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Y = yV̂ (2.137)

Similarly, the reconstruction of ỹ, the approximation of a time series y,
from its SVD coefficients Y is given as follows.

ỹ = YV̂T (2.138)

The orthonormal basis vectors {Vi} of SVD allow us to minimize the
approximation errors for a collection of time series globally. In DFT and DWT,
the orthonormal basis vectors are data independent, that is, the basis vectors
chosen are not derived from the data. By contrast, SVD finds the optimal
basis vectors given the time series.

Here is an experiment on a collection of 300 random walk time series that
demonstrates the above properties of SVD. Figure 2.17(a) shows two of the
random walk time series and their SVD approximations. Each of the time
series has the length n = 250. They are approximated by 8 SVD coefficients.
We can see that with only 8 SVD coefficients, we capture the raw shape of
the time series very well. The basis vectors for the SVD are also shown in fig.
2.17(b). We can see that the basis vectors are similar to the basis vectors of
DFT, though they are not exactly trigonometric functions.

To demonstrate the adaptivity of SVD, we add some components to each
of time series in the collection. A short burst is superimposed to each time
series either around the time point of 100 or 200. Two of the resulting time
series samples are shown in fig. 2.18(a). We compute the SVD of the new
collection of time series again and show their SVD approximations. The SVD
approximations follow the new burst very closely. The reason is that the basis
vectors computed from the new data can incorporate the burst adaptively. In
fig. 2.18(b), the basis SVD vectors for the new collection of time series show
the new burst components clearly.

For a collection of time series, the SVD approximations are the clos-
est approximations overall in terms of Euclidean distance comparing to any
orthogonal-based transform such as DFT and DWT.

2.4 Sketches

The data reduction techniques we have discussed so far are all based on or-
thogonal transformations. If we think of a time series as a point in some
high dimensional coordinate space, orthogonal transformation is just the ro-
tation of the axes of the coordinate space. If a collection of time series have
some principal components and the transformed axes are along these princi-
pal components, we can keep only those axes corresponding to the principal
components to reduce the dimensionality of the time series data.

But what if the data do not have any clear principal components? Consider
a collection of time series of white noise for example. Clearly, we cannot use



2.4 Sketches 59

0 50 100 150 200 250
-6

-4

-2

0

2

4

6

8
Time series 1

Original Time Series
SVD approximation

0 50 100 150 200 250
-3

-2

-1

0

1

2

3

4
Time series 2

Original Time Series
SVD approximation

(a) The SVD approximations

0 50 100 150 200 250
-0.1

0

0.1

0 50 100 150 200 250
-0.1

0

0.1

0 50 100 150 200 250
-0.1

0

0.1

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.2

0

0.2

(b) The SVD basis vectors

Fig. 2.17. SVD for a collection of random walk time series
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Fig. 2.18. SVD for a collection of random walk time series with bursts
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orthogonal transformations such as DFT, DWT or SVD. We need a new kind
of Data Reduction technique: random projection.

Random projection will project a high dimensional point corresponding to
a time series to a lower dimensional space randomly based on some distribu-
tion. If we choose the distribution carefully, we can have some probabilistic
guarantee on the approximation of the distance between any two higher di-
mensional points to their corresponding distance in the lower dimensional
space.

In random project, we try to approximate the distance between each pair
of time series given a collection of time series, instead of getting some approx-
imation of time series as for DFT, DWT and SVD.

Unlike data reduction based on orthogonal transformations, random pro-
jection can approximate different types of distances. We will start with the
Euclidean Distance.

2.4.1 Euclidean Distance

Random projection is based on the construction of the sketches for a time
series.

Definition 2.46 (sketches). Given a time series xn = (x(1), x(2), ..., x(n))
and a collection of k vectors rn

i = (ri(1), ri(2), ..., ri(n)), i = 1, 2, ..., k, where
all elements ri(j), i = 1, 2, ..., k, j = 1, 2, ..., n, are random variables from a
distribution D, the D-sketches of x are defined as s(x) = (s(1), s(2), ..., s(k)),
where

s(i) = 〈x, ri〉, i = 1, 2, ..., k (2.139)

i.e., s(i) is the inner product between x and ri.

The sketches can be written as

s(x) = xR, (2.140)

where

Rn×k = (rT
1 , rT

2 , . . . , rT
k ) =




r1(1) r2(1) . . . rk(1)
r1(2) r2(2) . . . rk(2)

...
...

. . .
...

r1(n) r2(n) . . . rk(n)


 . (2.141)

The collection of random vectors R is called the sketch pool. Obviously, the
time complexity to compute the sketch for each time series is O(nk).

If the distribution D is a Gaussian distribution, we can compute the Gaus-
sian sketches of a time series. The most important property of sketches is
stated by the Johnson-Lindenstrauss lemma[52] for Gaussian sketches.
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Lemma 2.47. Given a collection C of m time series with length n, for any
two time series x,y ∈ C, if ε < 1/2 and k = 9 log m

ε2 , then

(1− ε) ≤ ||s(x)− s(y)||2
||x− y||2 ≤ (1 + ε) (2.142)

holds with probability 1/2, where s(x) is the Gaussian sketches of x.

In other words, Johnson-Lindenstrauss lemma says that a collection of m
points in a n-dimensional space can be mapped to their k-dimensional sketch
space. The Euclidean distances between any pair of points in the transformed
sketch space approximate their true distance in the n-dimensional space with
probability 1/2. There are also other flavors of random projection based on
Johnson-Lindenstrauss lemma that give similar probabilistic approximation
of Euclidean distance, such as [7].

From the lemma, we can see that if we increase the size of the sketches k,
the approximation error ε will be smaller. Also we can boost the probability
of success using standard randomization methods. If a sketch approximation
is within ε, we call it a success. We keep s different sketches and repeat the
approximate distance computation s times, the probability that the median of
the approximate distances is within precision ε is the same as the probability
that the number of success is larger than s/2. From the Chernoff bound, if we
compute O(log 1/δ) repetition of sketches and take the median of the distance
between the sketches, the probability of success can be boosted to 1− δ.

Using sketches to approximate the Euclidean distances between time series,
we do not require the time series to have principal components. We perform
the follow experiments to verify this.

The time series under consideration is a collection of 10, 000 stock price
time series. The time unit of the time series is one second. Each time series in
the collection has a size 3, 600, corresponding to one hour’s data. We compute
the sketches of these time series with sketch size k = 40 and therefore reduce
the dimensionality of the time series from 3, 600 to 40. We randomly pick
1, 000 pairs of time series in the collection and compute their Euclidean dis-
tances. The approximations of the distances using sketches are also computed.
Let the approximation error be the ratio of the absolute difference between
the approximate distance and the true distance to the true distance. The dis-
tributions of approximation errors using sketches are shown in fig. 2.19(a).
For example, from the figure we can see that 90% of the approximation errors
are within 0.32. We also repeat the experiment for larger sketch sizes k = 80
and k = 160. Larger sketch sizes give better approximations. For example,
with k = 160, 90% of the approximation errors are within 0.22, while with
k = 80, 90% of the approximation errors are within 0.19.

We know that the stock price data can be modeled by a random walk
and they have a few large principal components. However, the price return
time series is close to a white noise time series. The price return time series
is defined as the time series derived from the price time series by computing
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Fig. 2.19. The approximation of distances between time series using sketches; 1
hour of stock data
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the point-by-point price differences. That is, given a price time series xn =
(x(1), x(2), ..., x(n)), its price return time series is dxn = (x(2)− x(1), x(3)−
x(2), ..., x(n) − x(n − 1)). There is no any principal component in the price
return time series. Will the distance approximations using sketches work for
these price return time series? We repeat the previous experiment on the price
return time series. The results are shown in fig 2.19(b). We can see that the
qualities of approximations using sketches are very close for both data sets.

One interesting observation is that the sketch size k depends only on the
number of time series m, the approximation bound ε and the probability
guarantee bound δ. The sketch size k does not depend on the length of the
time series n. This makes random projections ideal for data reduction for
a relatively small collection of time series with very long length. We repeat
the previous experiment on a collection of stock price time series with longer
lengths. The size of the collection of time series is the same as before, but the
length of each time series in the collection is doubled, corresponding to two
hours’ data. From fig. 2.20, we can see that the same quality of approximation
using sketches is achieved even though the time series are longer.

The size of the sketches can be large if the approximation requirement is
high (small ε and δ). We can use the SVD to further reduce the dimensions of
the sketch space. This works especially well if the time series data have some
principal components after the random projection.

2.4.2 Lp Distance

In addition to Euclidean distance, sketches can also be used for approximation
of Lp-distance. Although Euclidean distance is used most often for time series,
other distance measures between time series can provide interesting results
too.

The approximation of Lp-distance is based on the concept of stable
distribution[77]. A stable distribution D(p) is a statistical distribution with
parameter p ∈ (0, 2]. An important property of stable distribution is as fol-
lows.

Definition 2.48 (stable distribution). A distribution D(p) is stable if for
any n real number a1, a2, ..., an and n i.i.d. (independent and identically dis-
tributed) random variables X1, X2, ..., Xn from D(p),

n∑

i=1

aiXi ∼ (
n∑

i=1

|ai|p)1/pX, (2.143)

i.e.,
∑n

i=1 aiXi has the same distribution as (
∑n

i=1 |ai|p)1/pX, where X is
drawn from D(p).

D(2) is a Gaussian distribution and D(1) is Cauchy distribution. Indyk[46]
shows that one can construct D(p) sketches to approximate Lp distance.
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Fig. 2.20. The approximation of distances between time series using sketches; 2
hours of stock data
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Lemma 2.49. Given a collection C of m time series with length n, for any
two time series x,y ∈ C, if k = c log(1/δ)

ε2 for some constant c, let s(x) and
s(y)be the D(p) sketches of x and y with size k, then

(1− ε) ≤ B(p)median(|s(x)− s(y)|)
||x− y||p ≤ (1 + ε) (2.144)

holds with probability 1− δ, where B(p) is some scaling factor.

In the above lemma, |s(x) − s(y)| is a vector with size k. The median of
|s(x)− s(y)| is the median of the k values in the vector. It turns out that the
scaling factor is 1 for both p = 1 (Cauchy distribution) and p = 2 (Gaussian
distribution).

It is also possible to approximate Hamming distance L0 between pairs of
time series using stable distribution. The reader can refer to the recent result
in [24].

In the time series data mining research, sketch-based approaches were used
to identify representative trends [47, 25], to compute approximate wavelet
coefficients[38],etc. Sketches have also many applications in streaming data
management, including multidimensional histograms [90], data cleaning [28],
and complex query processing [31, 27].

2.5 Comparison of Data Reduction Techniques

Having discussed the four different data reduction techniques, we can now
compare them. This will help the data analysts choose the right data reduction
technique. The comparison is summarized in table 2.4.

First we discuss the time complexity in computing the data reduction for
each time series with length n.

• Using the Fast Fourier Transform, computing the first k DFT coefficients
will take time min

(
O(n log n), O(kn)

)
.

• The time complexity for a DWT computation is lower, O(n).
• The time complexity of SVD depends on the size of the collection of time

series under consideration. For a collection of m,m >> n time series,
SVD takes time O(m+n3). The SVD for each time series requires O(m

n +
n2) time. This is the slowest among all the data reduction techniques we
discuss.

• The time complexity for the random projection computation is O(nk),
where k is the size of the sketches.

DFT, DWT and SVD are all based on orthogonal transforms. From the
coefficients of the data reduction, we can reconstruct the approximation of the
time series. By comparison, random projection is not based on any orthogo-
nal transform. We cannot reconstruct the approximation of the time series.
Pattern matching does not have to be information preserving.
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In terms of distance approximation, DFT, DWT and SVD can be used
for the approximation of only Euclidean (L2) distance with one exception.
Piecewise Aggregate Approximation (PAA), a transform closely related to the
Discrete Haar Wavelet Transform, can handle any distance metric Lp, p 6= 2,.

Next we discuss the basis vectors using in these data reduction technique.
For the DFT, the basis vectors are fixed to be vectors based on trigonometric
functions. One particular benefit of using DWT is that one can choose from a
vast number of wavelet families of basis vectors. SVD is desirable in many cases
because the basis vectors are data dependent. These vectors are computed
from the data to achieve optimality in reduce approximation error. But this
also implies that we need to store the basis vectors in addition to the SVD
coefficients if we want to reconstruct the time series. The basis vectors of the
random projection are chosen, well, randomly.

To approximate a time series by a few coefficients, the DFT, DWT and
SVD all require the existence of some principal components in the time series
data. Random projection, by contrast, does not make any assumption about
the data. It can work even for white noise. This makes random projection very
desirable for time series data having no obvious trends such as price differencs
in stock market data.

A particular drawback of DFT as a data reduction method is that the basis
vectors of DFT do not have compact support. This makes it very hard for DFT
to approximate time series having short term bursts or jumps. Most of the
DWT basis vectors have compact support. Therefore, DWT can approximate
a time series with jumps, but we need to choose a subset of coefficients that
are not necessarily the first few DWT coefficients. SVD deals with the problem
of discontinuity in the time series data more gracefully. If a short term bursts
or jumps are observed at the same location of most time series, it will be
reflected by the basis vectors of SVD at that location.

To conclude this chapter, in fig. 2.21 we present a decision tree to help you
choose the right data reduction technique given the characteristics of your
time series data.

2.6 Questions

1. a) Write a program in your favorite language (c, matlab, k, etc.) to im-
plement the computation of Discrete Fourier Transform.

b) Write a function that generates a random walk time series of length
n.

c) Compute the Discrete Fourier Transform of the random walk time
series you generate.

2. Prove theorem 2.12(b).
3. a) Download the Fast Fourier Transform program from http://www.fftw.org/

and perform the FFT on the same time series you generate. Does it
give you the same results as your codes?
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Table 2.4. Comparison of data reduction techniques

Data Reduction Random
Technique DFT DWT SVD Projection

Time
Complexity n log n n m

n
+ n2 nk

Based on
Orthogonal Transform Yes Yes Yes No

Approximation of
Time Series Yes Yes Yes No

Lp

Distance p = 2 p = 2 p = 2 p = [0, 2]

Basis fixed fixed adaptive
Vectors one choice many choices optimal random

Require Existence of
Principal Components Yes Yes Yes No

Compact
Support No Yes Yes Not Relevant
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Fig. 2.21. A decision tree for choosing the best data reduction technique


