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ABSTRACT

In the history of modern computation, large mechanical calculators preceded computers.

A person would sit there punching keys according to a procedure and a number would

eventually appear. Once calculators became fast enough, it became obvious that the critical

path was the punching rather than the calculation itself. That is what made the stored

program concept vital to further progress. Once the instructions were stored in the machine,

the entire computation could run at the speed of the machine.

This book shows how to do the same thing for DNA computing. Rather than asking

a robot or a person to pour in specific strands at different times in order to cause a DNA

computation to occur (by analogy to a person punching numbers and operations into a

mechanical calculator), the DNA instructions are stored within the solution and guide the

entire computation. We show how to store straight line programs, conditionals, loops, and

a rudimentary form of subroutines.

To achieve this goal, the book proposes a complete language for describing the in-

trinsic topology of DNA complexes and nanomachines, along with the dynamics of such a

system. We then describe dynamic behavior using a set of basic transitions, which operate

on a small neighborhood within a complex in a well-defined way. These transitions can be

formalized as purely syntactical functions of the string representations.

Building on that foundation, the book proposes a novel machine motif which consti-

tutes an instruction stack, allowing for the clocked release of an arbitrary sequence of DNA

instruction or data strands. The clock mechanism is built of special strands of DNA called

“tick” and “tock.” Each time a “tick” and “tock” enter a DNA solution, a strand is released

from an instruction stack (by analogy to the way in which as a clock cycle in an electronic

computer causes a new instruction to enter a processing unit). As long as there remain

strands on the stack, the next cycle will release a new instruction strand. Regardless of

the actual strand or component to be released at any particular clock step, the “tick” and

“tock” fuel strands remain the same, thus shifting the burden of work away from the end

user of a machine and easing operation. Pre-loaded stacks enable the concept of a stored

program to be realized as a physical DNA mechanism.

A conceptual example is given of such a stack operating a walker device. The stack

allows for a user to operate such a clocked walker by means of simple repetition of adding

two fuel types, in contrast to the previous mechanism of adding a unique fuel—at least 12

different types of strands—for each step of the mechanism.

We demonstrate by a series of experiments conducted in Ned Seeman’s lab that it is

possible to “initialize” a clocked stored program DNA machine. We end the book with a

discussion of the design features of a programming language for clocked DNA programming.

There is a lot left to do.
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Introduction

Imagine the world before electronic computers. If an enterprise needed to figure out, say,

a scheduling problem, it would have to call an expert who might come trotting along with

a calculator. The expert would be needed because he or she would know the procedures to

use. Nowadays, the enterprise can simply download scheduling software, store the software

inside an electronic computer and execute it.

The current world of DNA computing is much like the calculator era. Researchers

develop a sophisticated collection of DNA operations (analogous to designing and installing

logarithms and trigonometric functions inside calculators or slide rules). This is useful and

vital work. But if an operation requires N different strands, then the inventor must ship N

vials containing those different strands to a site that is going to perform that operation.

Moreover, the strands must be introduced into the solution in a specific order, so it might

help to send an expert along just in case.

This book shows a way to construct clocked DNA programs that can be shipped

from one site to another, much in the same way that scheduling software can be shipped

around the world. An inventor (DNA software developer) will be able to create a program

consisting of millions of DNA “sculptures” and then send them to labs all over the world.

The lab would have to pour two “clock” strands called “tick” and “tock” in an alternating

fashion to run the DNA program.

We begin by defining a language that can describe states of a set of strands of DNA.

Our description is graph theoretic except in Chapter 3 when it is topological. (The topo-

logical description captures the order of strands around each junction, whereas the graph-

theoretic description does not, but that ordering is unnecessary for our clocked stored

programs.) We then use the language to describe transitions to move from one state to an-

other. This gives us the ability to recapitulate all DNA machines that we know of. Finally,

we describe a clocking mechanism that allows us to store clocked programs inside DNA

that can mimic any machine in the literature and many more.

1.1 A SHORT HISTORY OF DNA COMPUTING

At a certain level of abstraction a single DNA strand is just a sequence of letters from

the alphabet A, C, G, and T. Two single strands will “hybridize” to one another to form

a duplex strand if each A in one single is paired with a T of the other single and each

C in one single is paired with a G of the other. This is called Watson-Crick pairing, in
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honor of the primary discoverers of the DNA double-helix. Watson-Crick pairing provides

the foundation for 90% of DNA computing.

DNA nanotechnology started with the pioneering work of Ned Seeman who was then

at the state university of New York at Stony Brook. As Seeman tells it [Shasha and Lazere,

2010], two colleagues Leonard Lerman and his post-doc Bruce Robinson asked him to

look at a DNA structure called a Holliday Junction (Figure 1.1). A Holliday junction is a

four-stranded structure that resembles a four-way road intersection. Whereas stable DNA

in nature has a linear topology, Lerman and Robinson were asking Seeman for help in

building a model to explain how the nonlinear Holliday junction appears and disappears.

After helping his colleagues, Seeman decided that a more interesting question was

how to create structures that would remain non-linear. Contemplating the Escher painting

Depth which shows a multi-dimensional school of fish, each having six propeller-like fins,

Seeman noted that not only were the fish topologically six-arm junctions, but also that the

fish were arranged like the molecules in a molecular crystal. There was periodicity front to

back, top to bottom, left to right.

Inspired by this, he constructed a variety of stable non-linear DNA structures[Seeman,

1982][Zhang and Seeman, 1994], making use of Watson-Crick pairing. The branch migration

structure is a fundamental such stable structure. (Figure 1.2). Later, he and his students

built a scafolding, known as a double-crossover (Figure 1.3), upon which to attach other

DNA. Seeman’s success in creating intricate nano-scale sculptures led many other labs to

extend his works (there are over 50 labs in the world working on DNA nano-technology as

of this writing).

We, however, will focus on efforts to make nucleotides do general-purpose computing.

Charles Bennet [Bennett, 1973] did the earliest work on models for computing using molec-

ular biological building blocks. His idea was to use RNA to perform some operations of a

Turing machine. This work was theoretical but suggestive. DNA computing as we know it

requires the ability to make DNA contort in controllable ways, an achievement that had to

wait until Seeman’s work and the startling paper of Leonard Adleman[Adleman, 1994]

Adleman used DNA to solve the directed Hamiltonian Path problem among cities.

The Hamiltonian Path problem is to construct a path among simulated cities such that the

path visits every city exactly once. Adleman showed that this problem could be “solved”

in DNA by pouring various single strands into a solution and then fishing out promising

strands using magnetized iron balls coated with the complements of the DNA representing

cities. Because of the algorithm’s historical importance and the techniques it illustrates, we

describe Adleman’s approach in some detail.

To start the process, Adleman represented cities as single strands of DNA and legs

between cities as other single strands. Each “leg strand” had a left half that could bind the

DNA for some departure city X (via Watson-Crick base pairing) and a right half that could

bind the DNA for an arrival city Y (figure 1.4). (As we will see in the physical chemistry
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Figure 1.1: Two configurations of a four-way DNA intersection. In one configuration, the top

right and the bottom left helices are linked. In the other, the top left and the top right are linked.

The Watson-Crick attractions are equally long in the two cases, so either state can occur.
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Figure 1.2: Branch Migration: Some of the ways in which strands of DNA may escape linearity.

Watson-Crick pairing (A binds with T, and C binds with G) permits stable non-linear shapes

(Courtesy of Ned Seeman.)

Figure 1.3: Double-crossover: This set of interlocking strands is quite strong at angstrom

scales, thus providing a scaffold upon which to attach other DNA strands.
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section, every strand has an order. In this descrioption, left half means the first half of the

strand.) When all city and leg strands were mixed together, the leg strands held the city

strands together in chains of various lengths.

Adleman located double strands whose length indicated that they had gone through

exactly N cities (by using a technique called gel electrophoresis that can measure the length

of strands). There was still the possibility that some of those strands included the same cities

several times while missing other cities. So Adleman passed his solution through a series of

filters that used magnetized iron balls coated with DNA. Each ball was complementary to

the DNA for some city. Any strands that stuck to all the balls were Hamiltonian paths. The

idea that DNA could “solve” even a small instance of an NP-complete problem1 captured

the world’s imagination.

Whereas Adleman had shown how to solve a particular problem, Paul Rothe-

mund[Rothemund, 1996] showed that a Turing machine could be encoded using DNA and

restriction enzymes. (He had in fact worked out most of these ideas before Adleman’s pa-

per appeared, but he couldn’t convince his professors that his work was interesting. This

demonstrates that even eminent professors can be as unimaginative as paperweights at

times.) Rotheman’s theoretical machine consisted of transitions encoded in DNA and re-

striction enzymes. When the transitions together with DNA ligase are applied to a state of

the Turing machine (encoded as DNA), the machine enters a new state. Because a Turing

Machine can simulate the behavior of any computer, this achievement showed that arbitrary

computation was in fact possible.

Ogihara and Ray[Ogihara and Ray, 1999] propose a method for simulating Boolean

circuits in DNA. Benenson et al. [Benenson, Paz-Elizur, Adar, Keinan, Livney, and Shapiro,

2001] again use restriction nuclease, DNA ligase, and ATP, as well as DNA that encodes

both the “transition molecules” and the initial state of the computation. In their work,

all inputs are mixed together and the chemical computation runs autonomously and asyn-

chronously.

A very recent article by Qian et al.[Qian, Soloveichik and Winfree, 2011] has proposed

a direct two stack implementation of a Turing machine. Transitions are designed as bi-

directional, reusable “fuel” complexes built entirely from DNA. For example, a set of fuel

complexes that effect the transition X Y → A B will transform a solution rich in strands X

Y to one rich in strands A B. The bi-directionality comes from the fact that the fuel complex

is not destroyed by this transition. Instead, if there is an overwhelming concentration of A

B later, the transition can produce X Y from A B. Using such transitions, Qian et al. show

how to append onto and remove DNA strands from DNA stacks. The authors show that this

is an efficient simulation of Turing machines. As in previous approaches, the computation

runs autonomously and asynchronously. The trouble with asynchronous approaches is that

1The Hamiltonian Path problem, like other NP-complete problem, has the property that the only guaranteed

solution amounts to trying all possibilities. For the Hamiltonian Path problem, all possibilities means trying

all possible paths.



6 1. INTRODUCTION



1.2. UNDERLYING PHYSICAL CHEMISTRY 7

each of these environments will have millions of Turing Machines. If they are asynchronous,

then they can be in completely different and possibly interfering states.

As we will see in Chapter 4, Watson-Crick pairing leads to the construction of DNA

walking robots and other nanomechanical devices. Such achievements are due to a remark-

able observation by Bernard Yurke and his colleagues[Yurke, Turberfield, Mills, Simmel,

and Neumann, 2000]: Watson-Crick pairing can be “competitive.” That is, suppose single

strand X is only partially paired with single strand Y. Simplifying slightly (by ignoring di-

rectionality), if X = AAAACCC and Y = AAAAGGG, then X and Y will pair at the right

(where C hybridizes to G), not at the left. In their liquid romance, the parts of the strands

that hybridize will embrace one another and the parts that don’t will point away from one

another. A tighter embrace leads to a more stable coupling. Suppose another strand Z (say

AATTGGG) comes along that has a longer pairing with X (AAAACCC). Because this will

lead to a tighter embrace, Z will “displace” Y using a zipper-like action as illustrated in

the cartoon of Figure 1.5. Think California marriages.

Displacement will allow us to construct instruction stacks in a DNA solution. Each

stack is a DNA sculpture containing heterogeneous strands wrapped together with fixed

strands. Later, displacement will enable a simple protocol of pouring in other fixed strands

over specific time intervals to peel away one strand (an “instruction”) from each stack at a

time. This leads to the possibility of parallel synchronous execution.

Martyn Amos [Amos, 2006] has written a friendly history of computing on biological

substrates. He also offers well-founded speculations about the near and far future.

The goal of this monograph is much more specialized. We propose a way to encode

arbitrary DNA operations in the natural model of a clocked parallel machine. In operation,

this machine would store a program in DNA which would later “execute” thanks to a

steady drumbeat of tick and tock single strands. Just as clocking simplifies the design

of electronic computers and effectively makes programming possible, our simple-to-build

proposal supports branching, loops, and even subroutines. This will make it possible to

ship DNA programs all over the planet and to run them using two test tubes of clock

strands and perhaps a few magnetized iron balls.

1.2 UNDERLYING PHYSICAL CHEMISTRY

We lay out some basic features of the physical chemistry of DNA[Bath and Turberfield,

2007]. Understanding these features is not strictly necessary for the reader seeking to under-

stand only the mathematical structure of DNA computing, but provides physical intuition.

The DNA polymer (a polymer is just a long repeating chain of atom clusters) is

composed of a flexible backbone of alternating sugar and phosphate residues. Each residue

consists of a single organic base—adenine, thymine, cytosine, or guanine—bonded to a

sugar, as shown in Figure 1.6. A chain of nucleotides connected along a single backbone is

referred to as a single strand. 5
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Figure 1.5: In the cartoon, the top right strand displaces the top left strand because the top

right strand has a longer base pairing with the bottom strand.

Because phosphates attach to the sugar ring at the 5’ carbon when viewing the

sequence of sugars in one direction and to the 3’ carbon in the other direction, a strand

has an orientation. We follow the convention of describing single strands from the 5’ to 3’

direction. For example, GATTACA denotes the bases, listed from the 5’ end to the 3’ end.

Each phosphate-sugar-base unit is called a nucleotide or base. The binding and unbinding of

these backbone linkages does not occur spontaneously, but is performed by specific enzymes.

The actions of making or breaking these sugar-phosphate bonds are termed ligation and

cleavage respectively.
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Figure 1.6: The molecular structure of a single stranded DNA, coded ATCG with 5’ at the

top and 3’ at the bottom. Phosphates are depicted in red, sugars are depicted in green, and

nucleotides are depicted in blue.

The nucleotides, however, will spontaneously stick together thanks to weak hydrogen

bonds, thus hybridizing two single strands to form the familiar “twisted ladder” double-

helix structure of DNA as in Figure 1.7. A length of double-stranded DNA is referred to as

a duplex strand.

This pairing is selective: only pairing adenine with thymine (the purines A and T) or

cytosine with guanine (the pyrimadines C and G); Figure 1.8 illustrates this as interlocking

notches. As mentioned above, this is called the Watson-Crick model of base-pair bonding.

Due to the structure of the DNA polymer, two single strands will hybridize only if they are

anti-parallel—their orientations are opposite one another—and will impart a right-handed

twist to the duplex, and shown in Figure 1.8.

Because both the base-pairing and the backbone orientation are fixed for any given

single strand, there is one and only one complementary sequence of nucleotides with which

it will hybridize completely; this complement is obtained by swapping each base with its

partner and reversing the orientation, thus GATTACA has the complement TGTAATC. By

appropriately coding a collection of single strands, we can thus precisely control the manner

in which they will hybridize.

The above is a slight simplification. There are, in fact, some exceptions and patholog-

ical cases that complicate the simple Watson-Crick model. Duplex DNA will change from
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Figure 1.7: A 3-dimensional space-filling model of duplex DNA. The strand on the right is

coded ATCG (oriented 5’–3’ from top to bottom), and the strand on the left is coded CGAT (also

oriented 5’–3’ from bottom to top).

Figure 1.8: A cartoon demonstrating Watson-Crick pairing of bases by A-T and C-G hydrogen

bonds. On the right is shown the right-handed twisting and anti-parallel backbone orientation.

a clockwise helix to a counter-clockwise helix called Z-DNA under the right conditions. A

long sequence of guanine bases will form a quadruplex helix, in which backbones alternate

orientation. Triple-base bonding, partial bonds, “incorrect” pairings such as adenine with

guanine, and more complicated configurations involving other molecules besides DNA are

possible. For our purposes, we shall assume all binding follows strict Watson-Crick base

pairing and forms the standard anti-parallel, right-handed duplex between a single strand

and its complement. We make this assumption because exceptional cases can typically be

avoided without too much difficulty.

The Watson-Crick model allows the construction of linear and branched DNA struc-

tures of quite sophisticated topology. A complex is the general term for such a structure,
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possibly involving many strands. For our purposes, such structures together with various

rules and lab protocols for manipulating them may also be thought of as machines.

1.3 DNA COMPUTATION AND ENGINEERING

The relative chemical stability, specificity of binding, ease of synthesis, and size of the DNA

molecule make DNA an ideal substrate for molecular computation. A particular strength of

DNA computation is its inherent parallel nature. It is easy to replicate strands hundreds,

or even billions of times, so many thousands of computational instructions can be carried

out simultaneously.

This property suggests that DNA computation could be used to solve problems and

perform computations that may otherwise scale poorly with conventional computational

models, particularly certain types of NP-complete search algorithms, such as the traveling

salesman problem[Shin, Zhang, and Jun, 1999]. Unfortunately, the combinatorial explosion

of possibilities within NP-complete problems defeats DNA computing just as it defeats

electronic computing. For example, finding the directed Hamiltonian path for 1,000 cities

would require more nucleotides than there are atoms in the known universe.

Certain approaches to DNA computation, such as tile-based constructive computa-

tion[Winfree, 1996] [Winfree, Yang, and Seeman, 1998] [Cook, Rothemund and Winfree,

2004] have even been shown to be Turing complete. While various direct implementations

of a Turing machine have been proposed—utilizing a physical component moving along a

modifiable track[Rothemund, 1996]—none have yet been successfully implemented.

Parallelism, combined with the specificity of binding and structural properties, makes

DNA ideal for nanoscale engineering and self-assembly, even at large scale. A pioneering

example is Rothemund’s recipe for DNA origami, a method that allowed for the creation of

arbitrary 2-dimensional shapes out of (i) a single long (7,000+ base) strand of DNA from

a virus and (ii) many short “staple” strands[Rothemund, 2006]. Whereas the single long

virus strand is rather floppy when left on its own, a few hundred staple strands can, by

Watson-Crick pairing, cause remote parts of the virus strand to stick together. Using staples,

Rothemund was able to create a nanometer smiley face. Now there are software packages

available for rapid prototyping of arbitrary 3D DNA nanostructure shapes assembled using

this technique[Douglas, Marblestone, Teerapittayanon, Vazquez, Church and Shih, 2009].

Other researchers have built mobile structures with three specifically controllable

conformations[Chakraborty, Sha, and Seeman, 2008], or walkers able to move payloads[Shin

and Pierce, 2004]. These combined qualities make DNA a rich medium for nanorobotics,

melding both computation and structural engineering.

In the next chapter, we suggest a language for describing complexes. Then we will

describe transitions among complexes in terms of that language and eventually we use the

transitions to show how to store programs inside DNA. Finally, we discuss the kinds of

programming language that will arise when we can store clocked programs inside DNA.
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C H A P T E R 2

Notation

2.1 STATE DESCRIPTION

2.1.1 LABELING

Rather than explicitly listing every base and all base-pairings, we abstract the notation to

use labels to refer to a particular sequence of bases (in the 5’ to 3’ direction). A single letter

a may then be used to stand for the entire sequence of a single strand, such as GATTACA.

The complement of such a sequence can then be denoted by a horizontal hat. For example,

a would denote the sequence TGTAATC (again in the 5’ to 3’ direction). Square brackets

will be used to demarcate a complex, so that the very simple example of a single strand of

sequence a, with un-ligated 5’ and 3’ ends, would then be represented as [a].

Figure 2.1: [a] The smallest non-empty complex consists of just a single letter.

If there are multiple labels—a is GCTT and b is ATAC—then concatenation denotes

their ligation. Thus, [aba] is a single strand with the sequence GCTTATACAAGC; note that a

is AAGC.

Figure 2.2: A complex demonstrating ligation [aba]

Although we do not use such structures, if a single strand is ligated into a loop,

this can be specified by enclosing a strand in parenthesis [(aba)], denoting that the 5’ end

hybridizes to the 3’ end. This implies that the labels can be “rotated” and specify the same

complex as in Figure 2.3.

Because there may be many copies of a label in a single machine, a segment refers

to a particular instance of a labeled single strand. Each segment is identified by an index.

For example, in the complex [a0ba1], segment a0 refers to the segment at the 5’ end of the

strand, while a1 refers to the segment at the 3’ end of the strand. Segments with different

labels may share the same index, as in [a0b0a1] Omitting an index in the case of duplicate
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Figure 2.3: The loop strand [(aba)] = [(baa)] = [(aab)]

labels leads to ambiguity and so is considered a syntax error, as in [xyx]. Likewise, repeating

the index of segments that share the same label is considered a syntax error, as in [x0yx0].

For brevity, we sometimes use abstraction. The simplest abstraction uses standard

ellipses to denote elision, e.g., [a0b0a1b1 . . . a99b99a100b100]. Ellipses may also be used to

elide irrelevant structure, such as focusing on two segments amidst a larger complex

[. . . aa . . . ]. If this is the case, then we can substitute a variable or expression, such as

[a0b0a1b1 . . . aibiai+1bi+1 . . . a100b100].

By choosing appropriate sequences, a designer can reduce extraneous complement

symmetries among sequences to something like two or three base pairs. Because the hy-

bridizing affinity of long matches vastly outweighs the hybridizing affinity of short matches,

matches below a certain threshold length are ignored. We assume that either two segments

will hybridize along their entire length in the case that their labels are complementary, or

two segments will effectively have zero base-base interaction if their labels are not comple-

mentary. A machine for which this property holds true for every pair of labels is said to

have a consistent labeling.

Labels can be split or merged in order to preserve consistency. For example, consider

one machine containing the label a and another machine containing the label b, each with a

consistent labeling when considered alone. Suppose the first half of a serves as the comple-

ment to the first half of b. In this case, we split the labels yielding a = ec and b = ed. Then

we replace all occurrences of a and b appropriately. Likewise, if we find that two labels, say

g and h, are always ligated as . . . gh . . . and that the same holds true for their complements

as . . . hg . . . , then the two labels can be merged and we can say that k = gh. Note that due

to the anti-parallel nature of hybridizing, the complement of concatenated labels are the

commutated complements, i.e., k = gh = hg.

2.1.2 HYBRIDIZATION

When one segment is hybridized to another, each will indicate its partner through a su-

perscript. So, for example, a complex referred to as a hairpin could be represented as

[aa0

0 b0a
a0

0 t0]. Because only complementary strands are able to hybridize, it is unnecessary

to repeat the label of the hybridized partner, so simply superscripting the partner’s index

will suffice [a0
0b0a

0
0t0]. If the hybridized partner does not have an index—in the case where
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it is the only instance of that particular label—then an asterisk will serve as a placeholder,

thus [a∗ba∗t] is equivalent to the hairpin above.

Figure 2.4: The hairpin [a∗ba∗t]

We use a vertical bar or a pipe character to demarcate different strands. A simple

example of a stretch of duplex DNA consisting of two complementary strands hybridized

together, as in Figure 2.5, would be [a0
0|a

0
0] or [a∗|a∗] using the shorthand. The vertical bar

thus implies a plurality of strands. In the case of Figure 2.4, we have a single unbroken

strand, and thus the vertical bar notation does not apply. By contrast, because the complex

in figure 2.5 contains two distinct strands, we need a vertical bar to demarcate the strand

boundaries. Note that because the vertical bars are merely used as delimiters, the particular

order in which the strands are listed is arbitrary: e.g., [a∗|a∗] = [a∗|a∗].

Figure 2.5: A complex consisting of multiple non-continuous strands, such as [a∗|a∗], demon-

strates the use of a vertical bar to demarcate separate strands. Note that the order in which

the strands are listed is immaterial. So, the notation [a∗|a∗] also describes the complex above.

Using this notation, we can enumerate the various syntax errors which do not con-

stitute a valid strand. In the following examples the superscript of x0 is invalid:

• no complementary segment is indexed by the superscript, such as in [x∗

0] or [x1
0x0]

• multiple complementary segments are indexed by the superscript, such as in [x0x
∗

0x1]

• the complementary segment indexed by the superscript does not itself have a super-

script [x∗

0x];

• the complementary segment indexed by the superscript [x∗

0x
1
0x

0
1].

Note that, as currently specified, this notation allows for multiple disjoint and non-

connected components to be listed as a single complex. For example, [a∗ba∗t|e∗|e∗] is a

syntactically legal construction. However, it consists of two entirely separable components,

namely the hairpin [a∗ba∗t] and the duplex [e∗|e∗]. Thus, a valid component is defined as a

collection of strands that cannot be further decomposed into a legal construction without
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cutting strands or disrupting hybridizations. A complex, in general, denotes any set of

valid components, and can be listed using standard set notation. For example, we might

say Ω = {[a∗ba∗t], [e∗|e∗]}, where Ω denotes a complex consisting of multiple components.

When representing a simple case such as one or two components and a single complex, we

use a simple comma-separated list.

For the purpose of processing by computer, we specify a plaintext (ASCII-friendly)

version of this notation, in which we avoid all use of bars and subscripts. In this instance,

labels are always alphabetic characters, and complements are denoted by changing case;

so [aba] would become [a b A]. Segment indices are simply appended, rather than sub-

scripted, so [x0yx1] would become [x0 y x1]. In the case of a variable or expression, the

index is enclosed in curly braces, so that [. . . xi . . . ] would become [... x{i} ...] If there

are more labels than alphabetic characters, labels can be multiple characters long. Because

this can sometimes lead to confusion, one must separate labels with whitespace. For exam-

ple, [αβα] might become [alpha beta ALPHA]. In order to denote hybridization without

support for subscripts, one simply appends a caret and then the index of the hybridized

partner; so the hairpin [a∗ba∗t] would become [a^* b A^* t] or [a0^0 b0 A0^0 t0], de-

pending on the level of verbosity desired.

Table 2.1: A summary of the notation syntax

notation ascii
description

a a a label

a A the complement of label a

a2 A2 segment indices distinguish multiple label instances

a2 a2̂ a =a is hybridized to the segment a2 =A2

a∗

2 A2*̂ a2 = A2 is hybridized to the only instance of a =a

ai+1 ai+1 abstraction of numerals by arbitrary expressions

. . . ... arbitrary segments and strands, or continuation

. . . ab . . . ... a b ... the 3’ end of a is ligated to the 5’ end of b

a . . . | . . . b a ... | ... b a and b are on different strands

(a . . . b) (a ... b) the 3’ end of b is ligated to the 5’ end of a to form

a loop

[a2a∗

2] [a2̂ A2*̂] brackets enclose a complete component or complex

Tondo: The above doesn’t look right in that the hats are not where they should be.

Please see the original below.

2.1.3 NODES

You can think of the overall structure of the DNA complex as a formal graph structure

consisting of nodes and edges. Edges will consist of either a directed single segment or an
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notation ascii description

a a a label

a A the complement of label a

a2 A2 segment indices distinguish multiple label instances

a2 a^2 a = a is hybridized to the segment a2 = A2

a∗

2 A2^* a2 = A2 is hybridized to the only instance of a = a

ai+1 a{i+1} abstraction of numerals by arbitrary expressions

. . . ... arbitrary segments and strands, or continuation

. . . ab . . . ... a b ... the 3’ end of a is ligated to the 5’ end of b

a . . . | . . . b a ... | ... b a and b are on different strands

(a . . . b) (a ... b) the 3’ end of b is ligated to the 5’ end of a to form a

loop

[a2a∗

2] [a^2 A2^*] brackets enclose a complete component or complex
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undirected duplex pair of hybridized segments. Nodes will be junctions where such edges

meet; they will necessarily come in distinct types, based on the 5’–3’ connectivity of the

segments involved in such edges. Note that the “ordering” of the edges around a node

matters; for this reason, the graph structure of nodes and edges alone is not sufficient to

capture the full topology of such a DNA structure, as will be discussed in Chapter 3. The

graph characterization is enough for our clocked stored program DNA computer and for

the other machines we discuss, however. Tondo: The rightmost heading type c should be

type d in the figure.

type a type b type c type c type e

1-valent N/A

2-valent

3-valent

4-valent
...

...

Figure 2.6: A chart of the various types of nodes. Each one represents a possible way in which

strands can meet at a junction.

2.2 TRANSITIONS

Because we want to model dynamic machines, we will formulate changes or transitions

in terms of the representation from the previous section. In doing so, we ignore small

perturbations of a complex, as they do not affect the overall topology of the DNA structure.

We consider only those changes that affect the hybridization or ligation of segments.

2.2.1 SPONTANEOUS TRANSITIONS

There are three basic transitions that will occur spontaneously in solution, provided the

proper temperature and solvent environment is present.
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2.2.1.1 Hybridization

Hybridization transitions characterize the simple hybridization of two unpaired single

stranded segments when those segments are at least partly complementary. Consider the

case where we have the segments ai and aj . The transition Aai,aj
hybridizes these two

segments to one another.

In our representation, this entails superscripting ai with j to make aj
i and transform-

ing aj into ai
j . Formally then, if we have un-hybridized segments ai and aj in some complex

Ω0, then we can define:

Aai,aj
: Ω0 → Ω1 (2.1)

In the above, Aai,aj
(Ω0) = Ω1 is the following mapping:

[. . . ai . . . aj . . . ] 7→ [. . . aj
i . . . ai

j . . . ] (2.2)

The two segments involved may be anywhere within the complex. Hybridization may

involve segments in two different components, in which case these components are merged

into a single component. For example, Aa,a([a], [a]) = [a∗|a∗].

[a]

��

[â]

~~|
|
|
|
|
|
|
|

[a∗|â∗]

Figure 2.7: An example of the hybridize transition Aa,a

2.2.1.2 Displace

Displace is called a branch migration. The displace transition replaces one single stranded

segment with another of the same label already in an hybridized pair. Consider the single

segment ai along with the duplex pair ak
j and aj

k. The transition Dai,aj
will then cause ai to

“displace” aj , taking its place in the duplex pairing with ak and leaving aj un-hybridized.

In the notation, this entails adding a superscript to ai to yield ak
i , removing the superscript

from ak
j to yield aj , and replacing the superscript of aj

k to yield ai
k. Thus, if we have the

segments (along with hybridizations) ai, ak
j , and aj

k in some complex Ω0, then we can define:

Dai,aj
: Ω0 → Ω1 (2.3)

In the above, Dai,aj
(Ω0) = Ω1 is the following mapping:

[. . . ai . . . ak
j . . . aj

k . . . ] 7→ [. . . ak
i . . . aj . . . ai

k . . . ] (2.4)
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By convention, the segment that is initially un-hybridized is always listed as the first

argument. Also, one needs to specify only two segments, as the third segment—in this case

ak—can be determined from the subscript of the second argument.

step 1 step 2 step 3

Figure 2.8: An example of the displace transition Da1,a0
. This is a non-separating displace

and is thus reversible by applying Da0,a1
to the resulting complex.

A displace transition is node-initiated, when the single segment must meet the duplex

segments at some node. that node is called the initiating node; the node at the opposite

end of the duplex segments is called the terminating node. When the terminating node is

anything but type a (see Figure 2.6), the displace may cause the terminating node to be

transformed into two distinct nodes. This is referred to as a separating transition.

In the non-separating case, the transition can be reversed by swapping arguments.

That is, applying Dai,aj
first and then Daj ,ai

immediately afterwards causes the com-

plex to return to its original configuration. In the case of a separating transition, a dis-

place transition sometimes results in two distinct components. For example, in the case

of Da0,a1
([a0a1|a

∗

1]) the complex has a 2-valent initiating node of type c and a 1-valent

terminating node of type b. This separating transition results in the disjoint components

[a∗

0a
0] and [a1]. The initiating node has become a 1-valent type a node, and the terminating

node has separated to become a 1-valent node of type b and a 1-valent node of type c.

2.2.1.3 Exchange

This is sometimes called a duplex branch migration. The exchange transition takes two

duplex segment pairs of the same label and exchanges their partners. Consider that we have

the duplex pair aj
i and ai

j along with the duplex pair as
r and ar

s. The transition Eai,ar
will

then cause ai and ar to effectively trade hybridizing partners with one another. The ligation

does not change however. This manifests in the notation as swapping the superscripts of

aj
i and as

r to yield as
i and aj

r, and likewise swapping the superscripts of ai
j and ar

s to yield

ar
j and ai

s. For example, if we have aj
i , ai

j , as
r, and ar

s in some complex Ω0, we define
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Eai,ar
: Ω0 → Ω1 (2.5)

where Eai,ar
(Ω0) = Ω1 is the mapping

[. . . aj
i . . . as

r . . . ai
j . . . ar

s . . . ] 7→ [. . . as
i . . . aj

r . . . ar
j . . . ai

s . . . ] (2.6)

For the sake of convention and consistency with displace, the two segments specified

should have identical labels. Also note the various symmetries of the operation. For ai

hybridized to aj and ar hybridized to as, we have

Eai,ar
= Ear,ai

= Eaj ,as
= Eas,aj

(2.7)

Like displace, an exchange transition is node-initiated. However, unlike displace, there

are two terminating nodes. They are at the ends of the duplex segments opposite the

initiating node. Whether or not an exchange is separating now depends on the types of

both terminating nodes. If either is type a, then it is a non-separating transition. As with

displace, the transition is reversible in the non-separating case. Any of its symmetrical

forms serve as an inverse. So, applying Eai,ar
first and then Eai,ar

second results in no

change to the complex. An example of the non-separating case is shown in figure 2.9. An

example of the separating case would be Ea0,a1
([a0

0a
1
1|a

1
1a

0
0]) = [a1

0a
0
1], [a

0
1a

1
0] in which two

cross-hybridized strands separate into two separate continuous self-hybridized strands.

step 1 step 2 step 3

Figure 2.9: An example of the exchange transition exchangea1,a0
; this is a non-separating

exchange and is thus reversible. Editor: step 1 is missing a strand. All one sees is the downward

pointing arrowhead but the strand should start opposite the arrow on the upper left, go above the

a0 and then go vertically down to the arrowhead just above the words ”step 1”
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2.2.2 MANUAL TRANSITIONS

There also are several transitions that do not occur spontaneously but rather require either

human intervention by way of lab protocol, the actions of proteins, or by other mechanisms.

2.2.2.1 Pour and Filter

These transitions are effectively inverses of one another. The pour transition consists of

adding components to a complex to allow for interaction. An example of this might be

pour[b]([a]) = [a], [b]. In essence, pour is a simple multiset union.

Filter is the inverse of pour, removing specified components from a complex. So thus

filter[b]([a], [b]) = [a]. Thus, filter is a set partitioning.

In general, pour is straightforward to apply physically, as one can simply pour a vessel

full of one complex into a vessel full of another complex. Filter on the other hand has no

simple realization. One may filter on weight by use of a centrifuge, or by size by performing

a gel-electrophoresis run, or by selecting on certain sequences by use of protein binding.

Occasionally these transitions do not correspond to actual laboratory operations or even

physical changes, but merely serve as a notational expedient. For example, certain “waste”

components may no longer be able to interact in any transitions such as the component

[a∗|a∗]. Because such a duplex strand is stable, it does not affect further operation of the

machine and therefore may be ignored.

2.2.2.2 Cleave and Ligate

These transitions correspond to joining or breaking covalent bonds along the DNA back-

bone. These are performed by proteins, such as DNA ligase, FokI, and others. These tran-

sitions manifest in the notation as the addition or removal of vertical pipes. For example,

cleaveai,bj
(. . . aibj) = . . . ai|bj . . . . In the case of loop strands, the segments to be cleaved

should first be rotated to be adjacent to the parenthesis, so that |(. . . aibj . . . )| should

be first rewritten as |(bj . . . ai)|. At this point, we have cleaveai,bj
: |(bj . . . ai)| 7→ |bj . . . ai|

Remember that the arguments are always listed in a 5’ to 3’ order.

The ligate transition joins an open 3’ endpoint and an open 5’ endpoint. Notationally

this manifests as the simple deletion of a vertical pipe. Physically, this corresponds to the

concatenation of two strands. Two segments can be ligated provided one has an open 3’

endpoint and the other has an open 5’ endpoint; labeling is irrelevant. Strands should

first be re-ordered to place the segments to be ligated adjacent to one another. So for

example, . . . ai| . . . |bj . . . should become . . . ai|bj . . . Thus, in general we have ligateai,bj
:

. . . ai|bj . . . 7→ . . . aibj . . .

In the case that the segments to be ligated are the endpoints of the same strand, such

as |ai . . . bj |, then the application of ligate creates a loop strand and manifests as the addition

of parentheses as ligateai,bj
: |ai . . . bj | 7→ |(ai . . . bj)|. As with cleave, the arguments are

always listed in 5’ to 3’ order.



2.3. DYNAMIC BEHAVIOR 23

2.2.3 SYNTACTIC

Although not true transitions in the physical sense, these transitions allow for adjusting

syntax without changing the underlying structure of the complex. In general, syntactic

transitions may simply be performed in the notation. The following are all the syntactical

transitions:

• Rotate the listing of segments in a loop strand.

• Rearrange the listing order of strands in a component.

• Add a numeral to the only occurrence of a label, and replacing any asterisk that may

refer to that segment with that numeral.

• Omit a numeral from the only occurrence of a label, then replace any subscripted

numeral that may refer to that segment with an asterisk.

• Merge two labels as described in the Labeling subsection at the beginning of this

chapter.

• Split two labels as described in the Labeling subsection.

• Rename all occurrences of a label to some unused label name.

2.3 DYNAMIC BEHAVIOR

With the basic transitions formalized, we can now describe the overall behavior of a DNA

nanomachine system as a kind of state machine. Each state is represented by a particular

complex—equivalently, a string or set of strings—and state transitions are drawn from the

transitions described above. In general, because there may be multiple potential transitions

for a given complex, the state transitions may constitute a non-deterministic state machine.

2.3.1 STABILIZATION

In solution, DNA machines naturally progress through available spontaneous transitions

in a process we call stabilization. Not all transitions are equally favored, however; some

are more likely to occur, or occur more quickly than others. Node-initiated transitions

(hybridize, displace, and exchange) will occur more easily than non-node-initiated transi-

tions. Among node-initiated transitions, hybridizations occur rapidly and are energetically

favorable. So, hybridizations have the highest precedence. Both displace and exchange tran-

sitions progress along segments from the initiating node in a random walk fashion, moving

either forwards or backwards one base pair at a time. This makes them slower than a hy-

bridization. Because, at each step, a displace must only break and make one base pair bond,

whereas an exchange must make and break two, a displace transition will generally take
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precedence over an exchange. Except in cases of extremely high concentrations of DNA,

intra-component transitions occur more frequently than inter-component transitions.

Thus, we can establish a rough (nested) precedence order for spontaneous transitions.

Keep in mind that the deeper nested transitions are more similar in precedence to one

another; in many cases, for example, it makes sense to treat all node-initiated transitions

as having equal precedence.

1. intra-component transitions:

(a) node-initiated transitions:

i. hybridize

ii. displace

iii. exchange

(b) disjoint hybridize

2. inter-component disjoint hybridize

With such a precedence established, the process of stabilization can be simulated by

producing a stabilization diagram, which is a state machine diagram recording all compo-

nent states and potential transitions. First, each component of the machine in question

is recorded as if it were a distinct state. Then, each component in this set is examined

to determine if any potential transitions (from high precedence to low) are available. For

inter-component transitions, all components in the current iteration must be considered for

possible interaction. The diagram is then expanded to include any new components that

result from these new transitions, as well as adding in the transitions themselves.

This process is continued in successive stages until there are no longer any new states

being introduced. Out of the resulting components, those that have no available transitions

will be referred to as stable. There may also be cycles of states in which each state has an

available transition, but the transitions stay within that set of states without preferring any

one over the other. The states which make up such a cycle will be referred to as semistable.

While the introduction of a precedence ordering diminishes the non-determinism to some

extent, there can be cases which are inherently non-deterministic.

2.3.2 STOICHIOMETRY

So far, we have ignored the particular concentrations of components. In many or perhaps

even most cases, while there may be multiple available transitions at any given iteration, the

transitions do not directly compete with one another. It does not matter in which order the

transitions in question are performed, because the resulting complex is the same. In effect,

the transitions are commutative. By contrast, there are many cases in which transitions do

compete, i.e., do not commute, and one set of transitions can lead to a different final state

than another.
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[a0â0a1â1]

Aa0,â1

yyssssssssssssssss

Aa0,â0
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Aa1,â1
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â1]
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1

1
â
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]
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1

1
]

Ea0,a1

oo

Figure 2.10: A state diagram for the stabilization of a particular strand, in this case [a0a0a1a1].

Note that the final two states are semi-stable. The hats in the figure are represented as carets.

In those cases, concentrations can affect the operation of the machine. Thus, a state

having a non-deterministic outcome when concentrations are unknown may turn into a

state having a deterministic outcome when the stoichiometry—ratios between amount of

transitioned components— is controlled. For example, for many transitions that involve

multiple components—such as an inter-component hybridization—one of the components

may serve as a limiting factor if the quantities are unequal. Determining the correct ratios

between components requires a model.

Here is a naive model that is likely to be approximately correct in the large num-

bers world of a DNA solution. First, let Qi represent the numerical quantity of the ith

component. In the case of intra-component hybridizations, at a particular iteration of the

stabilization process, suppose there are ni distinct transitions involving the ith component.

Then for a particular transition involving the ith component, assume the transition will

occur on the quantity Qi

ni
of that component. For inter-component transitions, consider the

combinatorial problem of drawing two components at random from a bag of quantities;

this will be roughly the probability that they interact in solution. Thus, for a transition

involving the ith component and the jth component, where there are a total of nij distinct

transitions involving these two segments, assume the transition will be performed on the

quantity
QiQj

nij

∑
∀k

Qk

taken from each of the two components.

This “perfect mixing” model may leave some components unchanged. At each iter-

ation of this process, say ∆Qi is the change in quantity of the ith component from the

previous iteration to the current. If component i did not exist in the previous iteration,

∆Qi will simply be the quantity of the component. Now we can introduce a threshold quan-

tity ǫ in order to cut the tail off such asymptotes and make the stabilization calculation

terminate. Any quantity below this threshold can effectively be ignored. Thus, the stabiliza-
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tion process will repeatedly progress through the transition precedence levels, distributing

quantities in ratios determined by the formulas above, until ∆Qi < ǫ for all components.

In collaboration with us, Christofer Hedbrandh has developed a stabilization algorithm

based on this formula that takes stoichiometry into account. His software is implemented

in python[Hedbrandh, 2010].

2.3.3 USER-LEVEL STATE DIAGRAM

Once the stabilized state is determined, the stabilization process can be thought of as a

single step. Thus, we might think of stabilization as a subroutine and treat it as a single

function applied to a complex. Subroutines may be used as state transitions to simplify

the state diagram. A user can conceptualize the system as a state diagram from stabilized

state to stabilized state. In such a state diagram, the transitions will consist of the combined

subroutine of a manual transition—such as pour or filter—immediately followed by stabilize.

In practice, most DNA nanomachines or motifs consist of a single “main” component

that progresses through several states. The dynamic behavior of this component is fueled

by inputs that generally consist of simple strands or hairpins. As the main component

progresses through these states, it produces “waste” components that don’t interact further

with the main component and therefore can be ignored.
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C H A P T E R 3

A Topological Description of
DNA Computing

This chapter gives an alternate topological description of the statics and dynamics of our

system. If you are a topologically-inclined thinker, then you might find this chapter very

helpful. Otherwise, you can skip the chapter without loss of continuity.

3.1 AS A CELL COMPLEX

3.1.1 STATE

From a topological standpoint, we might choose to view a DNA complex as a cell/CW

complex, or henceforth simply a complex. A complex captures the topology of an object by

breaking it up into some finite number of n-cells—an n-dimensional object homeomorphic

to an open ball—and recording the precise manner in which these cells are attached to one

another. Additionally, we may also specify one of two orientations for a cell.

A 0-cell will correspond to the sugar-phosphate bond linking together nucleotides

along the DNA backbone; we can view this as a 0-dimensional object, merely occurring

at a single point. Orientation allows us to capture the 3’ or 5’ nature of these bonds. We

can consider the point of attachment at the 5’ end to be (−) oriented and the point of

attachment at the 3’ end to be (+) oriented.

A 1-cell then corresponds to a nucleotide, which we can view as a line segment con-

necting two 0-cells; the corresponding line segment will be oriented in the standard 5’ to

3’ direction. This allows us to capture the 5’ / 3’ nature of the DNA backbone by allowing

two 1-cells to be attached to one another. The attachment consists of identifying or gluing

together two oppositely oriented 0-cells into a single, un-oriented 0-cell. As a result, the

orientation of the 1-cells will remain consistent across the attachment.

A 2-cell serves to represent the hydrogen bond between a pair of bases and manifests

as a ribbon or a sheet between the two line segments; much as with the 1-cells, here the

orientation is induced by the 1-cells, or nucleotides, running along either side. We might

demonstrate this orientation in a diagram by coloring white the side from which it appears

that the boundary 1-cells are oriented counter-clockwise, and coloring black the side from

which it appears that the boundary 1-cells are oriented clockwise. The way in which 1-

cells are attached determines whether the orientation coloring remains consistent along

the length of duplex DNA. From a formal standpoint we would also need two additional
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1-cells “capping” the ribbon at either end, naturally extending to the process of “gluing”

oppositely oriented capping 1-cells in order to attach 2-cells; we will come back to these

later

An edge will either be directed and consist of a single un-hybridized 1-cell, which we

might refer to as a simplex edge, or it will be undirected and consist of a pair of hybridized

1-cells, which we might refer to as a duplex edge; in both cases, the edge is thought of as

running parallel to the backbones.

A node will be a generalization of the Holliday junction, consisting of some combi-

nation of simplex and duplex edges meeting along a short line segment or loop. As duplex

edges will connect to one another at a node via the “corners” of each ribbon-like 2-cell,

the node will take roughly the form of a short loop or line segment with these “ribbons”

hanging off. If we are looking down the “axis” of a node, the 2-cells will have a consistent

orientation, such that the “white side” of every 2-cell faces clockwise, or every 2-cell faces

counterclockwise. This is used to determine a consistent ordering in which to list the edges

of a node. If we are to “flatten” the node out with edges pointing downwards and the “white

side” of every 2-cell facing us, then the edges will be listed from left to right. In terms of

the “cap” 1-cells mentioned previously, each node would be a contiguous chain of such cap

1-cells; the orientation of these cap 1-cells determines the ordering of the canonical list of

edges.

3.1.2 TRANSITIONS

In a formal sense, each state is a homotopy equivalence class of embeddings. Transitions

will be distinct topological events, corresponding to adding, deleting, separating, or joining

together various cells. We will consider three basic types of transitions: Hybridize, Displace,

and Exchange. These will be much like the Riedermeister moves of knot theory. However,

unlike Riedermeister moves, there is a directionality to these transitions. They will oper-

ate on a 3-dimensional embedding, rather than a 2-dimensional projection. All transitions

will consist of topological surgery, which replaces the interior of a small bounding sphere

containing a specific arrangement of cells, with another specific arrangement of cells, while

keeping the surface or “shell” of this bounding sphere fixed. In general, for the three basic

transition types, the bounding sphere will contain some number of roughly parallel (or anti-

parallel) 1-cells, with their bounding 0-cells lying on the surface of the sphere; these 1-cells

remain more-or-less fixed throughout the transition, while various additions and deletions

are made to the 2-cells within the bounding sphere. Attention must also be paid to cor-

rect label inverse behavior, and all hybridizations in both the start and end state must be

“legal” in this sense.

The Hybridize transition represents a simple hybridization of unpaired nucleotides.

The initial state of the bounding sphere will contain two 1-cells corresponding to an un-

hybridized pair of matching nucleotides: one is oriented “upwards” which we might refer
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to as a, and one is oriented “downwards” which we might refer to as b. The end state of

the bounding sphere will contain the same two 1-cells, now with the addition of a 2-cell

between a and b. The transition is naturally unidirectional, because hybridized base pairs

typically do not spontaneously separate.

The Displace transition represents the displacement of one hybridized nucleotide by

an un-hybridized nucleotide. The initial state of the bounding sphere will contain three

1-cells with one oriented “upwards,” which we might refer to as a, and two oriented “down-

wards,” which we might refer to as b1 and b2. Initially, there will be a 2-cell between a

and b1. The end state is obtained by the deletion of this initial 2-cell and the addition

of another between a and b2. Because the initial state and the end state are related by

symmetry, this transition will naturally be bidirectional. However, we might also form an

equivalent formulation by treating the different “chiralities” of such a transition as distinct

unidirectional transitions; this is analogous to the case of Reidermeister moves, where we

might treat the various symmetries as distinct from one another.

The Exchange transition represents the swapping of nucleotides between two hy-

bridized pairs; this transition provides for the mobility of a classical Holliday junction. The

initial state will have four 1-cells with two oriented “upwards,” which we might refer to as

a1 and a2, and two oriented “downwards,” which we might refer to as b1 and a2. These

orientations alternate as one travels (roughly) around the equator of the sphere. Listing

them counterclockwise, we might have a1, b1, a2, b2. There will also be two 2-cells, one be-

tween a1 and b1 and another between a2 and b2. The end state is obtained by the deletion

of these 2-cells and the addition of two other 2-cells, one between a1 and b2 and another

between a2 and b1. Likewise as with Displace, the initial state and end state are related by

symmetry, making the transition a bidirectional one; and we might also treat the various

chiralities as distinct unidirectional transitions.

We might also consider transitions such as Pour and Filter that add or subtract

components to the complex. Viewed as straightforward disjoint union and intersection op-

erations, these correspond to pouring two solutions together or mechanically filtering out

particulates and should be treated as unidirectional transitions.
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C H A P T E R 4

Machines and Motifs

In this chapter, we show how to build up a clocked programming system based on the

transitions introduced in Chapter 2. We start by looking at larger scale transitions called

motifs and then describe an instruction stack, loops, conditionals and finally an example

application. Because this builds substantially on earlier research, we begin with a brief

review in which we describe previous construction techniques using our simple language of

states and transitions.

4.1 A BRIEF REVIEW OF DNA CONSTRUCTION MOTIFS

4.1.1 TAPE MOTIF

Many machines use a motif that selectively attaches and detaches two segments end to

end. The motif makes use of three labels, along with their complements. The segments

to be attached to one another will be labeled a and b; the additional third label t will

serve as a “tab” specific to the operation of the motif. While there may be several different

segments labeled a and b, the motif attaches any un-hybridized instance of a to any un-

hybridized instance of b arbitrarily. Although this non-deterministic behavior may suffice

in some circumstances, it is usually better to constrain the un-hybridized instances of a

and b so as to avoid ambiguity.

In addition to the a and b labels already present in the target machine, the motif

also makes use of two additional strands, which are complements of one another. We might

refer to these as tapeab and untapeab.

In the example shown in Figure 4.3, we have tapeab = [tba], and thus untapeab = [abt].

The strand tapeab will hybridize to both a and b, thus attaching them end to end and leaving

an unhybridized tab t. The strand untapeab = tapeab is the complement of tapeab. Thus,

by pouring in untapeab, the tab is hybridized, and tapeab is displaced because the sequence

of hybridized pairs is longer[Yurke, Turberfield, Mills, Simmel, and Neumann, 2000, Zhang

and Seelig, 2011].

This leaves a and b again unhybridized, along with an absolutely stable duplex com-

ponent formed by the hybridized tape and untape strands. This stable duplex will not react

with any other components, so it can safely be ignored and we will consider it simply as

waste. The stabilization process of both the untaping and the taping are demonstrated in

Figure 4.1 and Figure 4.2, respectively.
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Figure 4.1: The complete stabilization diagram for the tape motif. The hats in the figure are

represented as carets.

Because these transitions are strongly unidirectional, we don’t need to concern our-

selves with the details of the stabilization diagram. A user can view the situation as: add

various fuel strands as inputs and see the stabilized complexes as a result. To reflect this

simplified viewpoint, we introduce a state diagram for the machine in Figure 4.3. This will

be a simple two state machine with inputs and outputs.

4.1.2 WALKERS AND GEARS

By using a repeated tape motif, we can selectively cause feet to “walk” alternately across

a track of footholds. The tape motif can also cause the teeth of gears to mesh with one

another. This concept has been used to develop walkers with a standard alternating bipedal

gait[Shin and Pierce, 2004] and walkers having a staggered gait in which they keep one

“foot” constantly forward[Sherman and Seeman, 2004]. In order to impose directionality,

there must be at least three differently labeled footholds on the track, such that stepping

forward with a leg would necessitate a different tape than stepping backwards. So consider

the feet to be labeled by x and y and consider the track footholds to be labeled by a, b,

and c.

Because each step requires a tape strand to place the foot and an untape strand to

lift it, there will a total of 12 different fuel strands. Thus, the walker is effectively a cyclical

12-state machine. During each cycle, the walker progresses six steps along the track. Of

course, this is only one among many variants.
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Figure 4.2: The complete stabilization diagram for the untape motif. Note that the displace

transitions are separating, thus guaranteeing that the stabilization is unidirectional, and the

resulting components are stable and not merely semistable.

4.1.3 POLYMER GROWTH

Another example of a machine motif is the growing polymer machine[Venkataraman, Dirks,

Rothemund, Winfree, and Pierce, 2007]. The polymer consists of double stranded DNA,

one of whose endpoints will be called an anchor and the other a payload. Both endpoints

remain attached to the same unique polymer throughout the operation of the machine.

Growth of the polymer occurs from the middle. This machine operates spontaneously and

asynchronously in solution, growing as long as there is fuel in solution. Two types of hairpins
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Figure 4.3: A simplified state diagram for the tape motif, in which the segments a and b are

taped together. Transitions are listed with input/output notation. Note that tapeab = [t
0
b
0
a0]

and untapeab = [abt]. Also, in this case we have waste = [t
0
b
0
a0|a0b0t0]. Because the waste is

hybridized, it is stable, so plays no further role in any reaction.

are used to fuel the device. Each hairpin fuel will first hybridize onto the polymer, and then

insert itself into the polymer by way of a double branch migration.

An application of this machine might be to separate two payloads. By combining

several such mechanisms to a single pair of payloads, much larger payloads could be moved;

however, at a certain distance, the stiffness of duplex DNA may be overwhelmed. By using

appropriately modified fuels, it is also possible to leave single stranded sticky ends at regular

intervals along the polymer. Thus, such a machine could be modified to grow tracks for

walkers. For that purpose, more fuel types would be needed in order to provide the pattern

of three distinct footholds necessary to impose directionality. Alternatively, when multiple

polymers are used in parallel, such sticky ends might be used to anchor lateral support

structures in the manner of a truss.

4.2 A CLOCKED STORED PROGRAM DNA MACHINE

The machines that have been described make use of a single primary component interacting

with simple fuel strands or hairpins. For example, we might describe the earlier tape-untape

machine as in Figure 4.3. This concept can be naturally extended to multiple state machines

with interacting inputs (in the form of fuel strands) and outputs (waste strands). One can

anchor such state machines to some easily manipulated substrate, such as 7 kilobase DNA

origami[Rothemund, 2006]. The anchors would consist of “tabs” similar to those used in the

walker motif and can be attached to the substrate via hybridization, ligation, or proteins

with sequence specific binding sites. By releasing a tab, a user might remove an entire
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Figure 4.4: The cyclical walker motif. Only one direction is annotated, but by following the

arrows backwards and substituting tape for the corresponding untape and vice-versa, the walker

could easily move the other direction along the track. Waste produced by the untape steps is

omitted for clarity, as waste strands play no further role. Note that the toehold label alternates

to avoid unwanted interactions. Also, note that untapebx will essentially transition from the last

state to the first—albeit with a 6-step shift—thus completing the cycle.
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programmatic “module” if needed. This setup would thus allow for the removal or addition

of large numbers of possibly heterogeneous components at will.

One intriguing application of such a module would consist of a stack motif that

releases precisely programmable output patterns with support for flow control, looping,

variable iteration, and more. This simple new mechanism allows clocked stored program

DNA computing.

4.2.1 CLOCKED INSTRUCTION STACK

As we’ve seen, many machines require specific sequences of fuel strands or fuel hairpins to

be added to the reaction vessel in a specific sequence; for our purposes, we will refer to such

strands or hairpins as instructions. Here we propose a mechanism for storing a sequence of

such instructions in a stack and then releasing them in a controlled way based on a clock.

Our clocking mechanism requires two distinct fuel strands that we call tick and tock.

Assuming the stack is already built, it will operate as follows. First, tick is added to

solution, which partially hybridizes to a corresponding exposed sticky end of the stack. The

remaining end of the tick strand proceeds to displace the remainder of the strand to which

it is hybridized by way of a single branch migration. This produces a waste component of

duplex DNA consisting of the tick strand and its complement, leaving an exposed sticky

end on the stack. Second, tock is added to solution, which likewise partially hybridizes to

this sticky end. Once again, a single branch migration displaces tock’s complement and

ligates to the instruction payload. This releases the instruction payload from the stack and

ligates the payload to a duplex of tock and its complement.

In addition to operating as a sequence of instructions, the stack can operate as a

standard stack data structure. The two stage cycle of tick and tock can be thought of as a

single pop operation. Similarly, the two stage cycle of adding the desired instruction, along

with an additional “taping” strand—namely, tick’s complement—implements the push op-

eration. Repeated pushing can be used to synthesize such stacks. (Pushing instructions

onto data stacks is one classic way in which malicious hackers gain control of other people’s

machines. Hacking DNA machines in the same way could eventually be a problem.)

4.2.2 LINEAR (STRAIGHT LINE) PROGRAM

The actual mechanism operates in a similar manner to the tape motif, except that tabs are

staggered and overlap with one another. For simplicity, we will refer to every instruction

payload as a single segment p, regardless of hairpin topology or instruction individuality,

because this does not affect the functioning of the instruction stack, provided payload

segments have sequences that prevent them from binding inappropriately to tick or tock.

The basic alphabet required to make the clock work consists of two strands denoted

by the labels α and β, along with their complements α, β. Pairs of these basic units will then

be concatenated to form four distinct connected strands: [pαβ] and [αβ] make up the stack
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component; [βα] and [βα] play the role of tick and tock, respectively. A stack component,

consisting of three instructions, could then be constructed as shown in Figure 4.7.

A

�� Avvnnnnnnnnnnnnnnnn

D

��

D

((PPPPPPPPPPPPPP

Figure 4.5: The stabilization diagram for the tick motif of the stack consists of a hybridization

followed by a separating displace.
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Figure 4.6: The stabilization diagram for the tock motif of the stack. Tock stabilization is

essentially identical to the tick stabilization, except that the released “waste” double strand is

linked to the desired instruction payload, here denoted by p.

The operation of the machine will be as follows. In the initial state of the machine,

the un-hybridized α segment acts as a toehold. The ligated β segment serves to block the

release of the first instruction. The addition of the first tick strand ([βα] ) in the proper
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stoichiometry serves to displace this strand from the right and ready the first instruction.

The addition of tock ([βα]) then displaces and releases the first instruction from the stack,

thus returning the stack to a state analogous to the initial state but with one less instruction

on the right.

This process can be repeated as long as there are instructions available on the stack.

We can utilize the x segment in the “last” (leftmost) strand to anchor the stack to other

components or protein structures with appropriate binding sites. Several variations of such

motifs are possible. These will be discussed in Section 4.2.6.

While we can describe the state of a stack using the formalized component syntax,

this quickly becomes cumbersome. For that reason, it is useful to use a more streamlined

stack notation. So, for example, we might show the stack of Figure 4.7 as

tick/

tock/payload

tick/

tock/payload

tick/

tock/payload

4.2.3 GATING AND FLOW CONTROL

The previous example showed a straight line program. We can introduce branching behavior

by using a strand-controlled gating mechanism. Attaching an initial gate strand [αµ] to the

toehold in the initial state stops the stack from operating. However, upon addition of the

strand [µα]—which we might deem unlockµ—the gating strand will be displaced. Unlocking

places the stack in a ready state, so subsequent additions of tick and tock release instruction

strands as usual.

This motif allows a compiler to support branching and other program control func-

tionality by building multiple stack groups, each having a different gate strand. Depending

on the sequence of some particular unlocking µ, a stack from one group or another would

be unlocked. For example, there may be one stack keyed to the label µ, another stack keyed

to the label ν. Both still operate using the same clock strands once unlocked. This allows

for zero, one, or both of these instruction blocks to be executed depending on the presence

of zero, one, or both of [µα] and [να]. This permits a kind of trigger-based programming in

which unknown inputs cause a DNA program to “branch” to one stack or another, because

the inputs unlock a particular strand.

The resulting program snippet begins with an unlock operation and then clocks

through an arbitrary number of payload instructions as shown in the box below.
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tick/
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tock/payload
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tick/

��

tock/payload
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Figure 4.7: The operation of a stack from the user’s perspective. This stack contains three

instruction payloads, each of which consists of simply the label p. The label x may be used

to anchor the stack to some substrate such as DNA origami or some protein with binding

specificity.
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Figure 4.8: The stabilization diagram for a gated stack. First there is a hybridization and then

a displacement. Unlocking is thus similar to a tock.

unlockµ/

tick/

tock/payload

tick/

tock/payload

tick/

tock/payload

4.2.4 LOOPING

There is also the possibility of looping behavior if stoichiometry is appropriately set. Sup-

pose there are n target machines and mn copies of the stack. By introducing n unlock

strands, n stacks will be unlocked. Subsequent tick and tock strands will execute the in-

structions in those stacks. This leaves n(m − 1) gated copies of the stack remaining. If each

copy of the stack then includes a copy of the unlock strand as its last instruction, another

n stacks will be unlocked after the first set of n stacks complete. That is, each execution of

n stacks corresponds to an iteration of the loop.

The looping program snippet begins with an unlock operation and then clocks through

an arbitrary number of payload instructions ending in an unlock operation, as shown in the

box below.
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unlockµ/

tick/

tock/payload

tick/

tock/payload

tick/

tock/payload

tick/

tock/unlockµ

4.2.5 ITERATED VARIABLES

By combining this technique with other gates, for and while statements are possible. For

example, the mn stacks might not all be identical. To stage them, there might be n copies

having one kind of gate, another n having a different kind of gate and so on. If the last

instruction of each of the n stacks from collection i has an unlock for a stack from collection

of i + 1, we can simulate an iteration variable.

Alternatively, we can use a separate variable stack which is operated by unique

strands.

For example, consider the situation in which the user would like to operate a walker,

but progress the walker forward only one step per loop instance, releasing some set of

instructions after each step. One could construct a stack consisting of the standard walker-

driver instructions, but, instead of being fueled by the general tick and tock strands, it will

be fueled by a different pair of strands. We might refer to these strands as call0 and call1.

These will be used to deploy the tape and untape strands (which must be called twice).

Thus, the primary loop stack will be:
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gateµ/

tick/

tock/instruction1

tick/

tock/instruction2

tick/

tock/instruction3

tick/

tock/call0
tick/

tock/call1
tick/

tock/call0
tick/

tock/call1
tick/

tock/unlockµ

And the secondary variable stack will look like:

call0/

call1/tapeax

call0/

call1/untapecy

call0/

call1/tapeby

call0/

call1/untapeax

call0/

call1/tapecx

call0/

call1/untapeby

call0/

call1/tapeay

call0/

continues. . .
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continued. . .

call1/untapecx

call0/

call1/tapebx

call0/

call1/untapeay

call0/

call1/tapecy

call0/

call1/untapebx

The strategy is to have the instruction in the loop “call” the variable by way of issuing

a “pop” instruction specific to the variable stack which stores the values of each interaction.

4.2.6 CONSIDERATIONS

Instructions will interact with some DNA target in the course of executing the DNA pro-

gram. One challenge is to prevent this interaction from happening too early before the rele-

vant instruction is released. One mechanism may simply rely on physical distance, perhaps

by attaching the stack and the target to different rigid substrates, with enough separation

so as to avoid interaction as long as both remain attached. When tock releases an instruc-

tion strand from the stack, it will be free to travel though the solution to its target machine

in order to do its work.

Another method may be to rely on extrinsic knotting and linking topology. Instruc-

tions may be attached by both endpoints to the stack, thus requiring two clock cycles to

fully release an instruction. This would prevent the instruction segment from binding pre-

maturely, because the helical structure of duplex DNA would prevent it from wrapping

around its target complement.

Fortunately, utilizing hairpin instructions, rather than linear strands would provide

the same safeguards, while only requiring a single end to be bound to the stack. A large

class of machines can be constructed using only hairpin-type fuels[Yin, Choi, Calvert and

Pierce, 2008]. That is the approach we take in our experimental section.

An additional challenge is to avoid race conditions. If tick and/or tock strands are

not completely consumed in the time they have to stabilize, some copies of the stack may

release instructions too soon. For example, suppose tick strands remain when tock strands

are added. As usual, an instruction will be released by a stack after the tock is added. But

then, as a result of the leftover tick strands, a tick may hybridize to the same stack. If there

are also leftover tock strands, then an additional instruction may be released. We call such

a stack a runahead stack.

The basic approach to solving this problem is to remove excess unreacted strands.

This might be accomplished by binding the tick/tock strands to a more easily manipulated
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substrate, such as a protein which can then be flushed In this approach, the tick and tock

strands could be engineered to include sequences recognized by the binding sites of some

protein, which can then be flushed from solution.

An alternative possibility is to bind the complement of the clock strands to some sub-

strate, perhaps even collectively to a single large origami. After pouring tick into solution,

for example, and allowing for sufficient time to stabilize, the perfect complement to tick

would be added. While the complement of tick does contain a segment that can hybridize

to the open toehold of a stack, the longer match with tick should dominate and displace

any such hybridizations. This approach also has the advantage that once a clock strand has

hybridized to its perfect complement, the resulting component will be completely stable,

having no toeholds with which to react with another component.

Perhaps the simplest approach is to coat iron balls with complements to tick strands

and to put those iron balls into the solution when it is time to flush away excess ticks.

Another set of iron balls coated with tocks could also be used to flush away tocks. It is an

experimental question to determine the best way to flush away extra tick/tocks.

4.2.7 EXAMPLE APPLICATIONS

4.2.7.1 Signal Amplification

A simple application of such stacks is to use them for signal amplification. This application

uses a gated stack whose instructions are all the same. The gate-unlock strand opens the

stack and the ticks and tocks cause more and more copies of the instructions to be produced.

Several different types of gates and amplified instructions may be used. Because the same

instruction is repeated for the entire lifetime of the stack, runahead stacks are acceptable.

4.2.7.2 A Stack Controlled Walker

In the case of a cycled walker, a repeating sequence of 12 strands is required to operate

the machine. This can become cumbersome and makes automation, such as by robotic

pipettes, a complex proposition. By utilizing a looping stack module, such a walker may be

driven by the simple alternating addition of tick and tock. This has the cost of requiring

twice as many pour operations, because releasing one fuel strand requires the application

of tick and tock. However, the fact that there are only two fuel types required to drive the

walker greatly simplifies lab procedures, reduces the possibility of user error, and simplifies

automation.

These instruction stacks may be either attached to the same substrate as the walker,

providing a self-contained system, or attached to a different substrate as a unique “driver

module.” The driver module can determine the direction the walker takes along the track

by reversing the order of the tape-untape strands required to move the walker’s feet. Thus,

one module can be constructed for the “forward” direction, and another module—identical

but for the reversal of instructions on the stack—can be constructed for the “backward” di-
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rection. By adding or removing these modules, the direction of the walker can be controlled

while nonetheless using the same general tick and tock strands.

Figure 4.9: Operation of a clocked walker by way of a programmed stack

Alternately, we might control a walker’s directionality by using gated stacks. This is

analogous to controlling the direction of the walker “at runtime” rather than “at compile

time”. Rather than using the looped module, we would use two types of gated stacks.

One stack will have a gate for the “forward” direction, followed by a 12 instruction cycle.

The other stack will have a gate for the “backward” direction and a similar 12 instruction

cycle for moving the walker backwards. Initially, one of the two gate-unlock strands will be

introduced into solution, and thereby unlock the appropriate stack. After 12 clock cycles,

the desired direction will have to be chosen again by introducing another gate-unlock strand

signifying the direction.

This idea can be extended to that of precisely controlling a walker on a two-

dimensional grid. This requires two types of tracks: a “north-south” track and an “east-

west” track. These two sets of tracks will intersect at every 6 footholds—12 instruction

steps—in order to form a grid. By now utilizing 4 types of gated stacks, one for each of the

cardinal directions, a clocked DNA computer can control a walker’s movement about such

a grid precisely. At each grid intersection, one of the 4 cardinal directions can be chosen by

introducing the appropriate unlock strand.

4.3 FUTURE THEORETICAL WORK

Here is a summary of what we have accomplished so far:

1. A simple language to describe strands, their hybridization, ligation, strand loops, and

so on.

2. A language describing the main transitions that are possible (e.g., hybridize, displace,

exchange).
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3. A method to combine elementary transitions with known motifs to support “stacks,”

each of which contains a sequence of transition instructions.

4. A further method based on gates on stacks to support conditionals, program looping

and subroutines.

With these steps, we have shown how to store programs inside DNA. The execution

of these programs will require only clock ticks and tocks and some means to flush them.

That is the good news. But it’s just a beginning.

The primary benefit of the stored program computing concept is that instructions,

data, and a problem input can all lie inside the computer. We have already seen how in-

structions can lie in a DNA soup as instruction stacks. Input DNA can simply be poured in.

We have not yet discussed data structures. Data structures that store information basically

have the structure of a key-value pair. Such structures support the query “what is the value

associated with key k?” We can construct a DNA key-value data structure as follows: each

key is implemented as a gate and an associated value is implemented as a stack of strands

that willb be released with ticks and tocks. There are many variant ways to do this.

This framework implies that programming can begin. While the system we offer has

instructions, conditionals, loops and elementary subroutines, vastly different programming

paradigms might be possible. We revisit this question after validating our ability to build

clocked DNA stacks.
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C H A P T E R 5

Experiment: Storing Clocked
Programs in DNA

5.1 CONSTRUCTING STORED INSTRUCTION STACKS

5.1.1 INTRODUCTION

In order to demonstrate that instructions can be stored within DNA1 later to be released

with clock strands, we created instruction stacks of various lengths. Constructing stacks

is very similar to deconstructing them in that it involves pouring in alternating strands.

For construction, however, we would start with the “base” strand, and alternately pour

anti-tick and instruction strands. This method, though time-consuming, proved to be the

most reliable for making stacks of a determined length, and unlike many one-step methods,

would allow for the construction of color-changing stacks.

Construction time is not a major concern because stacks can be prepared far in ad-

vance of their use and stored stably at low temperatures. In addition, construction (program

compilation) can easily be automated, which would make it even more convenient.

Our findings indicate that this method of construction should be a viable method

for making a collection of stacks all of the same approximate length. We have found that

stoichiometric balancing of input strands can curb runahead chain reactions. Such chain

reactions could occur when excess anti-tick and instruction strands continue to hybridize

and create longer stacks than intended. As we have discussed in Chapter 4, stochiomet-

ric balancing (perhaps in coordination with a flushing mechanism) is also useful for the

deconstruction step, again to counter runahead stacks. Each construction/deconstruction

step requires slow cooling steps for accurate hybridization of added strands, but, again,

construction time is not a major issue.

5.1.2 OVERVIEW OF METHODS

We first tried a one-step method, which combined base strands, instructions strands, and

anti-tick strands in a 1:4:4 ratio to see if we could create stacks consisting of approximately

four instructions. In this approach, we combined all the strands at 40˚C to disrupt any

unwanted base pairing. These pairings usually occur over small ranges (2-3 nucleotides)

between strands during storage at low temperatures, when it becomes favorable for any

1Aidan Daly carried out the work in this chapter in the summer of 2010 and wrote most of this description.
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sort of interaction to form between strands. We then cooled the combined strands slowly,

as slow cooling favors correct hybridization between the longest matching sequences.

We ran the resulting construct on a native gel (one that allows DNA to exist in

a double stranded state, thus not disrupting our constructs as would be the case for a

denaturing gel). A gel permits us to determine the length of single and double strands. If

there is just one size, there will be a single bar corresponding to that size. When there are

many sizes, there will be a smear, where each part corresponds to one of the sizes.

The results (see Figure 5.1) showed a range of sizes, indicating that this one-pot

method yielded many chain reaction constructions.

For this experiment, we used a small (8 bp), single-stranded base strand. The anti-

tick strand was a 16bp single strand of DNA, and the instruction was a 56bp hairpin. Each

of these components was run in an independent lane on the gel as a reference for size. The

base strand was too small to appear on the gel and would dissociate from the stack fairly

easily due to its small region of complementarity. The stack appeared as a large smear

indicating the presence of many differently-sized constructs, containing anywhere between

one and four instructions.

The smearing suggested that a sequential construction technique would be better.

Sequential construction entails alternately pouring and hybridizing balanced amounts of

anti-tick and instruction strands in order to control the length of the stack.

Because a sequential approach requires multiple rounds of heating and slow cooling

(one for each strand to hybridize), we had to design a larger base strand. The single-stranded

8 base pair fragment would not complement a large range, and would denature (i.e. the

two complementary strands would split apart) from the bottom of the stack at relatively

low temperatures. Thus, we designed a new base as a composite of two strands – SB (small

base) and LB (large base) – with an overhang that bound to the first instruction of the

stack. This increased size also allowed us to visualize the base on a gel.

Because we were performing a sequential construction, we developed a naming system

to categorize all intermediates we would hope to observe on the gel (see Figure 5.2).

The sequential addition method consisted of the following protocol: heat equal molar

amounts of the two base strands to a high temperature then cool slowly to allow hybridiza-

tion. For each subsequent step, heat the current intermediate to a temperature high enough

to disrupt unwanted base pairings, but not high enough to denature the construct. For ex-

ample, when forming intermediate C, we combined an equal molar amount of anti-tick and

B in a vessel and heated to just below the temperature when the top instruction strand of

B would dissociate. These temperatures were determined by the length of complementarity

between the strands, which in this case was 8 base pairs, as well as the GC content of the

strands. The resulting mixture would then be slowly cooled to allow desired hybridization.

Following this method, we constructed A through C and ran the results on a native

gel (see Figure 5.3.).
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Figure 5.1: In this one step construction method, the stack appears as a large smear in both

of the lanes we ran it in, indicating the presence of many differently-sized constructs, containing

anywhere between one and four instructions. The one step construction method is therefore

insufficient if we want all stacks to be of the same length.

The anti-tick, SB, LB, and construct A lanes all show clear bands, but once again,

the lane containing the instruction strand shows multiple discrete bands. This is due to the

formation of aggregate hairpins – multiple hairpins bound together. This occurs when the

hairpin stem first melts, then binds to the melted stem domain of another hairpin, forming

a double instruction, as illustrated below (see Figure 5.4). This can occur multiple times,

and on the gel we see aggregates of up to six instructions forming in appreciable amounts.

For this reason, we see multiple bands in the lane consisting of construct B in Fig-

ure 5.5. We know this is not due to any chain reaction, because no anti-tick had been added
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“A” “B” “C” “D” “E”

Small base (SB)
+ Large base (LB)

A + Instruction C + InstructionB + Anti-tick D + Anti-tick

24bp
+32bp

56bp

56bp
+56bp

112bp

112bp
+16bp

128bp

128bp
+56bp

184bp

184bp
+16bp

200bp

Figure 5.2: The results of a sequential construction method: precise selection of lengths.

to that vessel. On the other hand, when we look at the band in the B lane representing

only one instruction added (the band just above the one representing slight excess of inter-

mediate A), we see there is a band just above it in the lane containing C, indicating that

the hybridization of a stoichiometric amount of anti-tick would not have caused a chain

reaction in any case.

In order to confirm this, we decided to perform the experiment with an additional

heat shock step to separate aggregate hairpins. Before we added hairpins to any reaction

vessel, we would heat the hairpin strands to a high temperature. This would open all hairpin

stems and thereby separate all aggregate hairpins. Then, we would quickly cool the strands

on dry ice. This quick cooling would favor intramolecular hybridization over intermolecular

hybridization, ensuring that separate hairpins would not bind together. We then hybridized

these instructions to the growing constructs with favorable results (see Figure 5.5).

The gel shows little aggregation of instructions. In solution, there should be even less

aggregation, because the instruction strands used in the hybridizing reactions were used

immediately whereas the ones run in the gel had rested some time since the heat shock.

The single clear band in the lane for B indicates the incorporation of a single instruction

onto the base.
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Figure 5.3: Results of the first attempt at a sequential addition method on a native gel – less

of a smear but still not a single band.

The smearing observed around the band in lane C indicates some degree of chain

reaction addition following the hybridization of anti-tick strands. However, the smearing is

minimal and the band density is clearly focused slightly above the band for B, indicating

that the incorporation of a single 16bp anti-tick strand is the major product.

5.1.3 PROTOCOL DETAILS

Strands were designed by hand and ordered from Integrated DNA Technologies. Strands

were additionally purified by running on a denaturing polyacrylamide gel in a normal TBE

buffer at 55˚C, followed by standard n-butanol extraction.
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“Aggregate hairpin”

Even more

instructions can bind 

to this domain

Rather than annealing internally, 

intermolecular anneals can

occur between stem domains of 

two different instructions

Heat causes hairpin to open, 

leaving single-stranded

“stem” domain exposed

Two free instructions hairpins 

in solution

Figure 5.4: Hairpins can bind to other hairpins.

The small base and large base strands were suspended in TE buffer and combined

in equal molar amounts. The mixture was heated to 95˚C for 20 minutes and cooled

incrementally (20 min at 65˚C, 20 min at 37˚C, 20 min at RT) before being stored at

4˚C.

When adding anti-tick strands to the growing complex, a number of strands approx-

imately equal to the number of moles of complex were measured out and the strands were

dried using an evaporator. The complex (in solution) was added to the dried strands and

resuspended using a vortex.

Instruction strands, prior to addition and hybridizing to the growing complex, were

heated at 95˚C for approximately 5 minutes, and then rapidly cooled on dry ice until ad-

dition to disrupt any aggregate hairpins. The instructions strands were incompletely dried,

as complete drying would allow for re-formation of hairpin aggregates upon resuspension.

The growing complex was added to the vial containing single instruction strands suspended

in minimal 1x TE buffer and vortexed.

Hybridization for both anti-tick and instruction strands was accomplished by letting

the strands sit at room temperature for 30 minutes, then storing at 14˚C for at least 30

minutes.

At each hybridization step, a small aliquot of the intermediate product was removed

and stored to be run on the native polyacrylamide gel alongside the final product. These
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Figure 5.5: Hot-and-cold treatment eliminate hairpin aggregation, yielding a clear dominant

band in lane B.

changes in molar quantities of complexes were taken into account during subsequent strand

additions.

5.1.4 EXPERIMENTAL CONCLUSIONS/FUTURE DIRECTIONS

We have demonstrated that constructing stacks of a specific length (and therefore clocked

DNA programs) can be achieved by a sequential addition process. We have also demon-

strated that through simple stoichiometry, we are able to limit the chain reactions that occur

due to excess instructions and anti-tick strands during construction. This may also have

implications for stack deconstruction, where we seek to curb similar chain reactions with
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tick and tock strands. We have also demonstrated the usefulness of heat shock treatment

of hairpin strands to ensure that aggregates are not incorporated into the stacks.

We have yet to determine how large we can make these stacks and how reliably we

can control chain reactions at larger sizes. As they grow, native polyacrylamide gels may

not be an informative enough means of visualization, as they are not capable of resolving

small differences in size beyond a certain point. Fortunately, this is not a major concern

because, for many applications, fine-grained accuracy is not important. For example, in

most parallel processing applications, it will not matter if one stack releases more than one

copy of a given instruction strand. We must also determine how large the gated stacks can

be.

For the sake of simplicity, we may want to try using single-stranded instructions

instead of hairpins. Nevertheless, the experiments show that the principle of storing in-

structions within the DNA in such a way that they can be released through clock strands

is entirely realizable.
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C H A P T E R 6

A Clocked DNA Programming
Language

6.1 EXISTING PROGRAMMING LANGUAGES MAY NOT
WORK

In the first 10 years of their existence, automobiles resembled horsedrawn carriages – minus

the horse hitches. This may have comforted early customers who enjoyed the familiarity of

the vehicle, but it made no sense once the speed capabilities of the new technology became

apparent.

While we have emphasized the familiarity of the clocked stored program concept in

the preceding chapters, we do not mean to imply that programming languages for electronic

computers should be used to control DNA computers. Let’s first look at what is different

about DNA computing.

• First, there is the question of scale. A large parallel electronic computer may have

1,000 processors or maybe even 10,000, but a clocked DNA computer can have billions

of instruction stacks.

• Second, each step in an electronic computer takes under a billionth of a second to

execute, whereas the billions of instruction stacks may take several minutes to stabi-

lize after each tick and tock is released. So, even if the total raw computing power

(instructions emitted per unit of time) of a DNA computer may be comparable to

that of an electronic one, we must make every parallel instruction count.

• Third, the instruction stacks simply release instructions into solution. They keep no

local state (there is nothing analogous to local variables or registers). All changes

occur on the global state and on the stacks themselves. This means that a “call” to a

gated instruction stack using an unlock strand does not pass parameters.

• Fourth, as we discussed in Chapter 4, it is possible to pour in a vial of tick strands,

but they may not all be consumed. When tock strands are poured in next, some

stacks may release several instructions while others release none. So, clocking can be

imprecise.

The strategy suggested in Chapter 4 was to administer strands in proper stoichiometry

and then wait long enough. Other strategies that may be more precise are possible.
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For example, a vial may be administered that contains more tick strands than in-

struction stacks and then some flushing mechanism (such as coated iron balls) may

remove excess ticks. A programmer should be able to specify whether such a flushing

mechanism is necessary.

• Fifth, a stack with a gate will not execute unless it receives an unlock strand. It is

conceivable, however, that some gated stacks will receive unlocks at a different time

than other ones. A programmer should be able to specify whether all stacks sharing the

same gate should begin at the same or whether this common start time is unnecessary.

6.2 PARAGAT: A MINIMALIST LANGUAGE FOR A
CLOCKED PARALLEL DNA COMPUTER

The language ParaGAT consists of instructions (which are strands of DNA), gates (which

are other strands), and synchronization primitives. The basic synchronization primitive is

flush which entails ensuring that there are no clock strands (ticks or tocks) in the system.

Flushing is the primitive used to ensure that instructions are executed one at a time. The

notion that instructions must be executed synchronously occurs so frequently, however,

that ParaGAT also includes the keywords sync (meaning the ith instruction in every stack

should execute before any stack executes instruction i + 1) and async.

The keyword async means that the programmer allows different instances of some

stack to execute different instruction numbers concurrently. Operationally, this means that

the system can flood with tick and tock strands to allow runaway stacks. (It might be

possible to use some version of the asynchronous Qian stacks [Qian, Soloveichik and Winfree,

2011]. Qian stacks once unlocked (if necessary) would have a sequence of instructions each

released by a complement of an instruction and a toehold. The complements would be

pre-loaded in the system. It is an engineering question whether Qian stacks or the hairpin

style stacks proposed here would be a better implementation of asynchronous stacks.)

The keyword async also implies that the stack construction step is allowed to con-

struct stacks of different sizes provided the stacks differ only in how many times a given

instruction is repeated. For example, for a parallel async stack containing the nominal se-

quence of instruction strands X Y X Z could also have stack instances having the sequence

X X Y Y Y X Z Z. This freedom may permit fast parallel construction methods like those

that caused a smear in the last chapter.

The notation is very simple. For example, the following describes a block of ungated

synchronous parallel stacks. Each payload instruction is just a DNA strand.

begin sync

payloadInstruction 1

payloadInstruction 2

payloadInstruction 3
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payloadInstruction 4

end sync

Next, ParaGAT should have a way to specify a block of instructions representing a

collection of gated stacks. The specification should include the gate condition required to

unlock each stack. Here the condition will be a strand or strands that together will unlock

the stack. (It is easy to build a stack that requires the Boolean and of a set of strands to

open. Each corresponding lock is just another gate.)

A block of asynchronous stacks that will be unlocked if the strand g appears will take

the form:

gate g

begin async

payloadInstruction 1

payloadInstruction 2

payloadInstruction 3

payloadInstruction 4

end async

As we will see below, it is sometimes necessary to ensure that all instances of the

gated stacks begin executing at the same time (even when the gated stacks themselves will

execute themselves asynchronously). One way to ensure that is to pour in part of the gate

as needed. Admittedly, this means that, in addition to tick and tock, other strands may be

poured into the DNA solution. As long as this is done sparingly, it could be very useful.

We call this primitive external; it takes a strand as an argument.

When the programmer wants all stacks having this gate to begin executing at the

same time, we make the gate external and introduce it only after we can be sure the previous

stacks have completed.

external gate g

begin async

payloadInstruction 1

payloadInstruction 2

payloadInstruction 3

payloadInstruction 4

end async

A program is written as a hopefully small collection of gated and ungated blocks. This

“dataflow” style of programming, in which strands are released when their pre-conditioning

gates are satisfied, models the DNA in solution nicely.
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6.2.1 CONCEPTUALIZING COMPUTATIONS IN PARAGAT

One way to view synchronous instruction stacks in ParaGAT is as a sequence of instructions

having a strict linear dependency. Conversely, asynchronous instruction stacks have no inter-

dependencies. Therefore, a more convenient way to model the computation is as a graph

where each vertex is an instruction (a single DNA strand ultimately), a possibly non-

empty gate (one or more single DNA strands), and possible dependencies. Edges denote

dependencies. So x → y means that instruction x must precede instruction y.

This graph representation compiles to ParaGAT quite simply. Instructions having

common gates are put into the same gated stack. Instructions having no gates are put into

a single ungated stack. The stack is synchronous if some of the instructions of a stack have

dependencies on other instructions in the stack. The stack is asynchronous otherwise. A

gate g is external if all instructions either directly or transitively precede or follow g.

6.3 AN EXAMPLE APPLICATION IN PARAGAT

As a practical example of our approach, consider a detector for several harmful single

stranded pieces of DNA. Let’s say that we want to indicate which strand is present by

using quenched fluorescent markers. So, a DNA instruction in a stack will not fluoresce but

will do so once released. Now, suppose we have two colors (red and blue) to choose from,

but we want to distinguish between four different strands, which we will call s1, s2, s3, and

s4.

We arrange our stacks so that s1 and s2 will cause red to show in a first time period

given the external gate “phase1.” Then s1 will cause red to show in the second (following)

time period, but s2 will cause blue to show in the second time period. Similarly, s3 and s4

will cause blue to show in a first time period. Then s3 will cause red to show in the second

time period, but s4 will cause blue to show in the second time period.

Here is the block for the first time period for s1 and s2. (We have not yet figured

out how to construct a gate that embodies a boolean or. So, we may in fact need different

stacks for the or condition.)

gate (s1 or s2)

external gate phase1

begin async

red fluorescent marker instruction

red fluorescent marker instruction

red fluorescent marker instruction

red fluorescent marker instruction

end async

We treat s3 and s4 similarly. They cause a blue fluorescence in the first time period.

gate (s3 or s4)
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external gate phase1

begin async

blue fluorescent marker instruction

blue fluorescent marker instruction

blue fluorescent marker instruction

blue fluorescent marker instruction

end async

For the second time period, we use an external gate to ensure that the second time

period stacks don’t start emitting their markers while the first time period stacks are

emitting their strands. That is, we might flush out the fluorescence from the first time

period as well as the phase1 strands and then introduce the phase2 strand externally.

Either s1 or s3 cause red fluorescence in the second time period.

flush

gate (s1 or s3)

external gate phase2

begin async

red fluorescent marker instruction

red fluorescent marker instruction

red fluorescent marker instruction

red fluorescent marker instruction

end async

Either s2 or s4 cause blue fluorescence in the second time period.

flush

gate (s2 or s4)

external gate phase2

begin async

blue fluorescent marker instruction

blue fluorescent marker instruction

blue fluorescent marker instruction

blue fluorescent marker instruction

end async

6.4 FUTURE WORK

ParaGAT is essentially a machine language. It consists of strands to be put on stacks,

strands to act as gates, and primitives for flushing and external unlocking. Skilled language

designers will be able to build higher level constructs on top of these primitives. The

challenge is to construct a language that is high level and easy to write, but that also
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compiles to time- and material-efficient DNA programs. At this point, we see this as a wide

open problem.
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