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Project Summary
1. Title
Predicting destruction: A quantitative model for protein degradation following oxidative stress
2. Senior personnel
Dr. Christine Vogel – PI (NYU); Dr. Dennis Shasha – Collaborator (NYU) Should I be a co-PI? I don’t care particularly, but that is what I am in the Gloria grants. It might make reviewers think I’m more seriously involved
3. Intellectual merit
Predictive modeling of protein degradation on a proteome-wide scale. Genome-wide molecular technologies have transformed biology, enabling researchers to quantify thousands of mRNAs and proteins under many conditions. A fundamental insight from these studies postulates that degradation is as important as transcription [do we need a ref here?] – but our understanding of the regulation of protein degradation still has many gaps [and ref here? Or can you say something even stronger, e.g. understanding of protein degradation is essentially only that we know it happens]. In this proposal, proteome-wide experimental, sequence, and protein structural information will be integrated to build the first predictive model of protein degradation, at the [using as a case study] example of oxidative damage. 
Protein degradation is particularly important if the proteome is damaged. If the proteome is endangered through damage or mutation, the cell has to decide which of the two main degradation pathways to employ: (i) to use the cellular energy required to tag proteins with ubiquitin, marking substrates for degradation in a targeted, highly specific manner, or (ii) to use general, untargeted degradation which is simpler but less specific. The balance between these two pathways, i.e. targeted, ubiquitin-dependent and untargeted, ubiquitin-independent degradation has been the subject of a long-standing debate, and contradicting contradictory evidence exists. Our [preliminary?] data demonstrates that indeed both pathways are used by the cell, and is [which one is used is] highly specific to different groups of proteins during different stages of the stress response. 
This proposal. Collecting a comprehensive set of orthogonal [what does orthogonal mean in this context] experimental data, we will quantitatively model the how global proteomic response to oxidative damage in itsdepends  dependence on protein sequence and structure. The model will characterize, with respect to the differentwhich pathways of oxidation, ubiquitination, and degradation a protein takes depending on a protein’s physical attributes. The project relies on a unique combination of large-scale, quantitative high-resolution proteomics, integrative use of novel molecular techniques, and expertise in predictive computational modeling in this lab. The work will, for the first time, incorporate all three dimensions of a system (protein oxidative damage, ubiquitination, and degradation) within one quantitative model and predict protein fate based on sequence and structural features and the relative importance of the degradation pathways. The complexity of the system makes Saccharomyces cerevisiae an ideal model for these studies, since yeast are more robust than mammalian cells to complex and highly controlled experimental conditions, and the dynamics of the yeast proteome lacks complications such as alternative splicing. Importantly however, the components of protein degradation pathways are highly conserved across eukaryotic organisms [ref?], and the results of this proposal are likelytherefore promise to be of fundamental biological relevance. The experimental and computational approaches developed in this project to model changes in protein state following oxidative stress will be applicable to (i) all eukaryotic cells and (ii) other systems in which the proteome is substantially endangered, for example exposure to thiolating agents or strong mutagenic conditions.
Aim 1. Determine protein ubiquitination, oxidation, and degradation upon oxidative stress in three different envinronments. 
Aim 2. Train quantitative predictive model of the choice among protein degradation pathways using regression models. 
Aim 3. Validate model predictions through sequence-based modification of protein stability.
4. Broader impacts
First, the advanced proteomics, experimental, and computational techniques involved will provide inter-disciplinary training for several undergraduate and graduate students and postdoctoral researchers. Second, the lab will accommodate one to two high school students for a six-week internship each year, and the yeast model system (due to its simplicity and robustness) is ideal for these projects. Third, the PI will prepare lectures and lab visits for high-school students who are part of the American Museum of Natural History’s educational program (LANG program). Thus, we will engage the public both by broad lectures and through one-on-one training and mentoring of individual students.  
5. Keywords - protein degradation; oxidative stress; proteomics; ubiquitination; proteasome; regulatory network; regulatory model; Bayesian network

1. Objectives 
	

	Fig. 1.1. The different protein degradation pathways following oxidative stress. Red: pathways in response to oxidative stress. Blue: variables measured in this proposal. Yellow: open questions. 


[image: ]The challenge. Proteasomal degradation accounts for >90% of cellular protein turnover {Jung, 2009 #4580}, and failure to degrade oxidatively damaged proteins has detrimental effects for any cell, as the damaged proteins form toxic aggregates. Despite years of intense study, the exact role of ubiquitination for removal of these damaged proteins is the subject of an ongoing debate (Fig. 1.1). Protein poly-ubiquitination allows the cell to target proteins for degradation (and other processes) in a highly time-resolved and protein-specific manner {Hershko, 1998 #4744}, and there are several examples of ubiquitin-mediated degradation of oxidized proteins {Shang, 2001 #4772;Dudek, 2005 #4717;Medicherla, 2008 #4718;Lee, 2010 #4898}. However, ubiquitin-independent degradation of oxidatively damaged proteins has also been widely reported and has now been accepted as the predominant mechanism {Inai, 2002 #4680;Shringarpure, 2003 #1937;Asher, 2006 #4755;Kastle, 2011 #4565}. The two pathways are fundamentally different in their cost and result for the cell: ubiquitin-dependent degradation can be highly targeted and protein-specific, but requires strict regulation and cellular energy; in contrast, ubiquitin-independent degradation is comparatively simpler to regulate and does not require energy, but lacks specificity. The tight regulation of protein degradation is based on sequence and structure features of target proteins REFS, but our knowledge of these features is still largely incomplete as is our knowledge of the dependence. Truly understanding the relative importance of these degradation pathways requires a quantitative model with two key elements: (1) an integration of timing and strength of the proteome-wide effects of different pathways, and (2) a sequence/structure-specific model to predict the choice of degradation pathways. proteome-wide differences in the use of degradation pathways.
The solution. We propose to combine large-scale quantitative proteomics techniques, controlled, time-resolved experiments, and computational modeling in a unique approach to resolve the choice of protein degradation pathways upon oxidative stress. We propose to identify and use a predictive of protein degradation. Producing a highly integrated data set from orthogonal large-scale experiments in the model system Saccharomyces cerevisiae, we will construct a comprehensive and quantitative model to predict ubiquitin-dependent and –independent degradation pathways after oxidative challenges based on sequence and structure features (Fig. 1.2). [Christine, I find a lot of this stuff repetitive.]
Aim 1. Determine priors of protein ubiquitination, oxidation, and degradation upon oxidative damage.
Using large-scale quantitative proteomics and inhibitors of translation, proteasomal degradation, and ubiquitination, we will characterize protein expression and modification changes for a large number of yeast proteins over a period of two hours. In this way we will isolate ubiquitination-dependent and -independent (as well as proteasome-dependent and -independent) changes in stability for several thousand proteins and monitor the dependence of these changes on oxidation and ubiquitination of the protein (and its peptides). 
Aim 2. Train quantitative predictive model of protein degradation pathways using regression models. 
Using a set of theoretical and experimental priors determined in aim 1, we will describe quantitatively the global response to oxidative stress, with respect to different pathways of protein oxidation and degradation. We will predict the degradation fate (or mixture of fates/pathways) for each protein based on its sequence and structural features. 
Aim 3. Validate model predictions through sequence-based modification of protein stability.
XXX
Our project, for the first time, examines all three dimensions of the system (protein oxidation, ubiquitination, and degradation) within one system and quantitatively describes and predicts different modes of the oxidative stress response. 
Aspects of this proposal that specifically address the priorities of the MCB division:
	

	Fig. 1.2. Aims 1 and 2 provide the experimental priors for the regulator model built in aim 3. S – sequence and structural characteristics of a given protein. UB – ubiquitination. OX – oxidation. DEG  - protein degradation.


· We will provide a predictive regulatory model that describes the dynamics of protein degradation. 
· We will examine the proteome’s adaptation to environmental challenge by analyzing different phases of the stress response (early response & recovery). 
· We will develop new methods and tools by integrating novel experimental techniques (e.g. TUBE ubiquitin enrichment system and proteomics) as well as constructing the first regulatory network describing protein degradation. (Previous regulatory networks mostly focus on production of bio-molecules.)
· The research is at the interface of molecular and cellular biosciences and physical, mathematical, computational and engineering sciences: we combine molecular biological techniques (e.g. immunoprecipitation) with high-resolution, large-scale mass spectrometry, one of the leading techniques in quantitative proteomics. We integrate the experimental results into a Bayesian regulatory network that quantifies probabilities of protein fates. 
2. Background
The proteasome. In eukaryotes, the ubiquitin-proteasome system is the most important intracellular proteolytic pathway regulating protein concentration, controlling the quality of protein synthesis, and removing damaged proteins. The population of proteasomes in the cell includes the free 20S catalytic core which can be bound and regulated by different sub-complexes (19S, 11S, PA200, REGγ){Jung, 2009 #4580}. The association of the 20S proteasome and the 19S regulatory particle forms the 26S proteasome which is the only variant capable of recognizing ubiquitinated proteins and directing them to degradation {Glickman, 2002 #920}. Several studies exist attempting to relate protein sequence and structure to its overall stability.  For example, some amino acids are thought to destabilize a protein if at the N-terminal end REF, and the presence of proline, glutamate, serine, and threonie stretches has been observed to cause degradation REF. Recent structural work has shown that the presence of many intrinsically unstructured regions also destabilizes a protein REF. 
The proteasome components and degradation pathways are highly conserved – rendering experiments in yeast directly relevant for plants or mammals. However, few large-scale datasets describing protein stability under normal conditions exist to date {Belle, 2006 #245;Eden, 2011 #2183;Yen, 2008 #373;Schwanhausser, 2011 #2075}, and we have close to no understanding of how protein stability changes in response to stimuli. In contrast to numerous well-described transcription regulatory networks, we have no equivalent network describing the regulation of protein degradation. 
Ubiquitination. Ubiquitination is catalyzed by a cascade of enzymes, and the yeast proteome encodes one E1 activating enzyme, a dozen E2 ubiquitin conjugating enzymes and ~80 predicted E3 ubiquitin ligases {Deshaies, 2009 #4905}. Ubiquitin chains are formed via an isopeptide bond between a substrate lysine residue and the C-terminal glycine of ubiquitin. The next ubiquitin molecule can be attached to one of seven lysines on ubiquitin to create a poly-ubiquitin chain. Poly-ubiquitin chains linked through lysine at position 48 are the most common signal for degradation, while mono- and multi-ubiquitination, along with chains formed via other ubiquitin linkages participate in a variety of other processes including DNA repair, cellular trafficking, and cell cycle regulation {Pickart, 2004 #4906;Xu, 2009 #4907}. 
Again, ubiquitin is not only ubiquitously occurring across organisms, its functional pathways are also highly conserved: protein degradation is triggered through K48 poly-ubiquitination both in yeast as well as plants and humans. Ubiquitination of the target protein naturally occurs at a lysine residue, and some evidence suggests that N-terminally located lysines surrounded by acidic amino acids are preferred REF[Kim, 2011]. However, an exact ubiquitination motif and how ubiquitination preferences may change under different conditions is not known. 
· Ubiquitin itself has several Ks and can be ubiquitinated, forming long poly-ubiquitin chains. The function of these chains depends on which K has been used.  The most dominant ones are K48 for degradation and K63 for changes in localization. 
· regions characterized by depletion of arginine on the N-terminal side and lysine and histidine on both sides, with enrichment of acidic residues to a lesser extent (Figure 7C).
Oxidative stress as a major mechanism of protein damage. Oxidative stress is characterized by an imbalance between reactive oxygen species (ROS) and cellular antioxidant defense. ROS production can be triggered by biotic and abiotic factors and is a major process of cellular damage. ROS play a crucial role in the mammalian immune system, plant stress signaling and pathogen response, and in the sensing of environmental changes by microorganisms {Winterbourn, 2008 #4738;Gechev, 2006 #4900;Jamieson, 1998 #1922;Cabiscol, 2000 #4899;Lushchak, 2010 #4960}. In proteins, the oxidation of amino acids, primarily proline, arginine, lysine, threonine, glutamate, and aspartate, generates carbonyl groups {Davies, 2005 #4794}, and these carbonyl groups have been observed across a multitude of different proteins and organisms {Sohal, 2002 #1163;Cabiscol, 2000 #4899}. A simple estimate may best illustrate the enormous extent of protein oxidation: under oxidative stress, on average 1.7 carbonyl groups are expected per 50 kDa protein {Moller, 2007 #4949}. 
Some proteins appear to be more sensitive to oxidative stress than others, but the exact oxidative propensity for each protein (as a function of its sequence and structure) is not known. Certain residues, e.g. XXXX, are more likely to be oxidized, but different modifications exist. One of the major modifications is carbonylation, accounting for about XXX of all oxidation events. Oxidation impacts the likelihood of a given protein to be ubiquitinated (and degraded), but to what extent this impacts protein targeting after oxidative stress is not known. 
· Many amino acids are affected (for carbonylation ->K,R,P,T,D,E). 
Protein degradation under oxidative stress. All organisms (specifically eukaryotes which are the focus here) have evolved an elaborate machinery to respond to oxidative stress. However, despite the existence of repair mechanisms {Boschi-Muller, 2008 #4739;Biteau, 2003 #4740}, the majority of oxidatively damaged proteins have to be removed from the cell to re-establish cellular proteostasis, as the oxidized proteins can form toxic aggregates. Accumulation of oxidized proteins and toxic aggregates causes cellular senescence, loss of replicative ability and cellular death in all organisms {Maisonneuve, 2008 #4973}, for example, impacting plant seed germination {Moller, 2007 #4949;Job, 2005 #4971} and forming the basis of neurodegenerative diseases {Mariani, 2005 #2222;Sayre, 2001 #1166}. Thus, the highly efficient, regulated, and dynamically adaptive degradation of proteins is an essential part of the oxidative stress response. Proteins have to be degraded both as part of gene expression regulation during the stress response and to remove oxidatively damaged proteins. 
To ubiquitinate or not to ubiquitinate (prior to degradation). Although most proteasomal substrates must be poly-ubiquitinated before being degraded, ubiquitin-independent pathways exist {Jariel-Encontre, 2008 #4757;Tarcsa, 2000 #4926;Orlowski, 2003 #4758}(Fig. 1.1). Moreover, ubiquitin-independent degradation has been thought to dominate during removal of structurally abnormal, misfolded, or highly oxidized proteins - but contradictory, albeit anecdotal, evidence exists (Tab. 2.1). For example, several studies reported that the free 20S proteasome (and the immunoproteasome in mammals) are responsible for the ubiquitin-independent degradation of oxidized proteins {Kastle, 2011 #4565;Shringarpure, 2003 #1937;Pickering, 2010 #4568;Grune, 2001 #4562}. However, these studies rely on in vitro degradation models and systems in which ubiquitination is compromised. In contrast, other studies have demonstrated the importance of ubiquitination during the stress response where experimental impairment of the ubiquitination system alters the balance of oxidized proteins {Dudek, 2005 #4717;Lee, 2010 #4898;Medicherla, 2008 #4718;Yamanaka, 2003 #4909}. In our preliminary work (see below), we have demonstrated that both ubiquitin-dependent and –independent degradation occurs, and the pathways affect different, specific groups of proteins. Thus, degradation is highly regulated during the oxidative stress response, involving the recognition of protein sequence and structure features.  

Tab. 2.1. The debate on ubiquitin-dependence of the degradation of oxidized proteins
SHORTEN
	
	(1) Degradation by 20S proteasome
	(2) Degradation by 26S proteasome with ubiquitin requirement

	20S Proteasome activity
	20S proteasome degrades unfolded and damaged proteins {Orlowski, 2003 #4758;Asher, 2006 #4755;Jariel-Encontre, 2008 #4757;Baugh, 2009 #4684}
	20S proteasome’s gate is closed, precluding proteolysis {Coux, 1996 #4745;Groll, 2000 #4748;Jung, 2009 #4579}

	Substrate unfolding
	Promoted by reactive oxygen species (ROS){Pacifici, 1993 #4726;Ferrington, 2001 #4727}
	Promoted by 19S ATP-dependent activity {Jung, 2009 #4579}

	H2O2 sensitivity {Reinheckel, 1998 #1848;Reinheckel, 2000 #4642}
	20S proteasomal activity is not affected by 5 mM H2O2
	26S proteasomal activity is abolished by 1mM H2O2 however ubiquitination is more resistant to stress than 20S proteasomal activity {Zhang, 1996 #2008}.

	Proteasome distribution {Murakami, 2000 #4927;Babbitt, 2005 #4703}
	25-30% is free 20S proteasome; 26S proteasome dissociates into free 20S proteasome during oxidative stress and aging {Bajorek, 2003 #4714;Wang, 2010 #4681}
	Proteasome associated with regulatory subunits are the major form found in cytosol and nucleus.

	Ubiquitination of oxidized proteins
	Oxidation of ubiquitination sites inhibits ubiquitin conjugation {Guedes, 2009 #4782;Kastle, 2011 #4565}
	ROS unfold or prevent proper folding of proteins, exposing ubiquitination sites {Hershko, 1986 #4763;Medicherla, 2008 #4718}.

	Ubiquitin enzymes in oxidative stress
	Impaired activity of ubiquitination enzymes E1 and E2 {Shang, 1995 #4769;Jahngen-Hodge, 1997 #4721}
	Increased activity and ubiquitin-conjugated content {Shang, 1997 #2206}

	Ubiquitin requirement
	No – yeast strains deficient on E1 activity still remove oxidized protein {Shringarpure, 2003 #1937}. Strains defective in 19S are more H2O2 resistant {Inai, 2002 #4680}
	Yes – yeast strains defective in 19S or ubiquitination do not remove oxidized proteins and potentiate H2O2 cytotoxicity {Medicherla, 2008 #4718;Dudek, 2005 #4717}. Inhibition of de-ubiquitinase increases protein degradation {Lee, 2010 #4898}




The need for an integrated, quantitative model of protein degradation. We are finally in a position to settle the above-described debate and to integrate different molecular approaches to further our understanding of sequence and structure determinants of protein degradation. With advances in high-resolution mass spectrometry, we are now able to quantify hundreds to thousands of proteins under various conditions and in a time-resolved manner. In addition, a systematic combination of chemical innovations using specific antibodies/affinity systems and inhibitors allows us to enrich for oxidized and ubiquitinated proteins and peptides. Further, modeling techniques are now well-understood and a number of different computational approaches are available to construct regulatory networks. We will use Saccharomyces cerevisiae as a model system to investigate the fate of oxidized proteins in vivo, and both identify protein targets and sites of modifications. For the first time, a comprehensive comparison of protein stability, oxidation, and ubiquitination will describe the dynamic roles of the oxidative stress response immediately after treatment and during recovery, and clarify the role of lysine-48 poly-ubiquitination of oxidized proteins. Such an integrated, comprehensive approach will enable us to construct the first quantitative and predictive model of protein degradation in response to proteome damage – and this model will be generally applicable to a wide range of organisms and biologically relevant conditions. 
Significance. 
- overexpression of proteins – prevent degradation
- producing proteins – improve cellular response to this stress
- stress response (plant seeds)
Protein structure as a means to triage proposed post-translational modification sites
http://www.ncbi.nlm.nih.gov/pubmed/23172737

3. Investigator qualifications and preliminary data
The team. Dr. Christine Vogel (PI) has extensive expertise in quantitative proteomics REFS, protein sequence and structure analysis REFS, as well as computational model building for biological data analysis REFS. Dr. Dennis Shasha (collaborator) is an expert in biological data mining using mathematical approaches REFS. Dr. Gustavo Silva (postdoctoral researcher) is an expert in proteasome activity changes under oxidative stress and the ubiquitin/oxidation proteomic system.
Our laboratory houses a unique combination of expertise in large-scale technology, molecular biology, mathematical and computational data analysis, as well as the use of yeast as a model system for the oxidative stress response. Specifically:
1. We are expert users of large-scale quantitative mass spectrometry that allows us to resolve concentration changes for thousands of proteins under different conditions. 
2. We have established an experimental system which delivers simultaneous quantitative measurements of protein concentrations, oxidation, and ubiquitination in response to different stimuli. 
3. We provide evidence that, during oxidative stress, both ubiquitin-dependent and –independent protein degradation occurs, resolving a heated discussion.  The specific pathway is highly specific to different protein groups, suggesting tight regulation based on protein sequence and structure features.  
4. We have extensive expertise in computational modeling of biological systems. Our preliminary model for entire proteins supports the use of sequence- and structure-features in the regulation of protein degradation. 
The proposed work builds on these preliminary results and extends them in four major ways: i) we will examine sites within proteins in addition to entire proteins; ii) we will accurately quantify proteins and peptides using more complex mass spectrometry methods (aim 1); iii) we extend the modeling approach from a very basic model to SVM regression (aim 2); and iv) we will test model predictions via protein mutation (aim 3).
3.1. Quantitative large-scale proteomics using high-resolution mass spectrometry
Absolute protein expression estimates (Nature Biotech 2007, 25(1):117; Nature Protocols 2008). Tandem mass spectrometry is the only large-scale method to offer fast and reliable characterization of complex protein mixtures from different biological systems without the need for tagged libraries or protein labeling. High-resolution instruments in combination with biochemical fractionation can identify thousands of proteins in a single sample {Baek, 2008 #11;Selbach, 2008 #179;Merrihew, 2008 #134}. We developed a mass spectrometry based method, called APEX (Absolute Protein EXpression index) that estimates absolute protein concentrations in complex samples and identifies statistically significant differential protein expression {Lu, 2007 #116;Vogel, 2008 #209}. APEX is easy to use and sensitive even when applying only simple fractionation: we performed LC-MS/MS analysis on an LTQ Orbitrap Classic both on cytosolic and nuclear fractions of human K562 cells. We confidently identified 2,724 proteins in the cytosolic fraction, and 1,935 in the nucleus, providing a total of 3,726 proteins (Fig. 3.1). Adding a simple separation to the protocol for preparing the protein samples can increase coverage considerably to >4,000 proteins per sample. The protein concentrations cover six orders of magnitude (Fig. 3.1). They are accurate within an average 2-3 fold on a log-log scale (Fig. 3.1) which is very comparable to transcriptomic data.
Computational proteomics data mining (J. Prot. Res 2011, 10(7):2949; Bioinf 2009, 25(22):2955; Bioinf 2009, 25(11):1397). We have shown that integration of several search engines for mass spectra analysis substantially improves sensitivity {Kwon, 2011 #2031}. The method is called MSblender and identifies up to 50% more proteins than any single component search algorithm. MSblender can be used to improve coverage and quantitation of proteomics data. Other computational analyses of proteomics data integrated into large-scale information on gene expression and function have demonstrated our expertise in computational techniques, in particular regression models {Ramakrishnan, 2009 #1112;Ramakrishnan, 2009 #1374}. 
3.2. Protein concentrations and modifications change drastically in response to oxidative stress
Time-dependent protein concentration changes (Mol & Cell Proteomics, 2011, 10(12)). Using APEX {Vogel, 2008 #209;Lu, 2007 #116}, we conducted a time series experiment that followed yeast responding to the oxidizing reagent diamide. We obtained concentrations for a total of ~1,700 proteins over eight time-points {Vogel, 2011 #2286}. An auto-correlation analysis illustrates the very different dynamics of RNA and protein concentration changes (Fig. 3.2A): while RNA reacts strongly within the first 30min and then returns to normal levels, protein concentrations change at a slower rate but maintain these changes in the time scale of the experiment, indicating extensive regulation at the protein level. These findings are one reason why we monitor protein expression changes for up to 8hrs (aim 1, below). The differences between RNA and protein expression patterns are further illustrated by a cluster analysis of the two datasets (Fig. 3.2B). Many stress related proteins do not change in transcript levels, but are up-regulated at the protein level. As an example, subunits of the proteasome (PRE5, PRE9) increase in transcription compared to the control, but at the protein level, they undergo a sharp decrease in concentration before increasing again (Fig. 3.2C).  A similar analysis is under way in human cells (not shown).
	
	

	Fig. 3.3. Impact of inhibitors on cell growth (A), proteasomal activity (B), and proteasome concentration (C). Measured after treatment with proteassome inhibitor (MG-132), E1 ubiquitination inhbitor (PYR-41) and translation inhibitor (CHX) . 
	Fig. 3.4. Oxidation and ubiquitination dynamics under oxidative stress. Accumulation of ubiquitin-K48 under oxidative stress and proteasome inhibition suggests a role for ubiquitin-dependent degradation. (A) Oxidative stress induces accumulation of global ubiquitination and UbK63 linkage. (B) Inhibition of proteasome activity (MG-132) leads to accumulation of oxidized proteins and of K48 ubiquitinated proteins (which are typically proteasome substrates). 



Ubiquitination, oxidation, and protein degradation impact each other. We demonstrate the successful use of inhibitors in permeable yeast cells and a differential dynamic response to stress. Ubiquitination, proteasomal degradation, and protein translation can be inhibited by use of PYR-41, MG-132, and cycloheximide (CHX), respectively. These inhibitors (with the exception of MG-132) affect growth rate of cells under oxidative stress, suggesting critical functions for both ubiquitination and translation in the oxidative stress response (Fig. 3.3A). Thus ubiquitination may trigger pathways other than just protein degradation. Proteasomal activity (as measured by fluorescence assays) is down-regulated under oxidative stress both when using the proteasome inhibitor MG-132 and the translation inhibitor CHX (Fig. 3.3B) suggesting that activation of the proteasome is coupled to de novo protein synthesis. This interpretation is supported by the Western blots in Fig. 3.3C which show proteasome accumulation under active translation, but not in the presence of CHX.
Both ubiquitin-dependent and –independent protein degradation occurs. Although it is generally thought that ubiquitination is not required for the degradation of oxidized proteins, we present evidence that ubiquitin has critical functions during oxidative stress (Fig. 3.4). This result is one of the most important findings of our preliminary studies. Yeast cells were treated with H2O2 for 45min and permitted to recover for an additional 8h in fresh medium. Western blots show an intense accumulation of both oxidized and ubiquitinated proteins immediately after H2O2 treatment (Fig. 3.4A). However, oxidation and global ubiquitination display different dynamics during recovery: total ubiquitination levels immediately increase after stress induction, and levels of oxidized proteins return to normal much faster than levels of ubiquitinated proteins. Changes in poly-ubiquitin levels specific for the K48 linkage suggest involvement of protein degradation (Fig. 3.4A). Indeed, upon inhibition of the proteasome (Fig. 3.4B), ubiquitin linked through K48 accumulates strongly during recovery, while ubiquitin linked through K63 is largely similar to the experiment without the proteasome inhibitor. Moreover, the majority of oxidized proteins are not removed in the presence of MG-132, corroborating the importance of the proteasome in the degradation of oxidized proteins. Both K48 and K63 ubiquitin linkages appear to play a role during oxidative stress and recovery, with very different dynamics.
	

	Fig. 3.5. The degradation of oxidized proteins is indeed ubiquitin-dependent. (A) Many oxidized proteins are not removed in the presence of the E1 inhibitor (PYR-41) even after 8h of recovery – indicating partial ubiquitin-dependence of degradation. (B) Immunoprecipitation of oxidized proteins reveals high content of K48 poly-ubiquitination.



The results in Fig. 3.5 demonstrate that ubiquitin-dependent degradation of oxidized proteins plays a role during the oxidative stress response, in contrast to the currently accepted model. When ubiquitination is globally inhibited by PYR-41, degradation of oxidized proteins is dramatically slowed (Fig. 3.5A), suggesting that degradation partially depends on ubiquitination.  Since ubiquitination can have several functions depending on the linkage between ubiquitin monomers, the use of linkage-specific antibodies is very important – and such antibodies are now available for K48, K63, K11. A substantial fraction of oxidized proteins are indeed ubiquitinated with the K48 linkage which is the typical signal for proteasomal degradation (Fig. 3.5B). K48 ubiquitination increases after oxidative stress exposure, especially during recovery once the degradation of oxidized proteins has started (Fig. 3.4). As the currently available linkage-specific antibodies are insufficient for immunoprecipitation (and thus subsequent protein identification via mass spectrometry), we will employ alternative methods to identify and quantify ubiquitinated proteins in a linkage-specific manner (see Methods). The degradation regulatory model built in this proposal will directly address the discrepancy between the currently accepted hypothesis of ubiquitin-independence and the results shown here.  
SHORTEN AND TARGET – INLCUDE:
We have shown that all cases occur: both ubiquitination-only, oxidation-only, and ubiquitation+oxidation can lead to protein degradation
	- suggests highly specific regulation
	- K63 not big deal at 2hrs - K48 is dominant
Using a limited dataset, oxidation seems to be a better predictor of protein degradation under stress in which abundance-related features are among the predictors with higher correlation to explain protein levels. Since abundant proteins are more susceptible to chemical oxidation induced by oxidative stress and high oxidation impact protein structure and function, the relationship between oxidation, abundance and degradation is easily delineated.

3.3. Ubiquitination and oxidation target proteins highly specifically
	

	Fig. 3.6. Protein expression comparing whole cell extract, ubiquitination and oxidation status under normal conditions (control), H2O2 stress, and during recovery. A total of 1,172 proteins are shown with their normalized, log2-transformed protein concentrations. Blue: down-regulation. Red: up-regulation




Mass spectrometry based proteomics identified oxidized, ubiquitinated proteins, and global protein expression levels. We employed label-free mass spectrometry (see above) to estimate abundances of proteins in the entire cell lysate (‘Protein concentration’), proteins that are oxidized (‘Oxidation’), or ubiquitinated (‘Ubiquitination’)(Fig.3.6). We quantified ~2,100 proteins in total. For each experiment, we analyzed the H2O2 response compared to control, and the recovery after 2hrs compared to the H2O2 response (see Fig. 1.1 for experimental design). Since these pilot experiments were performed using label-free proteomics, we developed ad hoc approaches to quantify and compare proteins between different samples. To do so, we scaled the values for oxidation and ubiquitination experiments based on quantitative changes observed in replicate Western blots (not shown).  In other words, given that we know from Western blots that global protein oxidation (or ubiquitination) increases by a factor a compared to control, we scale the observed quantities of all proteins in the sample by this factor a before assessing differential expression. This method delivers the first insights into the identities of proteins with different responses at the level of expression, oxidation, and ubiquitination. However, for exact quantitation we propose to employ proteomics approaches that use isotopic labeling. The results shown here demonstrate that most proteins are both oxidized and ubiquitinated under stress, but not all of these doubly-modified proteins decrease in concentration as would be expected if they were subject to proteasomal degradation. 
SHORTEN AND TARGET paragraph above
2. We have semi-quantitative information on which 
proteins change in UB/OX/concentration under different conditions
	- protein level only
	- semi-quantitative
	- TEST structural features etc
3.4. Computational models of protein expression regulation 
Protein translation and degradation are as important as transcription (Mol. Sys. Biology 2010, 6:400). The ratio between protein and mRNA concentrations describes the combined outcomes of translation and protein degradation {de Sousa Abreu, 2009 #1186}: the more efficiently the protein is translated, and the slower the degradation rate, the larger the protein-per-mRNA ratio. We quantified protein and mRNA concentrations for >1,000 human genes from Daoy medulloblastoma cells {Vogel, 2010 #2033}. Using multiple adaptive regression splines, we tested ~150 sequence features for their ability to explain variance in protein expression levels while accounting for changes in mRNA expression levels and thus normalizing for the effects of transcription and mRNA stability. We showed that transcription can only explain a small fraction (27%) of the variation in concentrations of human proteins, and translation and protein degradation account for a larger portion of the variation (~40%) – demonstrating the critical need for synchronized protein and expression datasets. A recent study in mouse fibroblasts confirmed these findings {Schwanhausser, 2011 #2075}. 
Protein translation and degradation are heavily regulated (Nat. Rev. Genetics 2012, 13(4):227; Proteomics 2010, 10(23):4209). We extended an analysis in two organisms {Schrimpf, 2009 #433}to a comparison of eight species including bacteria, plants, fungi, and animals, and demonstrated that protein concentrations are highly conserved across species – and, on average, the protein concentrations of orthologs correlate better between two species, than the corresponding mRNA concentrations {Laurent, 2010 #1754}. This and other findings led to our hypothesis that a) translation and protein degradation contribute at least as much to variations in as does transcription; and b) in general, transcription determines the bulk of the expression response, while post-transcriptional processes perform the fine-tuning {Vogel, 2012 #4933}. 
Regression models successfully predict protein expression changes. 
Dennis Shasha similar models something from Arabidopsis work
something cool with sequences
predictive model
Global sequence features have some predictive power. multiple regression (WEKA) to predict OX, UB, DEG based on experimental and global sequence features. 
	- OX is the strongest predictor of DEG
	- OX and UB together predict 25% of DEG
	- OXUB and SEQ predict … 33% (?) of DEG
	- abundance is by far the best SEQ predictor of OX, UB, DEG
or leave this out...

4. Research methods
Biological system and supporting infrastructure
[image: ][image: ][image: ]An ideal experimental model system. Yeast is the ideal model organism to conduct the proposed studies since: i) it is a well-studied eukaryote in which the fundamental pathways of the oxidative stress response, ubiquitination, and degradation can be examined in detail; ii) many mutant strains and experimental tools exist; iii) we have strong preliminary evidence for a complex ubiquitin-degradation system (see above); iv) proteomics methods are well-established; and v) modeling of the regulatory network is not confounded by additional mechanisms such as alternative splicing. 
	
	
	

	Fig. xXX. A. B. S – sequence and structural characteristics. UB – ubiquitination. OX – oxidation. DEG  - protein degradation.C. Principal experiment


Strains. All experiments will be conducted with the Saccharomyces cerevisiae strain RJD1171 (MATa his3Δ200 leu2-3,112 lys2-801 trp1Δ63 ura3-52RPT1FH::Ylplac211 (URA3){Verma, 2000 #4692}) that  
has one 19S subunit (Rpt1) tagged with the FLAG epitope and a poly-histidine tail. Since the strain is not auxotrophic for lysine and arginine (which is a requirement for the use of labeled amino acids in SILAC based proteomics), we plan to create a K/R-auxotroph RJD1171 strain or revert to N15 labeling (see 4.3). Alternatively, we may use the S288C strain {Bastos de Oliveira, 2012 #4931} which is K/R-auxotroph. 


Growth conditions. To enable efficient inhibitor uptake (see below), the strains are grown under conditions that induce permeability of the plasma membrane, i.e. in Minimal Proline Dextrose (MPD) medium (0.17% YBN without ammonium sulfate, 0.1% proline, 2% Glucose, 1.92 g/l of amino acid dropout supplement without uracil {Pannunzio, 2004 #4819}). Cells are allowed to divide at least 6 times and are treated in log phase (OD600~0.2). The cells are incubated with 0.003% SDS for 90 min prior to the inhibitors treatment {Liu, 2007 #4820}(Fig. 4.2). The SDS treatment does not interfere with cell growth {Pannunzio, 2004 #4819}. 
Principal experimental setup. Our preliminary studies have shown that Oxidative challenge is promoted by a 45 min pulse treatment with 0.6 mM H2O2; cells are transferred to fresh medium also containing SDS (and inhibitors if specified) for recovery. The Control sample represents cells before H2O2 treatment; the Acute stress sample represents 45min of H2O2 exposure. After another 120min (2hrs) a Recovery sample is taken. Ubiquitination and oxidation data will be acquired for all three time points; protein degradation will be estimated only for the Recovery time point. 
GS/CV: possibly another time point
Through the use of inhibitors (Fig. XXX), we are creating different environments which describe the different paths through the regulatory model. We create three main environments which are described in detail below (Aim 1A): 
i) All – protein degradation as the result of oxidation and/or ubiquitination (Fig. XXX)
ii) No degradation – proteins are oxidized and/or ubiquitinated, but not degraded (Fig. XXX)
iii) No ubiquitination – proteins are oxidized and degraded, but not ubiquitinated (Fig. XXX)
DS: is environment ‘no OX’ necessary? are these environments OK?
Proteomics setup. 
For all mass spectrometry experiments, we will use an LTQ Orbitrap Velos (Thermo) coupled to a 2D nano-flow liquid chromatography system (Eksigent) which is available in the Vogel lab. This setup is ideal for the proposed experiments, as the high sensitivity combined with automated high speed sample analysis allows for efficient quantitation of complex protein samples.

Protein sample preparation and analysis. Protein samples will be prepared as described in the different sections below. Cells are lysed by agitation with glass beads. If applicable, subcellular fractionation (cytosol, membrane fraction, and possibly mitochondria) will be used to increase coverage of the yeast proteome in later extensions (Fig. 4.1). Protein mixtures will be digested with trypsin, cleaned by C18 filtering, and subjected to reverse phase liquid chromatography using a four-hour 5-60% acetonitrile gradient on a Agilent Zorbax C18 column (with a shorter gradient for less complex samples). Two or three biological replicates will each be analyzed 3 to 4 times (technical replicates) in identical mass spectrometry runs, which increases the number of protein identifications and reduces noise {Vogel, 2010 #2033}. All MS/MS data will be mapped to protein sequences and quantified using established pipelines and the APEX method in the case of label-free quantitation{Cox, 2009 #2365;Cox, 2008 #2366;Cox, 2011 #2072;Flicek, 2008 #53;Keller, 2002 #91;Nesvizhskii, 2003 #138;Lu, 2007 #116;Vogel, 2008 #209}. 
NOTE: gelfree system would be good; SHORTEN this
Stable Isotopic Labeling of Amino acids in Cell culture (SILAC) to quantify proteins and peptides. Since the respective enrichment step shifts the concentration and constitution of the protein sample, the use of label-free techniques such as APEX does only provide semi-quantitative data. The solution we offer is the use of isotopically labeled amino acids. The basic concept of using mass spectrometry for protein identification remains the same, but protein concentrations are quantified through comparison of ion intensities of ‘heavy’ and ‘light’ versions of a peptide in different samples {Ong, 2002 #148}. The SILAC technique is very well established, and we will follow standard protocols {Brewis, 2010 #4956;Ong, 2002 #148}. In brief, cells will be grown in medium containing isotopically labeled L-lysine and L-arginine for several generations to maximize label penetrance. The choice of lysine and arginine relies on the fact that each tryptic peptide will contain at least one modified amino acid, enhancing coverage of quantifiable peptides. Heavy and light amino acids will be used for experiment and control, respectively. Alternatively, we may use N15 labeling of the nitrogen atoms in the backbone of the peptide chain which does not rely on the presence of specific amino acids. Cells will be grown, treated, and the proteome harvested as described above.
Extensions. We will also test a number of additional approaches to optimize sensitivity and quantification accuracy (Fig. 4.1): (i) additional sample extraction of organelles or the insoluble fraction, (ii) two-dimensional peptide separation employing off-line SCX/reversed phase chromatography), (iii) alternative quantitation methods {Schwanhausser, 2011 #2075}. Parameters of data acquisition on the mass spectrometer (e.g. gradient length, scan parameters) will be optimized for the samples. To increase sensitivity and coverage as well as protein quantitation ability, we will employ our new computational approach, MSblender, which identifies up to 50% more peptides than individual mass spectrometry search engines {Kwon, 2011 #2031}.
Table 4.1. Time line

	Year
	1
	
	2
	
	3
	
	4
	

	Aim 1. Determine priors: time-resolved proteome-wide probabilities of protein ubiquitination, oxidation, and degradation
	x
	x
	x
	x
	x
	x
	
	

	Aim 2. Train and test quantitative predictive model of protein degradation pathways based on sequence and structure.
	
	
	x
	x
	x
	x
	x
	

	Aim 3. Experimentally validate model predictions 
	
	
	
	
	x
	x
	x
	x




Aim 1A. Time-resolved proteome-wide probabilities of protein ubiquitination, oxidation, and degradation
Rationale and novelty. The controversy in the field regarding the ubiquitin-dependence of the degradation of oxidized proteins is partly due to the lack of suitable methods that allow for comprehensive and quantitative in vivo experiments to address this question. However, new technologies are now available that meet this need, including: the Tandem Ubiquitin Binding Entities (TUBE) system that enables enrichment of ubiquitinated proteins, and a strong anti-DNPH antibody that can efficiently extract oxidized proteins. We will combine these techniques with quantitative mass spectrometry to identify and quantify targets of ubiquitination, oxidation, and degradatoin.
Estimating protein degradation. 
Despite its important role during protein expression regulation REF, estimates of protein degradation rates are still rare and often exist only for cells growing under normal conditions REFS. For the purpose of the modeling proposed here (aim 2), we do not need precise estimates of actual rates or protein degradation, but only an accurate measure of relative degradation efficiency or speed (or the opposite: protein stability).  [image: ]Such measures can be derived from a variety of methods. 
The most labor- and material-intensive but also most accurate and least invasive method is pulsed-SILAC 
	

	Figure XXX. Experimental methods for measurements


REFS, a method which follows disappearance of labeled proteins after exposure to a pulse of isotopically labeled medium and can provide actual degradation rates. The more often samples are analyzed over time, the more accurate the rate estimates; if few time points are used, rate estimates are less precise, but the data still delivers information on protein stability changes. To balance between desired results and effort, we will use pulsed-SILAC with three time points (0, 15, and 45min)(Fig. XXX). The time points are chosen based on our knowledge of protein stabilities in yeast REF. Protein degradation (or decreasing stability) can be estimated from changing ratios of proteins with heavy- or light amino acid isotopes through regression REF. Protein concentration changes will be estimated ratios of ion intensities {Schwanhausser, 2011 #2075} and analyzed as normalized log ratios of experiment versus control expression according to standard protocols REF. We will cluster proteins of similar expression changes under different conditions.
GS/CV: check on other pSILAC method - MODIFY
CV: discuss: absolute measure of degradation
CV: protein degradation will be measure at level of proteins
Validation, challenges, extensions. Alternative methods are available, and we will use some of these to verify the results by pulsed SILAC. These methods do also monitor protein expression changes by mass spectrometry, but do not require isotopic labeling. Translation would be inhibited by using cycloheximide, such that a decrease in protein concentrations is purely due to degradation. However, inhibiting translation naturally perturbs other processes in the cell and is less desirable for that reason.
To validate and support the experimental setups described above, we will monitor proteasome activity in parallel to the above proteomics experiments, using an in vitro fluorescence assay. Briefly, cell lysate will be prepared as above, in the presence of ATP and DTT to preserve 26S proteasome integrity, but in absence of protease inhibitors and iodoacetamide. The protein extract will be incubated with a fluorogenic substrate, e.g. succinyl-Leu-Leu-Val-Tyr-AMC, stopped, and the emission of fluorescence captured at 440 nm with excitation at 365 nm – which will be used to quantify proteasome activity. A potential challenge exists in incomplete proteasome inhibition and alternative degradation pathways (Fig. 1.1), however, the extent of this can be precisely monitored (and thus accounted for) by the proteasome activity assay. Western blots will serve to validate expression changes of individual proteins. Expression levels of individual proteins can also be monitored via targeted proteomics experiments via ‘inclusion lists’ in the mass spectrometry methods. 
Quantifying site-specific ubiquitination
To quantify ubiquitination and identify ubiquitination sites (i.e. sequence stretches and residues where the modification takes place), we will use trypsin to digest proteins before the antibody-based purification step. The trypsin digest of the ubiquitin chain produces a diglycil (GG) lysine tag on the ubiquitinated lysine residue of the protein substrate {Wagner, 2011 #4876}. The use of anti-GG lysine or anti-DNP antibodies will result in enrichment only of modified peptides (but not entire proteins). Mass spectrometry will be employed to identify the peptides. Dynabeads without antibodies will serve as control. The spectra will be quantified through SILAC based comparison of the experiment versus control, in our case acute stress and recovery versus control, respectively. 
This approach has the advantage that it will provide site-specific information on the modification, but it will be more difficult to identify proteins based on (possibly) only one or few peptides which can then be identified by tandem mass spectrometry. The method is well established for ubiquitination and acetylation {Wagner, 2011 #4876;Choudhary, 2009 #4932}, and we will develop the technique for oxidative modification. .
Alternatives and extensions. at protein level with TUBE Ubiquitinated proteins will be enriched from cell lysate by TUBE affinity purification (Tandem Ubiquitin Binding Entities) according to the manufacturer’s protocol (LifeSensors). A newer development of the TUBE system presents affinities for ubiquitin chains with K63 and K48 linkages, but these systems have not yet been tested for quantitative enrichment. The cell lysate will be incubated with TUBE-agarose beads under agitation, and then the beads will be washed with TBS before elution of the ubiquitinated proteins. TUBE-attached proteins will be eluted with 2,2,2-tri-fluoroethanol and samples will be processed for mass spectrometry analysis as described above.
GS/CV: DISCUSS K48 -- 
A. 	KX-TUBE: global UB
	K63-TUBE: UB specific to non-degradation
		could do differential analysis: KX-K63
Method A. may be the best - may be able to leave out K63 since it’s very low at 2hrs
B. 	K48-antibody: UB specific to degradation, but don’t know if it works
C.	K63R mutant + KX-TUBE:  everything except K63 (which is mostly K48 but also some K11; suboptimal approach since K63R mutant somewhat ‘disturbed’
NEED A DIFFERENT PROTEASE???
targeted MS
use alternative protease so that K is not a big deal? and one analyze K without worrying about trypsin?

Quantifying oxidation
Carbonylation is one of the most common forms of amino acid oxidation {Madian, 2010 #2172} and serves as an ideal read-out of protein oxidation status. Carbonylated proteins are derivatized with 2,4-dinitrophenylhydrazine  (DNPH), precipitated with trichloroacetic acid, pelleted and washed, and re-solubilized in a solution containing detergent and a strong buffer (0.5 M Tris-HCl pH 7.5, 200 mM NaCl, 0.02% Tween-20) via sonication. DNPH-derivatized proteins will be immunoprecipitated using magnetic Dynabeads Protein G (Invitrogen) loaded with anti-DNP antibody (Sigma). 
CV/GS: discuss: may have to use entire proteins
CV/GS: tryptic digestion before or after DNPH derivatization?
oxidation will be more global – not site specific
Validation, challenges, extensions. Proteasome activity assays (see above) will be used to confirm inhibition experiments. Western blots and targeted mass spectrometry will be used to monitor accuracy of the measured protein expression changes. Ubiquitinated and oxidized proteins will be validated through examples available in literature, e.g. {Mirzaei, 2006 #4975;Weinert, 2011 #4977;Peng, 2003 #4978;Mayor, 2005 #4979}, pertinent databases (e.g. at http://scud.kaist.ac.kr/), as well as through cross-comparison of the results of aims 2A and 2B. Controls will include beads without antibody to test for non-specific (false-positive) interactions. Biotin-tagged DNPH is available as an alternative for the anti-DNP antibody. Finally, newly developed K48-specific (as well as for K63 and K11 linkages) antibodies have become available that are suitable for immunoprecipitation (Millipore). As soon as these antibodies have been tested in our lab, we will use them for linkage-specific identification of protein targets (and ubiquitination sites). 

Environments
Using the measurements described above and specific inhibitors, we will analyze three main environments that describe the regulation of protein degradation upon oxidative stress (Fig. XXX). These environments describe ‘extreme’ pathways that proteins can take through the regulatory networks shown in Fig. xXXX in response to oxidative stress. Data describing molecular behavior in these pathways provide the basis for the modeling described in aim 2. 
	[image: ]
	[image: ]

	Fig. XXX
	


i) Environment All (Fig. XXX). In this environment, no inhibitors are used and each protein can undergo its response pathway to stress in unperturbed manner. We will measure both oxidation, ubiquitination, and protein degradation changes. 
ii) Environment No Degradation (Fig. XXX). Through use of the proteasome inhibitor MG-132, we will suppress one of the major degradation pathways, leaving modified proteins to accumulate. Our preliminary results (XXX) have demonstrated that protein oxidation is both extensive and highly stable, thus re-measurement of this modification is not necessary. However, measurement of the accumulation of ubiquitinated proteins (which cannot be degraded) will be highly informative of those ubiquitinated sites that lead to degradation and not to other processes.  
iii) Environment No Ubiquitination (Fig. XXX). Through use of the PYR-47 inhibitor, we will largely suppress ubiquitination – both ubiquitination leading to degradation and that leading to other responses. We will measure the response at the level of protein oxidation and changes in degradation.
Data analysis. Protein and peptide identifications will be analyzed for residues that are likely the sites of modification, i.e. lysine for ubiquitination, and proline, arginine, lysine, threonine, glutamate, and aspartate for oxidation. While we do not expect to always identify the precise modification site, we do expect to identify likely modification sites as well as the common sequence context. Using sequence and structural motif analysis, we will characterize these likely sites for recurring amino acids, their physico-chemical features, and likely position within the protein (e.g. buried or exposed). Since lysine residues can both be oxidized and ubiquitinated, they will gain particular attention with respect to their position within the modified sequence. Further details on sequence analysis are discussed in aim 3. 
Aim 1B. Assemble pertinent sequence and structure features
Rationale and novelty. So far, most sequence features signaling protein degradation or modification have been analyzed in the context of unperturbed cells growing under normal conditions. Our proposed analysis goes beyond this condition and examines sequence and structural features for their roles during oxidative stress. Specifically, we will examine features that determine the oxidation propensity of proteins, likely ubiquitination sites, and sequence and structure features that impact degradation. 
Protein and peptide identifications will be analyzed for residues that are likely the sites of modification, i.e. lysine for ubiquitination, and proline, arginine, lysine, threonine, glutamate, and aspartate for oxidation. While we may not always identify the precise modification sites, we do expect to identify likely modification sites as well as the common sequence context. Using sequence and structural motif analysis, we will characterize these likely sites for recurring amino acids, their physico-chemical features, and likely position within the protein (e.g. buried or exposed). Since lysine residues can both be oxidized and ubiquitinated, they will gain particular attention with respect to their position within the modified sequence. 
We will build on our extensive expertise in the analysis of protein sequence and structure {Vogel, 2010 #2033;Hannay, 2008 #951;Wilson, 2007 #221;Talavera, 2007 #199;Vogel, 2006 #210;Vogel, 2006 #208;Vogel, 2005 #213;Vogel, 2004 #212;Vogel, 2004 #207;Madera, 2004 #120;Vogel, 2003 #211;Chothia, 2003 #37;Bankier, 2003 #14} to derive the priors that describe probabilities of modification and degradation depending on protein sequence. 
Sequence features will include: sequence length, percentage of secondary structures (which impacts protein folding and stability), percentage of hydrophilic and hydrophobic, buried and surface amino acid residues (which describe overall folding of the protein as well as exposure of residues to oxidative modifications), the presence of PEST-rich regions and specific N-terminal residues (which are degradation signals {Rogers, 1986 #167;Varshavsky, 1997 #925}), percentage of oxidation-prone residues at the protein surface, vicinity of putatively oxidized residues to lysines (which may be ubiquitinated), or intrinsic unstructuredness (which has been shown to strongly anti-correlate with protein stability {Vogel, 2010 #2033;Gsponer, 2008 #969}). 
As appropriate, they will be calculated both globally and locally, i.e. for the entire protein or only parts (sliding window), respectively. In addition, amino acid enrichment and motifs around lysine residues will receive particular attention. 
Each amino acid (and sequence stretches as appropriate) will also receive a conservation score, i.e. a score describing how much the residue (or sequence stretch) is conserved across evolution. This measure builds on the fact that functionally relevant sequences (i.e. those necessary for modification upon oxidative stress) occur across organisms (e.g. other yeasts) and are conserved. 
Structural features will be derived from three sources:
a) Using DisEmbl and DisoPred refs, we will predict the propensity of sequence stretches to assume specific secondary structures, such as alpha helices, beta strands, or coils. CHECK BLUNDELL
b) Using protein domain structure predictions, i.e. PFAM or SUPERFAMILLY REF, we will determine which amino acid residues located in which secondary structure elements and also if these residues are at the surface or buried in the core of the protein domain structure. 
c) Using existing protein three-dimensional structures, we will extract exact data on the position of amino acid residues within secondary structure elements and within the protein domain structure. These data can serve as a high-confidence dataset to validate the predicted data from b). 
The differential importance of the features for predictions will be learned from the experimental data collected in aim 1. The data will be discretized for easier modeling; a protein can be in a given sequence state given a set of sequence features. 
Alternatives. While experimental structural data (c) is available only for some XXX yeast proteins REf, structure predictions (b) cover about XXX percent of the yeast proteome. Other sequence-based features (a) are available for the entire proteome. 
Expected outcomes. 
First of all, our analysis will provide a comprehensive and quantitative answer to the long-debated question if ubiquitination is required (and to what extent) during the protein degradation response to oxidative stress. Second, the proposed work produces important datasets for biological processes that are still largely understudied. For example, while we know some sequence characteristics of ubiquitinated lysines under normal conditions, we will provide very detailed information on ubiquitination sites under different conditions, contributing to motif identification and better prediction of this modification. A mapping of modifications (e.g. ubiquitination) to sequence features will provide first insights into possible motifs and amino acid enrichments that provide regulatory signals. 
protein degradation not much known; more info on ubiquitination – don’t know much about it

Aim 2. Build sequence- and structure-based predictive model of protein degradation.
Rationale and novelty. The central goal of this proposal is the use of protein sequence and structure features to predict degradation in the context of oxidative stress. Aim 2 integrates the experimental and sequence data collected in aim 1 (Tab. XXX) to construct a regression model that predicts for any protein in yeast (given its sequence, structural features) the likely fate with respect to oxidation, ubiquitination, and degradation. We will benefit from a collaboration with Dr. Dennis Shasha (from the NYU Courant Institute for Mathematical Sciences) as well as our expertise in computational data analysis {Vogel, 2011 #2286;Kwon, 2011 #2031;Vogel, 2010 #2033;Ramakrishnan, 2009 #1112;Ramakrishnan, 2009 #1374;Vogel, 2008 #209;Vogel, 2005 #213;Vogel, 2004 #207}. 
Data preparation
The experimental data obtained in aim 1A is summarized in Tab. XXX – describing ubiquitination,
oxidation, and degradation for three different environments. The sequence and structure data is described in aim 1B. These datasets are now formalized as follows. 

For each of the three environments, we will construct a table with numerical entries. 

The last column entry describes the protein fate, i.e. if it ubiquitinated, oxidized, and/or degraded, depending on the respective environement. 

The other columns describe protein sequence and structural features as appropriate. The computational analysis in aim 1 will provide some insights into which sequence and structure features are most informative and predictive of the respective protein fate. 

Table XXX. Experimental data obtained in aim 1. The values denote the time points at which information is available. UB – ubiquitination, OX – oxidation, DEG - degradation
	Environment
	Protein fates
	Protein degradation
	Quantitative ubiquitination sites
	Quantitative oxidation

	UB, OX, DEG (All)
	UB, OX, DEG, and combinations
	Control, Acute stress, Recovery
	Acute stress & Recovery (relative to control)
	Acute stress & Recovery (relative to control)

	No DEG
	UB, OX, and combinations
	n/a
	Acute stress & Recovery (relative to control)
	n/a

	No UB
	OX, DEG, and combinations
	Recovery
	n/a
	Acute stress & Recovery (relative to control)



Modeling protein degradation
For each protein, we will model its behavior in a given environment as a function of protein sequence and structure features. 

The three environments are ALL, No UB, and No DEG (Fig. XXX). 

For example for the environment No UB & No OX (that can’t be done experimentally): 

degradation of protein p = constant + some weighted linear combination of protein structural and sequence features.

The weighting factors can be computed based on stochastic gradient descent.

The weights of the features inform on the relative importance of each features. 
For purposes of stochastic gradient descent we have a data point for each protein.

Similar computations can be done for oxidation only (no UB) and both ubiquitination/oxidation (ALL), no DEG. That way, the environments can be compared and synergy can be measured. 

We will use joint probability distributions to look for non-linear effects. 

Then we could look at the deviation from the average degradation in each case, to determine combinations of structural/sequence features that cause great degradation in each environment.

Linear vs. non-linear model
Non-linear model more complicated, but can’t deal with as many features

1. Random Forests [33,34] Random forests are ensembles of decision trees which are constructed from random subsets of the data. They are fast to train, easy to parallelize, and perform extremely well.
Decision trees have the advantage that they easily accommodate the biological problem discussed here (the discrete outcome of degradation {1,0}), the contribution of each feature is very explicit (and thus easier to interpret), the method is robust to the inclusion of additional features (that may be turn out to be irrelevant – and modeling would not suffer from these features), and modeling does not require such large amounts of data. Decision trees, however, are not as sensitive and can miss patterns. 
2. Large-Scale SVM Regression [35] Bottou demonstrated that a stochastic gradient descent solver for a variety of learning problems (including support vector machine optimization) is able to scale with extremely large datasets, while converging to the predictive performance of traditional optimization algorithms.
3. Large-Scale L-Regularized Learning [36] Stochastic coordinate descent (a method related to stochastic gradient descent, but with a slightly different update rule), can be used to learn sparse regression models, with small training-times, even for data sets where both the dimensionality and the number of training-points is large. This is the approach used in our preliminary work.
The net effect of this analysis will be to find the weighting of different factors that will lead us to conclude that two genes in some species are correlated. Then, using available Arabidopsis time-series data [22], and other datasets that are currently being generated in our lab and others, we will combine correlation with time-series [22,26-29] and perturbation approaches using Graphical Lasso [37] to form causal networks.

33. Breiman, L, Random forests. Machine learning, 2001. 45(1): p. 5-32.
34. Huynh-Thu, VA, Irrthum, A, Wehenkel, L, and Geurts, P, Inferring regulatory networks from expression data using tree-based methods. PLoS One, 2010. 5(9).
35. Bottou, L. Large-scale machine learning with stochastic gradient descent. in Proceedings of the 19th International Conference on Computational Statistics. 2010: Springer:Paris.
36. Shalev-Shwartz, S and Tewari, A. Stochastic methods for l 1 regularized loss minimization. in Proceedings of the 26th Annual International Conference on Machine Learning. 2009: ACM:Montreal, Quebec, Canada.
37. Menendez, P, Kourmpetis, YA, ter Braak, CJ, and van Eeuwijk, FA, Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 challenge. PLoS One, 2010. 5(12): p. e14147.
58. Settles, B, Active learning literature survey. Computer Sciences Technical Report, 2010. 1648.
59. King, RD, Rowland, J, Oliver, SG, Young, M, Aubrey, W, Byrne, E, Liakata, M, Markham, M, Pir, P, Soldatova, LN, Sparkes, A, Whelan, KE, and Clare, A, The automation of science. Science, 2009. 324(5923): p. 85-89.


Expected outcomes.
The model outcomes will be several-fold:
1. Individual sequence and structure features that are important to degradation in each environment
2. Environment most dominated by protein degradation
3. Non-linear effects arising from combinations of sequence and structure features - 
4. Individual and combinations of sequence and structure features common to all environments as well as those unique to particular environments. 

Alternatives and extension. Bayesian networks represent an alternative modeling approach and provide a robust and appropriate framework as they can incorporate heterogeneous (and incomplete) datasets. Bayesian networks can also automatically account for the stochasticity inherent to any biological processes and measurements. The models can also be used for iterative model building: as more results become available from aim 1, they can immediately and one-by-one be incorporated into the model, testing different structures and optimizing next experimental steps to maximize information gain. However, Bayesian network modeling requires large quantities of training data. 

Other things from previous grant submission

The machine-learning algorithms are readily implemented in freely available software {Hall, 2009 #1628} or will be encoded in-house with Python, for example. ??

Iterative model building and refinement. The results from aims 1 will inform on the priors for model selection (network structure learning) and parameter estimation, can be incorporated iteratively into the network (Fig. 4.4): as soon as first experiments are available, we will incorporate the results into the model and use the model to decide on the weakest priors which will then be tested in follow-up experiments. 

Validation, challenges, extensions. The validity of additional states or alternative models will be tested by likelihood maximization, e.g. by using, expectation maximization {Dempster, 1977 #4985}. The scoring function will be the posterior probability of the model, similar to the equation discussed below. Model predictions can be validated by cross-validation, i.e. by training model parameters based on 90% of the data and testing the predictions on the remaining 10%. The division into training and test data will be performed randomly and several times. Model predictions for individual proteins will also be validated by western blotting. 

Expected outcomes. Bayesian networks can provide a variety of types of information. As described above, model inference can point to the most likely model given the data – which in turn can be interpreted with respect to regulatory relationships. For example, we would be able to learn if a model that includes a link from UB to OX (Fig. 4.4) performs better than a model without it. During model selection, the network with the highest posterior probability is selected. For the network in Fig. 4.4, this probability amounts to:

P(S,OX,UB,DEG) = P(S) P(UB|S,OX) P(OX|S) P(DEG|S,OX,UB)

This equation summarizes the experimental efforts described in aims 1 and 2AB in their input as priors for a regulatory network of protein degradation (which will be, to the best of our knowledge, the first of its kind). We can use these priors to estimate the relative importance of regulatory pathways, i.e. if ubiquitination (and hence proteasomal degradation) occurs for individual proteins after oxidation. We will be able to quantify (in a probabilistic sense) which pathways are most likely taken upon oxidative stress, and which sequence features have the strongest predictive power. We will also incorporate the dynamic behavior of the process through assessment of the different phases of the oxidative stress response in separate networks. 
We will also use the model to predict the probability of the occurrence of a specific event, i.e. the probability of a protein being degraded under oxidative stress P(DEG). As illustrated in Fig. 4.5 this event is the sum (or integral if the variables are continuous) over the probabilities of all possible events that can lead to degradation, given a protein’s sequence, and propensity to be oxidized and ubiquitinated. Somewhat more formally
P(DEG) = P(DEG|UB, S, OX) =  
 [ P(all combinations of S{0,1,2,...,n}, UB{1,0}, OX{1,0}) ]

Once trained on the data we collected in aim 1, we will be able use our model to predict, for any yeast protein given its sequence, its likely fate during oxidative stress – in a quantitative and statistically sound way. 


Aim 3. Validate and test model
Rationale and novelty. 
In the final stage of our proposed project, the nature of the proposed work moves from being descriptive to being predictive. After having identified features that determine different fates and pathways of proteins upon oxidative stress, we use these features to modify a protein’s fate. Specifically, we will change a proteins sequence and structure to stabilize or destabilize it under stress. 
Experimental design.
- take protein of known role/regulation under stress and modify sequence to change stability
a. site-directed mutagenesis
b. tet promoters – OE of protein
c. targeted, quantitative mass spectrometry (AQUA)
· confirm ubiquitation / oxidation by AQUA ms
· select three proteins with well-defined sequence features and degradation profile and conduct site-directed mutagenesis to perturb ubiquitination site, oxidation site, change stability
· re-evaluate ubiquitation / oxidation by AQUA ms
increase stability of chaperone, see if cell survival better
Validation possibilities:
1) Sequence - K stretches - predict higher probability - compare to K-GG data if Ub sites measured are the same predicted by the model
2) Sequence - K stretches - IP undetected proteins -> K-GG Ub site detection
3) Target MS to quantify protein concentration of undetected proteins -> monitor changes in degradation rates as it would be predicted by the model
Site-directed mutagenesis
1) prevent ubiquitination by K mutation of predicted/probable ubiquitination site (IP + WB anti Ub)
2) prevent degradation by K mutation of predicted ub site.
Indirect effect
1) Stabilize transcription factor (Yap1, Msn2/4, Skn7, Rpn4...) by mutating K as Ub site
	monitor target genes expression, monitor cell resistance
2) Stabilize antiox enzymes (Tsa, Trx, SOD, Ctt1, Trr1, Glr1...) by mutatig K as Ub site
monitor redox parameters, cell resistance to stress.
3) Stabilize chaperones
4) Stablize E3s - monitor target protein degradation
5) Induce degradation (more challenging - Add lysines?, alter tertiary structure?)
Expected outcomes.
- change degradation
- make world better
Future extensions?
4. OTHER experimental 
test for protein-protein interactions, e.g. on a UB ligases?
use of inhibitors of UB, DEG, translation and see how UB, OX, DEG changes
changes in translation efficiency under stress
changes in survival under stress (given that certain genes are deleted)
6. Data from literature
changes in translation efficiency under stress
changes in survival under stress (given that certain genes are deleted)
chaperone - protein interactions

5. Integration of research and education & Broader impacts
5.1. Student and postdoctoral mentoring and training within the Vogel lab
add Shasha student
Ethnic diversity in the lab. A graduate student for this project will be recruited from the NYU graduate program at the Center for Genomics and Systems Biology, while the post-doctoral researcher (Dr. Gustavo Silva) is already working in the Vogel lab.  Our research team is committed to diversity: Dr. Silva is Afro-American/Latino, and current undergraduate research students are of Indian and Caucasian ethnicity. We will continue to actively seek out and recruit scientists from under-represented minorities to participate in our research in our commitment to increase diversity in the research program. In particular, such recruitment efforts are targeted at Brazil, as both Dr. Silva and a long-term collaborator, Dr. Luiz Penalva (Univ. Texas at San Antonio), are originally from Brazil and maintain active research connections with Brazilian laboratories. 
Active support of female scientists. The PI also actively supports female students and scientists. Female scientists are still under-represented in quantitative and technological areas of biology (e.g. computational, systems biology, and mass spectrometry). The Vogel lab currently has six female lab members including the PI herself (post-doctoral researcher, graduate student, two master students, one undergraduate student) who the PI mentors for their respective career level, including career advice, presentation and interview help.
Training in the Vogel lab. The Vogel lab meets once a week to report on research progress and recent scientific literature, with all group members participating through presentations and discussions. This gives an opportunity for graduate students and postdoctoral research associates to practice and improve their oral communication skills. All graduate students are required to enroll in the NYU graduate biology course entitled “The Art of Scientific Investigation”, taught annually and which covers all aspects of professional development, including written and oral presentations, grantsmanship, and teaching. 
Cross-disciplinary training. To actively integrate molecular biology, computational sciences, and technology, the Vogel lab participates in several activities. The Center for Genomics and Systems Biology (which Dr. Vogel is part of) together with the NYU Courant Institute for Mathematical Sciences (which is arguably one of the best math institutions in the world) offer a variety of courses in which Dr. Silva and other lab members participate. In particular, these are e.g. G23.1128 Systems Biology; G23.1130 Applied Genomics & Network Modeling; G23.1127 Bioinformatics & Genomes. Dr. Silva has successfully completed the Statistics in Biology course this year (BIOL-GA.2030SP12, Dr. Tranchina).
In addition, the Vogel lab is an active member of the New York Proteomics Special Interest Group that (across the states of New York and New Jersey), with seminars, meetings, an email group, and discussions, discusses issues related to mass spectrometry and quantitative proteomics. The Vogel lab is also actively discussing mathematical issues with Drs. Richard Bonneau and Dan Tranchina (both joint appointments between the Center for Genomics and Systems Biology and the Courant Institute), as well as Dr. Dennis Shasha (Courant Institute). 
5.2. High-school student laboratory experience
Collaboration with the Little Red Schoolhouse & Elisabeth Irwin High School. This internship program has successfully completed its first round in April/May 2012 when a high school student visited the Vogel lab for 6 weeks. The program will be continued with one to two students per year, who are selected based on discussion the teachers at the Irwin High School. The students will work with members of the Vogel lab, watch ongoing experiments, and be guided through literature to understand the scientific context of the lab’s work on oxidative stress. The goal of the internship is to understand the components of ‘real scientific research’. The students will also perform their own set of experiments to identify microbial organisms that form biofilms under stress conditions. The students learn how to prepare bacterial and yeast growth media and work under sterile conditions. They use different environmental sources and food items to extract yeast and bacterial strains. The students then learn how to isolate and characterize the strains and conduct experiments to test if the colony shapes change when the constitution of the growth medium changes. The students also apply oxidative stress (e.g. through H2O2) to the colonies to test their survival and phenotypes. In collaboration with the Dietrich lab (Columbia University), interesting strains from these projects will be identified and characterized in their proteomic composition. The program allows high school students to gain first insights into the academic world and provides valuable training for students and postdocs in communication and mentoring skills. 
LANG Program at the American Museum for Natural History – group research experience. To provide an opportunity to experience an interdisciplinary research laboratory to a larger group of students, Dr. Vogel is in contact with Drs. Noah Burg and Robert Habig from the American Museum of Natural History who organize the LANG program. The goal of this program is to increase the participation of minority children and children from low-income families in science. Dr. Vogel has committed to participating in lectures that are part of the LANG program (for 5th graders) and organizing a group visit to the Vogel lab once per year. 
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