
Dissecting Cyclops:
A Detailed Analysis of a Multithreaded Architecture

George Almfisi , C~lin Ca~caval, Jos6 G. Castafios, M o n t y D e n n e a u ,

De rek Lieber , Jos6 E. More i ra , H e n r y S. Warren, Jr.

{gheorghe, cascaval, cas tanos, denneau, i i eber, j moreira, hankw}
8us. ibm. com

I B M T h o m a s J. Wat son Resea rch Cente r

York town Heights , N Y 10598-0218

Abstract

Multiprocessor systems-on-a-chip offer a structured ap-
proach to managing complexity in chip design. Cyclops is a
new family of multithreaded architectures which integrates
processing logic, main memory and communications hard-
ware on a single chip. Its simple, hierarchical design al-
lows the hardware architect to manage a large number of
components to meet the design constraints in terms of per-
formance, power or application domain.

This paper evaluates several alternative Cyclops designs
with different relative costs and trade-offs. We compare the
performance of several scientific kernels running on differ-
ent configurations of this architecture. We show that by in-
creasing the number of threads sharing a floating point unit
we can hide fairly high cache and memory latencies. We
prove that we can reach the theoretical peak performance of
the chip and we identify the optimal balance of components
for each application. We demonstrate that the design is well
adapted to solve problems that are difficult to optimize. For
example, we show that sparse matrix vector multiplication
obtains 16 GFlops out of 32 GFlops of peak performance.

1. Introduction

Multiprocessor systems-on-a-chip typically consist of
multiple instances of different components: (i) functional
units; (ii) memory (including cache and main memory); and
(iii) interconnection network. Design choices include both
the relative and absolute numbers for components, their par-
ticular features, and their placement with respect to each
other. To make appropriate design decisions, the architect
must be able to quantify the impact of these choices, both
on cost (area, power, circuit complexity) and performance.

In this paper, we describe our approach to the problem

of managing the many design alternatives for one particular
multiprocessor system: the Cyclops chip, which is a new
family of multithreaded architectures being developed at the
IBM T. J. Watson Research Center. A single Cyclops chip
consists of a large number (typically hundreds) of simple
thread execution units, each one simultaneously executing
an independent stream of instructions. The performance of
each individual thread is not particularly high, but the aggre-
gate chip performance is much better than any conventional
design with an equivalent number of transistors. Cyclops
also uses a processor-in-memory (PIM) design where main
memory and processing logic are combined into a single
piece of silicon. Large, scalable systems can be built with
a cellular approach using Cyclops as a building block, with
the cells interconnected in a regular pattern through com-
munication links provided in each chip.

The study of single chip performance performed in this
paper provides valuable information to the hardware archi-
tects to determine the low-level characteristics of the de-
sign and provides a starting point for the future evaluation
of multichip Cyclops systems. We begin with a reference
design for the Cyclops architecture, representing one partic-
ular alternative in terms of various design parameters. We
then conduct a systematic exploration of the design space
by performing simulation-based sensitivity analysis along
each dimension on a suite of scientific kernels. The goal of
this design space exploration is not simply to show that one
design point is better than another, but to develop an insight
into how the numbers and features of components impact
the behavior of the chip. Armed with this insight, and with
the knowledge of the cost of the various components, the ar-
chitect can them make design decisions that result in a chip
optimized for an application domain.

The rest of this paper is organized as follows. Section 2
provides an overview of the Cyclops architecture and sum-
marizes the parameters used in our initial configuration.

26

Section 3 presents a short overview of the Cyclops system
software and of our architecturally accurate software sim-
ulation environment. Section 4 explains the scientific ker-
nels used in this study. The experimental results obtained
from simulations are presented in Section 5. Section 6 com-
pares Cyclops against other system-on-a-chip projects and
we conclude in Section 7.

2. The Cyclops Architecture

Cyclops is a shared address space multithreaded archi-
tecture with a hierarchical and cellular organization, as
shown in Figure 1. The main premise of our architecture
is the integration of memory, interconnection logic, and a
large number of simple concurrent threads in a single chip.
Rather than hiding latency through out-of-order or specu-
lative execution, Cyclops tolerates it through massive par-
allelism. In this design each thread unit is simple; expen-
sive resources, such as floating-point units and caches, are
shared between different threads. The integration of mem-
ory and logic in the same chip results in a flat, high band-
width and low latency memory hierarchy.

DRAM (8x512KB)

TG

TG .~

5 flLgS g g
DRAM (8x512KB)

J [Thread Unit

Thread Group

Figure 1. Cyclops chip block diagram.

Thread units are at the base of the Cyclops hierarchy.
Each thread unit consists of a register file (64 32-bit single
precision registers, that can be paired for double precision
values), a program counter, a fixed-point ALU, and an in-
struction sequencer. Thread units are simple processors that
issue and execute instructions in program order. Several
threads share one data cache and one floating-point unit,
forming a thread group (TG in Figure 1). The floating-point
units are pipelined and can complete a multiply and an add
in every cycle.

The Cyclops architecture defines a 3-operand, load-store

RISC-like ISA with approximately 60 instruction types. For
designing the Cyclops ISA we selected the most widely
used instructions of the Power-PC architecture, to which
we added multithreaded functionality, such as atomic read-
modify-write memory operations. Most instructions exe-
cute in one cycle. Each thread can issue an instruction in ev-
ery cycle, if resources are available and there are no depen-
dences with previous instructions. If two threads try to issue
instructions using the same shared resource, one thread is
selected as winner in a round-robin scheme to prevent star-
vation. If an instruction cannot be issued, the thread unit
stalls until all resources become available, either through
the completion of previously issued instructions, or through
the release of resources held by other threads.

The architecture itself does not specify the exact number
of components in a chip and supports a multitude of design
points. As a starting point of our studies we adopt the con-
figuration listed in Table 1. Table l(a) shows the instruction
latencies for this configuration. The delay for an instruction
is decomposed into two parts: execution (E) cycles and la-
tency (L) cycles. Each functional unit can begin processing
a new instruction after E cycles. The result is available after
E + L cycles, and, since the functional units are pipelined,
they can be utilized by other instructions during the latency
period. For memory operations, the latency of the opera-
tions depend how deep into the memory hierarchy we have
to go to fetch the result.

The relative number of components in Table l(b) is de-
termined by silicon area constraints and most common in-
struction type percentages. We expect these numbers to
change as manufacturing technology improves. The bal-
ance between different resources might also change as a
consequence of particular target applications and as our un-
derstanding of the different trade-offs improves. The base
architecture studied in this paper specifies 32 thread groups
with their respective floating point units shared by one to
eight threads. With a 500 MHz clock cycle, it translates
into 1 GFlops peak performance per floating-point unit, or
32 GFlops peak performance per chip.

Each of the 32 data caches of 16 KB (one per thread
group) has 64-byte lines and is 8-way set-associative. The
data caches are shared among all threads in the chip. The ar-
chitecture allows the software to implement an entire spec-
trum of cache configurations [4]. In this paper we consider
only the simplest organization, in which the 32 caches be-
have as a single, multiported 512KB cache with uniform
latency.

Instruction caches are 32 KB, 8-way set-associative with
64-byte line size. In the base architecture, one instruction
cache is shared by 2 thread groups. Unlike the data caches,
the instruction caches are private to the threads in the thread
groups. In addition, to improve instruction fetching, each
thread contains a Prefetch Instruction Buffer (PIB).

- - 2 7 m

Table 1. Design parameters for the reference
Cyclops architecture.

(a) instructions
Instruction type Execution

Branches
Integer multiplication
Integer divide
Floating point add, mult. and cony.
Floating point divide (double prec.)
Floating point square root (double prec.)
Floating point multiply-and-add
Cache hit
Cache miss

2
1

33
1
1
1
1
1
1

All other operations (except memory ops.) ~ 1
(b) components

Component # of units Params/unit
Threads 1 256 single issue, in-order, 500 MHz
FPUs 32 1 add, 1 multiply
D-cache ~ 32 16 KB, 8-way assoc., 64-byte lines
I-cache t[16 32 KB, 8-way assoc., 64-byte lines
Memory [16 512KB

Latency
0
5
0
5

30
56
9
6

24
0

A large part of the silicon area in the Cyclops chip de-
sign is dedicated to memory. The reference design consid-
ered in this paper has 16 banks of on-chip memory shared
between thread units. Each bank has 512 KB for a total of
8 MB of embedded memory. The banks provide a contigu-
ous address space to the threads. Addresses are interleaved
to provide higher memory bandwidth. The banks have uni-
form latency. The unit of access is a 32-byte block, and
threads accessing two consecutive blocks in the same bank
will see a lower latency (3 cycles vs. 9 cycles for the first
block) in burst transfer mode. In the default configuration,
the aggregated memory bandwidth is 40 GB/s.

Finally, there are some features of the Cyclops architec-
ture that are not analyzed in this paper. These include off-
chip memory, interchip communication [2], and intrachip
synchronization hardware [4].

3. Software Environment

The Cyclops system software stack consists of a com-
piler, kernel and runtime libraries. Our environment exports
a familiar (POSIX) interface without the complexity of a
full Unix system residing on a node. Currently applications
are paraUelized by hand, using the pthread model to take
advantage of the large number of threads in a chip.

The kernel, libraries, and applications are generated with
a cross-compiler based on the GNU toolkit (version 2.95.3),
re-targeted for the Cyclops instruction set architecture. This
cross-compiler supports C, C++, and FORTRAN77.

The resident kernel supports single user, single process
within a Cyclops chip. The kernel is small when compared

with current operating systems and it is well adapted to the
limited resources available in the chip, providing a thin in-
terface to the hardware for communication, synchroniza-
tion, timers, and interrupts. Its simplicity also delivers high
performance since it does not require traversing many lay-
ers of software to access the hardware. The kernel exposes
a single-address space shared by all threads. Due to the
small address space and large number of hardware threads
available, no resource virtualization is performed in soft-
ware: virtual addresses map directly to physical addresses
(no paging) and software threads map directly to hardware
threads. Every software thread is preallocated with a fixed
size stack per thread (selected at boot time), resulting in fast
thread creation and reuse.

We have developed an architecturally accurate simulator
that interprets kernel and application code generated by the
Cyclops compiler and models the microarchitecture of the
Cyclops processors. Although our simulator is not cycle-
accurate, it estimates performance by modeling latencies
and contention for resources at all levels of the Cyclops hi-
erarchy. The simulator is parametrized such that different
architectural features can be specified at program execution.
The parameters shown in Table 1 are varied to obtain the
performance results presented in Section 5. The simulator
produces instruction traces, instruction histograms, and re-
source utilization statistics, such as floating point unit usage
and contention, cache hit and miss ratio, memory accesses
and contention.

4. Description of the Benchmark Suite

We can leverage the unconventional characteristics of
the Cyclops architecture (limited memory, unbalanced pro-
cessing to memory ratio, large number of registers and
threads, and shared functional units) by carefully tuning
applications. In the past we have experimented with stan-
dard benchmarks such as STREAMS and Splash-2 [4] and
ported complete applications that run on large Cyclops
systems [2]. The complexity of the interactions between
the code, compiler, runtime libraries, and architecture pre-
vented us from quantifying the effect on performance of
each design feature.

In this paper we evaluate the performance of Cyclops
using a custom built toolkit. We present results for five
scientific kernels: FFT, Finite Differences, matrix multipli-
cation, sparse matrix-vector product and Cholesky factor-
ization. The simplicity of these codes allows for a better
understanding of their performance characteristics, which
increases our insight into the behavior of the architecture.

The results in Section 5 describe several implementa-
tions of each benchmark. The naive version of a bench-
mark is a simple implementation compiled with the g c c
compiler using the basic optimization option - 0 2 . Naive

w 2 8 - -

unroll uses the same naive source codes but is compiled
to take advantage of the loop unrolling features of gcc (-
02 -funroll-all-loops). In addition, we provided
manually optimized versions of our benchmarks using well
known optimizations such as unrolling and register tiling.
We did not perform cache blocking optimizations on these
codes.

We designed the data set size for each benchmark in such
a way as to exceed the cache capacity. For two of the bench-
marks we also provided a small data set size that does fit in
the cache.

FFT is a modified version of the Splash-2 FFT bench-
mark. This multi-threaded implementation maps a vector
of n complex numbers into a two-dimensional array. Every
thread computes the FFT on an equal number of rows of this
matrix for log n/2 phases. The matrix is then transposed in
parallel and the threads complete the FFF on the remaining
log n/2 phases.

The difference between our implementation and the one
provided by Splash-2 is that we perform a simple transpose
procedure rather than a more involved blocked transpose.
The computation of the FFTs in each phase is completely
local to each thread. The only synchronization primitive
used in this benchmark is a global barrier in which threads
wait before transposing the matrix.

Manually optimized versions: we unrolled the inner
loop of the FFT computation by factors of 2, 3 and 4, and
also unrolled the inner loop of the transpose procedure four
times.

Data set size: the FFT benchmark was executed with
a single data set, a vector of 64K complex numbers, and
requires 4.01 MB of storage.

MM (matrix multiplication) computes AB = C with
Amxp, Bpxn and Cmxn. Our multithreaded implementa-
tion partitions the matrix C into r x s block matrices using
t = r x s threads and assigns each submatrix to a single
thread. Thus each thread computes at most [-~] x [s n-] dot
products of size p.

Manually optimized versions: loops were register tiled,
reordered and unrolled in order to achieve maximum reg-
ister reuse. We ran several manualXY implementations,
where X and Y stand for the degree of unrolling of the two
outer loops.

Data s e t s i z e : we ran this benchmark using two problem
sizes: a small size m x n x p = 192 x 192 x 100, requinng
0.57 MB of storage, which fits into cache, and a large 384 x
384 x 200 problem that requires 2.29 MB of memory, and
does not fit into cache.

SPARSE is the multiplication of a sparse matrix S by a
vector, is the main kernel of many iterative linear solvers.

Our implementation represents the sparse matrix S using
row-indexed sparse storage [13, 15]. A fill parameter f
controls the sparsity of the matrix.

The inner loop of the sparse-matrix vector product re-
quires three memory loads, two of which are in an indirect
subscript expression S(i(j)), for every non-zero element of
the sparse matrix S. The location of the load for the indi-
rect access is particularly difficult to predict and therefore
the latency is difficult to hide. Consequently sparse-matrix
vector codes generally suffer from poor performance.

In our parallel implementation the rows of the matrix S
and the solution vector y are partitioned between threads.
This implementation does not require thread synchroniza-
tion.

Manually optimized versions: each thread multiplies
one or two rows of the matrix at the same time, and in the
manual implementation the inner loop is unrolled 8 times,
hence the names manual18 and manual28.

Data set size: this benchmark was run with matrix size
1024 x 1024 and fill factor f = 4, requiring 3.03 MB of
main memory.

FD (finite-differences) computes the solution to the two-
dimensional Poisson equation X72u = f , where f (x , y) is
a random function, in the square domain ft = (0, 1) 2 with
Dirichlet boundary conditions u = 0. FD uses a standard
five-point stencil on an m x n regular mesh. The solution to
the linear approximation by Jacobi iteration uses two alter-
nating matrices ~k and ~k-1. Like in the matrix multiplica-
tion kernel, we partition the threads into an array of r by a
threads. At every iteration k, every thread is responsible to
compute at most [~] x [~] unknowns in the matrix fi/~ us-
ing the previously computed values in ~k-1. Threads syn-
chronize in a global barrier before proceeding to the next
iteration. For simplicity, the benchmark runs for a fixed
number of iterations rather than testing for convergence.

Manually optimized versions: in the manualXY imple-
mentation threads compute the stencil in X by Y blocks, re-
sulting in better register locality. X and Y are limited by the
size of the register file.

Data s e t s i z e : this benchmark was run with both small
(m = n = 128)and l a rge (m = n = 512)data sizes,
requiting 0.38 MBytes and 6.04 MBytes of storage, respec-
tively.

C h o l e s k y is a thread-parallel version of the blocked
Cholesky factorization. The triangular input matrix is sub-
divided into blocks of size n = 4 or n = 8. In each itera-
tion the algorithm solves a single block and updates the rest
of the matrix. The single block is always solved by a sin-
gle thread, whereas the update is distributed among as many
threads as possible. Each iteration requires three global bar-
riers.

- - 29 - -

Table 2. Benchmark performance: MFIops on a 750 MFIops IBM PowerPC 604e workstation. The best
performance of each benchmark is highlighted,

benchmark size description

FFT large 1D FFT of 64K complex
MM small 192x 192x 100

large 384x384x200
L1 PPC 32x36x35

SPARSE large 1024 x 1024
FD small 128 x 128

large 512 x 512
L1PPC 33x33

Cholesky l large
L1 PPC

880 x 880
240 x 240

storage
(MB)

4.01
0.57
2.29
0.28
3.03
0.38
6.04
0.26
6.19
0.46

gcc xlc
naive manual naive
78,15 83.01 81.21
25.13 144.56 25.42
25.21 120.02 22.17

216.00 537.60 265.85
29.45 31.02 28.65
43.12 40.76 37.58
23.00 21.45 23.00

125.65 226.88 124.69
27.98 80.81 32.13
46.08 153.41 57.60

Best
manual % of peak

84.90 11.32
137.81 19.27
125.11 16.68
556.14 74.15

29.62 4.14
38.28 5.75
21.35 3.06

209.42 30.25
83.17 11.08

230.11 30.68

Manually optimized versions: our implementation of
the benchmark completely unrolls operations on the indi-
vidual blocks, and register tiles the update operation (which
is in fact a series of matrix multiplications). Whereas the
naive version has block size 4, there are two manually opti-
mized versions with block sizes of 4 and 8.

Data set size: this benchmark was run with a matrix of
size 880 x 880, requiring 6.19 MBytes of storage.

Benchmark Performance on PowerPC: Register tiling
and unrolling optimizations are necessary to obtain good
performance in Cyclops, but they apply equally well to
more conventional RISC architectures. For comparison, we
ran the benchmarks on a 375MHz PowerPC 604e machine
with a peak performance of 750 MFlops. These results are
shown in Table 2. We used both x l c , the native compiler,
and gcc . We also added a data set size that fits into the
PowerPC L1 cache. These implementations are not op-
timized for PowerPC. The last column of Table 2 shows
the percentage of peak performance obtained by the bench-
marks in the best compiler/implementation combination.

5. Exper imenta l results

The experimental results presented in this section show
the performance effect of adjusting several parameters of
the Cyclops architecture: the number of threads per FPU,
cache latency and memory bandwidth. We performed these
experiments to gain a better understanding of the design
trade-offs for this architecture.

Increasing the degree of parallelism in the architecture,
by having multiple threads sharing functional units, results
in better performance because it increases the utilization of
the functional units. More thread units mean a larger total

number of registers and data fetching units, and hence bet-
ter tolerance of cache and memory latency. We measured
the latency that these benchmarks can tolerate by varying
the cache latency in our simulator. We show that there is no
major impact on performance until latency reaches at least
30 cycles. This gives a reasonable target to the designers of
the memory subsystem and allows for resources to be bet-
ter spent elsewhere. More simultaneous memory requests
result in higher pressure on the memory system. We show
that our design point of 40GBytes/s is adequate for most
applications.

All experiments are performed on a chip with constant
peak performance (32 GFlops) given by 32 FPUs running
at 500 MHz. We vary the number of threads between 1 and
8 per FPU (for a total number of threads between 32 and 256
in a chip). As a reference, we also present the performance
of a single-threaded Cyclops chip (with a single FPU).

5.1. Baseline Results

The tests shown in Figures 2 and 3 quantify the effect on
performance of compiler and hand optimizations, in partic-
ular loop unrolling and register tiling. These tests are run on
the base Cyclops configuration described in Section 2, with
a variable number of threads serving an FPU.

The graphs in Figures 2 and 3 share a common pattern:
linear scaling up to the maximum performance, followed by
a plateau or a degradation of performance. The performance
plateau for each benchmark is determined by architectural
features that the benchmark saturates.

• Peak floating point performance: a benchmark can
achieve peak floating point performance only if both
the adder and the multiplier in the FPU are utilized
100%, which may not be achievable when e.g. the

30

15000 ~ ... 1 S 0 0 0 ~ .

10000 ... ~ - 10000 .

o

~ .
1 : 1 . ' " " ,

5000 - • 5000 " : " "-. , ,~.~®

• - -- -e- ~ - .e • . .

0 1 32 64 96 128 160 192 224 256 01 ;2 ;4 ;6 128 1;0 1;2 224 2;6
Number of threads Number of threads

(a) FD 128x128 grid (b) FD 512x512 grid

35000 ..
~;+." naive ~ ~ .

; - ~ naive unroll ~ ~ ~ 2 ~ _ . 4 ~
30000 " ' " ' regblk33 :~.<...? S.Ec;e:,:,,~

-~- regblk34 " . . ~ " ~ J "
regblk44 I - - * P ..~;2 "~r

. . . ' f l

20000 . //y .

Y
15000 ~:~=.'~ J ' - ' - - .. ~ .e" ~ ' :

,oooo r

/ _ - - •

5ooot.

32 64 96 128 160 192 224 256
Numberofthreads

(c)MM192x192x100

3 000 naive I
I I -e- naive unroll J -

30000 t regblk33 I ... > " / " ' ~ : ; " ~ ' =' ~
/ -o- regblk34 I ,~ / "
/ - e - regblk44 [/ ' j . . 1 1 e ' / . . ""

25ooo / j ' ~ ~ .

/~.

8.20000 . ~ 1 2 : " (~
o / .

l sooo ;,...±-

. f
/ , . s

10000 ~ / " . ' " . . < r " "

5ooo ~ - - -~.~. - .~.~. - . . . , : : : : : : . . . - - - - - -

m . r a i i i . i i i

32 64 96 128 160 192 224 256
Number of threads

(d) MM 384x384x200

Figure 2. Performance obtained by naive, naive unroll, and manual unroll on the default Cyclops
configuration

calculation involves a larger number of additions than
multiplications. A benchmark's theoretical peak float-
ing point performance is typically a constant fraction
of the theoretical peak of the machine.

• Memory bandwidth: the theoretical peak perfor-
mance of a benchmark is also limited by the ratio
of memory to FP operations in a computational ker-
nel's innermost loop. The default configuration of the
Cyclops architecture provides 40 GBytes/s of memory
bandwidth. Given the ratio of memory accesses for ev-
ery FP operation, r, we can estimate the peak memory
bandwidth performance as PMEM = ~ - For the pur-
pose of this formula we only need to consider memory
accesses that are cache misses.

Cache latency: the time it takes to load each memory
reference into a register affects the time when an FP
operation is scheduled. More latency introduces bub-
bles into the FPU's pipeline and reduces its utilization.
Latency can be countered by increasing the number of
threads feeding the FPU which increases its degree of
utilization. Because of this the effect of cache latency
tends to show up as linear increase in performance with
increasing number of threads per FPU, which flattens
out when the effect of cache latency has been miti-
gated.

Next we discuss how these parameters affect each of our
kernels' performance.

31

15000F " ~ " ~ .

| o naive unrol l
| --8-- manual2

" manua l3 ~ 7 7 _ ' - ' ' ~ - "
• manua l4

z Q

10000 " " "
" I " " q I I I " " ~ : ~ " ; ' ¢ S I I

/ X •

5000 / . I I " ~ / I

32 64 128 256
Number of threads

(e) FFT of 64K complex numbers

20000 .

• .+.. naive
o unrol l
- e - manual4 / . - ~

15o00 ~ m E n u ~ a l S - - ~ ~ -.... - - - . . - ~

~ 10000

C " ~ ~ r

~ 7 L F ~ +

Oi I I F i I l I I

32 64 96 128 160 192 224 255
Number of threads

(g) Cholesky 880x880

10000II . .+.. naive

9000H -~" naive unrol l .

II manual18

8000~-.o.- manual28 :: .~,:::::: ~:::::~'-...-.':.i:i'

7000 . d * : : 11 > l " ~ .

6000 . ~ II "." ~ ~ d '

/ /er ~ ÷
5000 . ' ') I / . f l y " ' 1' "

" # ~ / " i + I . " I .

4000 / ' . ~ . . - I -. • I • • • • - • • • I • - . - - . . d ~ ~.p' 'p. ' ' ' . I I
/ / ÷

3000 I ' l l / ' " " i " ; ~ : ~ .

2000 :-1111 • ~ I : .
z

÷

1000 ~ ~ .

0 32 64 96 128 160 1 ~2 224 256
Number of threads

(if) SPARSE 1024x1024

Figure 3. Performance obtained by naive, naive unroll and manual unroll on the default Cyclops
configuration

The FD benchmark Performance results for this bench-
mark are shown by Figure 2 (a) and (b), corresponding to
the small and large data sets, respectively. Each figure con-
tains plots for five different levels of code optimization:
naive and naive unrolled, corresponding to compiler opti-
mizations explained in Section 4, and manual22, manual33
and manual44 versions representing manual optimizations
obtained by tiling the two nested loops of the FD kernel and
partially overlapping an n x n section of five-point sten-
cils in a single iteration, where n = {2, 3, 4}. The man-
ua122 version of the code shows better performance than
manual33 and manual44, because the latter ones cause the
compiler to spill registers.

Figures 2 (a) and (b) show very different behavior. In
Figure (a) the data set fits in the cache, and performance

is limited by cache latency. Figure (b) shows the large
data set, where the limiting factor is memory bandwidth.
The 2 x 2 stencil of the manual22 version of the code re-
quires the loading/storing of 14 double precision numbers
for every stencil, resulting in about 5.6 bytes of memory
for each floating point operation. Thus the 40 GBytes/s
peak memory bandwidth manifests itself as a plateau at
PMEM ~-- 40 ~.6 = 7.14GFlops, which is plainly visible on
the figure.

The FD benchmark performs four times more floating
point additions than multiplications, and cannot fill all avail-
able time slots for the multiplier. This is corroborated by
the statistics reported by our simulator: in the single thread
configuration the adder's utilization rate is 46.71% versus
the multiplier's 20.32%.

- - 3 2 P

The MM benchmark The results for MM, using the
small and large data sets, are shown in Figure 2 (c) and
(d) respectively. All manually register filed versions of the
code, manual22, manual33, manual34 and manual44 were
better than the compiler optimized versions; of these, man-
ual34 performed best, because manual44 caused the com-
piler to spill registers.

The similarity between the two MM figures is remark-
able considering the difference between data set sizes. This
is a result of MM being a computational-bound algorithm
where memory bandwidth is not a factor: the register-tiled
version of MM requires approximately 1 byte of memory
data for each FP operation it executes.

Both MM data sets, small and large, achieve the theoret-
ical peak floating point performance of 32 GFlops.

The FFT benchmark The FFT kernel comes in naive
and several manually unrolled versions. The performance
of FFT on the Cyclops architecture, shown in Figure 3 (e),
is limited by a combination of memory accesses and peak
floating point performance. The bandwidth requirements of
the butterfly pattern are about 3 bytes of memory for ev-
ery FP operation, which imposes a performance plateau of
PMEM = -~, or about 16 GFlops.

The SPARSE benchmark The SPARSE benchmark,
shown in Figure 3 (0, is limited both by cache latency and
memory bandwidth. Latency has a high effect on the code
because of the two dependent memory loads in the code, but
this effect can be mitigated by manually unrolling the code.
Bandwidth affects the kernel because of the sheer amount of
memory consumed: about 4.5 bytes in cache misses for ev-
ery FP operation in the manual28 benchmark. This causes
performance to be limited to PMEM 40 = ~Tg = 8.8 GFIops.

The Cholesky benchmark The Cholesky benchmark,
shown in Figure 3 (g), is typically a computation-bound al-
gorithm, but on Cyclops this kernel was affected by cache
latency and an inability to efficiently make use of the avail-
able parallelism.

The performance of naive parallel Cholesky is poor and
shows the effect of cache latency (linear speedup). The
manually blocked and tiled versions of Cholesky, manual4
and manual8, represent two different points of compromise
between manual register tiling and parallelism. The insuf-
ficient amount of parallelism in the code causes a decline
in performance as the number of threads increases. The
Cholesky benchmark is also affected by the relatively poor
performance of the SQRT and F:DIV operations on Cyclops,
due to their simple implementation. Even with these limita-
tions the Cholesky benchmark achieves 18 GFlops.

5.2. Data cache latency

From the results in Section 5.1 we conclude that in-
telligent register usage and instruction scheduling are es-
sential to obtain performance on the Cyclops architecture.
These experiments also show that the benchmarks need
many threads per FPU in order to hide cache or memory
latency, as shown by the linear increase in performance ob-
tained when adding thread units.

To further evaluate the sensitivity of our benchmarks to
data cache latency, we selected the best-performing version
of each benchmark from the baseline runs and re-measured
its performance with various latencies. The plots in Fig-
ures 4 and 5 highlight the "knee" of the performance curve:
the point where performance starts declining due to cache
latency effects.

Using the location and characteristics of this knee we can
categorize our benchmarks by their sensitivity to cache la-
tency. Some of the benchmarks show remarkable tolerance:
both versions of MM, large and small, shown in Figure 4
(c) and (d), tolerate large amounts of cache latency - up to
64 cycles without appreciable degradation in performance,
given enough threads per FPU.

Even small cache latencies are not sufficient to achieve
peak performance when only a few threads share an FPU.
According to simulation data, threads in MM with the small
data set on a one thread per FPU configuration stall 32%
of the total number of cycles due to register file port con-
flicts and not because of register dependences. Our simu-
lations use a two-ported register file, thus instructions like
FMAD that access more than two registers have an extra
execution cycle. At the same time, only 45% of the instruc-
tions are floating point operations. Because of these restric-
tions the FPUs are significantly under-utilized. The perfor-
mance achieved in this case is limited to 32 x 0.68 x 0.45
9.2 GFlops.

Benchmarks dominated by memory loads, like FFT and
FD with the large data set, are less affected by cache latency
variations since most memory accesses are cache misses.
The performance knee tends to be less pronounced for these
applications.

The three benchmarks most affected by cache latency
are the FD benchmark running on the small data set, the
SPARSE benchmark, and Cholesky. FD, shown in Figure 4
(a), is affected because of the relatively low degree of un-
rolling (2 x 2) applied to it; SPARSE, shown in Figure 5 (If),
has a chain of two dependent memory loads in the inner-
most loop causing a delay of two cache latencies in every
iteration; and Cholesky, shown in Figure 5 (g), is also sen-
sitive to cache latency.

The cache latency measurements show that most of our
benchmarks exhibit high tolerance to latency. With this de-
sign, having no cache at all is not unthinkable: at the very

33

16000 .

~_~ 8ooc . 7-~....~...--~

. o o o " " \ ~
. o .

. . , ,

o .

400C . .o . , 3 2 t h r e a d s : "':'~

, , , e. , " , " . ° , 64 threads
- x - 128 threads

192 threads ~ " ~ ' - e
- - s - 256 threads

6 12 18 24 36 48 64 8 0 9 6
Cache latency

(a) FD 128x128 grid

18000 .

12000 .

o ~. 8 0 0 0 .

. o a.. . a,

• , , . ~ x
" o

4000 . "
-.o.. 32 threads o o o o . . . " a . .

• .o.. 64 threads o . . a ' - u
- x - 128 threads ' o
-+- - 192 threads o . . O . o
- a - 258 threads

1 ; 112 1 ; 214 3'8 4.8 614 8109'8
Cache latency

(b) FD 512x512 grid

35000 .

I

3000f f

25000

~ .20000

... o... ~ \ \
1500(. i::a... ~

x

1000(. " "g i
. o o . . . • .

• .o.. 32 threads o "u..
• .o.. 64 threads ~ o Q"o

500(- x - 128 threads . o........~
192 threads } . -o . .o

-e - - 256 threads I , , , , , , , , ,

6 12 18 24 36 48 64 8 0 9 6
Cache latency

(c) MM 192x192x100

3 5 0 0 0 .

30000

25000

20000

1500C

1000C

500C

" . . . ~ x ,

--o. . 3 2 t h r e a d s o o ""u.
• u.- 64 threads .o.. . .o. . .. "~.
- x - 128 threads . ~ " ~ : 6 : :
- -+- 192 threads ' ° ' " ° - . o

256 threads

; ;~ ;~ J4 3'6 4'8 14 ~'09'6
Cache latency

(d) MM 384x384x200

Figure 4. Performance vs. cache latency, manually unrolled benchmarks

least, for the applications studied, Cyclops could place the
caches on the memory side and dispense with the inherent
complexity of cache coherence.

5.3. Memory bandwidth

Figures 6 and 7 show the effect of memory bandwidth
on the performance of our best manual implementation of
each kernel. Three curves in each figure plot Cyclops con-
figurations with 16, 32 and 64 banks of 512KB, 256KB
and 128 KB respectively maintaining a constant 8 MB of
embedded DRAM in a chip. With these configurations
the total bandwidth of the memory system is 40 GBytes/s,
80 GBytes/s and 160 GBytes/s respectively.

Figures 6 and 7 can be used to identify the bench-
marks with high memory bandwidth requirements: their
performance improves when bandwidth is increased. These

benchmarks are FD with the large data set, FFT and
SPARSE. All other benchmarks show little or no variation
when bandwidth changes, because they are dominated by
floating point operations (like MM), by cache latency (FD,
small data set) or by data parallelism (Cholesky).

As discussed earlier, the FD benchmark requires about
5.6 bytes of memory for each FP operation. For bandwidth
limits of 40, 80 and 160 GBytes/s, this results in PMEM val-
ues of 7.1, 14.2 and 28.4 GFlops respectively, the first two
of which can be observed clearly on Figure 6 (b); the third
cannot be observed because at this memory bandwidth the
benchmark hits the cache latency limit first.

The FFT benchmark requires only about 3 bytes of mem-
ory per FP operation, resulting in PMEM values of 16, 32 and
64 GFlops respectively; only the first of these can be seen in
Figure 7 (e) for the same reason as FD.

The SPARSE benchmark requires 4.5 bytes/FP opera-

34

15000 .

IOOOG i

5000 . ~ ; L

..a.. 32 threads .a....~..
-x- 64 threads "..o.. 't~ "'t2
-+- 128 threads
-e - 256 threads

; 1'2 1; 2'4 3; .; & 6b9'6
Cache latency

(e) FFT of 64K complex numbers

10000, ...

750d

o 500, :: . ~ . ~ . .

t .
2500 ..o.. 32 threads 9

Jl " 'w 64 threads
]l -x- 128 threads
II ~ 192 threads

0 II1' ~ 256 threads f
1 6

• . . w
"t l . . ~w

' " 0 , : : . ? . ' o :
. . . . O . ' .

" " " ' O "~ ' . ""C~.. 'El

" 'O ' "O" 'O

i i i i u i n r
12 18 24 36 48 64 8096

Cache latency

(f) SPARSE 1024x1024

200OC .

1500C

• lOOOC

-e- 1 threads
-~ 32 threads -~

128 threads ~ " ~
• -.B- 256 threads

£/;; '6 i'~2 24 36 46 64 80 ff61~0
Cache latency

(g) Cholesky 880x880

Figure 5. Performance vs. cache latency, manually unrolled benchmarks

tion, resulting in PMEM values of 8.8, 18 and 36GFlops
respectively; only the first of these can be observed in
Figure 7(f).

In conclusion, the balance in Cyclops between available
memory bandwidth and floating point performance should
be driven by the target application; for most of the bench-
marks the 40GBytes/s seems reasonable, but a few of the
benchmarks could make use of higher bandwidth. Quadru-
pling the bandwidth to 160 GBytes/s does not seem neces-
sary, at least for these applications.

6. Re la t ed W o r k

Our design for Cyclops is ambitious, but within the realm
of current or near-future silicon technology. Combined
logic-memory microelectronics processes will soon deliver
chips with hundreds of millions of transistors. Several re-

search groups have advanced processor-in-memory designs
that rely on that technology. We discuss some of the projects
that are related to Cyclops.

The MIT RAW architecture [1, 21] consists of a highly
parallel VLSI design that fully exposes all hardware details
to the compiler. The chip consists of a set of interconnected
tiles, each tile implementing a block of memory, functional
units, and switch for interconnect. The interconnect net-
work has dynamic message routing and a programmable
switch. The RAW architecture does not implement a fixed
instruction set architecture (ISA). Instead, it relies on com-
piler technology to map applications to hardware in a man-
ner that optimizes the allocation of resources.

Architectures that integrate processors and memories on
the same chip are called Processor-In-Memory (PIM) or In-
telligent Memory architectures. They have been spurred
by technological advances that enable the integration of

3 5 - -

20006 .

16 banks]
• .o.. 32 banks J 1750C - ~ 64 banks .

1500(3:"" "

1250C

~. 10000

7506

500C

250C i

1000

32 64 96 128 160 192 224 256
N u m b e r of threads

(a) FD 128x128

35000 .

16 banks I
• .o.. 32 banks . ~ . . . ~ ~"""...e

30000 - '~ 64banks I ' S 7 " .

25000 .../--"''"

~.20000

15000

10000

5000

. .

i i i i

32 64 96 128 160 192 224 256
N u m b e r o1 threads

(c) MM 192x192x100

20000 ..
---s- 16 banks [

i

• -o-. 32 banks
17500 - ~ 64banks .. ~~

15000 ... > .

K ~ I o ~ o
12500 . > :.o . ..,-

~1oooo ; ~ , . - ...

7500 ~ (: .

5000

2500

1000
i

32 64 96 128 160 192 224 256
N u m b e r of th reads

(b)FD512x512

35000 ...

16 banks ~_
-,o-. 32 banks I ~..~.'~--'~.,.,~..,..,,~

3000G - ~ 64banks] . ' . , ~ : ~ : e . = : , , ~ $77"~:.1~.

oo iiiiiiii!iiiiiiiiiiiiiii!i
• 2000C

•
1500C

10000

5000

i i i i
; 2 64 ; 6 128 2 2 4 2 5 6 160 192

N u m b e r of th reads

(d)MM384x384x200

Figure 6. The effect of varying memory bandwidth on benchmark performance

compute logic and memory on a single chip. These ar-
chitectures deliver higher performance by reducing the la-
tency and increasing the bandwidth of processor-memory
communication. Examples of such architectures are EX-
ECUBE [9], IRAM [12], Shamrock [8], Imagine [14],
FlexRAM [7, 18], DIVA [6], Active Pages [11], Gil-
gamesh [22] and MAJC [19]. The PIM chip is used as a
coprocessor (Imagine, FlexRAM), or as the main engine in
the machine (IRAM, MAJC, Piranha, Shamrock), or as a
"cell" in a larger system (MIT RAW, EXECUBE and Cy-
clops). Another classification could be based on the number
and type of the processors: FlexRAM and Imagine include
many (more than 32) relatively simple processors, while
EXECUBE, IRAM, MAJC, Piranha [3] and Shamrock in-
clude only a few (4-8). Cyclops goes beyond what has been
proposed, using hundreds of processors.

Simultaneous multithreading exploits both instruction-
level and thread-level parallelism by issuing instructions
from different threads in the same cycle. It was shown to
be a more effective approach to improve resource utiliza-
tion than superscalar execution. Results presented in [5, 20]
support our work by showing that there is not enough
instruction-level parallelism in a single thread of execution,
therefore it is more efficient to execute multiple threads con-
currently.

The Tera MTA [16, 17] is another example of a modern
architecture that tolerates latencies through massive paral-
lelism. In the case of Tera, 128 thread contexts share the
execution hardware. This contrasts with Cyclops, in which
each thread has its own execution hardware. Both architec-
tures can tolerate long latencies, and while Tera does not
implement caches at all, we have shown that Cyclops can

- - 36 - -

~. 1000(

20000 . >

--a- 16banks I ~ " ..o
• .o-. 32 banks ~"
- ~ 64 banks ~ . '

1500(... >.~....'.'
~s

. e : .

5000 / .

0 32 64 128 2~6
Numberofthreads

(e) FFT of 64K complex numbers

20000 .

-e - 16 banks .

..o.. 32 banks
17500 -~- 64banks

~+ i

15000 . ; . j : . ' ~

12500 .. v~.~,.,~:

~ .~#
_ ~ 10000 . >1 :

,.8.¢'"

7500 1

5000

2500

. ~ '
0 2 64 96 128 160 192 2 4 256

Number of threads

(f) SPARSE 1024x1024

1000C

25006 . ,

16 banks

J -~- 32 banks
- ~ 64 banks

2000C .

°

15000 ...

/
i I i i i i i i

32 64 96 128 160 192 224 255
Number of threads

(g) Cholesky 880x880

50010

Figure 7. The effect of varying memory bandwidth on benchmark performance

be made a cache-less machine.

7. Conclusions

We need to discuss two important limitations of the Cy-
clops architecture. First, combining logic and memory pro-
cesses have a negative impact: the logic is not as fast as in
a pure logic process and the memory is not as dense as in
a pure memory process. For Cyclops to be successful we
need to demonstrate that the benefits of this single-chip in-
tegration, such as improved memory bandwidth, outweigh
the disadvantages. Second, due to its single-chip nature,
Cyclops is a small-memory system. The off-chip memory
is not directly addressable and its bandwidth is much lower.
We can expect future generations of Cyclops to include
larger memory. Nevertheless, the current ratio of 250 bytes

of storage to 1 MFlops of compute power (compared to ap-
proximately 1 MB/1 MFlops in conventional machines) will
tend to decrease.

The result is that Cyclops systems are not single purpose
machines such as MD-Grape [10] but are not truly general
purpose computers either. Our architecture targets problems
that exhibit two important characteristics: massive amounts
of parallelism and intensive computation. Examples of ap-
plications that match these requirements are molecular dy-
namics [2], raytracing, data mining, and linear algebra.

The corollary is that porting applications to Cyclops is
not a simple process. The large number of threads and the
limitations on caches and memory are not easily modeled
by any compiler in existence, although some compiler op-
timizations (like cache tiling) address at least part of the
problem. Our experiments show that in order to achieve

37

good performance on Cyclops we need to exercise as many
threads in the system as possible. This is partially a com-
piler problem, but it will definitely impact the models used
to program this system. We foresee the use of parallel pro-
gramming models such as OpenMP and MPI, as well as the
simplerpthreads model we used.

We also show that, when the multithreaded architecture
is used to its potential, it can hide large memory latencies,
resulting in a system design that eschews cache coherence
issues and may be able to do without caches at all.

Another issue that has surfaced in our experiments is that
of memory bandwidth. When driving the FPUs to the limit,
some of the applications stress memory more than we had
predicted, resulting in performance degradation. This will
need to be corrected.

Finally, we should emphasize that the results presented
in this paper were obtained through simulation. Although
we are confident of the general trends demonstrated, the
results need to be validated through real measurements in
hardware. Moreover, another design step is needed, set-
ting up a compromise between the architectural features we
want in the chip and the memory area limitations. As we
proceed to complete the design of Cyclops and build proto-
types, we will have the capabili ty to perform the measure-

ments and finalize the architecture.

References

[1] A. Agarwal. Raw computation. Scientific American, August
1999.

[2] G. S. Almasi, C. Ca~caval, J. G. Castafios, M. Denneau,
W. Donath, M. Elefthefiou, M. Giampapa, H. Ho, D. Lieber,
J. E. Moreira, D. Newns, M. Snir, and H. S. Warren, Jr.
Demonstrating the scalability of a molecular dynamics ap-
plication on a Petaflop computer. In Proceedings of the 2001
International Conference on Supercomputing, pages 393-
406, June 2001.

[3] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese.
Piranha: A scalable architecture based on single-chip mul-
tiprocessing. In 27th Annual International Symposium on
Computer Architecture, pages 282-293, June 2000.

[4] C. Ca§caval, J. G. Castafios, L. Ceze, M. Denneau,
M. Gupta, D. Lieber, J. E. Moreira, K. Strauss, and H. S.
Warren, Jr. Evaluation of a multithreaded architecture for
cellular computing. In Proceedings of the 8th Interna-
tional Symposium on High Peformance Computer Architec-
ture (HPCA), Feb 2002.

[5] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and
D. Tullsen. Simultaneous multithreading: A platform for
next-generation processors. IEEE Micro, pages 12-18,
September/October 1997.

[6] M. W. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame,
J. Draper, J. LaCross, J. Brockman, W. Athas, A. Srivasava,

V. Freech, J. Shin,, and J. Park. Mapping irregular applica-
tions to DIVA, a PIM-based data-intensive architecture. In
Proceedings ofSC99, November 1999.

[7] Y. Kang, M. Huang, S.-M. Yoo, Z. Ge, D. Keen, V. Lam,
P. Pattnaik, and J. Torrellas. FlexRAM: Toward an advanced
intelligent memory system. In International Conference on
Computer Design (ICCD), October 1999.

[8] P. Kogge, S. Bass, J. Brockman, D. Chen, and E. Sha. Pur-
suing a petaflop: Point designs for 100 TF computers using
PIM technologies. In Frontiers of Massively Parallel Com-
putation Symposium, 1996.

[9] P.M. Kogge. The EXECUBE approach to massively parallel
processing. In Intl. Conf. on Parallel Processing, August
1994.

[10] MD Grape project, http://www.research.ibm.com/grape.
[11] M. Oskin, E T. Chong, and T. Sherwood. Active pages:

A computation model for intelligent memory. In Interna-
tional Symposium on Computer Architecture, pages 192-
203, 1998.

[12] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Kee-
ton, C. Kozyrakis, R. Thomas, and K. Yelick. A case for
intelligent RAM: IRAM. In Proceedings of IEEE Micro,
April 1997.

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipies in C. Cambridge University
Press, 1992.

[14] S. Rixner, W. Dally, U. Kapasi, B. Khailany, A. Lopez-
Lagunas, P. Mattson, and J. Owens. A bandwidth-efficient
architecture for media processing. In 31st International
Symposium on Microarchitecture, November 1998.

[15] Scientific Computing Associates, Inc. PCGPACK user's
guide.

[16] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S.
Gatlin, N. Mitchel, J. Feo, and B. Koblenz. Multiprocessor
performance on the Tera MTA. In Proceedings Supercom-
puting '98, Orlando, Florida, Nov. 7-13 1998.

[17] A. Snavely, G. Johnson, and J. Genetti. Data intensive vol-
ume visualization on the Tera MTA and Cray T3E. In Pro-
ceedings of the High Performance Computing Symposium -
HPC '99, pages 59-64, 1999.

[18] J. Torrellas, L. Yang, and A.-T. Nguyen. Toward a cost-
effective DSM organization that exploits processor-memory
integration. In Sixth International Symposium on High-
Performance Computer Architecture, January 2000.

[19] M. Tremblay. MAJC: Microprocessor architecture for Java
computing. Presentation at Hot Chips, August 1999.

[20] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Pro-
ceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 392-403, June 1995.

[21] E. Waingold, M. Taylor, D. Sfikfishna, V. Sarkar, W. Lee,
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb,
S. Amarasinghe, and A. Agarwal. Baring it all to software:
Raw machines. 1EEE Computer, pages 86-93, September
1997.

[22] H. P. Zima and T. Sterling. The Gilgamesh processor-in-
memory architecture and its execution model. In Workshop
on Compilers for Parallel Computers, Edinburgh, Scotland,
UK, June 2001.

38

