${ }^{\text {Head }}$ Maximum Lottery

NOTE TO AUTHORS: please check all urls AND SPELLINGS OF NAMES CAREFULLY.
THANK YOU.

Dek

Byline: Dennis E. Shasha

[^0] - he said. "A young suitor may choose any
of the 100 daughters of the sultan. They are he said. "A young suitor may choose any
of the 100 daughters of the sultan. They are presented to him in some random order.
He has little to go on, so he judges only by presented to him in some random order.
He has little to go on, so he judges only by outward beauty and grace. If he rejects one, he never sees her again. Once he selects one, he must marry her and no other." one, he must marry her and no other."
Warm-up: Can you design a strategy that gives him at least a $1 / 4$ chance of marrying the most beautiful daughter?

Solution to warm-up: Look at but reject the first half of the daughters. Then take the first half of the daughters. Then take
the first daughter who is more beautiful than any of those in the first half. This is not the optimal solution, but it has the virtue of offering an easy rough analysis: You have a $1 / 2$ chance that the most
the numbers on a private storage device
for future reference, however). Repeat this
procedure for all 100 balls. You are al-
lowed three 'keeps' altogether. Your goal
is to have the highest number written in
the keep pile. If you do, you win $\$ 100,000$.
If you don't, you lose $\$ 100,000$. Should
you take the bet? If so, what is your prob-
ability of winning?"
"Echoes of the sultan's daughters problem," said Ecco with a chuckle after a few lem, said Ecco with minutes of hacking.
beautiful daughter is in the second half and a $1 / 2$ chance that the second most beautiful daughter is in the first half. In that case, which happens with probability $1 / 4$ assuming the daughters are presented to you in random order, you are sure to marry the most beautiful daughter with this protocol. In fact, your odds are better (for example if the third most beautiful daughter is in the first half and the most beautiful one precedes the second most beautiful one in the second half) than 25 percent. A deeper analysis (check out http://mathworld.wolfram .com/SultansDowryProblem.html) shows that it is better to reject only 37 daughters and then choose the most beautiful one that follows.

Solution To Last Month's Puzzle

1. There can be at most three pollsters meeting these conditions. Here's why. Each pollster must not hear about 13 Wendy votes (because there are 51 in total, but only 38 seen by each pollster). No two pollsters miss the same Wendy voter, because every pair of pollsters interview all 100 voters. If we number the Wendy voters W1 to W51, then we can imagine that pollster A misses $W 1$ to W13, pollster B misses W14 to W26, and pollster C misses W27 to W39. There are not enough more Wendy voters for a fourth pollster to miss, so there can be only three pollsters.
2. Number the Fred voters F1 to F49. Pollster A could interview W14 to W51 and $F 1$ to $F 42$. Then pollster B could interview W1 to W13 and W27 to W51 as well as F8 to F49. Finally, pollster C could interview W1 to W16 and W40 to $W 51$ as well as $F 1$ to $F 7$ and $F 15$ to $F 49$.
3. As the solution to the first question showed, this result would not be possible with five honest pollsters. So Fred was right.

DDJ

[^0]: Dennis, a professor of computer science at New York University, is the author of The Puzzling Adventures of Dr. Ecco (Dover, 1998), and Codes, Puzzles, and Conspiracy (W.H. Freeman \& Co., 1992), Database Tuning: A Principled Approach (Prentice Hall, 1992) and (coauthored with Cathy Lazere) Out of Their Minds: The lives and Discoveries of 15 Great Computer Scientists (Springer Verlag, 1997). His most recent books are Dr. Ecco's Cyberpuzzles (2002) and Puzzling Adventures (2005), both published by W.W. Norton. He can be contacted at DrEcco@ ddj.com.

