg x)*y-z}
select stock, f'[price; amount; price] from t

Q as an extension of SQL

q is an the next generation of k and has been improved in a number of ways (e.g. the unary operators are no

ty). Its major benefit is that it gives tight integration with table
t of SQL with additional unique and powerful features.

The following table illustrates how to perform common sql things in q. There is no reverse map since q is a
much richer language than sql. (With respect to CJDate "The SQL Standard")

SQL Q

longer overloaded thus reducing ambigui
ful dialecfunctionality. q provides a power

create table s(s varchar(*)primary key,name
varchar(*),status int,city varchar(*))

s:([s]name;status;city)

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 90

create table sp(s varchar(*)references s,p
varchar(*)references p,qty int)

sp:([]s:`s$();p:`p$();qty:())

insert into s values('s1','smith',20,'london') `s insert(`s1;`smith;20;`london)
update s set status=1+status where s='s1' s:update 1+status from s where s=`s1
delete from s where s='s1' s:delete from s where s=`s1
select * from s where s='s1' select from s where s=`s1
select s,count(*)as x from sp group by s order
by s

select count i by s from sp

select s,sum(qty)as qty from sp,s,p where
sp.s=s.s and sp.p=p.p and p.city=s.city group s
order s

select sum qty by s from sp where s.city=p.city

select distinct .. select distinct ..
count sum min max avg count sum min max avg prd first last wavg

 wsum
+ - * / < > = <= >= <> like between-and not and
or

+ - * % < > = like within not & |

Extract from Denis Shaha Primer: Table Operations: the SQL dialect
Note that the first line of SQL statements must be outdented and the rest must be indented.
The basic syntax is:
select ..
 by ..
 from ..
 where ..

As of this writing (July 2004), the from clause contains only one table, but this does not prevent joins from
happening, provided they are foreign key joins. To understand foreign keys, please consider the following
example. A publisher has many authors. It holds author information in one table: author(author, name,
address) where author is the key. Each author may have several books in print. bookauthor(book, author, ...)
where book and author together are a key (so that we can handle the case that a book has several authors
and that an author has written several books). Now, the publisher wants to send notices, checks, reviews
and other good news about a book to its authors. For this to be possible, every author in the book table must
have an entry in the author table. We say that "book.author is a foreign key for author". It's foreign because
it's in another table and it's a key because author is a key of the author table (i.e. no two rows can have the
same authorid). With that understanding, we can present the following script:
Examples N: Key tables
/ This example must be loaded as a file.
/ So copy it to a file, say foo.q.
/ Be careful to keep the indentations.
/ First line must not be indented; others must be.;
/ Then type
/ q foo.q
/ Reason: indents don't work within the interactive window as of July 2004.
/ Remember that keys are surrounded by brackets
author:([author:`king`hemingway`flaubert`lazere`shasha]
 address: `maine`expat`france`mamaroneck`newyork;
 area: `horror`suffering`psychology`journalism`puzzles)
book:([book:`forwhomthebelltolls`oldmanandthesea`shining`secretwindow`clouds`madambovary`salambo`ou
toftheirminds]
 language: `english`english`english`english`english`french`french`english;
 numprintings: 3 5 4 2 2 8 9 2)
/ Here we indicate that the author field is a foreign key to the table
/ author and book to the table book.
/ If we wished, we could also surround the two fields author and book
/ by brackets to indicate that they are keys.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 91

bookauthor:([]
 author:`author$`hemingway`hemingway`king`king`king`flaubert`flaubert`shasha`lazere;

book:`book$`forwhomthebelltolls`oldmanandthesea`shining`secretwindow`clouds`madambovary`salambo`ou
toftheirminds`outoftheirminds;
 numfansinmillions: 20 20 50 50 30 60 30 0.02 0.02)
/ SQL 92: select * from bookauthor
select from bookauthor
/ SQL 92: identical to this except that we use the symbol notation
select numfansinmillions from bookauthor where book=`forwhomthebelltolls
select author,numfansinmillions from bookauthor where book=`forwhomthebelltolls
/ Implicit join via the foreign key.
/ SQL92:
/ select bookauthor.author, book.language
/ from bookauthor, book
/ where book.book = bookauthor.book
/ and numfansinmillions< 30
select author,book n om th e numfansinmillions.la guage fr bookau or wher < 30
/ Same idea, but e d not the outdented first line followe
/ by the indented later lines.
/ SQL92:
/ select book u ddress author.a thor, book.language, author.a
/ from bookauthor, book, author
/ where book.book = bookauthor.book
/ and author.author = bookauthor.author
/ and author.area = "psychology"
select author,book.language,author.address
 from bookauthor
 where author.area = `psychology
/ Notice that the distinct is to the left of the select.
/ SQL92:
/ select distinct bookauthor.author, book.language, author.address
/ from bookauthor, book author
/ where book.book = bookauthor.book
/ and author.author = bookauthor.author
/ and author.area = "psychology"
distinct select author,book.language,author.address
 from bookauthor
 where author.area = `psychology
/ Here we are doing implicit joins and also an implicit groupby
/ SQL92:
/ select book.language, mfansinmillions) sum(nu
/ from bookauthor, book
/ where boo o k.book kauthor.b ok = boo
/ group by b ook.language
select sum numfansinmillions by book.language from bookauthor

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 92

yout
 depends on the volume of data it will hold. Broadly speaking, they
um or large. The upper limits for each can be seen here:

Database Administration

Database La

The optimum layout for a kdb+ database
re divided into 3 categories; small, media

 32 bit 64 bit Storage Query Speed
Small 1GB 10GB Single files 10µs
Medium 32 million rows 512 million

rows
Single directory 0.3ms

Large Unlimited Unlimited Multiple partitions 10ms per date/sym

Small Databases

bles or databases are saved as individual files. Query times are around 10µs. Tables can be nested (as in

bases

ote `p#sym

 is date month year or int and is virtual.

es
ndy for test and development:

iew two first partitions
t

Ta
kdb+tick) or flat.

Medium Data

Tables are stored splayed in a single directory.

Large Databases

Databases are:

trade `p#sym

qu

Queries run from disk at 10ms per date/sym/field.

The partition field

Kdb+taq is more than 2500 partitions of daily trades and quotes. Each new day is more than 1GB. [Queri
on partitioned databases can run in parallel.] To set a subview -- ha

.Q.view 2#date / v

.Q.view[] / rese

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 93

lication, it may be desirable to log update operations to disk. This can be achieved
rt g the database with a –l (asynchronous logging) or –L (synchronous).

s per second with SCSI disk and 10,000 times
tate Disk).

ch tes of around 100,000 transactions per second. It is useful if the storage
rusted or duplicated.

, a single drive can commit more than 40MB of updates per second.

.log” in the same directory. Any of these can be empty.

essages are logged. To send a log message from the console use 0. (e.g. 0"v+:1") An error after
te will cause a rollback.

mber of tables and scripts.. The scripts are loaded after all the tables are
s can be single files or spread across a directory. (Although keyed indicative tables

ust be single files.)

 pass the path and name of the directory holding the
ata and script files.

/data/dir / loads the contents of dir

bases
ds parallel database and sets partition variable.

ate|month|year|int}/{tables}/{fields}}

ere
the

send “\\l .”

ing Tables
rom Textfiles

Logs
For any recoverable app
by sta in

Synchronous Logging operates at approximately 100 record
per second with SSD (Solid S

Asyn ronous Logging achieves ra
is t

In either case

> q db –l

This starts the database in asynch logging mode. It loads up the file “db.q” and the database “db.qdb”. The
log goes in a file called “db

All update m
a partial upda

q)

 \l

This causes db.qdb to be checkpointed and db.log to be emptied.

Nested Databases

A database directory can have a nu
loaded. Tables themselve
m

The easiest way to start a nested database is just to
d

> q /home

Parallel Databases

Large data

 loa>q dir /
{ddir/{..|

There is one partition variable date|month|year|int and it is a virtual column in all the partition tables. Th
an be other date columns with different names. New partitions can be added without having to restart c

database –

Load

F

he general form for loading from a textfile is: T

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 94

elimiter) 0: filename

mes.
upply a one-character type for each field in the file. A blank tells the interpreter to skip a field; an asterix is

ariable type. See datatypes table above for what each letter corresponds to.

es:
list ”|”) 0: `:file / pipe-delimited text with column names in first row
ile / comma-separated text without column names

/ load table into memory

s it is

 / fixed-width data file

]}

ross a directory, e.g.

gle file called “trade”
in a directory called “trade”

ables splayed across a directory must be fully enumerated (no varchars) and not keyed.

 or in text format:

 (types;d

or
 (types;widths) 0: filename

Enlist the delimiter if the first row of the file is the column na
S
used for a v

amplEx
tbl:("BXHSMDZUVT* "; en
bl:("CCIISS FF"; “,”) 0: `:ft
tbl:("CCIIF";10 10 4 4 7) 0: `:file / fixed-width textfile

From Data

trade:get`:trade / read in q datafile
trade:get`:trade/ / map in splayed table

equivalent to:

ad `trade lo

Currently, it is possible to use the rload function to ‘map in a splayed table,’ but its use is discouraged a
a deprecated function.
rload `trade

L:("bxhijefcsmdzuvt* ";widths)1:F

Syms(S) trim, blank skips and * is character vector. Reverse types and widths to load reverse endian data.
data: .[`:f[/];();[:,];..] !`:d .`:d/(defermap) stdout: -1".." stderr: -2".."
line: f 0:L:read0:f[,i,n] L:d 0:L:("*BXHIJEFCSMDZUVT ";[,]delim)0:{L|f[,i,n]}
byte: f 1:G:read1:f[,i,n] G:w 1:L:("*bxhijefcsmdzuvt "; width)1:{G|f[,i,n

Saving Tables

Tables can be written as a single file or spread ac

trade set tbl / write table as a sin`:c:/data/
`:c:/data//trade/ set tbl / write as a splayed table
or
save `tbl / save as a single file

rrently, it is also possible to use a similar rsave keyword, but its use is discouraged as it is deprecated. Cu
rsave `tbl / save as a splayed table

T

They can also be saved as csv’s
ave `tbl.csv s

save `tbl.txt
atetime txt and csv are written as: yyyy-mm-dd hh:mm:ss.ddd D

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 95

Form

Developing analytics in q

Defined Functions

The General

d functions is

are executed strictly from left to right, as
st paid in

cipal;rate;time] principal*rate*time}

ame between square brackets (no semi-colons). It is
ction with no arguments by specifying the empty list, []. The empty argument list can

efault arguments may come into play.

The general form of define

{[argument list] body}

The argument list is a sequence of names separated by semi-colons. The body is a list of expressions and
control statements separated by semi-colons. The items in the body
are items within control statements. For example, a function that computes the amount of intere

time can be defined as follows: terms of principal, rate and

q) interest:{[prin
q) interest[100;.05;.5]
2.5

This function has 3 arguments, principal, rate and time. The expression that follows does the evaluation.

a monadic function is one nThe argument list for
possible to define a fun
be omitted, but if so, d

Default Arguments

The argument list can

es app
be omitted when default arguments are used. The default arguments are x, y and z. If

ears in a function definition that has no argument list then that name is a function
always the third argument, whether or not x or y is present in the function definition.

 the second argument and x is always the first. For example,

u use default arguments is a matter of taste. In general, they are useful in general utility
uments can't be named in meaningful ways.

any of these nam
argument. Moreover, z is
Similarly, y is always

q) f:{z*z}
 q) f[1;2;3] / f is a function of 3 arguments
9
 q) f[`a;"b";3] / the first two arguments aren't used; they can have any values
9

Whether or not yo
functions whose arg

Default Result

The value of the right-most expression in a function body is the default result if there is no semi-colon

ntly, we say that this function has no explicit result.

between it and the closing}. However, functions always have some kind of results. Even in a case below
where nothing is displayed when the function is evaluated, such as

 f:{.cx.global:0;}
 f[]
 _ / the default prompt
r:f[] / this expression will not fail

Conseque

Localization

All unqua
name:val

lified names in a function definition in ignment of the form
ue are local to that function. A local na an assignment is

which there is at least one simple ass
me has no value in references before

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 96

a+b}

ains unchanged

ow global

made, and any assignment to a global with that name, e.g. name::value, is treated like the local assignment
name:value . For example,

q) a:5 / global a
q) f:{[a;b]
q) f[3;9] / a is local
12
q) a
5 /global a rem
q) g:{[a,b]a*b}
q) g[a::7;9] /a is n
63
q) a / global a is 7 and not 5
7

Projections

For functions of valence at least two, when any of the argument positions are left blank in an evaluation

specified, the effect is to create a new function in which the
s. The new function is called a projection onto those fixed values.

:f[7;;9] / function is now effectively 7 + y + 9

monadic function g is the projection of f onto its first and third arguments. The function g is formed by
. That leaves one argument unspecified,

h is the argument of the function g. Continuing,

 g to the argument 1

ents that are left unspecified can be left out of the projection expression. For example, the
ich has valence 2, is equivalent to f[1;;]

[2;3]

rojections of projections are equivalent to projections of the original function. For example, e, which has

 when their source functions are redefined. For example,

2

x}

8

 is also possible to project onto the left argument of a verb. For example, 3+ is a monadic function.

expression, i.e. when those arguments are not
specified arguments have those fixed value
For example:

q) f:{x+y+z}
q) f[7;9;11]

 27
q) g

The
fixing the first and third arguments of f to be 1 and 3, respectively
whic

q) g[65] / apply g to the argument 2
81
q) g[1] /apply
17

Trailing argum
function h, wh

f[1] q) h:
q) h
6

P
valence 1, is equivalent to f[1;;3]

q) e:h[;3]
q) e[2]
6

Function projections retain their definitions even

q) g
18
q) f:{
 q)g 2
1

It

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 97

) (3+)10

ich
ut it

q
13

In this example 10 is the argument to the monadic function 3+; function evaluation is by juxtaposition, wh
in this case is equivalent to (3+)[10]. It is not possible to project on the right argument of + in infix form, b
can done if function evaluation notation can be used for +.

 q) +[;10]3
13

Projections in Practice

Projections are useful when many different evaluations of a function have some number of common
arguments. For example, in kdb+ the trade table was constructed with a series of table inserts of the form

 the data in the second argument.

e] is a projection of the insert function onto the first
 of the monadic function insert[`trade] to the argument

9:30:01.000;`aaa;53.75;1200) using juxtaposition. Whether to use the style of the first or second
expression is a matter of taste. Some programmers find the first expression easier to read.

Parameterized Queries

insert[`trade](09:30:01.000;`aaa;53.75;1200)

Insert is a dyadic function whose first argument is the table that receives
That is, the following is an equivalent expression.

insert[`trade;(09:30:01.000;`aaa;53.75;1200)]

In the first expression, the subexpression insert[`trad
argument. The expression is the application
(0

Select, update and delete expressions can be evaluated in defined functions. Every name except column
names can be a function argument, local variable or global variable (think of column names as local within
the phrases). For example, using the tables from earlier examples:

q) industry:([sym]ind:())
q) `industry insert(`AIG;`Insurance)
q) `industry insert(`IBM;`Consulting)
q) trade: ([]time:();sym:`industry$();price:();size:())
q) `trade insert(09:30:01.000;`AIG;59.25;2000)
q) `trade insert(09:30:02.000;`AIG;59.50;1000)
q) `trade insert(09:30:04.000;`IBM;54.25;200)
q) trade
q) vol:300
q) f:{[tbl] select from tbl where size>vol}
 q) f[trade]
+`time`sym`price`size!(09:30:01.00009:30:02.000;`industry$`AIG`AIG;59.225 59.50; 200 1000)

Default arguments cannot be used in parameterized queries.

Execution Control

There are various methods of contolling execution. These are described with examples in the table below.

Construct Details and Example
Conditional Evaluation $[condexp;truexp;falsexp]

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 98

The simplest form of Conditional evaluation is denoted by $[condexp;truexp;falsexp] . For example,
f:{$[x
sing a function in this exam atomic integer value

(e.g., bool or int); truexp is e nditional expression is
the result of whichever sub

here are two extended for pression. The general

 "true expression" or "false expression" in the above forms can be replaced a block of expressions enclosed in
r example,

f:{$[x
result of the

U ple was simply a matter of convenience. The conditional expression can have any

xecuted if that value is not 0 and otherwise falsexp is executed. The result of the co
expression is executed.
ms of conditional evaluation. In one case there can be more than one conditional exT

form is
$[condexp1;truexp1;...;condexpn;truexpn;falsexp]
For example,

f:{$[x<10;`abc;x
More generally, any
square brackets. Fo

The individual expressions in a bracketed set such as [t:5;u:7;t+u] are executed left to right and the rightmost one gives the

t. se

Protected Evaluation Errors do not halt execution
It is possible to execute a function in s
input, such as ad hoc queries. Like Am

he primitive value function is useful f

uch a way that an error does not halt execution. This is particularly useful when executing user
end, there is a Dot version and an At version.

or executing user input. Here is an example of a protected execution of value.

f "2 2+3 3 3"
ail

rtible. The general form of the previous expression was

i]:.[$;(type c;v);c -1]
 null

pe c;23h);c -1]
c

that cannot be cast to an int,

$;(type c;`abc);c -1]

T
 f:{@[value;x;`fail] /The 1st argument is the function, the 2nd is its arguments and the third is the returned argument.
 f "2+3"
5

`f
Protected evaluation can be used when the atoms are not known to be conve
c[i]:(type c)$v
 A protected evaluation version is
c[
 If the cast fails, the result of the protected evaluation will be the result of an out-of-range indexing selection from c, which is the
value for the type of c. Repeating the previous example,
 c:10 345 -20 11
 c[2]:.[$;(type c;0xab);c -1]
 c[0]:.[$;(ty

23 345 171 11
 Continuing with an atom
 .[
0N
 c[1]:.[$;(type c;`abc);c -1]
 c
23 0N 171 11
Do statements do[count; expr]

do[count; expr1;...; exprN]
do[count; expr]

pr1;...; exprN]
he first Do statement executes the expression count times. The second do statement executes the expression list count times. The
pressions in the expression list are executed left to right. If count is an expression then it is executed first and that value determines

do[count; ex
 T
ex
the number of times the other expressions are executed. Do statements do not have explicit results.

If statements while[cond; expression]
while[cond; expression1;...; expressionN]

if[cond; expr]
if[cond; expr1;...; exprN]
 The conditional expression is like the one in Conditional Evaluation. If its result is not 0 then the expression or expression list is
executed. In the second case the expressions are executed left to right. If statements do not have explicit results.
While statements
while[cond; expression]
while[cond; expression1;...; expressionN]

where null r];r}
eatedly to a list to replace all nulls with the nearest non-null value to the left. The example list was

null v

 The conditional expression is like the one in Conditional Evaluation. As long as its value remains not equal to 0, the expression or
expression list is executed. When there are more than one expressions they are executed left to right. While statements do not have
explicit results.
An example earlier in the context of nulls provides an example of a While statement. In that section, the function
f:{r:x;r[i]:r[-1+i:

as applied rep w
v:10 -3.1 0n 0.1 0n 0n 0n 3.4

o test for nulls in v, we can use max and the Null function, as follows. T

00101110b
 max null v

 1b
 The interation in Processing Nulls can then be carried out as follows.
 while[max null v;v:f v]
 v
10.00 -3.10 -3.10 0.10 0.10 0.10 0.10 3.40
return r’ exits a function with a result value

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 99

his is a primitive function which alters the default execution flow in a defined function by exiting with a result value. Return is denoted
ym atom `other if the argument is not an atom.

T
by :r . For example, the following function returns the s

:{if[not 0>type x;:`other];x} f
 f 2 3
`other
signal 'r exits a function with an error
This is a primitive function which alters the default execution flow in a defined function by exiting with an error signal. This function is

ther

bove example, the reason for the signal can be analyzed by using
e function f could also be called with user input under protected execution by another function. The signal
e caller that the message "other" was an error message, which could be reported to the user.

denoted by 'r. For example,
{if[not 0>type x;'`other];x} f:

 f 2 3
{if[not 0>type x;'`other];3}
'o
> _

ignal is useful for debugging and processing user input. In the aS
debugging techniques. Th
from f would indicate to th
Debugging Example guidelines
If a defined function fails you will see a console display of the failed primitive function and it's argument(S). The console prompt

can examine the arguments and local variables of the function that failed. For example,
f:{[a] b:`x`y;b[0]+a*2}

 / the function that failed

nsole display that the failure is a type error of the
nction +, applied to the arguments `x and 8. In this simple example you can see immediately what the problem is, but it's not always

mine the arguments and locals in the function. For example,

`y

t's look at a slightly more complicated example.

pe

d.

becomes a "> ". You

 f 4 / a type error is generated

n which the failure occurred {[a] b:`x`y;b[0]+a*2} / the function i
'type / the error type
+
`x / the left argument
8 / the right argument
> _
 The underbar in the last line indicates a blinking cursor. You can see from the co
fu
that easy. When it's not, you can exa

a >
4
> b
`x
> _

nter a back-slash to abort the execution. You will then see the default cursor. E
> \
 _
 Le
 f:{[a;b] b[0]+a*2}
 g:{[c] d:`a`b;f[c;d]}
 g 3
{[a;b] b[0]+a*2}
'ty
+
`a
6

 _ >
 Again, we see the definition of the failed function. We can examine its arguments.
> a
3
> b
`a`b
> _

The problem is clearly the argument b. We can signal up with quote to see where this function is calle

 ' / signal up >
{[c] d:`a`b;f[c;d]} / clearly, the function in which the failure occurred is f
' / the error type (signal)
{[a;b] b[0]+a*2} / the function that failed
3 / the first argument
`a`b / the second argument
> _
 We can examine the argument and the local variable in g.
> c
3
> d
`a`b
> _
 We can now see that the local d is the problem. Enter \ to abort or ' to signal up and out and fix the definition of function g.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 100

Extract from Denis Shsha Primer: Execution Control
Every programming language since Algol has offered if-then, if-then-else, and while. Q is no exception,
though good q programmers tend not to need these functions (especially looping functions) as much as
programmers in scalar languages.
/ $[condexp1;truexp1;...;condexpn;truexpn;falsexp]
/ if then-else. The expressions can be surrounded by []
/ to connote a block.
val: 35
$[val > 60; val; val < 30; 0; [x: neg val; 2*x]] / returns -70
/ This can be rendered by several if statements.
/ Personally, I like these because they make the assumptions clear.
if[val > 60; out: val]
if[val < 30; out: 0]
if[not (val > 60) | (val < 30); out: 2 * neg val]
out / returns -70
/ compute the square of each number up to n then subtract 1
squareminusone:{[n] out: (); i: 0; while[i < n; out,: (i*i)-1; i:i+1]; out}
squareminusone[5] / -1 0 3 8 15
/ The same can be done without a loop
/ This will normally be faster.
squareminusonealt:{[n] ((key n) * (key n)) - 1}
squareminusonealt[5] / returns -1 0 3 8 15

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 101

Inter-Process Communication

A Kdb+ process is a server. The port is specified with the -p option in the startup command. For example, the
following process will have the port 5001.

q sp.q -p 5001

The port can also be specified in a script or in the console with the command \p; see Commands.

Kdb+ Data Client

We have already used the port in Kdb+ for executing q queries and displaying results in a web browser. We
will now look at Kdb+ data clients.

Opening and Closing a Connection

A kdb+ client can connect to a kdb+ server process on the same computer, on the same network, or
remotely. The client uses the Hopen function to connect. For example, suppose the server listening on port
5001 is named srvr and is on the same network as the client. In that case the client connects to the server as
follows.

h:hopen`:srvr:5001

The symbol `:srvr:5001 is called the communication handle; the int h is called the connection handle. There
is no need to identify the server if the client is running on the same machine. The communication handle in
that case can simply be `::5001. A remote server is identified by its IP address, say 66.108.242.81, in which
case the communication handle is `:66.108.242.81:5001.
An open connection is closed with the hclose function, as in

hclose h

Asynchronous and Synchronous Messages

There are two ways to send messages to a server, asynchronously and synchronously. An asynchronous
message does not return a result. The expression that sends an asynchronous message completes as soon
as the expression is executed (which may be a little sooner than when the message is sent). Asynchronous
messages are also called set messages because typically they cause changes in the state of the server. For
example, a delete or insert statement can be sent asynchronously.

A synchronous message expects a response from the server. The expression that sends a synchronous
message waits for the response and returns it as its result. For example, a select statement must be sent as
a synchronous message. Synchronous messages are also called get messages, since they expect a
response.

There are two forms of messages. One is a character string holding an executable expression. For example,

"select avg price by time.u from trade"
"insert[`trade](10:30:01;`dd;88.5;1625)"

The second form of a message is a list. The first item of the list is a char string or sym atom holding the
name of a function (i.e., stored procedure) to be executed on the server. The other items are the arguments
of the function call, in order. For example, the above insert message can also be phrased as a remote
procedure call, as follows.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 102

(`insert;`trade;(10:30:01;`dd;88.5;1625))

A synchronous message is sent by executing the expression processhandle message and an asynchronous
message is sent by

(-processhandle)message

The following examples send synchronous character string messages to the communication partner.

h"select avg price by time.u from trade"

u price

09:30 77.92
10:00 76.31

h"insert[`trade](10:30:01;`dd;88.5;1625)"
`trade

Since the insert message was sent synchronously the result (the name of the modified table) is returned.
This confirms that the insert was sucessful. However, if the client doesn't require a response, the insert
message can be sent asynchronously, as in the follow example.

(-h)"insert[`sp](`s1;`p1;400)"

Execution of this message returns immediately with no result.

The function-arguments list form of this insert message is

(-h)("insert";`sp;(`s1;`p1;400))

In most realistic situations the data to be inserted is not constant, but is either generated algorithmically or
received from an external source. Consequently, the function-arguments message format is the more
generally useful one because it does not require formatting the data into char strings.

Message Filters

The default behavior of a kdb+ server is to apply the Value function to incoming messages. This behavior
can be modified with message filters. Message filters are monadic, user-defined functions with reserved
names .z.ps for asynchronous (set) messages and .z.pg for synchronous (get) messages. The reason for
two filters is that the asynchronous message filter is not expected to return a result - and even it did, the
result would not be sent to the sender - while the synchronous filter is expected to return a result. The
argument to each function is the complete message received from the sender.

There are many different uses for message filters. In a server that processes ad hoc queries the filters can
use protected execution to avoid stopping on query errors. In so-called gateway servers, message filters
route client messages to other servers. For example, select statements with a date specification in the where
phrase can be routed to a real-time server or historical server. (How can the message filter know the date?
The message can be in a stored procedure call, with a parameterized query and the date as arguments).
Message filters can also maintain state while a sequence of related messages is processed.

Whenever a message is received the variable .z.w is automatically given the value of the server's connection
handle to the sender. This value can be referenced in the message filters. The value can be used for various
purposes. For example, if you maintain a list of connected partners and the current value of .z.w is not in the
list then you know this is a new user, in which case authorization and initialization functions can be executed.
For example,

if[not .z.w in cp;cp,:.z.w;init .z.w]

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 103

Evaluating Messages with the Value Primitive

The primitive Value function can evaluate either form of message. It applies to a simple char list holding a
valid kdb+ expression, evaluates the expression as if it had been entered at a console, and returns the result
of the evaluation, if any. For example,

 value"3+4"
7 / the value of 3+4

 value"m:2 3e" / no value is produced in this case
 m / this is the next input line; display the value of m
2 3e

The Close Handler

Either communicating partner can close a connection. A message indicating the close is printed in the
console of the other partner unless that partner has a close handler. A close handler is a monadic function
with the name .z.pc that is automatically called with the connection handle to the partner that closed the
connection.

If a client closes a connection then the server's .z.pc can use the argument to remove that client from its
client list. If the server unexpectedly closes a connection (the server crashes) then the client may try to
reconnect. Typically this is done with a timer so that reconnection is attempted repeatedly until successful, or
perhaps up to some maximum number of attempts.

In the following example, .z.pc resets the connection handle to 0 and sets the timer to 1 second. Note that
the way to execute a command within a defined function is to apply the Value function to a char string
holding the command text. The function .z.ts will then be called automatically every second. On each call the
client attempts to reconnect. If successful, the connection handle will be assigned a positive int value. In
addition, the if statement in .z.ts resets the timer to 0 if the reconnection attempt is successful.

.z.pc:{o::0;value"\\t 1000"}
.z.ts:{o::hopen`:srvr:5001;if[o>0;value"\\t 0"]}

Kdb+ HTTP Server

There is also a message filter for HTTP messages, with the reserved name .z.ph.

HTTP messages are always synchronous, so there is only one filter. This filter, which manages the Kdb+
Web Viewer, is the only one with a default definition. It can be replaced with a customized version.

Working with Files

Kdb+ distinguishes three types of files, kdb+ data files, text files and all others, which we will call binary files.
Files are identified by file handles, which are sym atoms of the form

`:[path]name

For example,

`:c:/kdbtestdata is the file handle.

File handles, like communication handles, are sym atoms that begin with the character ":".

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 104

Kdb+ Data Files

Data in the Kdb+ workspace is self-describing, which is accomplished by appending the descriptive
information to the actual data. A kdb+ data file is a binary file that is the image of a kdb+ workspace data
object, including the descriptive information.

Kdb+ data can be written to kdb+ data files with Dot Amend. For example,

 .[`:c:/kdbdata;();:;1 3 -4 5 10 11]
`:c:/kdbdata

It is also possible to append to an existing file with Amend. For example,

 .[`:c:/kdbdata;();,;1 3 -4 5 10 11]
`:c:/kdbdata

Note the comma (Join) in place of colon (Assign). The file can be read by applying the Value function to the
file handle, as follows.

 value`:c:/kdbdata
1 3 -4 5 10 11 10 23 -56

Each of these operations opens (or creates) the file, applies the operation, and closes the file. It is also
possible to explicitly open a file, in which case it stays open until you close it. A file is opened and an open
file handle is created in the same way as a connection handle. For example,

 h:hopen`:c:/kdbdata

Data can be appended to the open file with the same syntax for sending messages, i.e. either h[data] or h
data .

 h 100 101
700

The returned value, which may be different when you repeat this example, is the value of h. This is
analogous to the above Amend statement returning the file handle as its result. Any number of appends can
be done with this open file handle, which can then be closed with the hclose function.

 h 1050 1100 1125
 hclose h
 value`:c:/kdbdata
1 3 -4 5 10 11 10 23 -56 100 101 1050 1100 1125

Kdb+ data files are used for transaction logging. When a transaction is appended to the log file with Amend,
the file write is immediately synchronized to disk because the file is closed after the write. If an open file
handle is used then the file write is not synchronized, which permits many more logging operations per
second.

Tables

The above Amend expression, when applied to tables, writes an entire table as one file. It is also possible to
write the table to disk as a directory whose file contents are the individual columns. That is, there is one file
per column in the directory. This format of a table on disk is called splayed format. The Amend statement for
writing a splayed table differs from the one above only in the file handle.

.[`:trade/;();:;trade]

It is also possible to write the entire contents of a database context to one file. In particular, the default
context can be written to file namedcurrentdb as follows.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 105

.[`:currentdb;();:;.`.]

Text Files

Text files are not Kdb+ data files and therefore the above applications of Amend do not apply. The primitive
verb denoted by 0: takes a file handle as its left argument and a list of char strings as it right argument and
writes the list to the text file with that handle. For example,

 `:f.txt 0:("abc";"defg")
`:f.txt

As in the Amend cases, the result is the file handle. New rows can be appended to an open text file in the
same way as binary files.

 h:hopen `:f.txt
 h "hijkl";
 hclose h

The monadic primitive function read0 is used to read a text file.

 read0`:f.txt
("abc";"defg";"hijkl")

Binary Files

Binary files are managed in the same way as text files, using the verb 1: instead of 0:. From the Kdb+ point
or view, binary files are lists of byte items. For example,

 `:f.bin 1: 0xabcdef
`:f.bin

creates the binary file f.bin with contents 0xabcdef . The following appends to the file,

 h:hopen`:f.bin
 h 0x01020304;
 close h

THe following reads the file.

 read1`:f.bin
0xabcdef01020304

Text files can also be read and written with read1 and 1: and managed as binary or char data. For example,

 read0`:f.txt
("abc";"defg";"hijkl")
 read1`:f.txt
0x6162630d0a646566670d0a68696a6b6c
 "c"$read1`:f.txt / cast the data to char type
"abc\r\ndefg\r\nhijkl"

Specifying Field Types when Reading Files

There are two primitives for doing this, one for text files (0:) and one for binary files (1:). The field types are
designated by letters, like the q datatypes. The letters are same for text files as q data, only capitalized. For
binary files, the letters are lower case.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 106

Text Files(0) Binary Files(1) Type Data(1) Text(0)
blank skip

B b bool 1 [1tTyY]
X x byte 1
H h short 2 [0-9a-fA-F][0-9a-fA-F]
I i int 4
J j long 8
E e real 4
F f float 8
C c char 1
S s sym N
M m month 4 [yy]yy[?]mm
D d date 4 [yy]yy[?]mm[?]dd or [m]m/[d]d/[yy]yy
Z z datetime 8 date?time
U u minute 4 hh[:]mm
V v second 4 hh[:]mm[:]ss
T t time 4 hh[:]mm[:]ss[[.]ddd]

* as is chars

For example, ("IFC D";4 8 10 6 4) specifies a file of fixed width fields consisting of a 4 byte int field, an 8 byte
float field, a field of 10 chars, a field of width 6 that will not appear in the loaded data, and a 4 byte date field.
Note that the sum of the field widths must equal the record width. For example, if there is one blank between
fields then the specification would have to be ("IFC D";5 9 11 7 4) . Text files to be read as fixed width fields
must have a newline character at the end.
A text file with fixed-width fields is read by

(types;widths)0:f

and a binary file is read by

(types;widths)1:f

The right argument f is either a file name as a sym atom or a 3-item list of the form (file name;I;L) . L
specifies the number of bytes to be read and I specifies the starting index (the index of the first character in
the file is 0). A file can only be read from the start of one record to the end of another. This form is the one to
use when a very large file must be read incrementally.

The result in both cases is a general list of lists with an item for each field.

Variable width, delimited text files can also be read. The left argument in this case is a pair of the form (T;D) .
T is a simple char list of type letters, as above. D is either a field-delimiting character or the enlist of one. In
the case of a field delimiter, all rows are read as data and the result is a list, as above. For the enlist of a
delimiter, it assumed that the first row contains field names, which are read as a simple field list; the
remaining rows are read as data. The result is a table.

For example, suppose that the following display are the rows of a csv file named test.csv.

abc,def,ghi,jkl
1050,1.234,abcdef,G
234,1e50,gqw,X

If this file read by the expression

 ("IFSC";",")0:`test.csv

then the result is the list

(0N 1050 234;0n 1.23 1.000e+050;`ghi`abcdef`gqw;" GX")

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 107

You can see that the text "abc" on the first row of the file becomes the int 0N, "def" becomes the float 0n, and
"jkl" becomes the null char " " (because it has more than one character). However, if the file is read with an
enlisted delimiter,

 ("IFSC";enlist ",")0:`test.csv

the result is the table

 +`abc`def`ghi`jkl!(1050 234;1.23 1.000e+050;`abcdef`gqw;"GX")

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 108

Input/Output to Files

Extract from Denis Shasha primer: Input/Output to Files
Files are identified as symbols beginning with a colon:
`:[path]name

The path need not be specified if the file is in the current directory.
Files are text, byte or q data. Let us start by reading and writing to text files:
myfile: `:foofile
/ can write directly to the file
myfile 0: ("i love";"rock and roll")
/ Can append to files, by opening the file and then talking to the file.
h: hopen myfile
h "But rock concerts are too loud."
/ The function read0 reads the file
newlist: read0 myfile
newlist / returns ("i love";"rock and roll";"But rock concerts are too loud.")

Byte files are for non-string data. For such data we use 1: instead of 0:.
mybinfile: `:foofilebin
mybinfile 1: 0x6768
/ To append, we open as before.

h2: hopen mybinfile
h2 0x6364
read1 mybinfile / returns 0x67686364

Q files are for q data.
myfile:`:tmpfoo
.[myfile;();:;`a`b`c] / set
.[myfile;();,;`d`e`f] / append
value`:tmpfoo / returns `a`b`c`d`e`f

Very often we want to parse data that we get from external text files. Sometimes that data comes in fixed
format. Suppose for example we have the file fooin with implicit schema employeeid, name, salary, age.
312 smith 3563.45 24
23 john 5821.19 32
9 curtiss 9821.19 51

(Note: no blank line at the end.)
We notice that we have a 4 character integer (including the trailing blank), a 9 character name, a 8 character
float and a 2 digit integer. So we use the standard table to get the types :

We can then bring this data in as
myfooin: `:fooin
x: ("ISFI"; 4 9 8 2) 0: myfooin
x
returns (312 23 9;`smith`john`curtiss;3563.45 5821.19 9821.19;24 32 51)
/ Now can create a dictionary
d: `id`name`salary`age!x
/ And then a table
myemp: flip d
select name from myemp where salary > 5000 / returns +(,`name)!,`john`curtiss
We can write entire tables and databases to disk.
/ We write the stock table as follows
.[`:stock;();:;stock]
/ We read the table back with
value `:stock

12.5 Interprocess Communication

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 109

When running a q script, you can specify a port and then clients can talk to that port. Let's start with the script
trade.q:
/ Create a list of French stocks where name is the key.
stock:([name:`Alcatel`Alstom`AirFrance`FranceTelecom`Snecma`Supra]
 industry:`telecom`engineering`aviation`telecom`aviation`consulting)
/ get a list of distinct stocks are there?
stocks: distinct exec name from stock
ns: count stocks
n:10000
/ stock is a foreign key foreign key.
/ We are taking n stocks at random.
/ Then n prices up to 100.0 at random, then amounts then dates.
trade:([]stock:`stock$n?stocks;
 price:n?100.0;amount:100*10+n?20;exchange:5+n?2.0;date:1998.01.01+n?449)
`date xasc`trade
/ An example function.
f:{[mytable] count select from mytable}
f[stock]
f[trade]
/ A somewhat less trivial function does volume-weighted
/ rollups by week (an abridged example from Tom Ferguson)
/ over a certain time period.
weekrollup:{[daterange]
 select first date, last date, amount wavg price by stock, date.week
 from trade where date within daterange }
weekrollup[2004.02.31 2004.03.31]
/ In the browser, the first few rows are (with my random generation)
stock week date date price

Alcatel 2004.03.01 2004.03.02 2004.03.07 47.35833
Alcatel 2004.03.08 2004.03.08 2004.03.14 52.90358
Alcatel 2004.03.15 2004.03.15 2004.03.21 45.02117
Alcatel 2004.03.22 2004.03.22 2004.03.28 48.47076
Alcatel 2004.03.29 2004.03.29 2004.03.31 55.88028
Alstom 2004.03.01 2004.03.02 2004.03.07 54.75892
Alstom 2004.03.08 2004.03.08 2004.03.14 46.97044
Alstom 2004.03.15 2004.03.15 2004.03.21 46.22599
Alstom 2004.03.22 2004.03.22 2004.03.28 45.22842
Alstom 2004.03.29 2004.03.29 2004.03.31 44.11812
AirFrance 2004.03.01 2004.03.02 2004.03.07 49.62135
AirFrance 2004.03.08 2004.03.08 2004.03.14 61.13775
AirFrance 2004.03.15 2004.03.15 2004.03.21 50.15903
AirFrance 2004.03.22 2004.03.22 2004.03.28 48.55051
AirFrance 2004.03.29 2004.03.29 2004.03.31 67.37883
FranceTelecom 2004.03.01 2004.03.02 2004.03.07 44.48418
FranceTelecom 2004.03.08 2004.03.08 2004.03.14 62.79708

Let's run trade.q at some port, here 5001.
q trade.q -p 5001

The process now running is the server. It is waiting for commands as we will see.
Now open up a new window on the same machine (or a different one) and type simply q. This is the client.
The client then connects to this server by opening the connection, communicating, and then closing the
connection.
/ If client on same machine, then please type in the console window for client:
h: hopen`::5001 / open a connection to a process on the local machine.
/ If client on different machine and server on machine foobar
/ then please type in the client console window:
h: hopen`:foobar:5001
/ Please type in the client console:
h"select avg price by stock from trade" / send a message as a string
/ and gets a result.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 110

/ Define in the server.
/ Please type in the server console:
myfunc:{[x] 3*x}
/ Then the client can send a message to this function.
/ Please type this in the client console:
h"myfunc[4]" / and get the result 12
/ Alternatively, please type this in the client console:
h"n: 4; myfunc[n]" / returns 12
/ Also n is now defined as 4 in the server.
/ Alternatively, please type this in the client console:
h"z: 4"
h"myfunc[z]"
/ Sometimes the server chooses to allow certain operations to be
/ executed on its site, so uses a message filter.
/ There are two: .z.pg for synchronous and .z.ps for asynchronous messages
/ We are dealing with synchronous only for now.
/ Suppose we define the function .z.pg to count the number of characters.
/ Please type this in the server console:
.z.pg:{[x] count x}
/ Please type in the client console:
h"myfunc[z]" / returns 9 (because there are 9 characters)

Note that you can talk to this process from other places as well. For example, from a browser you can type.
(Note however: it is very very important that you refresh from time to time if you think you have changed your
data.)
http://localhost:5001/?select avg price by stock from trade
/ if server is local
http://hogwarts:5001/?select avg price by stock from trade
/if server is on machine hogwarts

There are also hooks from excel, perl, java, and C but please check the documentation elsewhere on the kx
site for those.

Handles

`v set 2 / indirect assignment
 get`v

Files

File handles are of the form `:PATH. Kdb+ files can be read and written just like any other variable, e.g.

`:f set 2
 get`:f

Non kdb+ files are data(bytes) or text(lines).

h:hopen`:f.dat
h 0x2324
hclose h
h:hopen`:f.txt
h ` sv("asdf";"qwer")
hclose h

Sockets

h:hopen`:host:port

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 111

h"f[2;3]" / execute
h(`f;2;3) / func args
(-h)"a:2" / asynch
hclose h / close
.z.pg / get callback(default: value)
.z.ps / set callback(default: value)
.z.w / who (socket handle)

NB: hclose and exit flush pending messages. to chase use: h""

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 112

Interfacing with Other Programmes

Kdb+ can interface with a number of other common technologies including:

• Java
• C#
• C
• C++

General Notes

The code gives some general notes on the various methods of accessing kdb+ databases

clients (see http://www.studio4kdb.com/ExcelRTDServer.htm)

the easiest way to programmatically call the kdb+servers
is with c.java and c.cs (memory managed and 1-1 datatypes).

java, .net, c/c++ and q clients connect and execute.

java/.net: (c.java/c.cs)
c c=new c("host",port); // connect
r=c.k(["string"[,x[,y[,z]]]]); // remote call/read

c/c++: (l32/c.o s32/c.o w32/c.dll(c.lib))
int c=khp("host",port);
r=k(c[,"string"[,x[,y[,z]]]],(K)0);

q:
c:hopen`:host:port
c("string"[;x[;y[;z]]])

in java/.net

c.k("string"); // execute
c.k("func",x,y); // func[x;y]

to pass more than 3 args put them in list(s), e.g.

// build (time;sym;price;size) record
Object[]x={new Time(System.currentTimeMillis()%86400000),"xx",new
Double(93.5),new Integer(300)};
c.k("insert","trade",x); // insert[`trade;x]

clients can also read incoming messages:
r=c.k();

for example, kdb+tick clients do:
String[]syms={"IBM","MSFT",..};
c.k(".u.sub","trade",syms); // subscribe
while(1){Object r=c.k();.. // process incoming

parameters(x,y,z) and results(r) are arbitrarily
nested arrays of arrays and atoms.
(Integer, Double, int[], DateTime etc.)

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 113

java/.net(like q) have memory management
and self-describing objects so they are very easy to use.
the java/.net programmer passes and receives java/.net data.

C clients, e.g. http://kx.com/q/c/c.c (requires gcc 3.0 or later)

must call khp before generating k data.
link with l32/c.o, s32/c.o or w32/c.dll(c.lib)
send asynch messages with: k(-c,..)
read asynch messages with: r=k(c,(K)0);

int c=khp("host",port);
K x=knk(4,kt(1000*(time(0)%86400)),ks("xx"),kf(93.5),ki(300)); //
time,sym,price,size
k(-c,"insert",ks("trade"),x,(K)0);

we use the K struct to hold data:

 K is atom(-19..-1) list(0 1..19) flip(98) dict(99)

atoms are type(t),value(ghijefs) x->g x->h x->i etc.
lists are type(t),count(n),values(G) kG(x)[i] kH(x)[i] kI(x)[i] etc.

 r(ref) t(type) atom(ghijefs) list(u(supg) n(count) G(data)) flip(+k)
dict(kK(x)[0]!kK(x)[1])
 atom(kb,kg,..kt) list(ktn(t,n) knk(1-7,..) kp(S) kpn(S,I)) xT(xD(keys,values))
T:ktd(D|T)

 time(t) is milliseconds. datetime(d/z) is days from 2000.01.01 e.g.
 I x=time(0),t=1000*(x%86400),d;F z=x/8.64e4-10957;d=(I)z;

 r1(inc) r0(dec)
 r=k(c,s,x,y,z,(K)0); decrements(r0) x,y,z. eventually program must do r0(r);
 if one of the parameters is reused you must increment, e.g.

 K x=ks("trade");
 k(-c,s,r1(x),..,(K)0);
 k(-c,s,r1(x),..,(K)0);
 ..
 r0(x);

 r=k(c,..) error is r->t==-128 and Ks(r) is the error string

 k(-c,..) just returns non-zero on success.

 if k(..) returns 0 the connection is broken

servers, e.g. http://kx.com/q/c/a.c

c shared objects (link with q.lib) can be dynamically loaded
into q servers (q can call c and c can call q: r=k(0,..))

 krr(return error)
 sockets: sd1(d,callback) sd0(close)

BULK INSERTS FROM C
at some point the records need to be assigned to different tables(types).
for one table(easiest case):

either grow (using ja) or set(better) if you know how many messages.
(remember the data is all by column)
suppose n columns and m rows then:

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 114

send all available data at once.(bulk)
if you know there are m records and n columns:

x=ktn(0,n); // n columns

e.g. (sym;price;size)

a=kK(x)[0]=ktn(KS,m); // symbol vector
b=kK(x)[1]=ktn(KF,m); // float(64bit) vector
c=kK(x)[2]=ktn(KI,m); // integer vector

for(i=0;i<m;++i){ // populate all the cells
 kS(a)[i]=..; // set row i of column a
 kF(b)[i]=..; // set row i of column b
 ..}

k(c,".u.upd",ks("trade"),x,(K)0); // insert

GROW
..=ktn(kS,0);..

while(..){ja(a,&sym);ja(b,&price);ja(c,&size);}

Dynamically Linked C Functions

This code extract provides an example of dynamically linking C functions to q.

// q/w32>cl /LD ..\c\a.c a.def q.lib
// q/l32>/usr/local/gcc-3.3.2/bin/gcc -shared ../c/a.c -o a.so
// q/s32>/usr/local/gcc-3.3.2/bin/gcc -G ../c/a.c -o a.so

#include"k.h"
K f(K x){return ki(x->i+1);} // q calls c
K g(K x){return k(0,"1+",r1(x),0);} // c calls q

/*
f:`a 2:(`f;1)
g:`a 2:(`g;1)
f 2
g 3
*/

This code sample gives an example of how to connect, query and update kdb+ databases using C.

//>q trade.q -p 5001
#include"k.h"
#define Q(e,s) {if(e)return printf("?%s\n",s),-1;} // error
int main(){K x,y;int c=khp("localhost",5001);Q(c<0,"connect")
 Q(!k(-c,"`trade insert(12:34:56.789;`xx;93.5;300)",0),"err") // statement insert
 Q(!(x=k(c,"select sum size by sym from trade",0)),"err") // statement select
 Q(!(x=ktd(x)),"type") // flip from keyedtable(dict)
 y=x->k; // dict from flip

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 115

 y=kK(y)[1],printf("%d cols:\n",y->n); // data from dict
 y=kK(y)[0],printf("%d rows:\n",y->n); // column 0
 printf("%s\n",kS(y)[0]); // sym 0
 r0(x); // release memory

 x=knk(4,kt(1000*(time(0)%86400)),ks("xx"),kf(93.5),ki(300)); // data record
// DO(10000,Q(!k(-c,"insert",ks((S)"trade"),r1(x),0),es)) // 10000 asynch inserts
// k(c,"",0); // synch chase
// return 0;
 Q(!k(-c,"insert",ks("trade"),x,0),"err") // parameter insert
 Q(!(x=k(c,"{[x]select from trade where size>x}",ki(100),0)),"err") // parameter select
 r0(x);
 close(c);
 return 0;}

/*
gcc ../c/c.c c.o -lsocket
gcc ../c/c.c c.o -lsocket -lnsl
cl ../c/c.c c.lib ws2_32.lib
*/

Kdb+/C# API

This code illustrates the kdb+/C# API.

// 2005.04.26 s.Close()
// 2005.03.09 readwrite 0Nd 0Nz
// 2004.10.12 usr:pwd
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpcontemplatefiles.asp
using System;using System.IO; //csc c.cs given >q trade.q -p 5001
class c:System.Net.Sockets.TcpClient{public static void Main(string[]args){
 c c=new c("localhost",5001);
 Flip r=td(c.k("select sum price by sym from trade"));O("cols:
"+n(r.x));O("rows: "+n(r.y[0]));
// object[]x=new object[4];x[0]=t();x[1]="xx";x[2]=(double)93.5;x[3]=300;
// tm();for(int i=0;i<1000;++i)c.ks("insert", "trade", x);tm();
// c c=new
c("localhost",5010);c.k(".u.sub[`trade;`MSFT.O`IBM.N]");while(true){object
r=c.k();O(n(at(r,2)));}
 c.Close();}
byte[]b,B;int j,J;bool a;Stream s;public c(string h,int
p):this(h,p,System.Environment.UserName){}
public new void Close(){base.Close();s.Close();}
public c(string h,int p,string u):base(h,p){s=this.GetStream();B=new
byte[1+u.Length];J=0;w(u);s.Write(B,0,J);if(1!=s.Read(B,0,1))throw new
Exception("access");}
static TimeSpan t(){return DateTime.Now.TimeOfDay;}static TimeSpan v;static void
tm(){TimeSpan u=v;v=t();O(v-u);}
static void O(object x){Console.WriteLine(x);}static string i2(int i){return
String.Format("{0:00}",i);}
static bool dt(DateTime d){return d==d.Date;}static int DT(DateTime[]d){int
i=0;for(;i<n(d);++i)if(dt(d[i]))return 15;return 14;}
static double zd(DateTime d){return d.Ticks==0?Double.NaN:(d.Ticks-
o)/8.64e11;}static long o=(long)8.64e11*730119;
public class Dict{public object x;public object y;public Dict(object X,object
Y){x=X;y=Y;}}

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 116

public class Flip{public string[]x;public object[]y;public Flip(Dict
X){x=(string[])X.x;y=(object[])X.y;}}
public class Month{public int i;public Month(int x){i=x;}public override string
ToString(){int m=24000+i,y=m/12;return i2(y/100)+i2(y%100)+"-"+i2(1+m%12);}}
public class Minute{public int i;public Minute(int x){i=x;}public override
string ToString(){return i2(i/60)+":"+i2(i%60);}}
public class Second{public int i;public Second(int x){i=x;}public override
string ToString(){return new Minute(i/60).ToString()+':'+i2(i%60);}}
public static Flip td(object X){if(t(X)==98)return(Flip)X;Dict d=(Dict)X;Flip
a=(Flip)d.x,b=(Flip)d.y;int m=c.n(a.x),n=c.n(b.x);
 string[]x=new string[m+n];Array.Copy(a.x,0,x,0,m);Array.Copy(b.x,0,x,m,n);
 object[]y=new
object[m+n];Array.Copy(a.y,0,y,0,m);Array.Copy(b.y,0,y,m,n);return new Flip(new
Dict(x,y));}
static int t(object x){return x is bool?-1:x is byte?-4:x is short?-5:x is int?-
6:x is long?-7:x is float?-8:x is double?-9:x is char?-10:
 x is string?-11:x is Month?-13:x is DateTime?(dt((DateTime)x)?-14:-15):x is
Minute?-17:x is Second?-18:x is TimeSpan?-19:
 x is bool[]?1:x is byte[]?4:x is short[]?5:x is int[]?6:x is long[]?7:x is
float[]?8:x is double[]?9:x is char[]?10:
 x is DateTime[]?DT((DateTime[])x):x is TimeSpan[]?19:x is Flip?98:x is
Dict?99:0;}
static int[]nt={0,1,0,0,1,2,4,8,4,8,1,0,0,4,4,8,4,4,4,4}; // x.GetType().IsArray
static int n(object x){return x is Dict?n(((Dict)x).x):x is
Flip?n(((Flip)x).y[0]):((Array)x).Length;}
static int nx(object x){int i=0,n,t=c.t(x),j;if(t==99)return
1+nx(((Dict)x).x)+nx(((Dict)x).y);if(t==98)return
3+nx(((Flip)x).x)+nx(((Flip)x).y);
 if(t<0)return t==-11?2+((string)x).Length:1+nt[-
t];j=6;n=c.n(x);if(t==0)for(;i<n;++i)j+=nx(((object[])x)[i]);else
j+=n*nt[t];return j;}
public static bool qn(object x){int t=-c.t(x);return
t==5?(short)x==Int16.MinValue:t==6?(int)x==Int32.MinValue:t==7?(long)x==Int64.Mi
nValue:

t==8?Single.IsNaN((float)x):t==9?Double.IsNaN((double)x):t==14||t==15?0L==((Date
Time)x).Ticks:t==19?qn(((TimeSpan)x).Ticks):false;}
public static object at(object x,int i){object r=((Array)x).GetValue(i);return
qn(r)?null:r;}

void w(bool x){B[J++]=(byte)(x?1:0);}bool rb(){return 1==b[j++];}void w(byte
x){B[J++]=x;}byte rx(){return b[j++];}
void w(short h){B[J++]=(byte)h;B[J++]=(byte)(h>>8);}short rh(){int
x=b[j++],y=b[j++];return(short)(a?x&0xff|y<<8:x<<8|y&0xff);}
void w(int i){w((short)i);w((short)(i>>16));}int ri(){int x=rh(),y=rh();return
a?x&0xffff|y<<16:x<<16|y&0xffff;}
void w(long j){w((int)j);w((int)(j>>32));}long rj(){int x=ri(),y=ri();return
a?x&0xffffffffL|(long)y<<32:(long)x<<32|y&0xffffffffL;}
void w(float e){byte[]b=BitConverter.GetBytes(e);foreach(byte i in b)w(i);}float
re(){byte c;float e;

if(!a){c=b[j];b[j]=b[j+3];b[j+3]=c;c=b[j+1];b[j+1]=b[j+2];b[j+2]=c;}e=BitConvert
er.ToSingle(b,j);j+=4;return e;}
void w(double f){w(BitConverter.DoubleToInt64Bits(f));}double rf(){return
BitConverter.Int64BitsToDouble(rj());}
void w(char c){w((byte)c);}char rc(){return(char)(b[j++]&0xff);}void w(string
s){foreach(char i in s)w(i);B[J++]=0;}
string rs(){int i=0,k=j;for(;b[k]!=0;)++k;char[]s=new char[k-
j];for(;j<k;)s[i++]=(char)(0xFF&b[j++]);++j;return new string(s);}
void w(Month m){w(m.i);}Month rm(){int i=ri();return qn(i)?null:new Month(i);}
void w(Minute u){w(u.i);}Minute ru(){int i=ri();return qn(i)?null:new
Minute(i);}

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 117

void w(Second v){w(v.i);}Second rv(){int i=ri();return qn(i)?null:new
Second(i);}
void w(DateTime d){w((int)zd(d));} DateTime rd(){int i=ri();return new
DateTime(qn(i)?0:(long)(8.64e11*i)+o);}
void W(DateTime z){w(zd(z));} DateTime rz(){double f=rf();return new
DateTime(qn(f)?0:(long)(8.64e11*f)+o);}
void w(TimeSpan t){w((int)(t.Ticks/10000));}TimeSpan rt(){return new
TimeSpan(10000L*ri());}
void w(object x){int i=0,n,t=c.t(x);w((byte)t);if(t<0)switch(t){case-
1:w((bool)x);return;case-4:w((byte)x);return;
 case-5:w((short)x);return;case-6:w((int)x);return;case-
7:w((long)x);return;case-8:w((float)x);return;case-9:w((double)x);return;
 case-10:w((char)x);return;case-11:w((string)x);return;case-
13:w((Month)x);return;case-17:w((Minute)x);return;case-18:w((Second)x);return;
 case-14:w((DateTime)x);return;case-15:W((DateTime)x);return;case-
19:w((TimeSpan)x);return;}
 if(t==99){Dict r=(Dict)x;w(r.x);w(r.y);return;}B[J++]=0;if(t==98){Flip
r=(Flip)x;B[J++]=99;w(r.x);w(r.y);return;}
 w(n=c.n(x));for(;i<n;++i)if(t==0)w(((object[])x)[i]);else
if(t==1)w(((bool[])x)[i]);else if(t==4)w(((byte[])x)[i]);
 else if(t==5)w(((short[])x)[i]);else if(t==6)w(((int[])x)[i]);else
if(t==7)w(((long[])x)[i]);
 else if(t==8)w(((float[])x)[i]);else if(t==9)w(((double[])x)[i]);else
if(t==10)w(((char[])x)[i]);
 else if(t==14)w(((DateTime[])x)[i]);else if(t==15)W(((DateTime[])x)[i]);else
if(t==19)w(((TimeSpan[])x)[i]);}
object r(){int i=0,n,t=(sbyte)b[j++];if(t<0)switch(t){case-1:return rb();case-
4:return b[j++];case-5:return rh();
 case-6:return ri();case-7:return rj();case-8:return re();case-9:return
rf();case-10:return rc();case-11:return rs();
 case-13:return rm();case-14:return rd();case-15:return rz();case-17:return
ru();case-18:return rv();case-19:return rt();}
 if(t>99){j++;return null;}if(t==99)return new Dict(r(),r());j++;if(t==98)return
new Flip((Dict)r());n=ri();switch(t){
 case 0:object[]L=new object[n];for(;i<n;i++)L[i]=r();return L; case
1:bool[]B=new bool[n];for(;i<n;i++)B[i]=rb();return B;
 case 4:byte[]G=new byte[n];for(;i<n;i++)G[i]=b[j++];return G; case
5:short[]H=new short[n];for(;i<n;i++)H[i]=rh();return H;
 case 6:int[]I=new int[n];for(;i<n;i++)I[i]=ri();return I; case
7:long[]J=new long[n];for(;i<n;i++)J[i]=rj();return J;
 case 8:float[]E=new float[n];for(;i<n;i++)E[i]=re();return E; case
9:double[]F=new double[n];for(;i<n;i++)F[i]=rf();return F;
 case 10:char[]C=new char[n];for(;i<n;i++)C[i]=rc();return C; case
11:String[]S=new String[n];for(;i<n;i++)S[i]=rs();return S;
 case 13:Month[]M=new Month[n];for(;i<n;i++)M[i]=rm();return M; case
14:DateTime[]D=new DateTime[n];for(;i<n;i++)D[i]=rd();return D;
 case 17:Minute[]U=new Minute[n];for(;i<n;i++)U[i]=ru();return U;case
15:DateTime[]Z=new DateTime[n];for(;i<n;i++)Z[i]=rz();return Z;
 case 18:Second[]V=new Second[n];for(;i<n;i++)V[i]=rv();return V;case
19:TimeSpan[]T=new TimeSpan[n];for(;i<n;i++)T[i]=rt();return T;}return null;}
void w(int i,object x){int n=nx(x)+8;B=new
byte[n];B[0]=1;B[1]=(byte)i;J=4;w(n);w(x);s.Write(B,0,n);}
public object k(){s.Read(b=new byte[8],0,8);a=b[0]==1;j=4;int i=0,m=ri()-8;b=new
byte[m];
 for(;i<m;i+=j)j=s.Read(b,i,m-i);if(b[0]==128){j=1;throw new
Exception(rs());}j=0;return r();}
public object k(object x){w(1,x);return k();}
public object k(string s){return k(cs(s));}char[]cs(string s){return
s.ToCharArray();}
public object k(string s,object x){object[]a={cs(s),x};return k(a);}
public object k(string s,object x,object y){object[]a={cs(s),x,y};return k(a);}
public object k(string s,object x,object y,object
z){object[]a={cs(s),x,y,z};return k(a);}

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 118

public void ks(String s){w(0,cs(s));}
public void ks(String s,Object x){Object[]a={cs(s),x};w(0,a);}
public void ks(String s,Object x,Object y){Object[]a={cs(s),x,y};w(0,a);}
}

Kdb+/C# Sample Interface

The process to display a q table in a C# windows forms application is as follows.

1. Open a connection to a Q database
2. Query the q database
3. Populate a DataGridView object with the result of the query.

All database interaction is done through the standard c.cs supplied by kx.
The main functionality used by this simple demo is as follows. (extracts from the code below)

qConn = new c(host, port);

The constructor for c allows us to connect to the database specified by host and port. In this case we already
have a q process running on the same machine as the java process, on port 5001.

object o = qConn.k(sSql);

The function c.k(String) is used to query the database. It returns an object. This can be any of the q types (as
specified in c.w and c.t function). Usually the returned object should be checked for expected type.

c.Flip d = c.td(o);

The above function attempts to convert the Object into a c.Flip type. The Flip type is the one that most
resembles a table. Flip.x is the column names and Flip.y is the Data. This function will only work with
dictionaries and flips

int cols = c.n(d.x);
int rows = c.n(d.y[0]);

The above counts the columns and rows from the data.

for(int i = 0; i < cols; i ++)
 dataGridView1.Columns.Add(d.x[i], d.x[i]);

The above code adds the appropriate columns to the table.

dataGridView1.Rows.Add(rows);

 The above code adds the correct amount of rows.

c.at attempts to properly extract the data from the Array, whilst checking types and indices.

Simply start a Windows Application project in VS.NET and drop a DataGridView and a Button onto the form.
Then cut and paste this code over the Sample Code.

for (int r = 0; r < rows; r++)
{
 for (int cc = 0; cc < cols; cc++)
 dataGridView1.Rows[r].Cells[cc].Value = c.at(d.y[cc], r);
}

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 119

using System;
using System.Windows.Forms;

namespace qSimple
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 qConn = new c(host, port);
 populateModel();
 }

 string host = "localhost";
 int port = 5001;
 string sSql = "100#select from trade";
 c qConn = null;

 private void populateModel()
 {
 // Do Query
 object o = qConn.k(sSql);
 c.Flip d = c.td(o);

 int cols = c.n(d.x);
 int rows = c.n(d.y[0]);

 //add the column names
 for(int i = 0; i < cols; i ++)
 dataGridView1.Columns.Add(d.x[i], d.x[i]);

 //add the correct number of rows
 dataGridView1.Rows.Add(rows);

//populate the values

 for (int r = 0; r < rows; r++)
 {
 for (int cc = 0; cc < cols; cc++)
 dataGridView1.Rows[r].Cells[cc].Value = c.at(d.y[cc], r);
 }

 } //end of populateModel()

 private void button1_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 private void Form1_Resize(object sender, EventArgs e)
 {
 dataGridView1.Width = this.Width - 11;
 dataGridView1.Height = this.Height - 116;
 }

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 120

 }
}

Kdb+/Java API

This code illustrates the kdb+/Java API.

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 121

// 2005.02.08 tzo

import java.net.*;import java.io.*;import java.sql.*;import java.text.*;import java.lang.reflect.Array;

public class c{public static void main(String[]args){try{

//c c=new c(new ServerSocket(5010));while(true)c.w(2,c.k());

//c c=new c("localhost",5010);Object[]x={"GE",new Double(2.5),new Integer(23)};c.k(".u.upd","trade",x);

 c c=new c("localhost",5001);Object[]x={new Time(t()),"xx",new Double(93.5),new Integer(300)};

 c.ks("insert","trade",x);

 Flip t=td(c.k("select sum size by sym from trade"));

 O(n(t.x));O(n(t.y[0]));O(at(t.y[0],0)); //cols rows data

 c.close();}catch(Exception e){e.printStackTrace();}}

DataInputStream i;OutputStream o;byte[]b,B;int j,J;boolean a;void io(Socket s)throws IOException{i=new
DataInputStream(s.getInputStream());o=s.getOutputStream();}

public void close(){if(i!=null)try{i.close();o.close();}catch(IOException e){}finally{i=null;o=null;}}

public c(Socket s)throws IOException{io(s);i.read(b=new byte[99]);o.write(b,0,1);}

public c(ServerSocket s)throws IOException{this(s.accept());}

public c(String h,int p,String u)throws KException,IOException{io(new Socket(h,p));B=new
byte[1+ns(u)];J=0;w(u);o.write(B);if(1!=i.read(B,0,1))throw new KException("access");}

public c(String h,int p)throws KException,IOException{this(h,p,System.getProperty("user.name"));}

public static class Dict{public Object x;public Object y;public Dict(Object X,Object Y){x=X;y=Y;}}

public static class Flip{public String[]x;public Object[]y;Flip(Dict X){x=(String[])X.x;y=(Object[])X.y;}}

public static class Month{public int i;Month(int x){i=x;}public String toString(){int m=i+24000,y=m/12;return
i2(y/100)+i2(y%100)+"-"+i2(1+m%12);}}

public static class Minute{public int i;Minute(int x){i=x;}public String toString(){return i2(i/60)+":"+i2(i%60);}}

public static class Second{public int i;Second(int x){i=x;}public String toString(){return new
Minute(i/60).toString()+':'+i2(i%60);}}

static String i2(int i){return new DecimalFormat("00").format(i);}

public static Flip td(Object X){if(t(X)==98)return(Flip)X;Dict d=(Dict)X;Flip a=(Flip)d.x,b=(Flip)d.y;int
m=n(a.x),n=n(b.x);

 String[]x=new String[m+n];System.arraycopy(a.x,0,x,0,m);System.arraycopy(b.x,0,x,m,n);

 Object[]y=new Object[m+n];System.arraycopy(a.y,0,y,0,m);System.arraycopy(b.y,0,y,m,n);return new
Flip(new Dict(x,y));}

static java.util.TimeZone tz=java.util.TimeZone.getDefault();static int tzo(long x){return tz.getOffset(x);}

static long lg(long x){return x+tzo(x);}static long gl(long x){long t=x-tzo(x);return t+x-lg(t);}

//object.getClass().isArray() t(int[]) is .5 isarray is .1 lookup .05

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 122

static int t(Object x){return x instanceof Boolean?-1:x instanceof Byte?-4:x instanceof Short?-5:x instanceof
Integer?-6:x instanceof Long?-7:

 x instanceof Float?-8:x instanceof Double?-9:x instanceof Character?-10:x instanceof String?-11:x
instanceof Month?-13:

 x instanceof Date?-14:x instanceof Timestamp?-15:x instanceof Minute?-17:x instanceof Second?-18:x
instanceof Time?-19:

 x instanceof boolean[]?1:x instanceof byte[]?4:x instanceof short[]?5:x instanceof int[]?6:x instanceof
long[]?7:

 x instanceof float[]?8:x instanceof double[]?9:x instanceof char[]?10:x instanceof String[]?11:x instanceof
Month[]?13:

 x instanceof Date[]?14:x instanceof Timestamp[]?15:x instanceof Minute[]?17:x instanceof Second[]?18:x
instanceof Time[]?19:

 x instanceof Flip?98:x instanceof Dict?99:0;}

static int ni=Integer.MIN_VALUE;static long nj=Long.MIN_VALUE;static double nf=Double.NaN;

static int[]nt={0,1,0,0,1,2,4,8,4,8,1,0,0,4,4,8,0,4,4,4};static int ns(String s){return s.length();}

static Object[]NULL={null,null,null,null,null,new Short(Short.MIN_VALUE),new Integer(ni),new Long(nj),new
Float(nf),new Double(nf),

 new Character(' '),"",null,new Month(ni),new Date(nj),new Timestamp(nj),null,new Minute(ni),new
Second(ni),new Time(nj)};

public static boolean qn(Object x){int t=-t(x);return t>4&&x.equals(NULL[t]);}

public static Object at(Object x,int i){return qn(x=Array.get(x,i))?null:x;}

public static void set(Object x,int i,Object y){Array.set(x,i,null==y?NULL[t(x)]:y);}

static int n(Object x){return x instanceof Dict?n(((Dict)x).x):x instanceof
Flip?n(((Flip)x).y[0]):Array.getLength(x);}

static int nx(Object x){int i=0,n,t=t(x),j;if(t==99)return 1+nx(((Dict)x).x)+nx(((Dict)x).y);if(t==98)return
3+nx(((Flip)x).x)+nx(((Flip)x).y);

 if(t<0)return t==-11?2+ns((String)x):1+nt[-
t];j=6;n=n(x);if(t==0||t==11)for(;i<n;++i)j+=t==0?nx(((Object[])x)[i]):1+ns(((String[])x)[i]);else j+=n*nt[t];return j;}

void w(byte x){B[J++]=x;}void w(boolean x){w((byte)(x?1:0));}void w(short h){w((byte)(h>>8));w((byte)h);}

void w(int i){w((short)(i>>16));w((short)i);}void w(long j){w((int)(j>>32));w((int)j);}

void w(float e){w(Float.floatToIntBits(e));}void w(double f){w(Double.doubleToLongBits(f));}

void c 0,n=ns(s);for(;i<n;)w(s.charAt(i++));B[J++]=0;} w(har c){w((byte)c);}void w(String s){int i=

void w(Date d){long l=d.getTime();w(nj==l?ni:(int)(lg(l)/86400000-10957));}

void w(Timestamp z){long l=z.getTime();w(nj==l?nf:lg(l)/8.64e7-10957);}

void w(Time t){long l=t.getTime();w(nj==l?ni:(int)(lg(l)%86400000));}

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 123

void w(Month m){w(m.i);}void w(Minute u){w(u.i);}void w(Second v){w(v.i);}

void w(Object x){int i=0,n,t=t(x);w((byte)t);if(t<0)switch(t){case-1:w(((Boolean)x).booleanValue());return;

 case-4:w(((Byte)x).byteValue());return; case-5:w(((Short)x).shortValue());return;

 case-6:w(((Integer)x).intValue());return; case-7:w(((Long)x).longValue());return;

 case-8:w(((Float)x).floatValue());return; case-9:w(((Double)x).doubleValue());return;

 case-10:w(((Character)x).charValue());return; case-11:w((String)x);return;

 case-13:w((Month)x);return;case-14:w((Date)x);return;case-15:w((Timestamp)x);return;

 case-17:w((Minute)x);return;case-18:w((Second)x);return;case-19:w((Time)x);return;}

 if(t==99){Dict r=(Dict)x;w(r.x);w(r.y);return;}B[J++]=0;if(t==98){Flip r=(Flip)x;B[J++]=99;w(r.x);w(r.y);return;}

 w(n=n(x));for(;i<n;++i)if(t==0)w(((Object[])x)[i]);else if(t==1)w(((boolean[])x)[i]);else if(t==4)w(((byte[])x)[i]);

 else if(t==5)w(((short[])x)[i]);else if(t==6)w(((int[])x)[i]);else if(t==7)w(((long[])x)[i]);

 else if(t==8)w(((float[])x)[i]);else if(t==9)w(((double[])x)[i]);else if(t==10)w(((char[])x)[i]);

 else if(t==11)w(((String[])x)[i]);else if(t==13)w(((Month[])x)[i]);else if(t==14)w(((Date[])x)[i]);

 else if(t==15)w(((Timestamp[])x)[i]);else if(t==17)w(((Minute[])x)[i]);else if(t==18)w(((Second[])x)[i]);

 else w(((Time[])x)[i]);}

boolean rb(){return 1==b[j++];}short rh(){int x=b[j++],y=b[j++];return(short)(a?x&0xff|y<<8:x<<8|y&0xff);}

int ri(){int x=rh(),y=rh();return a?x&0xffff|y<<16:x<<16|y&0xffff;}long rj(){int x=ri(),y=ri();return
a?x&0xffffffffL|(long)y<<32:(long)x<<32|y&0xffffffffL;}

float re(){return Float.intBitsToFloat(ri());}double rf(){return Double.longBitsToDouble(rj());}char
rc(){return(char)(b[j++]&0xff);}

String rs(){int i=j;for(;b[j++]!=0;);return new String(b,i,j-1-i);}

Time rt(){int i=ri();return new Time(i==ni?nj:gl(i));}Date rd(){int i=ri();return new
Date(i==ni?nj:gl(86400000L*(i+10957)));}

Timestamp rz(){double f=rf();return new Timestamp(Double.isNaN(f)?nj:gl((long)(.5+8.64e7*(f+10957))));}

Minute ru(){return new Minute(ri());}Month rm(){return new Month(ri());}Second rv(){return new Second(ri());}

Object r(){int i=0,n,t=b[j++];if(t<0)switch(t){case-1:return new Boolean(rb());case-4:return new
Byte(b[j++]);case-5:return new Short(rh());

 case-6:return new Integer(ri());case-7:return new Long(rj());case-8:return new Float(re());

 case-9:return new Double(rf());case-10:return new Character(rc());case-11:return rs();

 case-13:return rm();case-14:return rd();case-15:return rz();case-17:return ru();case-18:return rv();case-
19:return rt();}

 if(t>99){j++;return null;}if(t==99)return new Dict(r(),r());j++;if(t==98)return new Flip((Dict)r());n=ri();switch(t){

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 124

 case 0:Object[]L=new Object[n];for(;i<n;i++)L[i]=r();return L; case 1:boolean[]B=new
boolean[n];for(;i<n;i++)B[i]=rb();return B;

 case 4:byte[]G=new byte[n];for(;i<n;i++)G[i]=b[j++];return G; case 5:short[]H=new
short[n];for(;i<n;i++)H[i]=rh();return H;

 case 6:int[]I=new int[n];for(;i<n;i++)I[i]=ri();return I; case 7:long[]J=new long[n];for(;i<n;i++)J[i]=rj();return
J;

 case 8:float[]E=new float[n];for(;i<n;i++)E[i]=re();return E; case 9:double[]F=new
double[n];for(;i<n;i++)F[i]=rf();return F;

 case 10:char[]C=new char[n];for(;i<n;i++)C[i]=rc();return C; case 11:String[]S=new
String[n];for(;i<n;i++)S[i]=rs();return S;

 case 13:Month[]M=new Month[n];for(;i<n;i++)M[i]=rm();return M; case 14:Date[]D=new
Date[n];for(;i<n;i++)D[i]=rd();return D;

 case 17:Minute[]U=new Minute[n];for(;i<n;i++)U[i]=ru();return U;case 15:Timestamp[]Z=new
Timestamp[n];for(;i<n;i++)Z[i]=rz();return Z;

 case 18:Second[]V=new Second[n];for(;i<n;i++)V[i]=rv();return V;case 19:Time[]T=new
Time[n];for(;i<n;i++)T[i]=rt();return T;}return null;}

void w(int i,Object x)throws IOException{int n=nx(x)+8;B=new
byte[n];B[0]=0;B[1]=(byte)i;J=4;w(n);w(x);o.write(B);}

public void ks(String s)throws IOException{w(0,cs(s));} char[]cs(String s){return s.toCharArray();}

public void ks(String s,Object x)throws IOException{Object[]a={cs(s),x};w(0,a);}

public void ks(String s,Object x,Object y)throws IOException{Object[]a={cs(s),x,y};w(0,a);}

public void ks(String s,Object x,Object y,Object z)throws IOException{Object[]a={cs(s),x,y,z};w(0,a);}

public static class KException extends Exception{KException(String s){super(s);}}

public synchronized Object k()throws KException,IOException{i.readFully(b=new byte[8]);a=b[0]==1;j=4;

 i.readFully(b=new byte[ri()-8]);if(b[0]==-128){j=1;throw new KException(rs());}j=0;return r();}

public Object k(Object x)throws KException,IOException{w(1,x);return k();}

public Object k(String s)throws KException,IOException{return k(cs(s));}

public Object k(String s,Object x)throws KException,IOException{Object[]a={cs(s),x};return k(a);}

public Object k(String s,Object x,Object y)throws KException,IOException{Object[]a={cs(s),x,y};return k(a);}

public Object k(String s,Object x,Object y,Object z)throws
KException,IOException{Object[]a={cs(s),x,y,z};return k(a);}

static void O(Object x){System.out.println(x);}static void O(int x){System.out.println(x);}static void O(boolean
x){System.out.println(x);}

static void O(long x){System.out.println(x);}static void O(double x){System.out.println(x);}

static long t(){return System.currentTimeMillis();}static long t;static void tm(){long u=t;t=t();if(u>0)O(t-u);}

}

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 125

/*

String rs(){int k=j;for(;b[k]!=0;)++k;char[]s=new char[k-j];for(int i=0;j<k;)s[i++]=(char)(0xFF&b[j++]);++j;return
new String(s);}

// java(unlike .net) messed up datetime, e.g. new Time(0);

static String sd(String s,java.util.Date x){SimpleDateFormat f=new
SimpleDateFormat(s);f.setTimeZone(java.util.TimeZone.getTimeZone("GMT"));return f.format(x);}

static String sd(Date x){return sd("yyyy.MM.dd",x);}static String sd(Time x){return sd("HH:mm:ss.SSS",x);}

static String sd(Timestamp x){return sd("yyyy.MM.dd HH:mm:ss.SSS",x);}

public static class KDate extends Date{public KDate(long date){super(date);}public String toString(){return
sd(this);}}

public static class KTime extends Time{public KTime(long time){super(time);}public String toString(){return
sd(this);}}

public static class KTimestamp extends Timestamp{public KTimestamp(long time){super(time);}public String
toString(){return sd(this);}}

Time rt(){int i=ri();return new KTime(i==ni?nj:i);}Date rd(){int i=ri();return new
KDate(i==ni?nj:86400000L*(i+10957));}

Timestamp rz(){double f=rf();return new KTimestamp(Double.isNaN(f)?nj:(long)(.5+8.64e7*(f+10957)));}

static Class[]c={int[].class,boolean[].class,null,null,byte[].class,short[].class,int[].class};

static int foo(Class x){if(x.isArray())for(int i=0;i<9;++i)if(c[i]==x)return i;return 0;}

boolean b;int[]q=new int[2];tm();for(int i=0;i<1000000;++i)foo(q.getClass());tm();

5000 roundtrip

Object: 4+16Integer/Double|24Date/String + strings

c c=new c((new ServerSocket(2000)).accept());for(;;)c.w(2,c.k());

*/

Kdb+/Java interface example

The process to display a q table in a Swing Java screen is as follows.

4. Open A Connection to a Q database
5. Query the q Database
6. Create a Swing Table Model with the data returned from the q query inside it
7. Apply the model to a table and place the table in a Swing GUI.

All Database interaction is done through the standard c.java supplied by kx.
The main functionality used by this simple demo is as follows. (extracts from the code below)

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 126

qConn = new c(host,port);

The constructor for c allows us to connect to the database specified by host and port. In this case we already
have a q process running on the same machine as the java process, on port 5001.

Object o = qConn.k(sSql);
The function c.k(String) is used to query the database. It returns an object. This can be any of the q types (as
specified in c.w and c.t function). Usually the returned object should be checked for expected type.

c.Flip d = c.td(o);
The above function attempts to convert the Object into a c.Flip type. The Flip type is the one that most
resembles a table. Flip.x is the column names and Flip.y is the Data. This function will only work with
dictionaries and flips

int cols = c.n(d.x);
int rows = c.n(d.y[0]);
The above counts the columns and rows from the data.

oo[r][cc] = c.at(d.y[cc], r);
c.at attepts to properly extract the data from the Array, whilst checking types and indices.

Screen Shot

Sample Code

import java.awt.*;
import java.awt.event.ActionEvent;
import java.io.IOException;

import javax.swing.*;
import javax.swing.table.DefaultTableModel;
import c;

public class qSimple extends JFrame {
 String host = "localhost";
 int port = 5001;
 String sSql = "100#select from trade";
 c qConn = null;
 DefaultTableModel mdl = new DefaultTableModel();

 public qSimple() throws c.KException, IOException{
 // 1 - Open Connection to the Database
 qConn = new c(host,port);
 // 2 - Query Database & 3 - populateTableModel
 populateModel();
 // 4 - Place Model in Table and On Screen
 initScreen();
 }

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 127

 private void populateModel() throws c.KException, IOException {
 // Do Query
 Object o = qConn.k(sSql);
 c.Flip d = c.td(o);

 int cols = c.n(d.x);
 int rows = c.n(d.y[0]);

 Object[][] oo = new Object[rows][cols];
 for (int r = 0; r < rows; r++) {
 for (int cc = 0; cc < cols; cc++)
 oo[r][cc] = c.at(d.y[cc], r);
 }

 // Populate Table Model
 mdl.setDataVector(oo, d.x);
 }

private void initScreen(){
 JButton btnOK = new JButton();
 JPanel pnlSouth = new JPanel();
 this.setDefaultCloseOperation(DISPOSE_ON_CLOSE);
 this.setTitle("Simple q Query Viewer");
 this.getContentPane().setLayout(new BorderLayout());
 btnOK.setText("OK");
 btnOK.addActionListener(new AbstractAction(){
 public void actionPerformed(ActionEvent e) {
 btnOK_actionPerformed(e);
 }
 });
 JScrollPane scrlMain = new JScrollPane();
 this.getContentPane().add(pnlSouth, BorderLayout.SOUTH);
 pnlSouth.add(btnOK, null);
 scrlMain = new JScrollPane(new JTable(mdl));
 this.getContentPane().add(scrlMain, BorderLayout.CENTER);
 }

 void btnOK_actionPerformed(ActionEvent e) {
 this.dispose();
 }

 public static void main(String args[]){
 try{
 JFrame frm = new qSimple();
 frm.pack();
 frm.setVisible(true);
 }catch(Exception e){

 }
 }
}

kdb+/C++ API

This code extract illustrates the kdb+/C++ API.

#define nh ((I)0xFFFF8000)
#define wh ((I)0x7FFF)
#define ni ((I)0x80000000)
#define wi ((I)0x7FFFFFFF)
#ifdef WIN32

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 128

#define nj ((J)0x8000000000000000)
#define wj ((J)0x7FFFFFFFFFFFFFFF)
#define nf (sqrt(-1.0))
#define wf (-log(0.0))
#define isnan _isnan
#define finite _finite
typedef __int64 J;
#else //gcc3.0 or later for anonymous unions and anonymous structs
#define nj 0x8000000000000000LL
#define wj 0x7FFFFFFFFFFFFFFFLL
#define nf (0/0.0)
#define wf (1/0.0)
#define closesocket(x) close(x)
typedef long long J;
#endif //KBGHIJEFCSMDZUVT* basetypes: GHIJEFS (G:BC)(I:MDUVT)(F:Z)
typedef int I;typedef unsigned char*A,G,*S,C;typedef short H;typedef float
E;typedef double F;typedef void V;
typedef struct k0{I r;H t,u;union{G g;H h;I i;J j;E e;F f;S s;struct
k0*k;struct{I n;G G0[1];};};}*K;

#ifdef __cplusplus
extern"C"{
#endif
extern I khpu(char*,I,char*),khp(char*,I),ymd(I,I,I);extern F sqrt(F);extern V
r0(K),sd0(I);extern S ss(S);
extern K
ka(I),kb(I),kg(I),kh(I),ki(I),kj(J),ke(F),kf(F),kc(I),ks(S),kd(I),kz(F),kt(I),sd
1(I,K(*)()),

ktn(I,I),knk(I,...),kp(S),kpn(S,I),ja(K*,A),js(K*,S),jk(K*,K),k(I,char*,...),xT(
K),xD(K,K),ktd(K),r1(K),krr(S);
#ifdef __cplusplus
}
#endif

// vector accessors, e.g. kF(x)[i] for float&datetime
#define kG(x) ((x)->G0)
#define kH(x) ((H*)kG(x))
#define kI(x) ((I*)kG(x))
#define kJ(x) ((J*)kG(x))
#define kE(x) ((E*)kG(x))
#define kF(x) ((F*)kG(x))
#define kS(x) ((S*)kG(x))
#define kK(x) ((K*)kG(x))

// vector types
#define KB 1
#define KG 4
#define KH 5
#define KI 6
#define KJ 7
#define KE 8
#define KF 9
#define KC 10
#define KS 11
#define KM 13
#define KD 14
#define KZ 15
#define KU 17
#define KV 18
#define KT 19

// table,dict

 First Derivatives plc KDB+ Reference Manual

DRAFT CONFIDENTIAL 129

#define XT 98 //K
#define XD 99 //KK

// make c readable
#define O printf
#define R return
#define Z static
#define P(x,y) {if(x)R(y);}
#define U(x) P(!(x),0)
#define SW switch
#define CS(n,x) case n:x;break;
#define CD default
#define DO(n,x) {I i=0,_i=(n);for(;i<_i;++i){x;}}

// remove more clutter
#define K1(f) K f(K x)
#define K2(f) K f(K x,K y)
#define TX(T,x) (*(T*)((G*)(x)+8))
#define xr x->r
#define xt x->t
#define xu x->u
#define xn x->n
#define xk TX(K,x)
#define xx xK[0]
#define xy xK[1]
#define xg TX(G,x)
#define xh TX(H,x)
#define xi TX(I,x)
#define xj TX(J,x)
#define xe TX(E,x)
#define xf TX(F,x)
#define xs TX(S,x)
#define xB ((G*)xG)
#define xG x->G0
#define xH ((H*)xG)
#define xI ((I*)xG)
#define xJ ((J*)xG)
#define xE ((E*)xG)
#define xF ((F*)xG)
#define xC ((C*)xG)
#define xS ((S*)xG)
#define xK ((K*)xG)

#define ZA Z A
#define ZV Z V
#define ZK Z K
#define ZH Z H
#define ZI Z I
#define ZJ Z J
#define ZE Z E
#define ZF Z F
#define ZC Z C
#define ZS Z S

 First Derivatives plc KDB+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 130

Tick, Taq and Tow

Kdb+/tick Architecture
The diagram below gives a generaliz a typical Kdb+/tick architecture, followed by
a brief explanation of the various comp and the through-flow of data.

• The Ticker-plant, Real-Time Database and Historical Database are operational on a 24/7
basis.

• The data from the data feed is parsed by the feed handler.

ed outline of
onents

Data Feed

Feed Handler

Ticker-plant

Real Time
Database

TP Client –
Real Time
Subscriber

Historical
Database

TP Client –
Chained Ticker-

plant 1

 Chained
Ticker-plant 2

Log File

…Etc…
KDB+ Process

Saves to log
as soon as
data arrives

…Etc…

Publishes to all
subscribers on

a timer loop

Saves to Historical
Database at end-of-

day

Publishes to all
subscribers on

a timer loop

Data pushed

Query, result returned

KEY

…Etc…

KDB+ Process

 First Derivatives plc KDB+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 131

• The feed handler pushes the parsed data to the ticker-plant.
• Immediately upon receiving the parsed data, the ticker-plant writes the new data to the

log file.
• The ticker-plant publishes the received data to its clients. This is either done

immediate or on a timer loop, depending on configuration.
• The ticker-plant captures intra-day data but does not store it.
• The real-time database is a specialised ticker-plant subscriber which holds the intra-day

data and responds to queries.
• In general, clients who need immediate updates of data (for example custom analytics)

will subscribe directly to the ticker-plant (becoming a real-time subscriber). Clients
who don’t require immediate updates, but need a view the intra-day data will query the
real-time database.

• A real-time subscriber can also be a chained ticker-plant. In this case it receives
updates from a ticker-plant (which could itself be a chained ticker-plant) and publishes
to its subscribers. This structure can be used to push data to clients as soon as it is
available.

• At day end, the ticker-plant creates a new log file and sends an end-of-day message to
each client.

• Upon receiving the end-of-day message, the real-time database saves all it’s data to
disk, sends a reload message to the historic database and purges its tables.

• The historic database reads the new data from the disk.

 First Derivatives plc KDB+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 132

Components of kdb+/tick

Feed Handler
The feed handler is a process which connects to a data feed, parses incoming messages and
pushes them into the ticker-plant. A ticker-plant can handle input from multiple feed handlers.

Feed handlers can be written in any language with an interface to kdb+. Kx Systems provide
standard feed handlers for both Reuters and Bloomberg data feeds. However, feed handlers
have been developed for many other data feeds.

The most commonly used feed handler is the Reuters Triarch feed handler. For more
information on this see sections Feed Handler Configuration and Reuters Feedhandler
Customisation.

Ticker-plant
The core component of Kdb+/tick is the ticker-plant, a specialized Kdb+ process that operates
in a publish & subscribe configuration. The ticker-plant acts as a gateway, between a data feed
and a number of subscribers.

As the ticker-plant logs all incoming updates to disk, any data which reaches to ticker-plant is
recoverable following intra-day failure.

Subscriptions to the ticker-plant are on a per table and symbol basis. The ticker-plant passes
on updates of interest to each client.

The update messages have a specific format. They are of the form

(`upd;`table_name;table_data)

Each ticker-plant client must define a upd function which takes two parameters (table name
and table data). The upd function defines what the client does with each update.

At day end (defined as midnight of the time zone in which the ticker-plant process runs) the
ticker-plant sends out a message to all subscribers. This has the form

(`.u.end; current_date)

Subscribers can use this function call to invoke special purpose end-of-day functionality. A
good example of this is the RTD, which uses .u.end as the signal to save to disk, reload the
hdb, and flush its tables.

 First Derivatives plc KDB+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 133

Real-Time Subscribers

Real-time subscribers are processes that subscribe to the ticker-plant and receive updates on
the requested data. Typical real-time subscribers are kdb+ processes that process the data
received from the ticker-plant and/or store them in local tables. The operation of a real-time
subscriber can be easily customised.

kdb+/tick includes a set of default real-time databases, which are in-memory kdb+ databases
that can be queried in real-time, taking full advantage of the powerful analytical capabilities of
the q language and the speed of kdb+. Each real-time subscriber to the ticker-plant can
support hundreds of clients and still deliver query results in milliseconds. Clients can connect
to a real-time subscriber using one of the many interfaces available on Kdb+, including
C/C++, C#, Java and the embedded HTTP server, which can format query results in HTML,
XML, TXT, and CSV.

Multiple real-time processes subscribing to the ticker-plant may be used, for example, to off-
load queries that employ complex, special-purpose analytics.

Real-time subscribers are not necessarily kdb+ databases. Using one of the interfaces above
or TCP/IP socket programming, custom subscribers can be created using virtually any
programming language, running on virtually any platform.

Real-Time Database

The real-time database (RTD) is a specialised real-time subscriber. It contains all the data
received for the day so far.

Ticker-plant

 Chained
Ticker-plant

Real-time
Subscriber

Client

Client Client

Publish
Updates

Publish
Updates

Publish
Updates Publish

Updates

Result
 Request

Result

Request

Subscribe
once

Subscribe
once

Subscribe
once

Subscribe
once

 First Derivatives plc KDB+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 134

When the RTD starts up it makes a call to the ticker-plant. In this call it makes a synchronous
subscription for all data from all tables. The synchronous subscription returns the schema of
all tables defined in the ticker-plant, which the RTD initializes itself with. The RTD also
retrieves from the ticker-plant the location of the log and the number of messages observed so
far.

It replays the log of messages and receives all subsequent updates. After this operation is
complete the RTD has and maintains a complete history of all data observed on that day. As
the RTD subscribes and retrieves the log count in the same call it will not miss or duplicate any
updates.

When the RTD receives the end-of-day message (.u.end) it saves all data to disk and flushes
its tables. It then sends a reload message to the historic database.

Chained Ticker-plants
Real-time subscribers can also be chained ticker-plants. This means that they have
subscribers to which they publish updates.

Chained ticker-plants can be very simple. A common example is one which reduces
subscription load to the main ticker-plant – one which subscribes to all data from the main
ticker-plant and accepts subscription requests to the client. This reduces load on the main
ticker-plant as it doesn’t have to deal with new clients subscribing and/or dropping
subscriptions.

A more advanced use of chained ticker-plants would be as analytics engines – receiving the
real-time (raw) data and performing some calculations to produce derived data, which it then
publishes on to clients.

Historic Database
At day end, the RTD saves (splays) its data to disk. This data on disk forms the historic
database (HDB). The HDB is a kdb+ process which reads this data from the disk in response
to queries.

An HDB is a partitioned database composed of a collection of independent segments, any
subset of which comprise a valid HDB. The database segments can all be stored within one
directory on a disk, or distributed over multiple disks.

The HDB is partitioned by date, and each database segment is a directory on disk whose name
is the date corresponding to the unique date on all data in that segment. When the RTD saves
to disk it creates a new partition for the current day’s data, then sends a reload message to
the HDB process which reads the new partition from the disk.

Customising kdb+/tick

All of the above is standard, out-of-the box operation of kdb+/tick. However, each process
described is a kdb+ process, so can be customized in whichever way is required.

 First Derivatives plc KDB+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 135

Implementing kdb+/tick

The table below outlines the main steps in a standard kdb+/tick implementation with cross
references to other parts of this manual. It is not exhaustive but should give an indication of
the main areas to consider.

Task Details and Manual References
Install kdb+ and kdb+/tick Installation
Configure the ticker-plant Define the database schema and define and activate the

connection to the (various) datafeed(s). Kdb+/tick comes
with a number of predefined configuration scripts including
two basic equity ticker plants (TAQ and SYM), the Level 2
ticker-plant and a fx ticker-plant. (Configuration) The
default handler of kdb+/tick is Reuters ssl but custom feeds
and schema can be built. (Feed Handler Configuration)

Managing the ticker-plant in
production

Personnel tasked with managing the ticker-plants should get
some understanding of how the database is partitioned and
some of the conventions used (The Ticker-plant). Further
consideration will need to be given to issues of scheduling
startups and performance optimization (Performance).

Real-time database
subscribers

Kdb+/tick can be configured to update a number of real-time
subscribers. (Real-time subscribers)

Historical Database Issues Historical Database
In order to make queries to the HDB as efficient as possible,
they should normally be constructed ‘by date’ first to take
advantage of the construction of the database.

Making use of the ticker-plant The installation of kdb+/tick is normally designed to take
advantage of the power of q. There may be some
requirement to use analytics or interfaces in other languages
such as C++ or .net.

Multiple ticker-plants Using multiple ticker-plants
Data captured using multiple tickers should be divided up in
such a fashion so as to keep queries as simple as possible;
for instance in the same time-zone or currency.

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 136

Installation

To install kdb+/tick you need to have a valid licensing agreement with Kx Systems. The
installation and license files for Kdb+/tick must be obtained directly from Kx Systems. The
license file ‘k4.lic’ must be copied into the KDB+ installation directory. The Kdb+/tick
distribution file is called ‘tick.zip’, and contains the ticker-plant core and the configuration
scripts for a variety of ticker-plant, real-time, and historical databases.

To install, simply extract the contents of the zip archive under the q/ directory. Prior to
installing kdb+/tick, kdb+ must also be installed on the system. On windows the default
installation directory is “C:\q” and under Solaris or Linux is “$HOME/q”. This location can be
controlled via the “QHOME” environment variable. For the remainder of this document the q
home directory will be donated as “QHOME”, and the path separator will be donated as “\”
(back-slash).

The files should be unzipped and placed in the following directories:

Directory/file Purpose
QHOME\tick This contains all the q feedhandler and client code. The code within

this folder may need to be modified for a number of purposes e.g.,
• taq.txt/sym.txt could be modified to capture different Reuters

fields
• the actual schema scripts sym.q/taq.q which defines the

table structure may also need to be changed.
• ssl.q may need to be modified to provide for different

feedhandlers.
• It may also be necessary to add to some of the default

subscribers
QHOME\tick.k This is the module containing all the ticker-plant functionality.

The path from which the commands are executed will be indicated as the working directory.

A Brief Description of the Scripts
The following scripts are included in the kdb+/tick package.

• tick.k

The main ticker-plant script which defines the operation of the ticker-plant. The
operation of the ticker-plant varies depending on the parameters with which the script
is started. The command line parameters dictate whether or not the ticker-plant logs
data, and whether it publishes its subscribers on a timer loop or immediately. See
section The Ticker-plant System for more details.

• r.k

This is the real-time database (RTD) which maintains a complete view of the intra day
data. On subscription the RTD loads the days tick data up to that point from the log on
disk, and then continues to receive updates via TCP/IP. In this way RTD can subscribe
at any time during the day without overloading or delaying the plant.

• u.k

This script contains the definitions for the publisher/subscriber functions. Any process
which loads this script can become a tickerplant itself, making use of the pub/sub
functions.

The following scripts are a subset of those available from the Kx Systems website.

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 137

• ssl.q (Reuters ssl feedhandler)
This script receives the raw data from the feed, parses it and sends it to the ticker-
plant. It connects to the feed by dynamically loading a c library containing functions for
subscribing to Reuters. This can be configured for many different types of feed by
making a few changes to the parsing rules.

• The scripts define the schema for the ticker-plant and just contain the table definitions.

taq: trade and quote data
sym: simplified trade and quote data
fx: Forex data
lvl2: level2 data

• c.q

This script contains numerous easily configured sample ticker-plant subscribers.

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 138

The Ticker-plant System

Starting the Ticker-plant

A ticker-plant system usually has the ticker-plant, real-time db, historical db, one or more
feeds and several clients. The file test.q included in the tick directory contains a script to start
a ticker-plant system. (Note: This can be used only on Windows. For Solaris and Linux is
should be changed to reflect a proper terminal starting command.)

\start q tick.k sym . -p 5010
\start q tick/r.k 5010 -p 5011
\start q ./sym -p 5012
\start q tick/c.q vwap 5010
\start q tick/ssl.q sym 5010

Explanation

q tick.k sym . -p 5010

This line starts the ticker-plant, using the table schema tick/sym.q. The general form of it is

q tick.k SRC DST [-p 5010] [-t 1000] [-o hours]

SRC specifies the schema to be loaded – a .q file located in the tick directory. sym refers to
tick/sym.q.

DST specifies the location of the log file. The log will have the path DST\symYYYY.MM.DD,
i.e. the schema type with the current date appended, at the location specified by DST. If DST
is not specified the ticker-plant will not log the incoming messages. The “.” in the line
specified in test.q refers to the current directory.

The –p <port> option enables a q-IPC server listening for incoming subscriptions on the
specified TCP/IP port. If no q-IPC port is specified the default port of 5010 is used

The -t <int> option sets the update interval used by the ticker-plant. This value defines the
frequency in seconds of how often the ticker-plant publishes data to its real-time subscribers.
If this is not set the ticker-plant defaults to zero-latency mode where it publishes updates
immediately to subscribers.

The –o <int> is the offset in hours from GMT. This defaults to 0.

q tick/r.k 5010 -p 5011

This line starts the RTD on the port specified by –p. The parameter 5010 specifies the port on
which the ticker-plant is running and tells the RTD which port to connect to receive real-time
updates.

q ./sym -p 5012

This starts the historical db on the port specified by –p. The general form of it is

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 139

q DST/SRC –p 5012

Both DST and SRC should be the same as those specified in the ticker-plant start up line. This
is because the RTD will save the historic data to this location, so the historic db should run
from the data found in this location.

q tick/c.q vwap 5010

This starts up a real time client to the tickerplant using the script c.q. The client in this case is
configured to calculate VWAP.

q tick/ssl.q sym 5010

This starts the feedhandler. The first parameter, sym, is the name of the file which contains
the universe to subscribe to. If this parameter is set to “fx”, “taq” or “lvl2” it will configure the
feedhandler to publish messages which fit the associated schema (see below).

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 140

Configuration
Kdb+/tick comes with a number of pre-defined ticker-plant schemas, including two basic
equity ticker-plants (taq.q and sym.q), the level 2 ticker-plant and an FX ticker-plant. The
default feed handler script of kdb+/tick (ssl.q) is used by all four configurations, and is
configured with a command line parameter.

The Schema File
The schema file loaded by the ticker-plant determines the tables which the ticker-plant is
expecting to receive, and the fields which those tables contain. This is the first parameter to
the ticker-plant on start up, and is the starting point for defining a kdb+/tick database.

Ticker-plant Configuration

TAQ ticker-plant

The TAQ ticker-plant is the most widely used ticker-plant configuration as it is fully compatible
with the other Kx Systems database product, Kdb+/taq, which allows the transfer of TAQ data
from the NYSE-issued TAQ CDs to the TAQ historical database (see Kdb+/taq section for more
details).

The TAQ ticker-plant can be used to subscribe to NYSE, AMEX and OTC symbols using the
Reuters Triarch feed. The Reuters Triarch software must be installed on the system and the
user authorized to access the data feed.

The database schema is as follows:

quote:([]time:`time$();sym:`symbol$();bid:`float$();ask:`float$();bsize:`int$();asize:`int$(
);mode:`char$();ex:`char$())

trade:([]time:`time$();sym:`symbol$();price:`float$();size:`int$();stop:`boolean$();cond:`c
har$();ex:`char$())

SYM ticker-plant

The SYM ticker-plant is a simplified version of the TAQ ticker-plant that stores trades and
quotes for generic markets. The database schema is defined as follows:

quote:([]time:`time$();sym:`symbol$();bid:`float$();ask:`float$();bsize:`int$();asize:`int$(
))

trade:([]time:`time$();sym:`symbol$();price:`float$();size:`int$())

In the SYM ticker-plant symbols are stored exactly as received from the feed (i.e. including the
exchange, if present, thus the missing ex column). The cond and mode columns are also not
included in the schema.

This is the most commonly used configuration for markets which don’t conform to TAQ
specifications.

Level 2 ticker-plant

The Level 2 ticker-plant is designed to handle NASDAQ Level 2 quotes.

quote:([]time:`time$(); sym:`symbol$(); mm:`symbol$(); bid:`float$(); ask:`float$();
bsize:`float$(); asize:`float$())

where the sym column contains the combined stock symbol and the mm column contains the
market maker identifier.

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 141

FX ticker-plant

The FX ticker-plant is used for subscribing to foreign exchange symbols.

The ticker-plant has the following schema :

quote:([]time:`time$();sym:`symbol$();bid:`float$();ask:`float$())

trade:([]time:`time$();sym:`symbol$();price:`float$();buy:`boolean$())

Custom ticker-plants

It is possible to define a customized ticker-plant using the Reuters or custom feed handler. In
order to do so, a configuration script for the ticker-plant must be created, which defines the
database schema and the connection to the data feed. As usual, the name of the configuration
script will be automatically assigned as the name of the database.

Schema

ems or the newer RMDS architecture. All that is required is that a sink distributor be
ailable.

The only configuration issues should be:

• Create or add the appropriate entry to the ipcroute file;

re that the user account under which the ticker-plant will run has the correct
permissions i.e. DACS.

For each of the ticker-plant configurations
corresponding feedhandler. In each case the feedhander should be started with the name of
the configuration as the first command line parameter, e.g.

q tick ssl.

of symbols to which the feedhandler subscribes is contained in the tick directory.
This file must contain one symbol per line. Symbols must include the exchange specification.

This file is only read by the feedhandler when the feedhander starts-up. If changes are made
to the file they will not be picked up until the feedhandler restarts. However, it is possible to
force the feedhandler to subscribe to new symbols during the trading activity by calling the sub
function. From the moment this function is called, the newly subscribed symbols will be
received through the Reuters feed.

The database schema must be defined so that the first two columns of all the tables are the
time and sym columns, i.e. all tables must be of the form:

([]time:`time$(),sym:`symbol$(),…)

Valid tables have this form because the ticker-plant automatically fills in the time column with
the current time when the update data is received, and subscriptions to the ticker-plant are on
a table and symbol basis.

Feed Handler Configuration

Reuters Feed Handler Configuration

The current Reuters feed handler is written with the SSL API and will work with the old Triarch
syst
av

• Ensu

 listed in the previous section there is a

/ q taq 5010 –p 5009

The universe

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 142

TAQ Feedhandler

The file which contains the universe of symbols is called ‘taq.txt’. This will look like

MSFT.O
IBM.N
GOOG.O

The trade and quote tables store only the symbol in the sym column, while the specific
exchange of each trade or quote is stored in the ex column.

sym Feedhandler

The sym configuration is the default configuration for ssl.q. The list of symbols must be
specified in the ‘sym.txt’ file or in the file specified as a start up parameter. These will be
symbols similar to the example given for ‘taq.txt’, e.g.

VOD.L
IBM.N
ALVG.D

Lvl2 feehdandler

The list e ‘lvl2.txt’ file in the tick directory. Symbols must be
lid N ification, e.g.

0#MSFT.O
0#INTC.O

At start-up, the Level 2 feedhandler “chases” the linked list of Reuters Market Maker pages.
The feedhandler uses these pages to find and subscribed to the complete list of market makers
for each symbol.

fx feedandler

The fx feedhandler reads from a file called ‘fx.txt’, e.g.

EUR=
GBP=D2

The fx configuration works by modifying the FIDs which the feedhandle than
modifying the parsing functions themselves, as the lvl2 and taq configu

Customising the Reuters Feed Handler

The sta m the C library to q,
where the required fields a therefore possible to
change the fields captured by either modifying the FIDs which the feedhandler inspects, or by
modifying the relevant q functions. See Reuters Feedhandler Customisation for more details.

Bulk Inserts & Buffering

Bulk inserts can be used to maximize performance. kdb+/tick can handle up to 1 million
ent in bulk.

Inserting record

E

 of symbols must be specified in th
va ASDAQ symbols the exchange spec

r parses, rather
rations do.

ndard Reuters feed handler passes the complete message back fro
re parsed out and inserted into the tables. It is

singleton inserts per second, but many more records per second if the inserts are s
s in bulk can improve performance greatly.

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 143

Inserting Data from Non-kdb+ Processes

Feedhandlers can be written in any language which can interface with kdb+. The following are
simple examples in Java and C.

They both insert into a trade table with schema

([] time:`time$(); sym:`sym$(); price:`float$(); size:`int$())

Java

The example below will insert data into a tickerplant on a timer loop. The data will be the
same each time.

import java.util.*;
import java.sql.*;

public class feed{

 static long t(){return System.currentTimeMillis()%86400000;}
 static void tm(){System.out.println(System.currentTimeMillis()%86400000);}
 int n=10000;
 int timer=100;
 Object[]Sym,sym,Price,price,Size,size,a;

public feed(){init();}

// Creates initial sym,price and size buffers
private void init(){
 Sym=new Object[n];
 Price=new Object[n];
 Size=new Object[n];}

// Copies sym,price and size to an object array for insertion to the tickerplant
private void copy(){
 a = new Object[3];
 a[0]=sym;
 a[1]=price;
 a[2]=size;}

private void tick(){
try{
 c c=new c("localhost",5010); // Connects to the tickerplant or
 // c c=new c("localhost",5010,"username:password"); // ... with username and password.
 long st=t(); // timer
 while(true){ // blocking loop to read from your stream

for(int i=0;i<n;i++){
 Sym[i] =new String("IBM"); //fake data – insert read function here
 Price[i]=new Double(93.5);
 Size[i] =new Integer(1001);

// The next line ensures we process as many messages as possible
 // It checks whether the number of messages received is = to a certain predefined
 // number or whether or not a predefined time period has elapsed

// note that we can also just do this tick by tick and the implementation
// is even easier in this case

 // c.k(".u.upd","trade",Object[]x={"IBM",new Double(92.5),new Integer(1001)});

 if((i==n-1)||(timer<t()-st)){
 if (i<(n-1)){ // if the time constraint has been surpassed we

 // only insert the number of records received
 sym = new Object[i]; //create smaller sym array
 System.arraycopy(Sym,0,sym,0,i); //copy existing Sym to sym –

// same for the other vectors

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 144

 price=new Object[i];
 System.arraycopy(Price,0,price,0,i);
 size=new Object[i];
 System.arraycopy(Size,0,size,0,i);
 i=n;}

else{ // otherwise we use all records-i.e.the full vectors
 sym = Sym;price=Price;size= Size;}

 Object[]x={sym,price,size};
 c.k(".u.upd","trade",x); // does the update into the trade
table in our database
 init(); // re-initialise the counters
 st=t();} // re-initialise the timer
 }}}

catch(Exception e)

{e.printStackTrace();}}

public static void main(String[]args){feed f=new feed();f.tick();}}

C

/***
*
* This program demonstrates the C - Q API.
*
* It behaves as a feed sending data to a kdb+ TickerPlant
*
* Assumes TP with trade table
*
* trade:([]time:`time$();sym:`symbol$();price:`float$();size:`int$();ex:())
*
* Written by A.Galiotos. 10/2006
*
* agaliotos@firstderivatives.com
*
**
/

#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include "k.h"

// Globals
int handle;
int max_rows = 100; // maximum number or rows generated for bulk insert
char *syms[] = {"SPW","SSE","AA"};
char *exs[] = {"L","PA"};

// feed frequency (in seconds)
const int freq = 1;
// TP port
char host[] = "localhost";
int port = 5010;

void insert();
int q_time();

int main ()
{
 long timer;

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 145

 handle = khp(host,port);

 timer=clock();
 while(1)
 {
 insert();

 // insert every 'freq' seconds
 while ((clock()/CLOCKS_PER_SEC)<((timer/CLOCKS_PER_SEC)+ freq)){}
 timer=clock();
 }

}

void insert()
{
 int nrows,i;
 K data,time_col,sym_col,price_col,size_col,ex_col,res;

 nrows= rand() % max_rows;

 // create vector of type 0 and n elements. This is a list of the table
cols
 //data = ktn(0,5);
 data = knk(5,KT,KS,KF,KI,0);
 // feed doesnt give time
 // data = knk(5,KS,KF,KI,0);

 // define columns
 time_col = kK(data)[0] = ktn(KT,nrows);
 sym_col = kK(data)[1] = ktn(KS,nrows);
 price_col = kK(data)[2] = ktn(KF,nrows);
 size_col = kK(data)[3] = ktn(KI,nrows);
 ex_col = kK(data)[4] = ktn(0,nrows);

 // enter rows of data for each column
 for (i=0;i<nrows;i++)
 {
 kI(time_col)[i] = q_time();
 kS(sym_col)[i] = ss(syms[i%3]); // interned string
 kF(price_col)[i] = 100*(rand()/(double)RAND_MAX);
 kI(size_col)[i] = rand() % 10000;
 kK(ex_col)[i] = kp(exs[i%2]); // char list
 }

 // Make async call
 res = k(-handle,".u.upd",ks("trade"),data,0);

 // Async Call. Error is only thrown if handle is broken
 if(res == NULL){
 printf("CONNECTION BROKEN!!\nExiting...");
 exit(1);
 }

 printf("Inserted %d rows\n",nrows);

}

// use localtime function to construct q time (time in milliseconds)
int q_time()
{
 time_t * nulltime = 0;

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 146

 time_t curtime;
 int sec,min,hour;

 curtime = time(nulltime);
 sec = 1000* localtime(&curtime)->tm_sec;
 min = 1000*60* localtime(&curtime)->tm_min;
 hour = 1000*60*60* localtime(&curtime)->tm_hour;
 return sec+min+hour;
}

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 147

Reuters Feedhandler Customisation

The script ssl.q, and the associated library (ssl.so or ssl.dll depending on operating system),
will subscribe to a Reuters service and parse trade and quote date. The default Reuters
service is IDN_SELECTFEED.

There are two main functions which are worth further consideration in ssl.q

1. f – the function called from the ssl library;

2. k – the function used to parse the message.

The other main function is g. This function parse the raw reuters message into a dictionary
mapping Reuters FIDs (integers) to value. Generally it is not necessary to modify this
function.

The Feedhandler functions

f function

This function is called from the ssl library when a new message arrives from the triarch
service.

In ssl.q, f has this form :

f:{k each x where"6"=x[;3];
 if[count t;h(".u.upd";`trade;flip t)];
 if[count q;h(".u.upd";`quote;flip q)];
 t::q::()}

Line by line, this means :

k each x where"6"=x[;3];

Parse each message which is an update. On Triarch, a 316 message is an update and a 340
message is a snapshot. There are other message types, but these two are the types of most
relevance at this stage.

if[count t;h(".u.upd";`trade;flip t)];
if[count q;h(".u.upd";`quote;flip q)];

If trades have been observed, held in t, or quotes, held in q, format them as a .u.upd message
and send to the tickerplant.

The first parameter of .u.upd is the name of the table, and the second is the values.

t::q::()

Flush any messages which have just been published.

k function

In ssl.q, k has the form :

k:{s:`$sf x:g x;

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 148

 if[tj in key x;t,:enlist s,tf@'x ti];
 if[any qj in key x;q,:enlist s,qf@'x qi]}

Line by line :

s:`$sf x:g x;

The g function is called on x, which converts the update message into a dictionary of fids
mapped to values. This is then re-assigned back to x.

The sf function takes the first value of the dictionary x and drops of the first three characters.
This is then cast to a symbol to create the variable s. s is the RIC code of the update.

This is the usual way to retrieve the RIC code. However, it is not required under the ssl api for
an update to contain a RIC. See Diadic Initialisation for more details.

if[tj in key x;t,:enlist s,tf@'x ti];

At this point, s is the RIC code and x is a dictionary of FIDs to values. This line will parse a
trade update.

ti is a list of the fids required to define a trade – by default this is 6 and 178, where 6 is the
trade price, and 178 is the trade size. tj is the first element of ti, i.e. 6. So

tj in key x

is checking if the update dictionary contains a trade price. If it does, then

t,:enlist s,tf@'x ti

is executed.

x ti

will get the values from the dictionary x which are necessary for a trade.

tf@’x ti

will apply the corresponding parse function to each of the values retrieved from x ti. These
functions are usually casts.

t,:enlist s,tf@’x ti

joins s (RIC) to the front of the list of values, enlists it, then adds this to t. As we saw
previously, the f function then publishes the contents of t to the ticker-plant.

The next line, for quotes,

if[any qj in key x;q,:enlist s,qf@'x qi]

is similar to above.

Adding FIDs
If, for example, we would also like to retrieve the trade time (FID 379) from the update
messages, we have to do several things.

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 149

1. Add a new column to the tickerplant schema.

2. Kill the tickerplant, feedhandler and RTD.

3. Remove the log file (or the RTD will fail to load with the new schema)

4. Re-start the tickerplant.

5. Modify the tickerplant code to parse the new FID. As 379 already has a parse function
defined in fi, simply add 379 into the definition of ti.

If the FID is not already in fi, a parse function should be defined.

Customising the feedhandler
The feedhandler can be customised by changing (or adding) the parse functions defined in fi.

More advanced customisations should be undertaken by modifying the f and k functions. Some
possible examples are:

1. insert into tables other than trade and quote;

2. separate trade information into different tables, e.g. on-exchange and off-exchange
trades for European exchanges;

3. stamp an intra-millisecond ordering onto each update message so the stream of data
can be reproduced exactly/

Any sort of customisation is possible using the power of q.

Diadic Initialisation

It is possible to initialise the Reuters ssl library so as to return two values on each callback to
the f function. The first value is the RIC code of the update, taken from the header of the
message received from Triarch. The second value is the body of the message. This should be
used if the message body doesn’t contain the RIC code. The k function should be modified to
expect two parameters, the RIC code and the message.

To make use of this functionality, the library should be initialized with a string :
(`ssl 2:(`init;1))""

the g function should be changed :
g:(!)."I\037\036"0:

and the call of k in the f function should then be modified to expect two parameters :
f:{x k'g each y; etc

Filling in the blanks
When an update is received it does not contain all FIDs. It only contains the FIDs which have
changed. It is sometimes necessary to fill in the previously observed values. For example, if
the bid of a quote is updated the ask should be filled into the quote record. There is code to
do this in ssl.q

/ maintain previous bid/ask state and fill if necessary
bid:ask:()!()

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 150

as:{[s;x]$[null x;ask s;ask[s]:x]}
bs:{[s;x]$[null x;bid s;bid[s]:x]}

The line in the k function for parsing quotes should then be changed to
if[any qj in key x;q,:enlist s,(as[s];bs[s];::;::)@'qf@'x qi]

This differs from the standard version by adding
(as[s];bs[s];::;::)@'

which is a list of functions which are then applied to each value parsed from the update
message. as[s;x] and bs[s;x] will return either the new value for that sym or the previous
value if the new value is null. The other two functions simply return the passed in value.

Filling in the blanks using dictionaries
An alternative approach to filling in the blanks is by using dictionaries to store the previous
values. The idea is to create a dictionary of dictionaries which stores the previously observed
values. This dictionary is keyed by RIC, and each sub dictionary contains the previously
observed values, keyed by FID.

When an update arrives, create a dictionary of the updated values. Then update the stored
dictionary with the new values and publish.

quote:()!()

/- in the k function
if[count qj:qi inter key x;

/- FIDs which we are interested in have been observed (qj)
/- Use these FIDs to update the stored values
/- s1 is the RIC
new_quote: quote[s1] ,: qj!qf[qj]@'x qj;
/- At to the list of values to publish
q,::enlist s1,value new_quote];

When adopting this approach, the dictionary quote will take the form

`VOD.L`BARC.L!((22 25!120.5 121);(22 25!650.5 651.0))

Other Functions and Variables within the Feedhandler

Callbacks from the C library

dis : function called when a the feedhandler is disconnected by Triarch.

rec : function called with the feedhandler re-connects to Triarch.

stt : function called by Triarch when a RIC is requested which is not available / is not
permissioned for that user.

Functions and Variables

d : schema

sym : the RICS that will be subscribed to

sub : used to subscribe to Triarch.

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 151

cond/mode - dictionary for formatting condition and mode codes. Used by the taq tickerplant
only.

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 152

Database Customisation

Message Handlers
kdb+ processes have several pre-defined message handlers. These are then only way to
communicate remotely with a kdb+ process – all messages must pass through a message
handler.

Message handlers are important for configuring a database. Examples of usage include:

• Logging - log incoming messages, results of calls, timings of calls;

• Security - allow/disallow access to the database, certain function calls etc. based on
username/ip address etc.;

• Handle connections/disconnections from other processes

As message handlers are function calls, then can be configured to allow any required
behaviour. The message handlers which are most commonly customised are listed below.

• .z.pg: synchronous message handler. Executed when a remote process makes a
synchronous call. Parameter is the string/function call to be executed.

• .z.ps: asynchronous message handler. Executed when a remote process makes an
asynchronous call. Parameter is the string/function call to be executed.

• .z.po: connection open handler. Executed when a remote process opens a connection.

• .z.pc: close connection handler. Executed when a remote process closes a connection.
Parameter passed in is the handle of the process which has closed the connection.

• .z.pw: validation connection handler. Executed when a remote process opens a
connection, and before .z.po. Used to validate connections.

Other message handlers are .z.ph (web server), .z.pp (http post) and .z.pi (calls made from
qcon utility program).

RTD Customisation

Customising r.k

The script which defines the RTD is r.k. When customising this script, it is advisable to
maintain the customisations in a separate file, and create a wrapper script which loads r.k
followed by the customisations. The two main reasons for maintaining customisations in a
separate file are

1. if a new version of r.k is released, this can simply be dropped in place of the previous
version.

2. if another script requires to load the customisations (e.g. a log replay utility script),
then it can load the customisations without loading r.k, thus avoiding starting as an rtd.

.u.end

At midnight the tickerplant calls the .u.end function in all of it’s subscribers. It calls this
function with one parameter, which is the date which has just passed. In the RTD standard
configuration, .u.end will save down (splay) each of the top level RTD tables to the historic
database under the partition defined by the parameter passed in (the previous date).

However, more functionality can be added. Some common requirements include :

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 153

1. Delete a table which doesn’t need to be saved to the HDB;

2. Manipulate a table which doesn’t need to be splayed. Some tables may contain semi-
static data which would lend itself to being saved to a q data table at the top level of
the HDB, rather than being splayed;

3. Create some summary details on a per instrument basis into a separate table which is
also splayed to disk, e.g. open, close, high, low, vwap etc.

As .u.end is simply a function call, any logic can be implemented.

Loading files

Stored procedures should not be defined directly in the RTD customization script. Instead,
they should be logically broken up into separate files.

These files should then be loaded into the RTD. One option would be to have a load line for
each script. However this means that when a new stored procedure file is to be released a
load line has to be added into the RTD customization script.

A better option is to separately maintain a directory of q files to be loaded by the RTD. This
will make releases of new stored procedures easier, as the new script can simply be added to
this directory. The loading of files should be error trapped so that loading a bad file does not
cause the RTD to fail. Below is some example code to do this.

/- directory listing function – redefine for particular os
ls : "\\ls "

load_files : {
 /- get the list of files in the load directory
 files : @[system; ls,x; {[x;y] -1"Directory ",x," not found"; ()}[x]];
 if[count files;
 /- If files have been found, prepend the directory path
 files : x ,/: files;
 /- Then load each one in an error trap

{@[{1"Loading file ",x,"..."; value"\\l ",x; 1" Successful\n"}; x;
{1" Failure - ",x,"\n"}]} each files];

-1"Load complete";}

/- run the function
load_files "rtd_sprocs/european_sprocs/"

HDB Customisation

Database Structure

In a standard tick setup the HDB is a set of directories on disk, each of which contains the data
for one day. The top level of the database contains a sym (enumeration) file and any other
files which should be loaded on start up.

Not all tables lend themselves to being splayed to disk. For example, a table of static/rarely
changing data does not need to be saved down to disk every day. This data can be saved to
the top level of the database, either as a splayed directory or as a single kdb+ table (binary
format). This static table can be amended/appended each day by the RTD during the end-of-
day save.

 First Derivatives plc Kdb+ Reference Manual

10/11/06 DRAFT CONFIDENTIAL 154

Loading Files

Any q file stored at the top level of a historic database directory will be loaded when the
historic database starts up. These q files can be used to define stored procedures required by
users of the database. However, if one of these scripts contains a bug, then the historic
database will fail to load.

Similarly to the RTD, a directory of q files to be loaded by the HDB can be maintained
separately. Again, the loading should be error trapped. This directory can be loaded by
keeping one q file at the top level of the HDB which loads the stored procedure directory.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 155

Real-Time Subscriber and Chained Ticker-plant Design
Kdb+/tick includes a number of default real-time subscribers contained in the script c.q, which
are in-memory q databases updated in real-time by the ticker-plant. Although it is possible to
create ticker-plant subscribers in practically any programming language, non-q ticker-plant
subscribers offer almost no practical advantage over a software module directly connecting to
the data feed.

kdb+ subscribers, on the other hand, are extremely easy to implement, can be queried in real-
time from client applications using any of the several supported interfaces, and offer all the
advantages of relational databases extended with the powerful q time-series and analytical
capabilities. Moreover, q databases can be designed to alert clients upon specific conditions,
such as when certain updates are received, or when a custom analytical query returns a
certain value of interest.

If a real-time subscriber also accepts subscription requests and publishes updates, it is know
as a chained ticker-plant. Chained ticker-plants (CTP) should be written in q. Both CTPs and
RTSs will subscribe to a ticker-plant and receive updates upon subscription. Both will define a
function (upd) which acts on update data. Generally, both will perform some calculations on
this data, although a CTP can act simply as a relay, and a RTS can simply store data – the
Real-Time Database is an RTS. Both can be queried, or set up to send messages or alerts to
other processes. The only difference is that a CTP will publish updates to its subscribers
whereas a RTS will not.

Discussion follows of the design and development of CTPs in q, although several of the issues
are relevant to RTSs also.

When to use which
Use a CTP when any of the following are true:

• There are a dynamic number of clients;

• Clients require the ability to change the data they are listening for during the day (i.e.
change their subscription);

Use a RTS when any of the following are true :

• Clients are not prepared to accept update messages (i.e. clients don’t subscribe)

• Clients require data infrequently or irregularly (i.e. they can just query a RTS).

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 156

Writing a Chained Tickerplant
A CTP could be used simply as a relay for data. This would be used to isolate and take load off
the main tickerplant in an environment where there are a dynamic number of subscribers
which are subscribing and un-subscribing throughout the day.

However, CTPs will generally do some processing on the data and then publish this processed
data - the CTP will add value. It is quite common for a CTP to publish the raw data as well as
the processed, so that clients receive all their data from one source and do not have to deal
with timing issues associated with receiving raw and processed data from multiple sources.

A good example of a CTP is one which publishes VWAP data when new trades are published.
This is a simple example but contains must of the features required by more complex CTPs.

Programming Considerations
It is usually important that a non-trivial CTP should publish its calculated data as fast as
possible. The following guidelines should be observed when writing a CTP.

1. Cut down the number of tables and symbols being subscribed to as much as possible –
this limits the amount of data flowing into the CTP.

2. Use groupings, sorts etc on tables wherever appropriate.

3. Do operations on bulked data wherever appropriate. This is more complicated with the
zero latency ticker-plant as the messages which arrive tend to be quite small.

4. Whichever bit of data is most time-critical should be calculated and published first.

To implement a simple CTP, the following should be done:

1. Define tables which are to be published in the top level name space.

2. Define tables which aren’t to be published in a different name space.

3. Define the upd function. This is the function which is called when an update is received
and can be as complicated as required.

4. Load u.k and call .u.init[]. This initialises the process as a CTP and makes all top level
tables publishable.

5. Subscribe to the main tickerplant.

As an example, the following script defines a CTP which acts as a zero latency data relay. Data
relay tickerplants can also be implemented directly using tick.k.

/- load in u.k
\l tick/u.k

/- set the update function - simply publish
upd : {[t;x]
 .u.pub[t;x];}

/- open a handle to the main tickerplant
h : hopen `::5010

/- subscribe to the tickerplant synchronously
/- and save the result (the schema of the tables)
schema : h(`.u.sub;`;`);

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 157

/- set each of the schema tables at the top level
{.[x 0; (); :; x 1]} each schema

/- initialise the CTP
.u.init[];

A VWAP Publisher
A VWAP publisher is more complicated. It requires data previously observed to be stored, and
to use this to calculate the VWAPs. One approach would be to store all the trades previously
observed and calculate the VWAPs freshly every time. However, this would take up a lot of
memory. A better approach is to store the sum of the size traded and the sum of the size
multiplied by the price traded for each symbol. The following script will calculate and publish
VWAPs (more examples, including a more concise vwap publisher, are available at
http://www.kx.com/q/tick/c.q).

/- Load in the u.k
\l tick/u.k

/- Define the vwap table for publishing
vwap:([] time:`time$(); sym:`symbol$(); vwap:`float$())

/- Define a table, keyed on sym, to store the sum of the size
/- and the sum of (size*price)
.store.vwap:([sym:`symbol$()] sumsize:`int$(); sumsizeprice:`float$())

/- Define update function
/- Publish the table which comes in
/- Calculate the vwap if the table is a trade.
upd:{[t;x]
 .u.pub[t;x];
 if[t=`trade;
 /- update the vwap table
 .store.vwap +: select sumsize:sum size, sumsizeprice:size wsum price by
sym from x;
 /- publish out new vwap values for this syms which have traded
 .u.pub[`vwap; select time:`time$.z.z, sym, vwap : sumsizeprice % sumsize
from .store.vwap where sym in x[`sym]]];}

/- Initialise the CTP
.u.init[];

/- Connect and subscribe to the tickerplant
h : hopen`::5010
h(`.u.sub;`trade;`)

The upd function
The upd function is always called with two parameters – the name of the table being updated
(first parameter) and the table itself (second parameter). There isn’t any reason why the upd
function shouldn’t call other functions. Below is a common structure for upd:

upd:{[t;x]
 if[t=`trade;
 do_something[]];
 if[t=`quote;
 do_something_else[]];
 .u.pub[t;x]};

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 158

Subscriptions
The previous examples cover subscriptions where a CPT is interested in all tables and all
symbols. If a subset of tables or symbols is required, the following structures could be used

/- open the connection
h:hopen`::5010

/- the subsets
tabs:`trade`quote`depth
syms:`VOD.L`BARC.L`ENI.MI

/- all tables, all symbols
h(`.u.sub;`;`)

/- all tables, subset of symbols in each table
h(`.u.sub;`; syms)

/- some tables, all symbols
{h(`.u.sub;x;`)} each tabs

/- some tables, some symbols
{h(`.u.sub;x;syms)} each tabs

It is possible to subscribe to symbols that don’t exist in a table. The client will receive the
updates for the subset of symbols which exist.

Subscriptions overwrite each other. If a new subscription is to be added, the previous
subscriptions need to be re-sent. For example :

/- subscribe to some symbols in the trade table
h(`.u.sub; `trade; `VOD.L`BARC.L)

/- We want to add a new subscriptions to RDSa.AS and NOK1V.HE, but
/- h(`.u.sub; `trade; `RDSa.AS`NOK1V.HE)
/- will not work as will no longer be subscribed to VOD.L and BARC.L
/- We must do
h(`.u.sub;`trade;`VOD.L`BARC.L`ENI.MI`NOK1V.HE)

/- resubscribing to all will overwrite individual table subscriptions
/- this will subscribe to all tables and syms
h(`.u.sub;`;`)

/- but then re-subscribing to an individual table will leave all other
/- tables still subscribed.
/- this will leave us subscribed to all symbols and all tables, except
/- quote where we’re only subscribed to STL.OL and ABBY.L
h(`.u.sub;`quote;`STL.OL`ABBY.L)

Subscribing to more than one tickerplant
The above subscription method only allows connections to be made to one tickerplant. There
is no reason why a CTP cannot subscribe to more than one tickerplant, provided the table
definitions don’t differ. Problems could arise if a subscription is made to two tickerplants both
with a table called quote where quote is defined differently on each.

/- subscribe to more than one tickerplant
/- all tables, all symbols.
subscribe_to_tp:{
 h:@[hopen;x;0];
 if[h=0; -1"Subscription failed - couldn't connect to TP on ",string x; :()];
 h(`.u.sub;`;`);}

subscribe_to_tp each `::5010`::8010

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 159

If different symbols and/or table combinations are required, an approach similar to that
outlined in the previous section could be used.

Priming
Sometimes it may be necessary for a CTP to prime itself from either the RTD or HDB (or both).
This can be especially useful in the case of disaster recovery where a CTP may have to re-sync
itself from the RTD after a crash.

The following code could be used by the VWAP example given in section A VWAP Publisher

/- Connect to an rtd, initialise vwap table for all syms
initialise:{[rtd]
 h:@[hopen; rtd; 0];
 if[h=0; -1"Initialisation failed - couldn't connect to RTD."; :()];
 .store.vwap,:h"select sumsize:sum size, sumsizeprice:sum size*price by sym from
trade";}

/- Connect to an rtd, initialise vwap table for some syms
initialise_syms:{[rtd;syms]
 h:@[hopen; rtd; 0];
 if[h=0; -1"Initialisation failed - couldn't connect to RTD."; :()];
 .store.vwap,:h({select sumsize:sum size, sumsizeprice:sum size*price by sym from
trade where sym in x};syms);}

/- initalise from the supplied rtd
initialise[`::5011]

Modifying .u.sub
The standard way subscribe to a CTP is by calling the .u.sub function. However, it may be
necessary to do other things when a new subscription call is made. Two things (amongst
others) which might be useful are

1. Publishing a snapshot of data;

2. Allow the CTP to check the subscription requests and prime and initialise itself for any
symbols it has not subscribed to.

Modifying .u.sub directly isn’t a good idea. A better approach is to define a wrapper
subscription function which handles any extra functionality required, meaning that other
subscribers who do not require the extra functionality can remain unaffected.

Publishing a snapshot
The following structure could be used in the VWAP example for publishing a snapshot of VWAP
data whenever a subscriber calls subscribe. In this example, VWAP is the only table for which
snapshots are possible as no data is stored for the other tables.

In this example, subscribe function rather than .u.sub should be called by the client.

subscribe:{[t;x]
 /- set up subscription as before
 .u.sub[t;x];
 /- if the client is interested in vwap, send a snapshot
 if[t in `vwap`;
 (neg .z.w)(`upd;`vwap; select time:`time$.z.z, sym, vwap : sumsizeprice %
sumsize from .store.vwap where sym in x]];}

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 160

Updating subscription lists
This sort of functionality is useful for reducing the amount of processing by cutting down the
subscription list. The idea is to define a list of symbols statically which will (generally
speaking) be the universe of interest, but to still have the ability to extend the universe
dynamically throughout the day, for example when a new stock is being traded or monitored.

The subscription function could be used to check that the CTP has already subscribed to the
main tickerplant for all the symbols which the subscription request is for. If there are missing
symbols, the CTP will initialise itself from the RTD for these symbols (assuming a suitable
function is defined as seen in section Priming) and re-subscribe to the main tickerplant.

/- The list of symbols of interest initially
sub_syms:`VOD.L`BARC.L

/- Connect and subscribe to the tickerplant
h : hopen`::5010
h(`.u.sub;`;sub_syms)

/- function to update a subscription list
/- if any of the symbols in syms aren't in sub_syms,
/- then intialise the data from the rtd, and re-subscribe.
update_subscription:{[syms]
 diff_syms: syms except sub_syms;
 if[not () ~ diff_syms;
 sub_syms ,:: diff_syms;
 initialise_syms[diff_syms];
 h(`.u.sub;`;sub_syms)]}

.u.subscribe:{[t;x]
 update_subscription[x];
 .u.sub[t;x];}

.z.pc
When loading u.k, .z.pc (close connection handler) is overwritten. .z.pc is defined to remove
subscriptions from clients which drop their connections.

If custom logic is required in .z.pc, the u.k logic should be maintained, otherwise the CTP will
not handle client disconnections properly. For example:

/- Close connection handler - drop the handle from the signal_handles list
/- .z.pc is already defined in tick.k so must be careful not to
/- overwrite the definition - must amend it instead

.tick.pc : .z.pc;
.z.pc : {custom_logic[x]; .tick.pc[x];}

Real-Time Subscribers contained in c.q
A Kdb+ real-time subscriber can be started from c.q using the following command:

q tick/c.q {config} [host]:port[:usr:pwd] –p [port]

The config parameter indicates the subscriber to use from the script c.q. This configuration
defines how tables are updated when update messages are received from the ticker-plant. The
[host]:port option specifies the host and TCP/IP port that is used to subscribe to the ticker-
plant, and also if the ticker-plant is password protected we must also include the usr name and
password. As usual the –p option specifies the tcp/ip port that a client must use in order to

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 161

connect to the subscriber through either through the web interface or from another q process
or external applications.

A few example subscribers for both the taq and sym ticker-plants are included in kdb+/tick
installation in the script c.q. These show how to implement specialized subscribers that only
use the received data to update summary tables or specific analytics.

Subscribers can be started as described above:

 q tick/c.q all :5010 All the data-like RTD

 q tick/c.q last :5010 Last tick for each sym

 q tick/c.q last5 :5010 Last tick for each 5 minute bucket

 q tick/c.q tq :5010 All trades with then current quote

 q tick/c.q vwap :5010 VWAP for each sym

 q tick/c.q vwap1 :5010 Minutely VWAP

 q tick/c.q move :5010 Moving Vwap

 q tick/c.q hlcv :5010 High Low Close Volume

 q tick/c.q lvl2 :5010 lvl2 book for each sym

 q tick/c.q nest :5010 nested data, for arbitrary trend analysis

 q tick/c.q vwap2 :5010 vwap last 10 ticks

 q tick/c.q vwap3 :5010 vwap last minute

he script c.q can be easily extended to create further customized subscribers.

T

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 162

Failure Management

Backup and Recovery
kdb+ databases are stored as files and directories on disk. This makes handling databases
extremely easy because database files can be manipulated as operating system files. Backing
up a kdb+ database can be implemented by using any standard file system backup utility. This
is a key difference from traditional databases, which have their own back-up utilities and do
not allow direct access to the database files. The kdb+ use of the native file system is also
reflected in the way it uses standard operating system features for accessing data (memory
mapped files), whereas traditional databases use proprietary techniques in an effort to speed
up the reading and writing processes.

Kdb+ databases are easily restored by retrieving the relevant files from the backup system.
Restored databases can be loaded just like any others because they are simply file system
entities.

However, for high availability, an active-active backup (hot standby) setup is advised.

Active-Active Backup

The aim is of an active-active backup is to maintain two complete systems which are identical.
If one machine goes down, the other one can be used instead. There is no real alternative
when a high availability solution is required.

The fact that an active-active back-up is being used should be kept transparent from the user.
A good way to do this is to provide connection methods to the user which send a query to one
database, and upon failure sends a query to the other database and returns the results. kdb+
clients can use the .z.pc callback as a notification when a connection drops.

As both systems are identical, clients could use either machine as primary. However, in the
event of an intra-day data feed failure it is important to disable any affected process (RTD,
ticker-plant clients etc), as it is not desirable for the production servers to be providing
different data.

Most users of kdb+ employ an active-active backup.

Failure Recovery

Failure recovery is possible to different degrees, depending on which process fails.

Best Effort Recovery Strategy

In an active-active setup, one machine crashes, a best efforts recovery solution can be
deployed to attempt to bring the machines back into line. This is outlined below.

The recovery is implemented from a separate q process. This process is responsible for
creating two files – a recovery script (in q) and a recovery log. The recovery script contains a
set of commands to be run on the recovering RTD and the recovery log contains the missing
data. One of the commands in the recovery script will be to load the recovery log.

1. Machine A crashes, losing all kdb+ processes.
2. Several minutes / hours later, machine A recovers.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 163

3. All the kdb+ process are restarted on Machine A. The RTD in Machine A now has a set
of information with a gap in it, but will receive all subsequent data.

4. Machine A RTD is queried for the minutes where it has in-complete information.
5. Deletes are written to the recovery script which ensure all the data in the missing

minutes are removed, and including several buffer minutes at either end of the crash
period.

6. Query Machine B RTD for the missing minutes worth of data, for every table that has a
time and sym column (i.e. came from the ticker-plant).

7. Write this missing data to the recovery log.
8. Write a command to the recovery script to load the recovery log.
9. Run the recovery script in Machine A RTD – this will load in all the missing data.
10. Machine A now has two logs – the normal ticker-plant log and the recovery log. These

are both required until after the data has been successfully saved down at the end of
the day.

11. If Machine B now crashes, Machine A has a reasonable set of data. When Machine B
comes back up, it can use Machine A for recovery.

It is still possible that Machine A will have some bad data (either missing information or
duplicates) at either end of the recover period. This is due to the two machine clocks not
being exactly in sync. One option would be to re-point clients to Machine B RTD for the rest of
the day.

kdb+ clients which run on the same machine will also have failed. These clients can be
designed to re-start intra-day if required, by querying the RTD or HDB for any data which has
been lost.

If the recovery procedure outlined above is used after a failure of Machine A, and there isn’t a
subsequent failure of Machine B, the complete log file for the day should be copied from
Machine B to Machine A after day-end. This log should be replayed to ensure that Machine A
has an accurate set of historic information. See section Replaying a Log After Day End for
details.

Ticker-plant Failure

If the ticker-plant fails, there will not be any information propagated to the rest of the system.
It may be possible for clients to switch over to the back-up ticker-plant. As all connections to
and from the ticker-plant will have been broken, the cleanest approach may be to re-start the
entire system.

A recovery of the data would be possible, in a similar fashion to that outlined in section Best
Effort Recovery Strategy.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 164

Real Time Database Failure

The RTD can easily recover from an intra-day failure, with the only knock-on effect being the
unavailability of database for a short period of time.

bscription message
to the Ticker-plant, which will return the location of the log file and the number of lines to
read. The RTD will then replay the log file, and receive all subsequent updates from the ticker-
plant, ensuring it has a complete set of information.

Towards the end of the trading day the RTD may take a few minutes to re-start as the data
captured for the day may extend to many gigabytes.

It is important that the RTD is running at day end, as the RTD process is responsible for saving
down to the Historic Database. If the RTD end-of-day save is not completed, the HDB will be
missing one day’s worth of data. It is easy to replay and re-save this data from the ticker-
plant log file, but until this is done the Historic Database should be disabled as it has an in-
complete set of information.

Historic Database Failure

Similarly to the Real Time Database, any intra-day failure of the Historic Database will only
have the effect that clients will not be able to retrieve information.

If the Historic Database fails it should be re-started. This should be instantaneous at any time
of the day.

If the RTD crashes during the day it should be re-started. It will send a su

Ticker-plant

Data Feed

Feed Handler
Real-time
Database RT Database

Failure Connection
Broken

Subscription
Request

Log location and
length returned;

subsequent updates
received

Restarted Real-
time Database

Log File

Intra day data so far
read from log file

Real Time
Database restarted

Normal logging
continues

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 165

Feed Handler Failure

If a feed handler fails, the data which it subscribes to and parses from the data feed will not be
published to the ticker-plant. The feed handler should be re-started, and a recovery procedure
similar to that outlined in section Best Effort Recovery Strategy may be possible.

Failing that, the log should be replayed and re-saved at the end of the day on the machine
with the incomplete set of data.

In the event of a feed handler failure, clients will still be able to connect to the RTD and run
queries. Therefore the RTD should be disabled until the missing information is retrieved. Any
clients which connect directly to the ticker-plant should also be disabled.

Machine Failure

If a machine fails, it should be re-booted and all processes re-started. The ticker-plant log will
have a complete set of data up until the time of the failure, so a recovery similar to that
outlined in section 1.2 should be possible.

No clients will be able to retrieve or receive information during this time.

 Network Failure

If the network fails, no processes will be able to query the database, and no new data from
Reuters will be captured by the database. This should be treated in the same way as a
machine failure.

Replaying a Log After Day End

In an active-active configuration it is important for both machines to have the same set of
history. Occasionally the data collect for one day can differ between machines. This could be
because of:

1. Development changes made to the database schema
2. Changes made to the universe of instruments sourced.
3. New data being captured.
4. An intra-day failure.

In this situation it is necessary to replay the log file.

NOTE: Date partitions should not be directly copied from one database to the other.
All columns of type varchar held in the database are enumerated against the sym file held in
the top level of the HDB. In a active-active set up it is extremely difficult to guarantee that
these sym files (and therefore the enumerations) will be the same, so date partitions should
nerver be copied directly.

Replaying a log is a fairly simple operation. It involves reading the loading up the schema file,
setting the upd function, reading and executing the log using –11!, then saving to disk. The
following is a small example:

save_date : 2006.10.01
logfile : `:tic/schema2006.10.01
hdb_dir : `:tic/schema
hdb_port : `:5012

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 166

/- load the schema file
\l tick/schema.q

/- set upd
upd : insert

- streaming execute the log
11!logfile

/- use .Q.hdpf for save
.Q.hdpf[hdb_port; hdb_dir; save_date; `sym]

However, it is common for the RTD to contain custom logic. If this is the case, it would be
beneficial to maintain the customisations in a separate file, so it is easily loaded by any replay
script. See section Customising r.k for details.

Recovering a Corrupt Log

An intra-day ticker-plant failure can sometimes corrupt the log file (for example, if the server
crashes as the ticker-plant is in the process of writing to the log file). A corrupt log will not be
replay-able by either the RTD or replay script.

Sometimes it is possible to recover the log. A log can be recovered as follows.

1. Create a upd function which increments a counter and writes the counter value out to a file

on disk.
2. Replay the log using –11!. When the q process hits the corrupt record it will not write the

counter to disk and will crash out.
3. Create a new upd function which reads each log message and saves it in memory.
4. Replay the log again, up until the last value of the counter. This can be done with :

-11!(counter_value; `:log2006.10.01)

5. Write the non-corrupt log messages out to a new log file.

This new log file can then be replayed in the normal way.

/
-

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 167

Other Considerations

Performance

The performance of the kdb+/tick varies with the characteristics of the system such as the
processor’s speed, the platform-specific TCP/IP implementation, the database schema, and the
feed handler.

As an approximation, on modern production servers, each ticker-plant and RTD can handle
1,000,000 individual messages per second - more than enough to deal with all trades, quotes,
level2 quotes or options. However, if the records are bulked together either by the feed or the
ticker-plant, this number increases dramatically.

The ticker-plant can handle many real-time subscribers, and the RTD can handle many clients.

Queries on in-memory data are done at up to 10,000,000 records per second.

For disk-based data, querying is carried out at 1,000,000 ticks per second

Most queries execute in milliseconds on the kdb+ real-time databases. It is possible to time
the query evaluation by preceding the query statement with "\t ", as in

\t select avg size by sym from trade

Using multiple ticker-plants

One ticker-plant should be sufficient to capture data from multiple market data streams.
However, sometimes it is necessary or convenient to capture different data into different
ticker-plants.

The data captured should be divided up in whichever way is most convenient for query
development. For example, if the intention is to capture data from global equities markets, it
may be beneficial to have three distinct ticker-plant instances, for (Austral)Asian, European
and American exchanges, all of which run in their own timezones.

The associated RTDs / HDBs are then typically queried either individually or through the use of
a gateway server.

Memory Usage
The purpose of the RTD is to capture everything and write out the tables at the end of the day.
It holds this data in memory, so the RTD will use a lot of memory. The capture and end-of-
day processing will take 4 to 6 times the size of the log.

Assuming the RTD is started on a Monday morning and runs 24 hours a day, the RTD memory
usage will grow on the first day of the week to a peak and remain at about the same level for
the rest of the week. If a day of larger volumes occurs, the memory usage will increase again.
The memory usage will not automatically decrease after the end-of-day save as kdb+ does not
release the free memory. However, it is possible that memory will be returned to the OS if
swapping occurs.

The kdb+ ticker-plant doesn’t hold any data in memory, so memory usage will be very small.

The HDB will use very little when it starts up. The amount of memory allocated to the HDB will
depend on the queries being run on the database and how they are implemented. Generally
the HDB will use less memory than the RTD.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 168

Memory usage of other processes e.g. real-time subscribers, feedhandlers etc., will vary
depending on implementation.

It is highly recommended that all implementations of kdb+/tick are on a 64 bit system as 32
bits systems have a memory addressability limit of 3 to 4 Gb. On most production systems
where kdb+ is deployed this is simply not enough.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 169

Appendices

Appendix A: Troubleshooting Kdb+/tick and Kdb+/taq

Memory
To ensure optimal use of the system, ensure that:

• no swapping is taking place

• no process is close to using up all available addressability

From the q console it is possible to check the amount of memory being used by typing \w. The
first number returned represents memory in use. The second number returned represents total
memory allocated. The third number is the amount of memory mapped data and the fourth
number is the maximum amount of memory used so far at any one time.

CPU
CPU usage is primarily dependant on the number of ticks being captured. It will also be
affected by the use of logging or the number of real-time subscribers etc.

In general, ticker-plants that capture the main US Equities can operate at less than 10% of
one CPU with peaks of up to 30% at market open. Any regular peaks higher than this, or a
tendency for CPU usage to increase during the course of the day, could indicate a problem.

Disk IO

File-write speed is critical if transaction logging is being used in the ticker-plant. File read
speed is often the dominant factor in the time taken by queries against the historical database.
It is therefore important to ensure that the drives being used are sufficient for these tasks and
investing in fast hard drives will provide substantial benefits when using kdb+/tick and
kdb+/taq.

The minimum recommendation is a hard-drive capable of 100MB/s. In general it is difficult to
test read speeds due to caching, but write speeds can be tested with the commands below. If
transaction logging is to be used it is also worth testing that file append operations do not
degrade as file size increases, since the log file can be hundreds of megabytes in size by the
end of the day and slow logging could result in ticks being dropped at market close.

\t .[`:c:/foo;();:;key 25000000] /write 100MB
\t .[`:c:/foo;();,;key 25000000] /append 100MB

Errors
Most feed handlers will generate error logs when a problem occurs. With the Reuters feed
handler, a file with a name of the form SSL_elog5418 will be created in the ticker-plant’s
current directory (the number at the end is the process id of the process which created the
file).

Useful error information may also be available through the sink distributor or data source.

Additionally, it is generally useful to redirect standard output and standard error from the
ticker-plant to capture any messages generated by kdb+.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 170

Messages
The best way to monitor messages being received by the kdb+ databases is to override the
message handlers .z.ps, .z.pg and .z.ph. These can then be used to log all messages received
or sent.

Another useful place to add a trace (using 0N!) is in the function f in ssl.q when using the
Reuters feed handler – this function will receive all of the raw messages from the feed (this
can be a lot of output though).

kdb+ Licence
An error message of

abort: k4.lic

indicate a problem with the license or its location. kdb+/tick and kdb+/taq will not function
correctly without a valid license file ‘k4.lic’.

A full license is provided by Kx Systems when the product is purchased; a temporary one is
supplied for an agreed evaluation period or Proof of Concept. This file must be located in the
directory that kdb+ home directory. This is usually $HOME/q under Linux and Solaris, or c:\q
under Windows.

The q home directory can be specified by setting QHOME, and add the q license file directory
can be specified with QLIC. The default for QLIC is QHOME.

The license owner and expiry data should be printed out when kdb+ is started.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 171

Appendix B: Technical Implementation of Ticker-plant

The source code for the ticker-plant is provided with the distribution, to allow customization of
its behavior as required. The 2 core files are ‘tick.k’ and ‘u.k’, which should be present in the
directory. tick.k loads u.k.

Variables
.u.d: stores the date at start-up. This is the value inserted into the date column when the data
is saved and will be used for the name of the new partition.

.u.L: the name of the current log file.

.u.d: today’s date in local time.

.u.i: the count of the log file, i.e. the number of messages of the form (`upd;t;x) that has
been appended to the log file.

.u.l: this is the handle to the log file and is used to append messages to it.

.u.t: all tables in the current ticker-plant process.

.u.w: this is a dictionary containing the connection handles and sym subscription lists for each
table in .u.t for all subscribers.

Functions contained in u.k
.u.init[]: initializes the ticker-plant. An entry is created in .u.w for each table contained in the
top level namespace of the tickerplant process.

.u.del[handle;table_name]: deletes a connection handle from the subscription list .u.w for
the supplied table name.

.z.pc[x]: calls .u.del with the supplied handle for each table in .u.t.

.u.sel[table;symlist]: gets the data from a table for a specific sym list. If the sym list is `,
then all data is retrieved.

.u.pub[table_name; data]: publishes the data to each of the connection handles specified in

.u.w which have subscribed to table_name. It only publishes to clients the (subsets of)
symbols that they have subscribed to. It uses the connection handles to call the client upd
functions.

.u.sub[table_name;symlist]: when a client subscribes it (asynchronously) calls this function
with the table and sym list as arguments. This function then adds the process handle of
whoever called it together with the sym list to the subscription list .u.w. It also immediately
returns to the caller a two element list, consisting of the name of the table they subscribed to
plus the table schema. The caller will then be updated asynchronously via the pub function.

.u.end[date]: this is the message sent from the ticker-plant to each of its subscribers and the
RTD at day-end. The default functionality of a processing loading u.k is to propagate the end-
of-day message to each of its clients.

Functions contained in tick.k
.u.endofday[]: defines the end of day behaviour. This calls .u.end with the current date,
increments .u.d, and creates a new log if logging is being used. The name of the new log is
stored in .u.ld.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 172

.u.ts[datetime]: checks if the supplied datetime has a date component greater the .u.d. If
so, .u.endofday is called.

.u.upd[table_name; data]: all inserts to the ticker-plant should be passed in through this
function. It firstly checks if day end has occurred - if so it calls .z.ts immediately. Otherwise it
performs the following steps:

1. If there is no time column on the incoming data it adds one;

2. An insert message is created;

3. The message is appended to the log and the count of the log incremented.

If the ticker-plant is running on a timer, it will then insert the incoming data into its table. If
running in zero-latency mode, it will immediately publish the data.

.z.ts[datetime]: is a timer called every heartbeat. The definition of this function depends on
whether the ticker-plant is running as zero-latency or not.

If zero latency, .z.ts is defined to call .u.ts every second.

If not zero latency, .z.ts is defined to publish the contents of each table, flush each table, then
call .u.ts. The frequency depends on \t.

.u.ld[date]: this is the logging function which is called with .u.d as argument. It creates the
log (named destianation/schemaDATE) if is not there and initializes .u.i to 0. If the log already
exists, it sets .u.i to be the count of it. It then returns a handle to the log file for appending.

.u.tick[schema; destination]: is the main function call to initialise the ticker-plant.

Firstly, it calls .u.init. It then checks that each table in the top level namespace of the process
contains a time and a sym column. If not, a ‘timesym error is thrown.

Next, it applies a grouping on the sym column to each table. .u.d is then intialised to the
current date.

If the second parameter, destination, is supplied, it sets .u.L to be the log file name
(destination/schema……….). It then calls .u.ld for the current date and assigns the returned
handle to .u.l.

Appendix C: Bloomberg Ticker-plant
The Bloomberg ticker-plant is designed to handle Bloomberg equity quotes. The Bloomberg
ticker-plant can be started using the following command line (with the usual options):

q tick/bb.q [host]:port[:usr:pwd]

In standard configuration it connects to a ticker-plant running on port 5010.

The default schema is:

trade:([]time:(),sym:(),price:(),size:())

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 173

bid:([]time:(),sym:(),bid:(),bsize:())
ask:([]time:(),sym:(),ask:(),asize:())
a:([]time:(),sym:(),value:(),type:())

The Bloomberg feedhandler uses bb.dll.

Unfortunately the Bloomberg feedhandler is much more difficult to customise than the Reuters
Triarch feedhandler. As such, it will not be discussed further in this document.

If a customisation of the Bloomberg feedhandler is required, contact First Derivatives.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 174

Appendix D: The Reuters Feed Handler

The 4 standard Reuters ticker-plants all work in much the same way with regards to the feed
handler.

There is one q script for specifying the fields to be captured-ssl.q and the schema of the ticker-
plant is determined from the command line arguments, for example to start a taq feed the
following command would be issued

q tick/ssl.q taq 5010

The script ssl.q makes use of the C library ssl.dll or ssl.so which must be located in the folder
q/OS i.e. in the case of windows this would be in c:/q/w32

The complete Reuters messages are passed back from the C library to K (as the argument to
the function f) and it is therefore possible to modify the fields captured without requiring any
changes to the C code.

ssl.q

Callbacks from the C library
close
dis
rec
stt

These keep state and notifiy of disconnections etc.

Functions and Variables

d - schema
fi - map of reuters fids to the corresponding formatting functions
h - handle to the ticker-plant process
qf - quote formatting functions and are obtained from fi@qi
qi - quote identifiers-list of fids to capture from the feed
tf - trade formatting functions obtained from fi@ti
ti - trade identifiers-list of fid to capture from the feed
qj/tj – allows the differentiation between trades and quote
sym - the RICS that will be subscribed to
f - default callback for c library
g - map of fid to values from string received from the reuters feed
k - function that parses the data
sf - for taq-gets sym from RIC
sub - K function mapping ssl entry point to C library-sends the subscription message to
reuters - dynamically loaded from ssl library
cond/mode - dictionary for formatting condition and mode codes

Kdb+/taq – Historical Database

What is Kdb+/taq?

Since 1993 the volume of NYSE TAQ data has grown twenty-fold. Where one CD used to hold a
month of data, now it holds only one day's worth. Not surprisingly, the tools most traders use
to load and analyze this valuable NYSE data are struggling to keep up with higher volumes.
Extracting the multiple end-of-month CDs & DVDs to a relational database can take hours or
even days to finish. If you're extracting to flat files, your analytical abilities are severely
restricted. Kdb+/taq solves the problem of loading, extracting and analyzing NYSE TAQ data.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 175

With kdb+/taq it takes about 15 minutes to load a month's worth of NYSE TAQ data. At
present, daily TAQ data files contain approximately 5GB of quote data (45-55 million quotes),
and 500MB of trade data (5-8 million trades) in their unzipped format, capturing 8000+
different symbols. With default schema, this is a little over 1.8GB of storage in Kdb+ database
(or over 35GB per month). Once stored, data can be queried at 1 million ticks per second per
CPU. In addition kdb+/taq customers can FTP the NYSE TAQ data directly into kdb+/taq at the
end of every trading day in minutes, enabling them to perform relational time-series analysis
on billions of NYSE TAQ data records and obtain results in seconds.

Kdb+/taq is built on kdb+, the ultra high-performance database from Kx Systems. Kdb+
provides extreme database efficiency and performance. It uses inverted (column-based)
storage for high search efficiency, and its query language, q, includes support for time-series
analysis. If your analytics have been slowed down by multiple-joins and other database
overhead, you will find that kdb+/taq returns results in seconds - even when searching a
billion records.

A test version of the historical database can be generated for evaluation purposes using the
script ‘tq.q’ available at http://www.kx.com/k4/taq

Some additional information and useful scripts are available at http://www.kx.com/k4

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 176

Hardware Requirements

o/s: solaris64, linux64(opteron or nocona)
cpu: 2+ (2 sets of disk arrays per cpu)
ram: 16GB+ (8GB+ per cpu)
disk: 2TB+ (U320SCSI 10000rpm+ drives)

With the historical database the hard drive can be the most significant factor in query
execution times. 10000+ RPM SCSI would be a minimal recommendation. EMC drives are
another common choice for storing the database. In general, a good specification should
provide read-write speeds of around 40MB/s.

The complete TAQ history is currently about 25 billion+ trades and quotes (>1TB) and is
growing at a rate of 50 million records per day (>2GB).

The kdb+ storage factor is about 1. Get 2 times as much disk for raid5, staging and scratch
space. For example the following set-up could be used for the full TAQ database (2004):

HP DL585 with a 2 CPU AMD Opteron with 16 GB RAM, running 64 bit Linux

2 MSA500 G2 arrays with (7+7)*146GB 10k RPM drives, providing 3.5TB useable
space in 2 raid5 arrays.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 177

Installation

Prior to installing kdb+/taq, kdb+ must be installed on the system. The installation of kdb+
creates the k4 directory in $HOME/ (UNIX) or in C:/ (Windows). For simplicity, both these
directories will be referred to as k4/ throughout this manual.

The installation and license files for kdb+/taq must be obtained directly from Kx Systems (send
e-mail to tech@kx.com). The license file must be copied into the k4/ directory. The kdb+/taq
distribution file taq.k can be obtained from either Kx Systems or First Derivatives.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 178

Running the Kdb+ TAQ loader

1. Copy the data files from CD or DVD (monthly data) or download them using FTP (daily
files) onto a directory (SRC) on the server.

These files should consist of:

Monthly: One dividend and one master file per month (e.g. ‘D200202.TAB’ and
‘M200202.TAB’). A number of trade and quote files – these should be in pairs with matching
IDX and BIN files e.g. ‘T200202A.BIN’ and ‘T200202A.IDX’). It is best not to rename these
files as the loader makes a number of assumptions based on the file name.
Data before and after 2000 should be loaded separately as there were some format changes.
The default loader will also only load 1 month’s dividend and master files at a time.

Daily: Zipped files containing ‘taqtradeYYYYMMDD.txt’, ‘taqquoteYYYYMMDD.txt’ and
‘masterYYYYMMDD.txt’. The master file is a separate download and must be purchased
separately if required. There are 2 available downloads for the quote data - a ZIP archive
containing the single ‘.txt’ file or an archive with multiple files. This is because the single
quote file increased to more than 2GB in size, which cause problems with some applications.
The daily files must be unzipped prior to loading.

2. Execute the load command.

>q taq.k SRC DST

where SRC is the directory where the raw data files reside and DST is the directory where the
data will be written to. This command will load all the files it finds in SRC to DST/taq.
Kdb+ loads, indexes and stores about 1GB per minute per cpu.

If you want kdb+ to run in parallel:

a) put a list of directories(different drive arrays) in DST/taq/par.txt
b) q DST/taq -s N where N is equal to number of drive arrays

There will be N slaves each reading their own drive array -- no contention. 2 disk arrays per
cpu is about right (e.g. 2 cpu's and 4 array's above). Days are round-robin allocated. Multi-day
queries run in parallel.

3. Start the database.

Once the load has completed, the historical database can be started with the command:

>q DST/taq –p 5014

This starts the historical database running on tcp/ip and http port 5014 and the data can be
viewed through the web-viewer at http://localhost:5014. This can run forever as the load can
send reset messages

4. Options

There are some options available with the loader:

q taq.k SRC DST [-corr] [-host host:port [host:port ..]]

-corr : load the rearranged incorrect records (default delete)

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 179

-host : send reset message to server(s)

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 180

Queries

The schema of the taq database is as follows:

 trade:([]date;sym;time;price;size;stop;cond;ex)
 quote:([]date;sym;time;bid;ask;bsize;asize;mode;ex)
 mas:([]sym;date;name;cusip;wi;ex;uot)

The trade tables holds all the trades made and should be updated daily.
The quote table holds all the quotes made and should be updated daily.
The mas table holds the master information about each symbol and should be updated daily.

The data is indexed by symbol for one disk seek per day*sym*field. This yields about one
million prices per second per processor (at 10,000 ticks per sym per day). In general query
time can be estimated using the following simple formula,

T=10ms(6seek+4read) * (days/drives) * syms * fields

e.g. 10*1day*2sym*3fields=60ms for the following vwap query,

select size wavg price by sym from trade where date=2000.10.02,sym in`A`IBM

Data cached in memory is much faster. We always aim to restrict dates, symbols and fields as
much as possible -- read as little as possible, for example

select time,price from trade where date=2000.10.02,sym=`IBM

is faster than

select from trade where date=2000.10.02,sym=`IBM

Also try and move as little data as possible - calculate in the server.

From java:

r=k("select size wavg price from trade where date=2000.10.02,sym=`IBM");

is much faster than pulling the data and calculating locally:

r=vwap(k("select size,price from trade where date=2000.10.02,sym=`IBM"));

To retrieve for sym.exchange, e.g. `AA.N

f:{[d;s]x:string s;update sym:s from select from trade where date=d,sym=`$-
2_x,ex=last x}
f[2000.10.02;`AA.N]

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 181

 Corporate Actions

The TAQ CDs come with a basic corporate action detail containing details of symbol changes
(e.g. mergers) and stock dividends. These are loaded into the historical database as the mas
and div tables. Since this data changes on a daily basis, most people opt to store the raw trade
and quote information and apply these changes, when necessary, at query time. This avoids
having to potentially rewrite hundreds of gigabytes of data, as well as allowing queries to
execute without the corporate actions where they are irrelevant.
One possible way of using this data is contained in

http://www.kx.com/k4/taq/adj.q

This script creates a number of new tables and functions that allow the symbols to be mapped
and prices adjusted as required. The script makes use of binary searching to apply the changes
to millions of records per second. The master is the last know value of the sym. Resulting
queries are then of the form:

r:select last price,sum size by date,mas:ms sym from trade where sym=sm`CUZ
 update AMD[mas;date]*price,size%AMD[mas;date]from r

sm gets the sym at a given date from the master and ms gets the master from the sym.

So the query

r:select last price,sum size by date,mas:ms sym from trade where sym=sm`CUZ

takes the master (latest) symbol `CUZ, and at each date finds the corresponding symbol,
taking the last price and summing the size. Notice that the symbol is converted back to the
master.

If price adjustments are done, a table mapping the (master) symbol and the date of the
adjustment is created. This is called AMD in the adj.q script example. Therefore the
statement

update AMD[mas;date]*price,size%AMD[mas;date]from r

will adjust the prices and sizes in the table r accordingly. The adjustment is done on the
master symbol. There is further information in the script file itself.

Basic corporate action data is also available with the daily FTP download. However, the data
that is supplied by NYSE is at present incomplete and many people therefore choose to acquire
this data from other sources - it is then possible to develop a script similar to ‘adj.q’ to work
with this data. Alternatively, it may be possible to purchase and store pre-adjusted data
(though this is more difficult to maintain).

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 182

Handling Other Sources of Historical Data

In some cases it is necessary to write a custom script to create a TAQ type historical database
based on alternative data sources. First Derivatives have developed a loader for the historical
data provided by Tick Data and can also provide examples and advise for developing new
scripts.

It is recommended that any new loader should create a structure similar to the TAQ loader in
order to be consistent with new partitions created by the ticker-plant, as well as to optimize
performance. This involves the following:

1. Partition data by date, with directory names of the form 2003.01.02 (kdb+ is optimized to
recognize and take advantage of this type of partition, allowing it to disregard any directories
irrelevant to any query which uses date as the first part of a where clause).

2. Each partition should be sorted by sym and then time (which means applying the sorting in
the reverse order). Ensure that the `p# attribute is set on the sym columns (this attribute is
how kdb+ detects that a column is sorted and indexed and that binary search can therefore be
used to optimize query performance).

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 183

Kdb+/Tow – Replay Module

The basic aim of the replay module is to facilitate rapid replay of historical data (i.e. data in a
kdb+ database residing on disk for example NYSE TAQ data). For the moment the module can
only replay 1 days worth of data at a time, the reason for this is that symbols (ticker symbols
that identify stocks) are not constant overtime and as such can and do change from day to day
(although not very often). So if we try and replay multiple days of data for a particular stock
and the stock symbol has changed within the timeframe of interest then the replay will
obviously be wrong. We can try and get around this by using a master table with which we can
build symbol chains but for now we will just look at the basic single day replay.

The replay module works by getting record handles to the required data. By doing this it
means that a query need only be performed once- we store the record-handle indices and then
use these iteratively to 'pull' or 'push' the chunks of data.

There are two options for configuring the replay server:

1. We can 'pull' the data from the server which means we get the total number of time buckets
for the date, table and symbols we are interested in (N, say), get our record handles and then
call pull N times where each time it is called we are returned a table with the required data. In
the case of replaying both trades and quotes we would get a list containing a segment of
trades and a segment of quotes.

or

2. We can actually 'push' the data through the kdb+/tick application one chunk at a time-in
this way we can mimic a feed and also have multiple different subscribers receiving the data
doing whatever we wish. This method is very useful for testing strategies and also stress
testing subscribers.

In kdb+ we can do both of these at extremely high speeds- up to a million records a second.
However, if using java/c as our engine for the strategies then we slow down a bit, so if
possible the aim would be to try and write the strategies/clients in q and use these.

Implementing the Replay

1. Load the script

>q tow.k SRC

where SRC is the directory where the data to be replayed resides.
So in the case of the data resinding in c:/k4/data/taq this would be:

>q tow.k c:/k4/data/taq

2. Variables and Initialisation

a: start_time- default is 09:30:00
b: end_time- default is 15:00:00
m: time_slice- this gives the granularity of the replayed data, i.e. the ‘time chunk to be

replayed’. 1 means that we will be replayed 1 second of data each time.

To initialize the server the following function is called. If you just want the default values there
is no need to call this function.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 184

timeinit[start_time;end_time;time_slice]
e.g:
timeinit[09:30:00;14:00:00;5]

This does not return anything- it simply sets the variables on the server.

3. Doing the Replay

doReplay[date;table;sym]

e.g.
doReplay[2001.10.01;`trade;`IBM`MSFT]

This call starts the replay. It firstly returns the number of records to be replayed, and the
number of time buckets for our arguments. For a 1 second time_slice with start_time of
09:30:00 and end_time of 16:00:00, this will return 23400. This corresponds to the number
of seconds between the start_time and the end_time

It then iterates through the records, either pushing them through kdb+/tick or just pulling
them back one at a time.

Note that to push through kdb+/tick the tickerplant must be started on its usual port-5010
with no dst for the logfile and with a correct schema. For example:

>q tick.k taqR –p 5010

where taqR contains an identical schema as the historical data that is to be replayed. In the case of taq this
is:

quote:([]time:`time$();sym:`symbol$();bid:`real$();ask:`real$();bsize:`int$();asiz
e:`int$();mode:`char$();ex:`char$())
trade:([]time:`time$();sym:`symbol$();price:`real$();size:`int$();stop:`boolean$()
;cond:`char$();ex:`char$())

Then all subscribers work in the usual fashion. This is described in more detail in the First Derivatives
Tickerplant manual.

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 185

Index

3

32-bit · 10

6

64-bit · 10, 11

A

Amend · 52, 53, 78, 98, 104, 105
Analytics · 3, 15, 17, 23, 84
API · 5, 115, 120, 127, 141, 144
Append · 49
Arithmetic with associations · 58
Asof Join · 85
Assignment · 4, 46, 51, 52
Associations · 4, 47, 48, 65
Asynchronous and Synchronous Messages · 4, 101
Atoms · 4, 51, 59, 73

B

Bloomberg · 6, 14, 19, 20, 132, 172, 173

C

C · 5, 6, 11, 12, 16, 20, 21, 23, 25, 26, 29, 34, 35, 106, 110,
112, 113, 114, 115, 117, 118, 124, 127, 128, 129, 133,
135, 136, 142, 143, 144, 150, 172, 174, 177
Dynamically linked functions · 5, 114

C# · 5, 16, 20, 25, 26, 112, 115, 118, 133
C++ · 5, 11, 16, 20, 23, 25, 26, 112, 127, 133, 135
Cast · 54, 55, 61

with computed types · 54
Chained Ticker-plants · 5, 21, 134, 155, 156, 157, 158, 159,

160
Commands · 3, 34, 101

Interrupt session - Ctrl-C · 35
Common q errors · 3, 35
Compliance · 3, 15
Conditional Evaluation · 97, 98
Connection · 4, 101, 125, 126
Console · 16, 30, 31, 32, 34, 35, 38, 45, 46, 48, 52, 54, 57,

67, 72, 79, 80, 81, 93, 99, 101, 103, 109, 110, 169
CORBA · 25
Creating Tables · 4, 77
Creating Text from Data · 55
Creating varchars · 54

D

Database
Administration · 4, 16, 92
Failure · 6, 164
Logs · 93

Nested · 4, 93
Parallel · 4, 93
Splayed · 38
Tables · 4, 93, 94

Datatypes · 4, 45, 48, 53, 54, 56, 57, 59, 64, 68, 70, 73, 77,
78, 82, 94, 105, 112

Debugging · 3, 35, 36, 99
Development environment · 3, 30
Dictionaries · 4, 47, 51, 60, 65, 73, 74, 79
Do Loop · 98
Drivers · 3, 25

JDBC · 3, 12, 25, 28
ODBC · 25

E

Each · 17, 21, 42, 48, 50, 65, 90, 92, 104, 132, 133, 182
Each-Left · 50
Each-Right · 50
Efficient Programming · 3, 27
Elided Indices · 53
Enumeration · 56
Execution Control · 4, 97, 100
Extracting Data from Text · 54

F

Feed Handler · 5, 6, 22, 132, 135, 136, 137, 139, 141, 142,
149, 150, 165, 173, 174
Failure · 6, 165

Files · 5, 103, 104, 105, 106, 108, 110, 154
Input · 5, 108
Output · 5, 108

Find · 40, 57, 58, 88
First Derivatives · 1, 2, 8, 9, 10, 24, 173, 177, 182, 184
FIX · 24, 25
Foreign Keys · 4, 78
FpML · 25
Functions · 4, 5, 6, 16, 34, 41, 62, 77, 87, 89, 95, 114, 150,

171, 174
% · 59, 64
& · 68
* · 59, 73, 96
? · 71
| · 68
~ · 67
= · 59, 65, 69, 117, 124
abs · 62
acos · 62
aj · 41, 62, 85
all · 62
AND · 62
any · 62
asc · 37, 41, 63
asin · 63
atan · 63
attr · 63
avg · 26, 40, 41, 42, 43, 63, 65, 76, 84, 86, 88, 89, 90, 101,

102, 109, 110, 167
bin · 60, 63, 87, 105, 114
by · 63
ceiling · 63
cols · 63

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 186

cor · 26, 63, 76
cos · 63
count · 63
cov · 26, 63
cross · 14, 25, 50, 53, 64, 135
csv · 33, 36, 64, 94, 106, 107
cut · 64, 118
Default arguments · 95
Default Result · 95
Defined · 4, 77, 95
delete · 64
deltas · 26, 64, 76, 84, 87, 88
desc · 64
dev · 64, 68
differ · 64, 68, 70, 73
distinct · 27, 57, 64, 66, 75, 76, 82, 86, 87, 90, 91, 109,

167
divide · 59, 64, 73
Do Loop · 12, 13, 65, 98, 119, 127, 156
dyadic · 47, 48, 49, 50, 52, 53, 54, 57, 62, 64, 65, 66, 67,

68, 69, 70, 73, 74, 75, 77, 85, 97
Each · 11, 17, 20, 21, 22, 26, 27, 37, 39, 40, 41, 42, 43, 45,

47, 48, 49, 50, 51, 53, 54, 58, 59, 60, 63, 64, 65, 70, 73,
75, 77, 78, 79, 81, 84, 85, 87, 88, 89, 90, 92, 94, 100,
102, 103, 104, 106, 131, 132, 133, 134, 141, 142, 143,
145, 147, 148, 149, 150, 152, 153, 157, 158, 161, 166,
167, 171, 172, 178, 180, 181, 182, 183

enlist · 46, 50, 59, 65, 94, 106, 107, 148, 150
equal · 59, 65, 67, 69
except · 2, 34, 47, 65, 69, 73, 78, 82, 91, 97, 158, 160
exit · 31, 65, 111, 145
fby · 26, 40, 41, 65
fill · 59, 65, 70, 149
fills · 59, 65, 67, 141
first · 65
flip · 42, 47, 48, 61, 66, 75, 78, 80, 81, 82, 108, 113, 114,

115, 116, 117, 118, 119, 121, 122, 123, 126, 127, 147
floor · 66
from · 66, 90
get · 12, 28, 34, 35, 62, 66, 67, 69, 74, 80, 85, 87, 88, 89,

94, 101, 102, 108, 109, 110, 111, 122, 135, 148, 153,
176, 183

getenv · 66
group · 66
gtime · 66
hclose · 66
hcount · 66
hdel · 66
hopen · 66
hsym · 66
iasc · 66, 71
idesc · 66
in · 66
insert · 66
inter · 67
inv · 67
key · 25, 26, 36, 43, 48, 49, 56, 57, 59, 60, 61, 62, 63, 67,

73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90,
91, 100, 109, 148, 150, 162, 169

keys · 45, 47, 48, 59, 67, 77, 78, 80, 81, 82, 83, 85, 86, 90,
113

last · 67
less than · 69
like · 10, 11, 12, 20, 26, 27, 43, 45, 47, 50, 53, 55, 58, 61,

67, 69, 71, 73, 76, 78, 82, 87, 90, 96, 98, 100, 103, 105,
110, 113, 142, 148, 161, 162

lj · 67, 85
load · 67
Localization · 95

log · 67
lower · 25, 55, 67, 74, 105
lsq · 67
ltime · 67
match · 58, 67
max · 35, 36, 62, 68
maxs · 68, 87
md5 · 68
mdev · 68
med · 68
meta · 68, 77
min · 62, 68
mins · 68, 69, 87, 88
minus · 59, 68
mmax · 68
mmin · 69
mmu · 69
mod · 69
monadic · 46, 48, 49, 50, 53, 62, 63, 64, 65, 66, 67, 69, 70,

71, 72, 95, 96, 97, 102, 103, 105
more than · 59, 69
moving average · 68
moving sum · 69
neg · 69, 76, 100, 159
next · 8, 10, 30, 52, 60, 68, 69, 71, 76, 82, 89, 103, 143,

148
not · 69, 76, 95
NOT · 62
null · 70
OR · 62
parallel each · 70
Parameters · 87
plus · 49, 59, 62, 70, 96
prd · 70, 71, 76, 90
prds · 71, 76, 87
prev · 71
Projections · 96, 97
rand · 71, 145
random · 50, 60, 64, 71, 75, 88, 109
rank · 26, 36, 71, 75
ratios · 26, 71, 76, 87
raze · 50, 71
read0 · 71, 94, 105, 108
read1 · 71, 94, 105, 108
reciprocal · 71
reverse · 50, 58, 61, 71, 72, 89, 94, 182
rload · 72, 94
rotate · 72
rsave · 72, 94
save · 12, 20, 37, 41, 72, 94, 132, 139, 152, 153, 156, 164,

165, 166, 167
select · 72
set · 72
show · 72
signum · 72
sin · 72
sqrt · 72
ssr · 72
string · 38, 45, 49, 54, 55, 60, 61, 67, 72, 73, 74, 101, 102,

103, 108, 109, 112, 113, 115, 116, 117, 119, 145, 149,
152, 158, 174, 180

sublist · 72
sum · 72
sums · 72
sv · 73
system · 2, 11, 12, 13, 19, 21, 23, 24, 25, 27, 35, 36, 73,

136, 138, 140, 147, 153, 162, 163, 167, 168, 169, 177
tables · 73
tan · 73

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 187

temporal arithmetic · 73
til · 35, 37, 44, 73
times · 59, 73, 96
trim · 73, 94
txf · 73
type · 25, 30, 32, 35, 36, 45, 46, 48, 52, 53, 54, 55, 56, 57,

58, 59, 61, 63, 64, 69, 71, 72, 73, 74, 77, 82, 85, 86, 90,
94, 98, 99, 105, 106, 109, 110, 113, 114, 118, 126, 138,
145, 165, 173, 182

uj · 56, 74, 86
ungroup · 74
union · 59, 60, 74, 86, 128
update · 4, 10, 12, 21, 24, 28, 36, 37, 41, 47, 53, 74, 78,

81, 82, 83, 84, 90, 93, 97, 114, 132, 135, 138, 141, 144,
147, 148, 149, 150, 155, 156, 157, 160, 161, 180, 181

upper · 55, 61, 74, 92
value · 24, 34, 36, 38, 42, 46, 47, 48, 49, 52, 53, 54, 55,

57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 72, 73, 74,
77, 78, 80, 81, 84, 85, 87, 88, 95, 98, 99, 102, 103, 104,
108, 111, 113, 138, 147, 148, 149, 150, 153, 155, 156,
166, 171, 173, 181

var · 74
vs · 74
wavg · 26, 27, 39, 40, 41, 75, 88, 89, 90, 109, 180
where · 75
within · 75
wsum · 75
xasc · 37, 39, 74, 88, 109
xbar · 26, 40, 41, 44, 74
xcol · 74
xcols · 74
xdesc · 39, 75
xexp · 75
xgroup · 75
xkey · 61, 75, 81
xlog · 75
xprev · 41, 75
xrank · 75

H

Handles · 5, 110
Historical database (HDB) · 5, 6, 11, 12, 17, 19, 20, 21, 38,

134, 136, 140, 164, 169, 175, 176, 178, 181, 182
Customisation · 5, 153

I

IDE · 38, 40
IEEE Infinity · 59
IEEE NaN · 59
If statement · 98
Index · 51, 52, 66, 185
Index Assignment · 51
Indexing at depth · 49, 52
Insert · 4, 82
Installation · 3, 5, 6, 29, 135, 136, 177
Interface · 5, 20, 21, 118
Inter-Process Communication · 4, 101

J

Java · 5, 12, 16, 20, 23, 25, 26, 112, 120, 125, 133, 143
Joins · 4, 50, 55, 56, 74, 85, 86, 104

concatenation · 55

K

KDB+ architecture · 3, 5, 8, 16, 17, 130
Kdb+/taq · 5, 130
Kdb+/tick · 3, 5, 6, 8, 12, 16, 17, 19, 20, 21, 130, 132, 135,

136, 140, 155, 169, 182
Kdb+/tow · 5, 7, 130, 183
Key function · 48, 49
Kx Systems · 8, 19, 29, 132, 136, 140, 170, 175, 177

L

Left Join · 85
Lists · 4, 46, 47, 51, 59, 63, 73

M

Machine
Failure · 6, 165

Market Data Capture · 3, 14
Memory · 6, 167, 168, 169
Message Filters · 4, 102
Message Handlers · 5, 152
Microsoft Excel · 14, 26, 33, 64
Multiple Ticker-Plant · 3, 22

N

Network
Failure · 6, 165

Nulls · 48, 59, 98

O

Order of Evaluation · 4, 76

P

Performance · 6, 15, 135, 167
Primitive functions · 49
Protected Evaluation · 98

Q

q
adverbs · 4, 49, 50
Common errors · 3, 35
verbs · 4, 49, 51, 62, 73

qDBA (Database Administrator) · 38
q-language

adverbs · 4, 49, 50
verbs · 4, 49, 51, 62, 73

Queries · 3, 6, 16, 32, 37, 38, 39, 41, 92, 97, 167, 180
Parameters · 87

R

Real-time database (RTD) · 20, 21, 131, 133, 135, 136, 167

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFIDENTIAL 188

Customisation · 5, 152
Real-Time Subscribers · 5, 6, 133, 160
Research · 3, 14
return · 98
Reuters · 5, 6, 14, 19, 20, 132, 135, 136, 137, 140, 141, 142,

147, 149, 165, 169, 170, 173, 174
Reverse · 50, 58, 94
Rollups · 3, 44

S

Script files · 31, 93
Scripts · 5, 16, 31, 136
signal · 99
Simple Join · 85
Sockets · 5, 110, 115
SQL · 4, 11, 13, 23, 26, 76, 77, 78, 83, 86, 87, 88, 89, 90, 91
Stored Procedures · 4, 84
Straight Through Processing (STP) · 24, 25
Subscriptions · 6, 21, 132, 134, 138, 141, 158, 160

T

Table Arithmetic · 4, 84
Tables · 4, 5, 34, 47, 56, 74, 77, 79, 82, 83, 92, 93, 94, 104

Splayed · 92
Ticker-plant · 5, 6, 11, 12, 14, 20, 21, 22, 27, 130, 131, 132,

133, 134, 135, 136, 137, 138, 139, 140, 141, 148, 155,
156, 160, 161, 162, 163, 164, 165, 166, 167, 169, 171,
172, 174, 182, 184
Configuration · 5, 140
Technical Implementation · 6, 171

Trade Execution · 3, 17, 23
Trading

Equity · 3, 14
Fixed Income · 3, 14

Troubleshooting · 6, 169
Type · 30, 53, 54, 61, 106

U

Union Join · 86
upd function · 6, 36, 114, 121, 132, 143, 144, 145, 147, 155,

156, 157, 159, 165, 166, 171, 172
Updates · 4, 83
Upsert · 4, 82

V

VWAP Publisher · 6, 157, 159

W

Web Browser · 31
Web Server · 3, 26
While statement · 98

X

XML · 20, 25, 26, 133

 First Derivatives plc Kdb+/tick Manual

10/11/06 DRAFT CONFID

First Derivatives & Kx Systems

A

First D
manag
providi
softwa
institut

Their t
busine
sector
in the
suppor
manag
particu
on-line
softwa

First D
techno
accred

First D
Kx tech

• E

Training
Systems

• K
• K

c
• D
• P

Kdb+ a next-generation relational
database that handles time-ordered data
and financial analytics at real-time speeds.

Kdb+tick captures and analyzes billions of
trades and quotes in milliseconds.

Kdb+taq solves the problem of loading,
extracting and analyzing NYSE TAQ data.

Contact Michael O’Neill

A

Kx System
high perfor
enabling in
insurance
challenges
analyzing m
time.

Their brea
addresses
ordinary d
businesses

Kx System
built for sp
manageme

Kx products offer a unique combination of:

• high-speed analysis of streaming real-

time and massive historical data
• relational database capabilities for real-

time and historical data
• fast querying of data - a billion records

analyzed in seconds
• time-series functions built in
• open interfaces
• ability to combine streaming and

historical data into one database for
analysis and storage

bout First Derivatives

erivatives plc is a trading and risk
ement consulting firm specializing in
ng services to both financial
re vendors and large financial
ions.

eam of consultants has substantial
ss knowledge of the capital markets
combined with extensive experience
 development, implementation and
t of large-scale trading and risk
ement systems. The company has
lar expertise in the development of
 trading and risk management
re.

Partnership

erivatives has been working with Kx
logy since 1998 and is one of two
ited partners of Kx Systems.

erivatives offers a complete range of
nology services:

valuation Workshops

 Architecture & Design
, KSQL development resources
db/tick implementation and
ustomisation
atabase Migration
roduction Support

Products
First Derivatives House
Kilmorey Business Park
Newry, Co.Down, N.Ireland

Tel: +44 28 3025 2242
Fax: +44 28 3025 2060

Email: TUmoneill@firstderivatives.com UT
Web: TUwww.firstderivatives.com UT
Building Faster Solutions
ENTIAL
bout Kx Systems

s (TUwww.kx.comUT) provides ultra
mance database technology,
novative companies in finance,
and other industries to meet the
 of acquiring, managing and

assive amounts of data in real-

kthrough in database technology
the widening gap between what
atabases deliver and what today's
 really need.

s offers next-generation products
eed, scalability, and efficient data
nt.

Kx Technology
 189

