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ABSTRACT

1. The traditional (quadratic) Markowitz model produces portfolios that are stochastically
dominated by portfolios not on the efficient frontier. This is BAD.

2. Replacing the quadratic risk measure with a mean absolute deviation (MAD) measure
corrects this defect.

3. The MAD model can be formulated as a parametric linear programming problem (the
risk parameter λ is the parameter).

4. The parametric simplex method can be used with λ as the parameter of the parametric
method.

5. Doing so, one finds ALL portfolios on the efficient frontier in roughly the same time as
it takes to find just one portfolio (corresponding, say, to λ = 0).

6. The speedup is huge.

7. The parametric simplex method has other useful features—to be discussed time permit-
ting.



1. Markowitz Shares the 1990 Nobel Prize

Press Release - The Sveriges Riksbank (Bank of Sweden) Prize in Economic Sciences
in Memory of Alfred Nobel

KUNGL. VETENSKAPSAKADEMIEN 
THE ROYAL SWEDISH ACADEMY OF SCIENCES

16 October 1990 

THIS YEAR’S LAUREATES ARE PIONEERS IN THE THEORY OF FINANCIAL ECONOMICS
AND CORPORATE FINANCE

The Royal Swedish Academy of Sciences has decided to award the 1990 Alfred Nobel Memorial Prize
in Economic Sciences with one third each, to 

Professor Harry Markowitz, City University of New York, USA,
Professor Merton Miller, University of Chicago, USA,
Professor William Sharpe, Stanford University, USA,

for their pioneering work in the theory of financial economics.

Harry Markowitz is awarded the Prize for having developed the theory of portfolio choice; 
William Sharpe, for his contributions to the theory of price formation for financial assets, the so-called,
Capital Asset Pricing Model (CAPM); and
Merton Miller, for his fundamental contributions to the theory of corporate finance. 

Summary
Financial markets serve a key purpose in a modern market economy by allocating productive resources
among various areas of production. It is to a large extent through financial markets that saving in
different sectors of the economy is transferred to firms for investments in buildings and machines.
Financial markets also reflect firms’ expected prospects and risks, which implies that risks can be spread
and that savers and investors can acquire valuable information for their investment decisions. 

The first pioneering contribution in the field of financial economics was made in the 1950s by Harry
Markowitz who developed a theory for households’ and firms’ allocation of financial assets under
uncertainty, the so-called theory of portfolio choice. This theory analyzes how wealth can be optimally
invested in assets which differ in regard to their expected return and risk, and thereby also how risks can
be reduced. 

  Copyright© 1998 The Nobel Foundation 
 For help, info, credits or comments, see "About this project" 

  Last updated by Webmaster@www.nobel.se / February 25, 1997 



2. Hedging

Investment A: up 20%, down 10%, equally likely—a risky asset.

Investment B: up 20%, down 10%, equally likely—another risky asset.

Correlation: up years for A are down years for B and vice versa.

Portfolio—half in A, half in B: up 5% every year! No risk!



3. The Ingredients: Risk and Reward

Raw Data:

Rj(t) = return on asset j

in time period t

Note: Rj is a random variable with
the t’s forming the sample space

Derived Data:

µj =
1

T

T∑
t=1

Rj(t) = ERj

Dtj = Rj(t)− µj.

Decision Variables:

xj = fraction of portfolio

to invest in asset j

R(x) =
∑

j

xjRj

Decision Criteria:

µ(x) =
∑

j

µjxj

ρvar(x) =
1

T

T∑
t=1

∑
j

Dtjxj

2

= Var(R(x))

ρmad(x) =
1

T

T∑
t=1

∣∣∣∣∣∣
∑

j

Dtjxj

∣∣∣∣∣∣
ρp(x) = E

[
1− p

p
(qp(x)−R(x)) ∨ (R(x)− qp(x))

]



4. Quadratic Markowitz Problem

maximize λ
∑

j

µjxj −
1

T

T∑
t=1

∑
j

Dtjxj

2

subject to
∑

j

xj = 1

xj ≥ 0 for all investments j

λ is the risk parameter.



5. MAD Markowitz Problem

maximize λ
∑

j

µjxj −
1

T

T∑
t=1

∣∣∣∣∣∣
∑

j

Dtjxj

∣∣∣∣∣∣
subject to

∑
j

xj = 1

xj ≥ 0 for all investments j

Not a linear programming problem. But it’s easy to convert.

There are two reasons why Quadratic Markowitz is bad, whereas MAD is good:

• Variance is a bad risk measure.

• Linear programming (especially parametric LP) is easier/faster than QP.



6. cV@R Markowitz Problem

maximize λµ(x)− ρp(x)

subject to
∑

j

xj = 1

xj ≥ 0 for all investments j

Not a linear programming problem. But it’s easy to convert.

cV@R is also good.



7. Good Risk Measures

Stochastic Dominance

Second order stochastic dominance characterizes those random variables that every risk averse
decision maker would prefer to a given random variable:

Definition Random variable V (second-order) stochastically dominates random variable S
(V �

2
S) if and only if E(U(V )) ≥ E(U(S)) for every increasing concave function U(·).

Theorem V �
2
S if and only if F

(2)
V ≤ F

(2)
S , where

F
(2)
V (z) =

∫ z

−∞
P(V ≤ r)dr.

Theorem There are optimal solutions to the quadratic Markowitz model that are stochas-
tically dominated by other (non-optimal) portfolios.

Theorem In the MAD Markowitz model, for λ ≥ 2, optimal portfolios are not stochastically
dominated.

Theorem In the cV@R Markowitz model, for λ ≥ 1, optimal portfolios are not stochastically
dominated.



8. Proof Outline for Last Theorem

R(x) �
2
R(y) =⇒ µ(x) ≥ µ(y) (1)

As with medians, quantiles can be found by optimization:

ρp(x) = min
z

E
(

1− p

p
(z −R(x)) ∨ (R(x)− z)

)
Consider

GR(x)(p) := pµ(x)− pρp(x)

= sup
z

(
pµ(x)− E(1− p)(z −R(x)) ∨ p(R(x)− z)

)
= sup

z

(
pz − F

(2)
R(x)(z)

)

R(x) �
2
R(y) ⇐⇒ F

(2)
R(x) ≤ F

(2)
R(y) =⇒ GR(x)(p) ≥ GR(y)(p) ∀p

From this last inequality we get

µ(x)− ρp(x) ≥ µ(y)− ρp(y) (2)

The result follows immediately from (1) and (2).



9. MAD Markowitz: LP Formulation

maximize λ
∑

j

µjxj −
1

T

T∑
t=1

yt

subject to −yt ≤
∑

j

Dtjxj ≤ yt for all times t∑
j

xj = 1

xj ≥ 0 for all investments j
yt≥ 0 for all times t

This is a family of LPs parametrized by λ.

Interior point methods could solve a single instance quickly.

But, the parametric simplex method can solve the entire family (over all λ, not just some
discrete subset) in one fell swoop.



Adding Slack Variables w+
t and w−

t

maximize λ
∑

j

µjxj −
1

T

T∑
t=1

yt

subject to −yt −
∑

j

Dtjxj + w−
t = 0 for all times t

−yt +
∑

j

Dtjxj + w+
t = 0 for all times t∑

j

xj = 1

xj ≥ 0 for all investments j
yt, w

−
t , w+

t ≥ 0 for all times t



10. The Solution for Large λ

Varying the risk bound 0 ≤ λ < ∞ produces the efficient frontier.

Large values of λ favor reward whereas small values favor minimizing risk.

Beyond some finite threshold value for λ, the optimal solution will be a portfolio consisting
of just one asset—the asset j∗ with the largest average return:

µj∗ ≥ µj for all j.

It’s easy to identify basic vs. nonbasic variables:

• Variable xj∗ is basic whereas the remaining xj’s are nonbasic.

• All of the yt’s are basic.

• If Dtj∗ > 0, then w−
t is basic and w+

t is nonbasic. Otherwise, it is switched.



The Basic Optimal Solution for Large λ

Let

T+ =
{
t : Dtj∗ > 0

}
, T− =

{
t : Dtj∗ < 0

}
, and εt =

{
1, for t ∈ T+

−1, for t ∈ T−

It’s tedious, but here’s the optimal dictionary (for λ large):

ζ = 1
T

T∑
t=1

εtDtj∗ − 1
T

∑
j 6=j∗

T∑
t=1

εt(Dtj −Dtj∗)xj − 1
T

∑
t∈T−

w−
t − 1

T

∑
t∈T+

w+
t

+λµj∗ +λ
∑
j 6=j∗

(µj − µj∗)xj

yt = −Dtj∗ −
∑
j 6=j∗

(Dtj −Dtj∗)xj +w−
t t ∈ T−

w−
t = 2Dtj∗ +2

∑
j 6=j∗

(Dtj −Dtj∗)xj +w+
t t ∈ T+

yt = Dtj∗ +
∑
j 6=j∗

(Dtj −Dtj∗)xj +w+
t t ∈ T+

w+
t = −2Dtj∗ −2

∑
j 6=j∗

(Dtj −Dtj∗)xj +w−
t t ∈ T−

xj∗ = 1 −
∑
j 6=j∗

xj



Daily Returns for 12 Years on 719 Assets

Click here for an expanded browser view.

C:/usr/rvdb/307/Spr02/lectures/return2plot_big.gif


11. Computing the Efficient Frontier

Using a reasonably efficient code for the parametric simplex method (simpo), it took 22,000
pivots and 1.5 hours to solve for one point on the efficient frontier.

Customizing this same code to solve parametrically for every point on the efficient frontier,
it took 23,446 pivots and 57 minutes to compute every point on the frontier.

The efficient frontier consists of 23,446 distinct portfolios. Click here for a partial list (warn-
ing: the file is 2.5 MBytes). The complete list makes a 37 MByte file.

C:/usr/rvdb/public_html/JAVA/pivot/advancedbigfont.html
C:/usr/rvdb/307/Spr02/lectures/return2pf.txt


12. Description of the Parametric Simplex Method

General Problem:

maximize ζ(x) = cTx

subject to: Ax = b

x ≥ 0.

Identify partition of variables into basic and nonbasic

x
R
=

[
xB
xN

]
Similarly, rearrange columns of A and rows of c:

A
R
=

[
B N

]
c

R
=

[
cB
cN

]
Dictionary (or tableau) arrangement:

ζ = ζ̄ − z̄T
NxN

xB = x̄B − B−1NxN ,

where
x̄B = B−1b, z̄N = (B−1N)TcB − cN , ζ̄ = cT

BB
−1b



Dictionary solution:
xN = 0 xB = x̄B

Optimal iff:

Primal Feasible (x̄B ≥ 0) and Dual Feasible (z̄B ≥ 0)

Parametric perturbation:

ζ = ζ̄ +lλ −z̄T
NxN

+lλ +qλ2 −λẑT
NxN

xB = x̄B +λx̂B −B−1NxN .

Initially pick x̂B > 0 and ẑN > 0 (and, of course, l = 0 and q = 0) so that dictionary solution
is optimal for λ large.

The algorithm is a homotopy method in which λ is driven from ∞ to 0 all the while main-
taining optimality of the current dictionary.

Optimality is maintained by doing standard primal/dual simplex pivots.



13. Two Reasons to Love the Parametric Simplex
Method

• Randomize the coefficients defining the perturbation according to a probability distribu-
tion for which P(C1 = C2) = 0 whenever C1 and C2 are independent random variables
having this distribution. For example, uniform on [0, 1] works. Then, for λ 6= 0, the
dictionary will be nondegenerate with probability one.

• Assuming, no degenerate pivots, a simple thought experiment suggests that the expected
number of pivots is (n + m)/2. Experimental tests support this conjecture.



REVIEW

• A portfolio is bad if another portfolio dominates it (stochastically).

• Many portfolios on Markowitz’s “efficient frontier” are bad.

• MAD Markowitz isn’t bad.

• MAD Markowitz is a parametric LP.

• Even more, using the parametric simplex method the entire efficient frontier can be
computed in the time normally required to find just one point on the frontier.

• Lastly, our efficient frontier is completely determined by a finite set of portfolios (vs. a
continuum).
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