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Abstract 

Multiprocessor systems-on-a-chip offer a structured ap- 
proach to managing complexity in chip design. Cyclops is a 
new family of multithreaded architectures which integrates 
processing logic, main memory and communications hard- 
ware on a single chip. Its simple, hierarchical design al- 
lows the hardware architect to manage a large number of 
components to meet the design constraints in terms of per- 
formance, power or application domain. 

This paper evaluates several alternative Cyclops designs 
with different relative costs and trade-offs. We compare the 
performance of  several scientific kernels running on differ- 
ent configurations of  this architecture. We show that by in- 
creasing the number of  threads sharing a floating point unit 
we can hide fairly high cache and memory latencies. We 
prove that we can reach the theoretical peak performance of 
the chip and we identify the optimal balance of components 
for each application. We demonstrate that the design is well 
adapted to solve problems that are difficult to optimize. For 
example, we show that sparse matrix vector multiplication 
obtains 16 GFlops out of 32 GFlops of peak performance. 

1. Introduction 

Multiprocessor systems-on-a-chip typically consist of 
multiple instances of different components: (i) functional 
units; (ii) memory (including cache and main memory); and 
(iii) interconnection network. Design choices include both 
the relative and absolute numbers for components, their par- 
ticular features, and their placement with respect to each 
other. To make appropriate design decisions, the architect 
must be able to quantify the impact of these choices, both 
on cost (area, power, circuit complexity) and performance. 

In this paper, we describe our approach to the problem 

of managing the many design alternatives for one particular 
multiprocessor system: the Cyclops chip, which is a new 
family of multithreaded architectures being developed at the 
IBM T. J. Watson Research Center. A single Cyclops chip 
consists of a large number (typically hundreds) of simple 
thread execution units, each one simultaneously executing 
an independent stream of instructions. The performance of 
each individual thread is not particularly high, but the aggre- 
gate chip performance is much better than any conventional 
design with an equivalent number of transistors. Cyclops 
also uses a processor-in-memory (PIM) design where main 
memory and processing logic are combined into a single 
piece of silicon. Large, scalable systems can be built with 
a cellular approach using Cyclops as a building block, with 
the cells interconnected in a regular pattern through com- 
munication links provided in each chip. 

The study of single chip performance performed in this 
paper provides valuable information to the hardware archi- 
tects to determine the low-level characteristics of the de- 
sign and provides a starting point for the future evaluation 
of multichip Cyclops systems. We begin with a reference 
design for the Cyclops architecture, representing one partic- 
ular alternative in terms of various design parameters. We 
then conduct a systematic exploration of the design space 
by performing simulation-based sensitivity analysis along 
each dimension on a suite of scientific kernels. The goal of 
this design space exploration is not simply to show that one 
design point is better than another, but to develop an insight 
into how the numbers and features of components impact 
the behavior of the chip. Armed with this insight, and with 
the knowledge of the cost of the various components, the ar- 
chitect can them make design decisions that result in a chip 
optimized for an application domain. 

The rest of this paper is organized as follows. Section 2 
provides an overview of the Cyclops architecture and sum- 
marizes the parameters used in our initial configuration. 
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Section 3 presents a short overview of the Cyclops system 
software and of our architecturally accurate software sim- 
ulation environment. Section 4 explains the scientific ker- 
nels used in this study. The experimental results obtained 
from simulations are presented in Section 5. Section 6 com- 
pares Cyclops against other system-on-a-chip projects and 
we conclude in Section 7. 

2. The Cyclops Architecture 

Cyclops is a shared address space multithreaded archi- 
tecture with a hierarchical and cellular organization, as 
shown in Figure 1. The main premise of our architecture 
is the integration of memory, interconnection logic, and a 
large number of simple concurrent threads in a single chip. 
Rather than hiding latency through out-of-order or specu- 
lative execution, Cyclops tolerates it through massive par- 
allelism. In this design each thread unit is simple; expen- 
sive resources, such as floating-point units and caches, are 
shared between different threads. The integration of mem- 
ory and logic in the same chip results in a flat, high band- 
width and low latency memory hierarchy. 

DRAM (8x512KB) 

TG 

TG .~ 

5 flLgS g g  
DRAM (8x512KB) 

J [ Thread Unit 

Thread Group 

Figure 1. Cyclops chip block diagram. 

Thread units are at the base of the Cyclops hierarchy. 
Each thread unit consists of a register file (64 32-bit single 
precision registers, that can be paired for double precision 
values), a program counter, a fixed-point ALU, and an in- 
struction sequencer. Thread units are simple processors that 
issue and execute instructions in program order. Several 
threads share one data cache and one floating-point unit, 
forming a thread group (TG in Figure 1). The floating-point 
units are pipelined and can complete a multiply and an add 
in every cycle. 

The Cyclops architecture defines a 3-operand, load-store 

RISC-like ISA with approximately 60 instruction types. For 
designing the Cyclops ISA we selected the most widely 
used instructions of the Power-PC architecture, to which 
we added multithreaded functionality, such as atomic read- 
modify-write memory operations. Most instructions exe- 
cute in one cycle. Each thread can issue an instruction in ev- 
ery cycle, if resources are available and there are no depen- 
dences with previous instructions. If two threads try to issue 
instructions using the same shared resource, one thread is 
selected as winner in a round-robin scheme to prevent star- 
vation. If  an instruction cannot be issued, the thread unit 
stalls until all resources become available, either through 
the completion of previously issued instructions, or through 
the release of resources held by other threads. 

The architecture itself does not specify the exact number 
of components in a chip and supports a multitude of design 
points. As a starting point of our studies we adopt the con- 
figuration listed in Table 1. Table l(a) shows the instruction 
latencies for this configuration. The delay for an instruction 
is decomposed into two parts: execution (E) cycles and la- 
tency (L) cycles. Each functional unit can begin processing 
a new instruction after E cycles. The result is available after 
E + L cycles, and, since the functional units are pipelined, 
they can be utilized by other instructions during the latency 
period. For memory operations, the latency of the opera- 
tions depend how deep into the memory hierarchy we have 
to go to fetch the result. 

The relative number of components in Table l(b) is de- 
termined by silicon area constraints and most common in- 
struction type percentages. We expect these numbers to 
change as manufacturing technology improves. The bal- 
ance between different resources might also change as a 
consequence of particular target applications and as our un- 
derstanding of the different trade-offs improves. The base 
architecture studied in this paper specifies 32 thread groups 
with their respective floating point units shared by one to 
eight threads. With a 500 MHz clock cycle, it translates 
into 1 GFlops peak performance per floating-point unit, or 
32 GFlops peak performance per chip. 

Each of the 32 data caches of 16 KB (one per thread 
group) has 64-byte lines and is 8-way set-associative. The 
data caches are shared among all threads in the chip. The ar- 
chitecture allows the software to implement an entire spec- 
trum of cache configurations [4]. In this paper we consider 
only the simplest organization, in which the 32 caches be- 
have as a single, multiported 512KB cache with uniform 
latency. 

Instruction caches are 32 KB, 8-way set-associative with 
64-byte line size. In the base architecture, one instruction 
cache is shared by 2 thread groups. Unlike the data caches, 
the instruction caches are private to the threads in the thread 
groups. In addition, to improve instruction fetching, each 
thread contains a Prefetch Instruction Buffer (PIB). 
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Table 1. Design parameters for the reference 
Cyclops architecture. 

(a) instructions 
Instruction type Execution 

Branches 
Integer multiplication 
Integer divide 
Floating point add, mult. and cony. 
Floating point divide (double prec.) 
Floating point square root (double prec.) 
Floating point multiply-and-add 
Cache hit 
Cache miss 

2 
1 

33 
1 
1 
1 
1 
1 
1 

All other operations (except memory ops.) ~ 1 
(b) components 

Component # of units Params/unit 
Threads 1 . . . . .  256 single issue, in-order, 500 MHz 
FPUs 32 1 add, 1 multiply 
D-cache ~ 32 16 KB, 8-way assoc., 64-byte lines 
I-cache t[ 16 32 KB, 8-way assoc., 64-byte lines 
Memory [ 16 512KB 

Latency 
0 
5 
0 
5 

30 
56 
9 
6 

24 
0 

A large part of the silicon area in the Cyclops chip de- 
sign is dedicated to memory. The reference design consid- 
ered in this paper has 16 banks of on-chip memory shared 
between thread units. Each bank has 512 KB for a total of 
8 MB of embedded memory. The banks provide a contigu- 
ous address space to the threads. Addresses are interleaved 
to provide higher memory bandwidth. The banks have uni- 
form latency. The unit of access is a 32-byte block, and 
threads accessing two consecutive blocks in the same bank 
will see a lower latency (3 cycles vs. 9 cycles for the first 
block) in burst transfer mode. In the default configuration, 
the aggregated memory bandwidth is 40 GB/s. 

Finally, there are some features of the Cyclops architec- 
ture that are not analyzed in this paper. These include off- 
chip memory, interchip communication [2], and intrachip 
synchronization hardware [4]. 

3. Software Environment 

The Cyclops system software stack consists of a com- 
piler, kernel and runtime libraries. Our environment exports 
a familiar (POSIX) interface without the complexity of a 
full Unix system residing on a node. Currently applications 
are paraUelized by hand, using the pthread model to take 
advantage of the large number of threads in a chip. 

The kernel, libraries, and applications are generated with 
a cross-compiler based on the GNU toolkit (version 2.95.3), 
re-targeted for the Cyclops instruction set architecture. This 
cross-compiler supports C, C++, and FORTRAN77. 

The resident kernel supports single user, single process 
within a Cyclops chip. The kernel is small when compared 

with current operating systems and it is well adapted to the 
limited resources available in the chip, providing a thin in- 
terface to the hardware for communication, synchroniza- 
tion, timers, and interrupts. Its simplicity also delivers high 
performance since it does not require traversing many lay- 
ers of software to access the hardware. The kernel exposes 
a single-address space shared by all threads. Due to the 
small address space and large number of hardware threads 
available, no resource virtualization is performed in soft- 
ware: virtual addresses map directly to physical addresses 
(no paging) and software threads map directly to hardware 
threads. Every software thread is preallocated with a fixed 
size stack per thread (selected at boot time), resulting in fast 
thread creation and reuse. 

We have developed an architecturally accurate simulator 
that interprets kernel and application code generated by the 
Cyclops compiler and models the microarchitecture of the 
Cyclops processors. Although our simulator is not cycle- 
accurate, it estimates performance by modeling latencies 
and contention for resources at all levels of the Cyclops hi- 
erarchy. The simulator is parametrized such that different 
architectural features can be specified at program execution. 
The parameters shown in Table 1 are varied to obtain the 
performance results presented in Section 5. The simulator 
produces instruction traces, instruction histograms, and re- 
source utilization statistics, such as floating point unit usage 
and contention, cache hit and miss ratio, memory accesses 
and contention. 

4. Description of the Benchmark Suite 

We can leverage the unconventional characteristics of 
the Cyclops architecture (limited memory, unbalanced pro- 
cessing to memory ratio, large number of registers and 
threads, and shared functional units) by carefully tuning 
applications. In the past we have experimented with stan- 
dard benchmarks such as STREAMS and Splash-2 [4] and 
ported complete applications that run on large Cyclops 
systems [2]. The complexity of the interactions between 
the code, compiler, runtime libraries, and architecture pre- 
vented us from quantifying the effect on performance of 
each design feature. 

In this paper we evaluate the performance of Cyclops 
using a custom built toolkit. We present results for five 
scientific kernels: FFT, Finite Differences, matrix multipli- 
cation, sparse matrix-vector product and Cholesky factor- 
ization. The simplicity of these codes allows for a better 
understanding of their performance characteristics, which 
increases our insight into the behavior of the architecture. 

The results in Section 5 describe several implementa- 
tions of each benchmark. The naive version of a bench- 
mark is a simple implementation compiled with the g c c  
compiler using the basic optimization option - 0 2 .  Naive 
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unroll uses the same naive source codes but is compiled 
to take advantage of the loop unrolling features of gcc ( -  
02 -funroll-all-loops). In addition, we provided 
manually optimized versions of our benchmarks using well 
known optimizations such as unrolling and register tiling. 
We did not perform cache blocking optimizations on these 
codes. 

We designed the data set size for each benchmark in such 
a way as to exceed the cache capacity. For two of the bench- 
marks we also provided a small data set size that does fit in 
the cache. 

FFT is a modified version of the Splash-2 FFT bench- 
mark. This multi-threaded implementation maps a vector 
of n complex numbers into a two-dimensional array. Every 
thread computes the FFT on an equal number of rows of this 
matrix for log n/2  phases. The matrix is then transposed in 
parallel and the threads complete the FFF on the remaining 
log n/2 phases. 

The difference between our implementation and the one 
provided by Splash-2 is that we perform a simple transpose 
procedure rather than a more involved blocked transpose. 
The computation of the FFTs in each phase is completely 
local to each thread. The only synchronization primitive 
used in this benchmark is a global barrier in which threads 
wait before transposing the matrix. 

Manually optimized versions: we unrolled the inner 
loop of the FFT computation by factors of 2, 3 and 4, and 
also unrolled the inner loop of the transpose procedure four 
times. 

Data set size: the FFT benchmark was executed with 
a single data set, a vector of 64K complex numbers, and 
requires 4.01 MB of storage. 

MM (matrix multiplication) computes AB = C with 
Amxp, Bpxn and Cmxn. Our multithreaded implementa- 
tion partitions the matrix C into r x s block matrices using 
t = r x s threads and assigns each submatrix to a single 
thread. Thus each thread computes at most [ -~] x [s n-] dot 
products of size p. 

Manually optimized versions: loops were register tiled, 
reordered and unrolled in order to achieve maximum reg- 
ister reuse. We ran several manualXY implementations, 
where X and Y stand for the degree of unrolling of the two 
outer loops. 

Data s e t  s i z e :  we ran this benchmark using two problem 
sizes: a small size m x n x p = 192 x 192 x 100, requinng 
0.57 MB of storage, which fits into cache, and a large 384 x 
384 x 200 problem that requires 2.29 MB of memory, and 
does not fit into cache. 

SPARSE is the multiplication of a sparse matrix S by a 
vector, is the main kernel of many iterative linear solvers. 

Our implementation represents the sparse matrix S using 
row-indexed sparse storage [13, 15]. A fill parameter f 
controls the sparsity of the matrix. 

The inner loop of the sparse-matrix vector product re- 
quires three memory loads, two of which are in an indirect 
subscript expression S(i(j)), for every non-zero element of 
the sparse matrix S. The location of the load for the indi- 
rect access is particularly difficult to predict and therefore 
the latency is difficult to hide. Consequently sparse-matrix 
vector codes generally suffer from poor performance. 

In our parallel implementation the rows of the matrix S 
and the solution vector y are partitioned between threads. 
This implementation does not require thread synchroniza- 
tion. 

Manually optimized versions: each thread multiplies 
one or two rows of the matrix at the same time, and in the 
manual implementation the inner loop is unrolled 8 times, 
hence the names manual18 and manual28. 

Data set size: this benchmark was run with matrix size 
1024 x 1024 and fill factor f = 4, requiring 3.03 MB of 
main memory. 

FD (finite-differences) computes the solution to the two- 
dimensional Poisson equation X72u = f ,  where f (x ,  y) is 
a random function, in the square domain ft = (0, 1) 2 with 
Dirichlet boundary conditions u = 0. FD uses a standard 
five-point stencil on an m x n regular mesh. The solution to 
the linear approximation by Jacobi iteration uses two alter- 
nating matrices ~k and ~k-1. Like in the matrix multiplica- 
tion kernel, we partition the threads into an array of r by a 
threads. At every iteration k, every thread is responsible to 
compute at most [ ~ ]  x [~] unknowns in the matrix fi/~ us- 
ing the previously computed values in ~k-1.  Threads syn- 
chronize in a global barrier before proceeding to the next 
iteration. For simplicity, the benchmark runs for a fixed 
number of iterations rather than testing for convergence. 

Manually optimized versions: in the manualXY imple- 
mentation threads compute the stencil in X by Y blocks, re- 
sulting in better register locality. X and Y are limited by the 
size of the register file. 

Data s e t  s i z e :  this benchmark was run with both small 
(m = n = 128)and l a rge (m = n = 512)data sizes, 
requiting 0.38 MBytes and 6.04 MBytes of storage, respec- 
tively. 

C h o l e s k y  is a thread-parallel version of the blocked 
Cholesky factorization. The triangular input matrix is sub- 
divided into blocks of size n = 4 or n = 8. In each itera- 
tion the algorithm solves a single block and updates the rest 
of the matrix. The single block is always solved by a sin- 
gle thread, whereas the update is distributed among as many 
threads as possible. Each iteration requires three global bar- 
riers. 
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Table 2. Benchmark performance: MFIops on a 750 MFIops IBM PowerPC 604e workstation. The best 
performance of each benchmark is highlighted, 

benchmark size description 

FFT large 1D FFT of 64K complex 
MM small 192x 192x 100 

large 384x384x200 
L1 PPC 32x36x35 

SPARSE large 1024 x 1024 
FD small 128 x 128 

large 512 x 512 
L1PPC 33x33  

Cholesky l large 
L1 PPC 

880 x 880 
240 x 240 

storage 
(MB) 

4.01 
0.57 
2.29 
0.28 
3.03 
0.38 
6.04 
0.26 
6.19 
0.46 

gcc xlc 
naive manual naive 
78,15 83.01 81.21 
25.13 144.56 25.42 
25.21 120.02 22.17 

216.00 537.60 265.85 
29.45 31.02 28.65 
43.12 40.76 37.58 
23.00 21.45 23.00 

125.65 226.88 124.69 
27.98 80.81 32.13 
46.08 153.41 57.60 

Best 
manual % of peak 

84.90 11.32 
137.81 19.27 
125.11 16.68 
556.14 74.15 

29.62 4.14 
38.28 5.75 
21.35 3.06 

209.42 30.25 
83.17 11.08 

230.11 30.68 

Manually optimized versions: our implementation of 
the benchmark completely unrolls operations on the indi- 
vidual blocks, and register tiles the update operation (which 
is in fact a series of matrix multiplications). Whereas the 
naive version has block size 4, there are two manually opti- 
mized versions with block sizes of 4 and 8. 

Data set size: this benchmark was run with a matrix of 
size 880 x 880, requiring 6.19 MBytes of storage. 

Benchmark Performance on PowerPC: Register tiling 
and unrolling optimizations are necessary to obtain good 
performance in Cyclops, but they apply equally well to 
more conventional RISC architectures. For comparison, we 
ran the benchmarks on a 375MHz PowerPC 604e machine 
with a peak performance of 750 MFlops. These results are 
shown in Table 2. We used both x l c ,  the native compiler, 
and gcc .  We also added a data set size that fits into the 
PowerPC L1 cache. These implementations are not op- 
timized for PowerPC. The last column of Table 2 shows 
the percentage of peak performance obtained by the bench- 
marks in the best compiler/implementation combination. 

5. Exper imenta l  results 

The experimental results presented in this section show 
the performance effect of adjusting several parameters of 
the Cyclops architecture: the number of threads per FPU, 
cache latency and memory bandwidth. We performed these 
experiments to gain a better understanding of the design 
trade-offs for this architecture. 

Increasing the degree of parallelism in the architecture, 
by having multiple threads sharing functional units, results 
in better performance because it increases the utilization of 
the functional units. More thread units mean a larger total 

number of registers and data fetching units, and hence bet- 
ter tolerance of cache and memory latency. We measured 
the latency that these benchmarks can tolerate by varying 
the cache latency in our simulator. We show that there is no 
major impact on performance until latency reaches at least 
30 cycles. This gives a reasonable target to the designers of 
the memory subsystem and allows for resources to be bet- 
ter spent elsewhere. More simultaneous memory requests 
result in higher pressure on the memory system. We show 
that our design point of 40GBytes/s is adequate for most 
applications. 

All experiments are performed on a chip with constant 
peak performance (32 GFlops) given by 32 FPUs running 
at 500 MHz. We vary the number of threads between 1 and 
8 per FPU (for a total number of threads between 32 and 256 
in a chip). As a reference, we also present the performance 
of a single-threaded Cyclops chip (with a single FPU). 

5.1. Baseline Results 

The tests shown in Figures 2 and 3 quantify the effect on 
performance of compiler and hand optimizations, in partic- 
ular loop unrolling and register tiling. These tests are run on 
the base Cyclops configuration described in Section 2, with 
a variable number of threads serving an FPU. 

The graphs in Figures 2 and 3 share a common pattern: 
linear scaling up to the maximum performance, followed by 
a plateau or a degradation of performance. The performance 
plateau for each benchmark is determined by architectural 
features that the benchmark saturates. 

• Peak floating point performance: a benchmark can 
achieve peak floating point performance only if both 
the adder and the multiplier in the FPU are utilized 
100%, which may not be achievable when e.g. the 
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Figure 2. Performance obtained by naive, naive unroll, and manual unroll on the default Cyclops 
configuration 

calculation involves a larger number of additions than 
multiplications. A benchmark's theoretical peak float- 
ing point performance is typically a constant fraction 
of the theoretical peak of the machine. 

• Memory  bandwidth: the theoretical peak perfor- 
mance of a benchmark is also limited by the ratio 
of memory to FP operations in a computational ker- 
nel's innermost loop. The default configuration of the 
Cyclops architecture provides 40 GBytes/s of memory 
bandwidth. Given the ratio of memory accesses for ev- 
ery FP operation, r, we can estimate the peak memory 
bandwidth performance as  PMEM = ~ -  For the pur- 
pose of this formula we only need to consider memory 
accesses that are cache misses. 

Cache latency: the time it takes to load each memory 
reference into a register affects the time when an FP 
operation is scheduled. More latency introduces bub- 
bles into the FPU's pipeline and reduces its utilization. 
Latency can be countered by increasing the number of 
threads feeding the FPU which increases its degree of 
utilization. Because of this the effect of cache latency 
tends to show up as linear increase in performance with 
increasing number of threads per FPU, which flattens 
out when the effect of cache latency has been miti- 
gated. 

Next we discuss how these parameters affect each of our 
kernels' performance. 
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Figure 3. Performance obtained by naive, naive unroll and manual unroll on the default Cyclops 
configuration 

The FD benchmark Performance results for this bench- 
mark are shown by Figure 2 (a) and (b), corresponding to 
the small and large data sets, respectively. Each figure con- 
tains plots for five different levels of code optimization: 
naive and naive unrolled, corresponding to compiler opti- 
mizations explained in Section 4, and manual22, manual33 
and manual44 versions representing manual optimizations 
obtained by tiling the two nested loops of the FD kernel and 
partially overlapping an n x n section of five-point sten- 
cils in a single iteration, where n = {2, 3, 4}. The man- 
ua122 version of the code shows better performance than 
manual33 and manual44, because the latter ones cause the 
compiler to spill registers. 

Figures 2 (a) and (b) show very different behavior. In 
Figure (a) the data set fits in the cache, and performance 

is limited by cache latency. Figure (b) shows the large 
data set, where the limiting factor is memory bandwidth. 
The 2 x 2 stencil of the manual22 version of the code re- 
quires the loading/storing of 14 double precision numbers 
for every stencil, resulting in about 5.6 bytes of memory 
for each floating point operation. Thus the 40 GBytes/s 
peak memory bandwidth manifests itself as a plateau at 
PMEM ~-- 40 ~.6 = 7.14GFlops, which is plainly visible on 
the figure. 

The FD benchmark performs four times more floating 
point additions than multiplications, and cannot fill all avail- 
able time slots for the multiplier. This is corroborated by 
the statistics reported by our simulator: in the single thread 
configuration the adder's utilization rate is 46.71% versus 
the multiplier's 20.32%. 
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The MM benchmark The results for MM, using the 
small and large data sets, are shown in Figure 2 (c) and 
(d) respectively. All manually register filed versions of the 
code, manual22, manual33, manual34 and manual44 were 
better than the compiler optimized versions; of these, man- 
ual34 performed best, because manual44 caused the com- 
piler to spill registers. 

The similarity between the two MM figures is remark- 
able considering the difference between data set sizes. This 
is a result of MM being a computational-bound algorithm 
where memory bandwidth is not a factor: the register-tiled 
version of MM requires approximately 1 byte of memory 
data for each FP operation it executes. 

Both MM data sets, small and large, achieve the theoret- 
ical peak floating point performance of 32 GFlops. 

The FFT benchmark The FFT kernel comes in naive 
and several manually unrolled versions. The performance 
of FFT on the Cyclops architecture, shown in Figure 3 (e), 
is limited by a combination of memory accesses and peak 
floating point performance. The bandwidth requirements of 
the butterfly pattern are about 3 bytes of memory for ev- 
ery FP operation, which imposes a performance plateau of 
PMEM = -~, or about 16 GFlops. 

The SPARSE benchmark The SPARSE benchmark, 
shown in Figure 3 (0, is limited both by cache latency and 
memory bandwidth. Latency has a high effect on the code 
because of the two dependent memory loads in the code, but 
this effect can be mitigated by manually unrolling the code. 
Bandwidth affects the kernel because of the sheer amount of 
memory consumed: about 4.5 bytes in cache misses for ev- 
ery FP operation in the manual28 benchmark. This causes 
performance to be limited to PMEM 40 = ~Tg = 8.8 GFIops. 

The Cholesky benchmark The Cholesky benchmark, 
shown in Figure 3 (g), is typically a computation-bound al- 
gorithm, but on Cyclops this kernel was affected by cache 
latency and an inability to efficiently make use of the avail- 
able parallelism. 

The performance of naive parallel Cholesky is poor and 
shows the effect of cache latency (linear speedup). The 
manually blocked and tiled versions of Cholesky, manual4 
and manual8, represent two different points of compromise 
between manual register tiling and parallelism. The insuf- 
ficient amount of parallelism in the code causes a decline 
in performance as the number of threads increases. The 
Cholesky benchmark is also affected by the relatively poor 
performance of the SQRT and F:DIV operations on Cyclops, 
due to their simple implementation. Even with these limita- 
tions the Cholesky benchmark achieves 18 GFlops. 

5.2. Data cache latency 

From the results in Section 5.1 we conclude that in- 
telligent register usage and instruction scheduling are es- 
sential to obtain performance on the Cyclops architecture. 
These experiments also show that the benchmarks need 
many threads per FPU in order to hide cache or memory 
latency, as shown by the linear increase in performance ob- 
tained when adding thread units. 

To further evaluate the sensitivity of our benchmarks to 
data cache latency, we selected the best-performing version 
of each benchmark from the baseline runs and re-measured 
its performance with various latencies. The plots in Fig- 
ures 4 and 5 highlight the "knee" of the performance curve: 
the point where performance starts declining due to cache 
latency effects. 

Using the location and characteristics of this knee we can 
categorize our benchmarks by their sensitivity to cache la- 
tency. Some of the benchmarks show remarkable tolerance: 
both versions of MM, large and small, shown in Figure 4 
(c) and (d), tolerate large amounts of cache latency - up to 
64 cycles without appreciable degradation in performance, 
given enough threads per FPU. 

Even small cache latencies are not sufficient to achieve 
peak performance when only a few threads share an FPU. 
According to simulation data, threads in MM with the small 
data set on a one thread per FPU configuration stall 32% 
of the total number of cycles due to register file port con- 
flicts and not because of register dependences. Our simu- 
lations use a two-ported register file, thus instructions like 
FMAD that access more than two registers have an extra 
execution cycle. At the same time, only 45% of the instruc- 
tions are floating point operations. Because of these restric- 
tions the FPUs are significantly under-utilized. The perfor- 
mance achieved in this case is limited to 32 x 0.68 x 0.45 
9.2 GFlops. 

Benchmarks dominated by memory loads, like FFT and 
FD with the large data set, are less affected by cache latency 
variations since most memory accesses are cache misses. 
The performance knee tends to be less pronounced for these 
applications. 

The three benchmarks most affected by cache latency 
are the FD benchmark running on the small data set, the 
SPARSE benchmark, and Cholesky. FD, shown in Figure 4 
(a), is affected because of the relatively low degree of un- 
rolling (2 x 2) applied to it; SPARSE, shown in Figure 5 (If), 
has a chain of two dependent memory loads in the inner- 
most loop causing a delay of two cache latencies in every 
iteration; and Cholesky, shown in Figure 5 (g), is also sen- 
sitive to cache latency. 

The cache latency measurements show that most of our 
benchmarks exhibit high tolerance to latency. With this de- 
sign, having no cache at all is not unthinkable: at the very 
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Figure 4. Performance vs. cache latency, manually unrolled benchmarks 

least, for the applications studied, Cyclops could place the 
caches on the memory side and dispense with the inherent 
complexity of cache coherence. 

5.3. Memory bandwidth 

Figures 6 and 7 show the effect of memory bandwidth 
on the performance of our best manual implementation of 
each kernel. Three curves in each figure plot Cyclops con- 
figurations with 16, 32 and 64 banks of 512KB, 256KB 
and 128 KB respectively maintaining a constant 8 MB of 
embedded DRAM in a chip. With these configurations 
the total bandwidth of the memory system is 40 GBytes/s, 
80 GBytes/s and 160 GBytes/s respectively. 

Figures 6 and 7 can be used to identify the bench- 
marks with high memory bandwidth requirements: their 
performance improves when bandwidth is increased. These 

benchmarks are FD with the large data set, FFT and 
SPARSE. All other benchmarks show little or no variation 
when bandwidth changes, because they are dominated by 
floating point operations (like MM), by cache latency (FD, 
small data set) or by data parallelism (Cholesky). 

As discussed earlier, the FD benchmark requires about 
5.6 bytes of memory for each FP operation. For bandwidth 
limits of 40, 80 and 160 GBytes/s, this results in PMEM val- 
ues of 7.1, 14.2 and 28.4 GFlops respectively, the first two 
of which can be observed clearly on Figure 6 (b); the third 
cannot be observed because at this memory bandwidth the 
benchmark hits the cache latency limit first. 

The FFT benchmark requires only about 3 bytes of mem- 
ory per FP operation, resulting in PMEM values of 16, 32 and 
64 GFlops respectively; only the first of these can be seen in 
Figure 7 (e) for the same reason as FD. 

The SPARSE benchmark requires 4.5 bytes/FP opera- 
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Figure 5. Performance vs. cache latency, manually unrolled benchmarks 

tion, resulting in PMEM values of 8.8, 18 and 36GFlops 
respectively; only the first of these can be observed in 
Figure 7(f). 

In conclusion, the balance in Cyclops between available 
memory bandwidth and floating point performance should 
be driven by the target application; for most of the bench- 
marks the 40GBytes/s seems reasonable, but a few of the 
benchmarks could make use of higher bandwidth. Quadru- 
pling the bandwidth to 160 GBytes/s does not seem neces- 
sary, at least for these applications. 

6. Re la t ed  W o r k  

Our design for Cyclops is ambitious, but within the realm 
of current or near-future silicon technology. Combined 
logic-memory microelectronics processes will soon deliver 
chips with hundreds of millions of transistors. Several re- 

search groups have advanced processor-in-memory designs 
that rely on that technology. We discuss some of the projects 
that are related to Cyclops. 

The MIT RAW architecture [1, 21] consists of a highly 
parallel VLSI design that fully exposes all hardware details 
to the compiler. The chip consists of a set of interconnected 
tiles, each tile implementing a block of memory, functional 
units, and switch for interconnect. The interconnect net- 
work has dynamic message routing and a programmable 
switch. The RAW architecture does not implement a fixed 
instruction set architecture (ISA). Instead, it relies on com- 
piler technology to map applications to hardware in a man- 
ner that optimizes the allocation of resources. 

Architectures that integrate processors and memories on 
the same chip are called Processor-In-Memory (PIM) or In- 
telligent Memory architectures. They have been spurred 
by technological advances that enable the integration of 
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Figure 6. The effect of varying memory bandwidth on benchmark performance 

compute logic and memory on a single chip. These ar- 
chitectures deliver higher performance by reducing the la- 
tency and increasing the bandwidth of processor-memory 
communication. Examples of such architectures are EX- 
ECUBE [9], IRAM [12], Shamrock [8], Imagine [14], 
FlexRAM [7, 18], DIVA [6], Active Pages [11], Gil- 
gamesh [22] and MAJC [19]. The PIM chip is used as a 
coprocessor (Imagine, FlexRAM), or as the main engine in 
the machine (IRAM, MAJC, Piranha, Shamrock), or as a 
"cell" in a larger system (MIT RAW, EXECUBE and Cy- 
clops). Another classification could be based on the number 
and type of the processors: FlexRAM and Imagine include 
many (more than 32) relatively simple processors, while 
EXECUBE, IRAM, MAJC, Piranha [3] and Shamrock in- 
clude only a few (4-8). Cyclops goes beyond what has been 
proposed, using hundreds of processors. 

Simultaneous multithreading exploits both instruction- 
level and thread-level parallelism by issuing instructions 
from different threads in the same cycle. It was shown to 
be a more effective approach to improve resource utiliza- 
tion than superscalar execution. Results presented in [5, 20] 
support our work by showing that there is not enough 
instruction-level parallelism in a single thread of execution, 
therefore it is more efficient to execute multiple threads con- 
currently. 

The Tera MTA [16, 17] is another example of a modern 
architecture that tolerates latencies through massive paral- 
lelism. In the case of Tera, 128 thread contexts share the 
execution hardware. This contrasts with Cyclops, in which 
each thread has its own execution hardware. Both architec- 
tures can tolerate long latencies, and while Tera does not 
implement caches at all, we have shown that Cyclops can 
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Figure 7. The effect of varying memory bandwidth on benchmark performance 

be made a cache-less machine. 

7. Conclusions 

We need to discuss two important limitations of the Cy- 
clops architecture. First, combining logic and memory pro- 
cesses have a negative impact: the logic is not as fast as in 
a pure logic process and the memory is not as dense as in 
a pure memory process. For Cyclops to be successful we 
need to demonstrate that the benefits of this single-chip in- 
tegration, such as improved memory bandwidth, outweigh 
the disadvantages. Second, due to its single-chip nature, 
Cyclops is a small-memory system. The off-chip memory 
is not directly addressable and its bandwidth is much lower. 
We can expect future generations of Cyclops to include 
larger memory. Nevertheless, the current ratio of 250 bytes 

of storage to 1 MFlops of compute power (compared to ap- 
proximately 1 MB/1 MFlops in conventional machines) will 
tend to decrease. 

The result is that Cyclops systems are not single purpose 
machines such as MD-Grape [10] but are not truly general 
purpose computers either. Our architecture targets problems 
that exhibit two important characteristics: massive amounts 
of parallelism and intensive computation. Examples of ap- 
plications that match these requirements are molecular dy- 
namics [2], raytracing, data mining, and linear algebra. 

The corollary is that porting applications to Cyclops is 
not a simple process. The large number of threads and the 
limitations on caches and memory are not easily modeled 
by any compiler in existence, although some compiler op- 
timizations (like cache tiling) address at least part of the 
problem. Our experiments show that in order to achieve 
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good performance on Cyclops we need to exercise as many 
threads in the system as possible. This is partially a com- 
piler problem, but it will definitely impact the models used 
to program this system. We foresee the use of  parallel pro- 
gramming models  such as OpenMP and MPI,  as well as the 
simplerpthreads model we used. 

We also show that, when the multithreaded architecture 
is used to its potential, it can hide large memory latencies, 
resulting in a system design that eschews cache coherence 
issues and may be able to do without caches at all. 

Another  issue that has surfaced in our experiments is that 
of  memory bandwidth. When  driving the FPUs to the limit, 
some of  the applications stress memory more than we had 
predicted, resulting in performance degradation. This will 
need to be corrected. 

Finally, we should emphasize that the results presented 
in this paper were obtained through simulation. Although 
we are confident of  the general trends demonstrated, the 
results need to be validated through real measurements in 
hardware. Moreover, another design step is needed, set- 
ting up a compromise  between the architectural features we 
want in the chip and the memory area limitations. As we 
proceed to complete  the design of  Cyclops and build proto- 
types, we will have the capabili ty to perform the measure- 

ments and finalize the architecture. 
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