
Implementing Data Cubes E�ciently�Venky Harinarayan Anand RajaramanStanford University Je�rey D. UllmanAbstractDecision support applications involve complex queries on very large databases. Since responsetimes should be small, query optimization is critical. Users typically view the data as multi-dimensional data cubes. Each cell of the data cube is a view consisting of an aggregation ofinterest, like total sales. The values of many of these cells are dependent on the values of othercells in the data cube. A common and powerful query optimization technique is to materializesome or all of these cells rather than compute them from raw data each time. Commercialsystems di�er mainly in their approach to materializing the data cube. In this paper, we in-vestigate the issue of which cells (views) to materialize when it is too expensive to materializeall views. A lattice framework is used to express dependencies among views. We then presentgreedy algorithms that work o� this lattice and determine a good set of views to materialize.The greedy algorithm performs within a small constant factor of optimal under a variety ofmodels. We then consider the most common case of the hypercube lattice and examine thechoice of materialized views for hypercubes in detail, giving some good tradeo�s between thespace used and the average time to answer a query.1 IntroductionDecision support systems (DSS) are rapidly becoming a key to gaining competitive advantage forbusinesses. DSS allow businesses to get at data that is locked away in operational databases andturn that data into useful information. Many corporations have built or are building new uni�eddecision-support databases called data warehouses on which users can carry out their analysis.While operational databases maintain state information, data warehouses typically maintainhistorical information. As a result, data warehouses tend to be very large and to grow over time.Users of DSS are typically interested in identifying trends rather than looking at individual recordsin isolation. Decision-support queries thus make heavy use of aggregations and are much morecomplex than OLTP queries.The size of the data warehouse and the complexity of queries can cause queries to take verylong to complete. This delay is unacceptable in most DSS environments, as it severely limitsproductivity. The usual requirement is query execution times of a few seconds or a few minutes atthe most.There are many ways to achieve such performance goals. Query optimizers and query evaluationtechniques can be enhanced to handle aggregations better [CS94], [GHQ95], [YL95], to use di�erentindexing strategies like bit-mapped indexes and join indexes [OG95], and so on.�Work was supported by NSF grant IRI{92{23405, by ARO grant DAAH04{95{1{0192, and by Air Force ContractF33615{93{1{1339 Authors' address: Department of Computer Science, Stanford University, Stanford, CA 94305-2140. Email: fvenky, anand, ullmang@db.stanford.edu.1

A commonly used technique is to materialize (precompute) frequently-asked queries. The datawarehouse at the Mervyn's department-store chain, for instance, has a total of 2400 precomputedtables [Rad95] to improve query performance. Picking the right set of queries to materialize is anontrivial task, since by materializing a query we may be able to answer other queries quickly. Forexample, we may want to materialize a query that is relatively infrequently asked if it helps usanswer many other queries quickly. In this paper, we present a framework and algorithms thatenable us to pick a good set of queries to materialize. Our framework also lets us infer in whatorder these queries are to be materialized.1.1 The Data CubeUsers of data warehouses work in a graphical environment and data are usually presented to themas a multidimensional \data cube" whose 2-D, 3-D, or even higher-dimensional sub cubes theyexplore trying to discover interesting information. The values in each cell of this data cube aresome \measures" of interest. As an example consider the TPC-D decision-support benchmark.EXAMPLE 1.1 The TPC-D benchmark models a business warehouse. Parts are bought fromsuppliers and then sold to customers at a sale price SP. The database has information about eachsuch transaction over a period of 6 years.There are three dimensions we are interested in: part, supplier, and customer. The \mea-sure" of interest is the total sales. So for each cell (p; s; c) in this 3-D data cube, we storethe total sales of part p that was bought from supplier s, and sold to customer c. We usethe terms dimension and attribute interchangeably in this section. In the general case, a givendimension may have many attributes as we shall see in Section 2.Users are also interested in consolidated sales: for example, what is the total sales of a givenpart p to a given customer c? [GBLP95] suggest adding an additional value \ALL" to the domainof each dimension to achieve this. In the question above we want the total sales of a given part pto a given customer c for \ALL" suppliers. The query is answered by looking up the value in cell(p; ALL; c). 2We use the TPC-D database of size 1GB as a running example throughout this paper. Formore details on this benchmark refer to [TPCD].We have only discussed the presentation of the data set as a multi-dimensional data cube tothe user. The following implementation alternatives are possible:1. Physically materialize the whole data cube. This approach gives the best query responsetime. However, precomputing and storing every cell is not a feasible alternative for large datacubes, as the space consumed becomes excessive. It should be noted that the space consumedby the data cube is also a good indicator of the time it takes to create the data cube, whichis important in many applications. The space consumed also impacts indexing and so addsto the overall cost.2. Materialize nothing. In this case we need to go to the raw data and compute every cell onrequest. This approach punts the problem of quick query response to the database systemwhere the raw data is stored. No extra space beyond that for the raw data is required.3. Materialize only part of the data cube. We consider this approach in this paper. In a datacube, the values of many cells are computable from those of other cells in the data cube.This dependency is similar to a spreadsheet where the value of cells can be expressed as a2

function of the values of other cells. We call such cells \dependent" cells. For instance, inExample 1.1, we can compute the value of cell (p; ALL; c) as the sum of the values of cells of(p; s1; c); : : : ; (p; sNsupplier; c), where Nsupplier is the number of suppliers. The more cellswe materialize, the better query performance is. For large data cubes however, we may beable to materialize only a small fraction of the cells of the data cube, due to space and otherconstraints. It is thus important that we pick the right cells to materialize. Our approach isvery scalable and can handle large data cubes well.Any cell that has an \ALL" value as one of the components of its address is a dependentcell. The value of this cell is computable from those of other cells in the data cube. If a cell hasno \ALL"s in its components, its value cannot be computed from those of other cells, and wemust query the raw data to compute its value. The number of cells with \ALL" as one of theircomponents is usually a large fraction of the total number of cells in the data cube. In the TPC-Ddatabase with the dimensions as in Example 1.1, seventy percent of all the cells in the data cubeare dependent.The problem of what cells of the data cube to materialize, is a very real one. There are di�erentcommercial systems which pick one of the di�erent strategies given above. Clearly, each strategyhas its bene�ts. For example, for applications where performance is of paramount importance andscalability is not important we can go with the materialize-everything strategy. The Essbase sys-tem [ESS], for example, materializes the whole data cube, while BusinessObjects [X94] materializesnothing, and the MetaCube system [STG] materializes part of the cube.There is also the issue of where the materialized data cube is stored: in a relational systemor a proprietary MDDB (multi-dimensional database) system. In this paper, we assume that thedata cube is stored in \summary" tables in a relational system. Sets of cells of the data cube areassigned to di�erent tables.The cells of the data cube are organized into di�erent sets based on the positions of \ALL" intheir addresses. Thus, for example, all cells whose addresses match the address (,ALL,) are placedin the same set. Here, \ " is a placeholder that matches any value. Each of these sets correspondsto a di�erent SQL query. The values in the set of cells (,ALL,) is output by the SQL query:SELECT Part, Customer, SUM(SP) AS TotalSalesFROM RGROUP BY Part, Customer;Here, R refers to the raw-data relation. The queries corresponding to the di�erent sets of cells,di�er only in the GROUP-BY clause. In general, attributes with \ALL" values in the descriptionof the set of cells, do not appear in the GROUP-BY clause of the SQL query above. For example,supplier has an \ALL" value in the set description (,ALL,). Hence it does not appear in theGROUP-BY clause of the SQL query. Since the SQL queries of the various sets of cells di�er only inthe grouping attributes, we use the grouping attributes to identify queries uniquely.Deciding which sets of cells to materialize is equivalent to deciding which of the correspondingSQL queries (views) to materialize. In the rest of this paper we thus work with views rather thanwith sets of cells.1.2 Motivating ExampleThe TPC-D database we considered in Example 1.1 has 3 attributes: part, supplier, customer.We thus have 8 possible groupings of the attributes. We list all the queries (views) possible below3

with the number of rows in their result. Note again it su�ces to only mention the attributes in theGROUP-BY clause of the view.1. part, supplier, customer (6M, i.e., 6 million rows)2. part, customer (6M)3. part, supplier (0.8M)4. supplier, customer (6M)5. part (0.2M)6. supplier (0.01M)7. customer (0.1M)8. none (1)none indicates that there are are no attributes in the GROUP-BY clause. Figure 1 shows these eightviews organized as a lattice of the type we shall discuss in Section 2. In naming the views in thisdiagram, we use the abbreviation p for part, s for supplier, and c for customer.psc 6Mpc 6M ps 0.8M sc 6Mp 0.2M s 0.01M c 0.1Mnone 1Figure 1: The eight views constructible by grouping on some of part, supplier, and customerOne possible user query is a request for an entire view. For example, the user may ask for thesales grouped by part. If we have materialized the view that groups only by part (view 5), weonly need scan the view and output the answer. We can also answer this query using the viewthat groups by part and customer (view 2). In this case, since we have the total sales for eachcustomer, for each part we need to sum the sales across all customers to get the result.In this paper we assume the cost of answering a query is proportional to the number of rowsexamined. Thus, the cost of �nding the total sales grouped by part, if (view 5) is materialized, isthe cost of processing 0.2 million rows (the size of this view). To answer the same query using thepart, customer view we would need to process 6 million rows.Another kind of user query would ask only for the sales for a single part, say \widgets." If theviews have no indexes, then we still have to scan the entire view (or half on the average) to answerthis question. Thus, the same comparison, 0.2M rows for view 5 versus 6M rows for view 2, wouldapply to this query. If, however, the appropriate indexes are available in both views, �nding salesof widgets requires only one row access from view 5, while in view 2 we would have to access an4

average of 6M/0.2M = 30 rows.1 However, regardless of whether or not the materialized views areindexed, we expect that the cost of answering each of these queries | whole view or a single cell |would be proportional to the size of the view from which we answered the query. We shall discussthe cost model in more detail in Section 3.There are some interesting questions we can now ask:1. How many views must we materialize to get reasonable performance?2. Given that we have space S, what views do we materialize so that we minimize average querycost?3. If we're willing to tolerate an X% degradation in average query cost from a fully materializeddata cube, how much space can we save over the fully materialized data cube?In this paper, we provide algorithms that help us answer the above questions and provide nearoptimal results.In the above example, a fully materialized data cube would have all the views materialized andthus have slightly more than 19 million rows.Now let us see if we can do better. To avoid going to the raw data, we need to materialize theview grouping by part, supplier, and customer (view 1), since that view cannot be constructedfrom any of the other views. Now consider the view grouping by part and customer (view 2).Answering any query using this view will require us to process 6 million rows. The same querycan always be answered using the view grouping by part, supplier, and customer, which againrequires processing of 6 million rows. Thus there is no advantage to materializing the view groupingby part and customer. By similar reasoning, there is no advantage materializing the view groupingby supplier and customer (view 4). Thus we can get almost the same average query cost usingonly 7 million rows, an improvement of more than 60% in terms of space consumed and thus in thecost of creating the data cube.Thus by cleverly choosing what parts of the data cube to materialize, we can reap dramaticbene�ts.1.3 Related WorkMulti-dimensional data processing (also known as OLAP) has enjoyed spectacular growth of late.There are two basic implementation approaches that facilitate OLAP. The �rst approach is toeschew SQL and relational databases and to use proprietary multi-dimensional database (MDDB)systems and APIs for OLAP. So while the raw data is in relational data warehouses, the data cube ismaterialized in an MDDB. Users query the data cube, and the MDDB e�ciently retrieves the valueof a cell given its address. To allocate only space for those cells present in the raw data and notevery possible cell of the data cube, a cell-address hashing scheme is used. Arbor's Essbase [ESS]and many other MDDBs are implemented this way. Note, this approach still materializes all thecells of the data cube present in raw data, which can be very large.The other approach is to use relational database systems and let users directly query the rawdata. The issue of query performance is attacked using smart indexes and other conventionalrelational query optimization strategies. There are many products like BusinessObjects and Mi-crostrategy's DSS Agent that take this tack. However, MDDBs retain a signi�cant performanceadvantage. Performance in relational database systems though can be improved dramatically bymaterializing the data cube into summary tables.1Here we disregard the number of index nodes accessed.5

The relational approach is very scalable and can handle very large data warehouses. MDDBson the other hand have much better query performance, but are not very scalable. By materializingonly selected parts of the data cube, we can improve performance in the relational database, andimprove scalability in MDDBs. There are products in both the relational world [STG], and theMDDB world (Sinper's Spreadsheet Connector) that materialize only parts of the data cube. Webelieve however that this paper is the �rst to investigate this fundamental problem in such detail.[GBLP95] discusses generalizing the SQL GROUP-BY operator to a data cube operator. Theyintroduce the notion of \ALL" that we mention. However, they also claim the size of the entiredata cube is not much larger than the size of the corresponding GROUP-BY. We believe di�erently.2As we saw in the TPC-D database, the data cube is usually much larger: more than three timeslarger than the corresponding GROUP-BY (part, supplier, customer).1.4 Paper OrganizationThe paper is organized as follows. In Section 2 we introduce the lattice framework to modeldependency among views. We also show how the lattice framework models more complex groupingsthat involve arbitrary hierarchies of attributes. Then in Section 3, we present the query-cost modelthat we use in this paper. Section 4 presents a general technique for producing near-optimalselections of materialized views for problems based on arbitrary lattices. In Section 5, we considerthe important special case of a \hypercube" lattice, where the views are each associated with a setof attributes on which grouping occurs. The running example of Section 1.2 is such a hypercube.2 The Lattice FrameworkIn this section we develop the notation for describing when one data-cube query can be answeredusing the results of another. As an example, in Section 1.2 we saw that for the data-cube, queriesthat we might wish to materialize are completely speci�ed by giving the attributes in their GROUP-BYclause. We may thus denote a view or a query (which are the same thing) by giving its groupingattributes inside parenthesis. For example the query with grouping attributes part and customeris denoted by (part, customer). We also saw that views de�ned by supersets can be used to answerqueries involving subsets.2.1 The Dependence Relation on QueriesWe may generalize the observations of Section 1.2 as follows. Consider two queries Q1 and Q2.We say Q1 � Q2 if and only if Q1 can be answered using only the results of query Q2. We thensay that Q1 is dependent on Q2. For example, in Section 1.2, the query (part), can be answeredusing only the results of the query (part, customer). Thus (part) � (part, customer). Thereare certain queries that are not comparable with each other using the � operator. For example:(part) 6� (customer) and (customer) 6� (part).The � operator imposes a partial ordering on the queries. We shall talk about the views of adata-cube problem as forming a lattice [TM75]. In order to be a lattice, any two elements (viewsor queries) must have a least upper bound and a greatest lower bound according to the � ordering.However, in practice, we only need the assumptions that2The analysis in [GBLP95], assumes that every possible cell of the data cube exists. However, in most cases, datacubes are sparse: only a small fraction of all possible cells are present. In such cases, the size of the data cube canbe much larger than the corresponding GROUP-BY. In fact, the sparser the data cube, the larger is the ratio of the sizeof the data cube to the size of the corresponding GROUP-BY.6

1. � is a partial order, and2. There is a top element, a view upon which every view is dependent.2.2 Lattice NotationWe denote a lattice with set of elements (queries or views in this paper) L and dependence relation� by hL;�i. For elements a and b of a lattice hL;�i, a � b means that a � b and a 6= b.The ancestors and descendants of an element of a lattice hL;�i, are de�ned as follows:ancestor(a) = fb j a � bgdescendant(a) = fb j b � agNote that every element of the lattice is its own descendant and its own ancestor. The immediateproper ancestors of a given element a in the lattice belong to a set we shall call next(a). Formally,next(a) = fb j a � b; 6 9c; a � c; c � bg2.3 Lattice DiagramsIt is common to represent a lattice by a lattice diagram, a graph in which the lattice elements arenodes and there is an edge from a below to b above if and only if b is in next(a). Thus, for any twolattice elements x and y, the lattice diagram has a path downward from y to x if and only if x � y.EXAMPLE 2.1 The hypercube of Fig. 1 is the lattice diagram of the set of views discussed inSection 1.2. 22.4 HierarchiesIn most real-life applications, dimensions of a data cube consist of more than one attribute, andthe dimensions are organized as hierarchies of these attributes. A simple example is organizingthe time dimension into the hierarchy: day, month, and year. Hierarchies are very important, asthey form a basis of two very commonly used querying operations: \drill-down" and \roll-up."Drill-down is the process of viewing data at progressively more detailed levels. For example, a userdrills down by �rst looking at the total sales per year and then total sales per month and �nally,sales on a given day. Roll-up is just the opposite: it is the process of viewing data in progressivelyless detail. In roll-up, a user starts with total sales on a given day, then looks at the total sales inthat month and �nally the total sales in that year.In the presence of hierarchies, the dependency lattice hL;�i is more complex than a hypercubelattice. For example, consider a query that groups on the time dimension and no other. When weuse the time hierarchy given earlier, we have the following three queries possible: (day), (month),(year), each of which groups at a di�erent granularity of the time dimension. Further,(year) � (month) � (day).In other words, if we have total sales grouped by month, for example, we can use the results tocompute the total sales grouped by year. Hierarchies introduce query dependencies that we mustaccount for when determining what queries to materialize.To make things more complex, hierarchies often are not total orders but partial orders onthe attributes that make up a dimension. Consider the time dimension with the hierarchy day,7

week, month, and year. Since months and years cannot be divided evenly into weeks, if we dothe grouping by week we cannot determine the grouping by month or year. In other words:(month) 6� (week), (week) 6� (month), and similarly for week and year. When we include the noneview corresponding to no time grouping at all, we get the lattice for the time dimension shown inthe diagram of Fig. 2. Week MonthDay YearnoneFigure 2: Hierarchy of time attributes2.5 Composite Lattices for Multiple, Hierarchical DimensionsWe are faced with query dependencies of two types:1. Query dependencies caused by the interaction of the di�erent dimensions with one another.The example in Section 1.2 and the corresponding lattice in Fig. 1 is an example of this sortof dependency.2. Query dependencies within a dimension caused by attribute hierarchies.If we are allowed to create views that independently group by any or no member of the hierarchyfor each of n dimensions, then we can represent each view by an n-tuple (a1; a2; : : : ; an), where eachai is a point in the hierarchy for the ith dimension. This lattice is called the direct product of thedimensional lattices [TM75]. We directly get a � operator for these views by the rule(a1; a2; : : : ; an) � (b1; b2; : : : ; bn) if and only if ai � bi for all iWe illustrate the building of this direct-product lattice in the presence of hierarchies using anexample based on the TPC-D benchmark.EXAMPLE 2.2 In Example 1.1, we mentioned the TPC-D benchmark database. In this examplewe focus further on two dimensions: part and customer. Each of these dimensions is organized intohierarchies. The dimensional lattices for the dimension queries are given in Fig. 3. These dimensionlattices have already been modi�ed to include the attribute (none) as the lowest element.The customer dimension is organized into the following hierarchy: individual customers, de-noted by attribute c, are grouped together based on their country of residence, denoted by attributen. The coarsest level of grouping is none at all, and this grouping is denoted by the attribute none.For the part dimension, the individual parts are denoted by attribute p. These individual partsare grouped together based on their size denoted by attribute s. They are also grouped togetherbased on their types, denoted by attribute t. Note neither of s and t is � the other. Finally, wehave the attribute none as the smallest element in this lattice. The direct-product lattice is shownin Fig. 4. Note, when a dimension's value is none in a query, we do not specify the dimension inthe query. Thus for example, (s,none) is written as (s). 28

cn p tnonenone s(a) Customer (b) PartFigure 3: Hierarchies for the customer and part dimensionscp ctcnp ntnp tnone
csnss

6M 5.99M5M5M37500.2M 1250150 25 0.1M50 1Figure 4: Combining two hierarchical dimensionsThe lattice framework, we present and advocate in this paper, is advantageous for severalreasons:1. It provides a clean framework to reason with dimensional hierarchies, since hierarchies arethemselves lattices. As can be seen in Fig. 4, the direct-product lattice is not always a hyper-cube when hierarchies are not simple. Current data cube approaches are unable to integratedependencies caused by dimensional hierarchies cleanly with the dependencies caused by in-ter dimensional interaction, as we do. As we shall see shortly in Section 4, doing so is veryimportant in deciding which views need to be materialized for best query performance.2. We can model the common queries asked by users better using a lattice framework. Usersusually don't jump between unconnected elements in this lattice, they move along the edges9

of the lattice. In fact, drill-down is going up (going from a lower to higher level) a path inthis lattice, while roll-up is going down a path.3. The lattice approach also tells us in what order to materialize the views. Thus for example,let us decide to materialize views S = fQ1; : : : ; QNg. Since some queries in set S may bedependent on others, we need not go to the raw data to materialize every view. By usingviews that are already materialized to materialize other views in S, we can reduce the totalmaterialization time dramatically. Doing so translates to reducing the time required to createthe data cube. Consider the lattice, hS;�i, in which all the views in S are elements. Performa topological sort of S based on the � operator. Arrange the elements of S in descendingorder with respect to operator �. Let the order be Qs1; : : : ; QsN . We materialize the views inthis order. The �rst few views have no proper-ancestor elements in S. To materialize theseviews we must access raw data. Thereafter, all the views can be materialized from viewsmaterialized earlier. In materializing a view Qsi , we use its proper-ancestor in S, Qsj , j < i,with the smallest number of rows.3 The Cost ModelIn this section, we review and justify our assumptions about the \linear cost model," in which thetime to answer a query is taken to be equal to the space occupied by the view from which the queryis answered. We then consider some points about estimating sizes of views without materializingthem and give some experimental validation of the linear cost model.3.1 The Linear Cost ModelLet hL;�i be a lattice of queries (views). To answer a query Q we choose an ancestor of Q, sayQA, that has been materialized. We thus need to process the table corresponding to QA to answerQ. The cost of answering Q is a function of the size of the table for QA. In this paper, we choosethe simplest cost-model:� The cost of answering Q is the number of rows present in the table for that query QA usedto construct Q.As we discussed in Section 1.2, not all queries ask for an entire view, such as a request for thesales of all parts. It is at least as likely that the user would like to see sales for a particular partor a few parts. If we have the appropriate index structure, and the view (part) is materialized,then we can get our answer in O(1) time. If there is not an appropriate index structure, then wewould have to search the entire (part) view, and the query for a single part takes almost as longas producing the entire view.If, for example, we need to answer a query about a single part from some ancestor view suchas (part, supplier) we need to examine the entire view. It can be seen that a single scan of theview is su�cient to get the total sales of a particular part. Now on the other hand if we wishto �nd the total sales for each part from the ancestor view (part, supplier), we need to do anaggregation over this view. We can use either hashing or sorting (with early aggregation) [G93]to do this aggregation. The cost of doing the aggregation is a function of the amount of memoryavailable and the ratio of the number of rows in the input to that in the output. In the best case,a single pass of the input is su�cient (for example, when the hash table �ts in main memory). Inpractice, it has been observed that most aggregations take between one and two passes of the inputdata. 10

While the actual cost of queries that ask for single cells, or small numbers of cells, rather thana complete view, is thus complex, we feel it is appropriate to make an assumption of uniformity.That is, either the data structure used to store views supports e�cient access to the desired cell,in which case the time required is proportional to the number of rows that must be aggregatedto compute the value in the cell, or the data structure does not, in which case the behavior ofsingle-cell and full-view queries are essentially the same.In the �rst case, where a suitable data structure exists, we shall make the further assumptionthat, over time, many queries asking for (di�erent) cells of the same view Q will occur. Somenumber of these queries, as a group, will have performance equivalent to that of a single query forthe full view Q. That is, either their total time will equal that of reading Q, if it is materialized, orthe time will be that of reading view QA, the preferred, materialized ancestor of Q. Thus, we mayavoid the question of whether full-view or single-cell queries predominate, and treat all queries asfull-view queries. Thus:� We assume that all queries are identical to some element (view) in the given lattice.Clearly there are other factors, not considered here, that inuence query cost. Among them arethe clustering of the materialized views on some attribute, and the indexes that may be present.More complicated cost models are certainly possible, but we believe the cost model we pick, beingboth simple and realistic, enables us to design and analyze powerful algorithms. We believe thatour analysis of the algorithms we develop in Sections 4 and 5 reects their performance under othercost models as well as under the model we use here.3.2 Experimental Examination of the Linear Cost ModelA substantial validation of our cost model is shown in Fig. 5. On the TPC-D data, we asked for thetotal sales for a single supplier, under four conditions, using views of di�erent granularities. We �ndan almost linear relationship between size and running time of the query. This linear relationshipcan be expressed by the formula: T = m � S + cHere T is the running time of the query on a view of size S. c gives the �xed cost: the overheadof running this query on a view of negligible size. In this case, the �rst row of the table in Fig. 5,gives the �xed cost of 2.07 seconds. m is the ratio of the query time to the size of the view, afteraccounting for the �xed cost. As can be seen in Fig. 5 this ratio is almost the same for the di�erentviews. Source Size Time (sec.) RatioFrom cell itself 1 2.07 not applicableFrom view (supplier) 10,000 2.38 .000031From view (part, supplier) 800,000 20.77 .000023From view (part, supplier, customer) 6,000,000 226.23 .000037Figure 5: Growth of query response time with size of view11

3.3 Determining View SizesOur algorithms require knowledge of the number of rows present in each view. There are manyways of estimating the sizes of the views short of materializing all the views. One commonly usedapproach is to run our algorithms on a statistically signi�cant but small subset of the raw data.In such a case, we can get the sizes of the views by actually materializing the views. We use thissubset of raw data to determine which views we want to materialize. And we only materialize afew views from the entire raw data.We can use sampling and analytical methods to compute the sizes of the di�erent views if weonly materialize the largest element vl in the lattice (the view that groups by the largest attribute ineach dimension). For a view, if we know that the grouping attributes are statistically independent,we can estimate the size of the view analytically, given the size of vl. Otherwise we can sample vl(or the raw data) to estimate the size of the other views. The size of a given view is the number ofdistinct values of the attributes it groups by. Thus for example, the size of the view that groups bypart and supplier is the number of distinct values of part and supplier in the raw data. Thereare many well-known sampling techniques that we can use to determine the number of distinctvalues of attributes in a relation [HNSS95].4 Optimization of Data-Cube LatticesOur most important objective is to develop techniques for optimizing the space-time tradeo� whenimplementing a lattice of views. The problem can be approached from many angles, since we mayin one situation favor time, in another space, and in a third be willing to trade time for space aslong as we get good \value" for what we trade away. In this section, we shall begin with a simpleoptimization problem, in which1. We wish to minimize the average time taken to evaluate a view.2. We are constrained to materialize a �xed number of views, regardless of the space they use.Evidently item (2) does not minimize space, but in Section 4.6 we shall show how to adapt ourtechniques to a model that does optimize space utilization.Even in this simple setting, the optimization problem is NP-complete; there is a straightforwardreduction from Set-Cover. Thus, we are motivated to look at heuristics to produce approximatesolutions. The obvious choice of heuristic is a \greedy" algorithm, where we select a sequence ofviews, each of which is the best choice given what has gone before. We shall see that this approachis always fairly close to optimal and in some cases can be shown to produce the best possibleselection of views to materialize.4.1 The Greedy AlgorithmSuppose we are given a data-cube lattice with space costs associated with each view. In this paper,the space cost is the number of rows in the view. Let C(v) be the cost of view v. Suppose also thatthere is a limit k on the number of views, in addition to the top view, that we may select. Afterselecting some set S of views (which surely includes the top view), the bene�t of view v relative toS, which we denote B(v; S), is de�ned as follows.1. For each w � v, de�ne the quantity Bw by:12

(a) Let u be the view of least cost in S such that w � u. Note that since the top view is inS, there must be at least one such view in S.(b) If C(v) < C(u), then Bw = C(v)� C(u). Otherwise, Bw = 0.2. De�ne B(v; S) =Pw�v Bw .In perhaps simpler terms, we compute the bene�t of v by considering how it can improve thecost of evaluating views, including itself. For each view w that v covers, we compare the cost ofevaluating w using v and using whatever view from S o�ered the cheapest way of evaluating w. Ifv helps, i.e., the cost of v is less than the cost of its competitor, then the di�erence represents partof the bene�t of selecting v as a materialized view. The total bene�t B(v; s) is the sum over allviews w of the bene�t of using v to evaluate w, providing that bene�t is positive.Now, we can de�ne the Greedy Algorithm for selecting a set of k views to materialize. Thealgorithm is shown in Fig. 6.S = {top view};for i=1 to k do beginselect that view v not in S such that B(v,S) is maximized;S = S union {v};end;resulting S is the greedy selection;Figure 6: The Greedy AlgorithmEXAMPLE 4.1 Consider the lattice of Fig. 7. Eight views, named a through h have space costsas indicated on the �gure. The top view a, with cost 100, must be chosen. Suppose we wish tochoose three more views. ab cd e fg h5020 30 101 4075100
Figure 7: Example lattice with space costsTo execute the greedy algorithm on this lattice, we must make three successive choices of viewto materialize. The column headed \First Choice" in Fig. 8 gives us the bene�t of each of the views13

besides a. When calculating the bene�t, we begin with the assumption that each view is evaluatedusing a, and will therefore have a cost of 100.If we pick view b to materialize �rst, then we reduce by 50 its cost and that of each of the viewsd, e, g, and h below it. The bene�t is thus 50 times 5, or 250, as indicated in the row b and �rstcolumn of Fig. 8. As another example, if we pick e �rst then it and the views below it | g andh | each have their costs reduced by 70, from 100 to 30. Thus, the bene�t of e is 210.First Choice Second Choice Third Choiceb 50� 5 = 250c 25� 5 = 125 25� 2 = 50 25� 1 = 25d 80� 2 = 160 30� 2 = 60 30� 2 = 60e 70� 3 = 210 20� 3 = 60 20 + 20 + 10 = 50f 60� 2 = 120 60 + 10 = 70g 99� 1 = 99 49� 1 = 49 49� 1 = 49h 90� 1 = 90 40� 1 = 40 30� 1 = 30Figure 8: Bene�ts of possible choices at each roundEvidently, the winner in the �rst round is b, so we pick that view as one of the materializedviews. Now, we must recalculate the bene�t of each view V , given that the view will be createdeither from b, at a cost of 50, if b is above V , or from a at a cost of 100, if not. The bene�ts areshown in the second column of Fig. 8.For example, the bene�t of c is now 50, 25 each for itself and f . Choosing c no longer improvesthe cost of e, g, or h, so we do not count an improvement of 25 for those views. As another example,choosing f yields a bene�t of 60 for itself, from 100 to 40. For h, it yields a bene�t of 10, from 50to 40, since the choice of b already improved the cost associated with h to 50. The winner of thesecond round is thus f , with a bene�t of 70. Notice that f wasn't even close to the best choice atthe �rst round.Our third choice is summarized in the last column of Fig. 8. As an example of the most complexcalculation, the bene�t of e is 50. That number consists of 20 for each of e and g, which wouldreduce their costs of 50 (using d) to 30 (using e), plus 10 for the reduction of the cost of h from 40(using f) to 30 (using e). The winner of the third round is d, with a bene�t of 60, gained from theimprovement to its own cost and that of g.The greedy selection is thus b, d, and f . These, together with a, reduces the total cost ofevaluating all the views from 800, which would be the case if only a was materialized, to 420. Thatcost is actually optimal. 2EXAMPLE 4.2 Let us now examine the lattice suggested by Fig. 9. This lattice is, as we shallsee, essentially as bad as a lattice can be for the case k = 2. The greedy algorithm, starting withonly the top view a, �rst picks c, whose bene�t is 4141. That is, c and the 40 views below it areeach improved from 200 to 99, when we use c in place of a.For our second choice, we can pick either b or d. They both have a bene�t of 2100. Speci�cally,consider b. It improves itself and the 20 nodes at the far left by 100 each. Thus, with k = 2, thegreedy algorithm produces a solution with a bene�t of 6241.However, the optimal choice is to pick b and d. Together, these two views improve by 100 each,themselves and the 80 views of the four chains. Thus, the optimal solution has a bene�t of 8200.14

20nodestotal1000 20nodestotal1000 20nodestotal1000 20nodestotal1000
ab c d20099 100100

Figure 9: A lattice where the greedy algorithm does poorlythe ratio of greedy/optimal is 6241/8200, which is about 3/4. In fact, by making the cost of ccloser to 100, and by making the four chains have arbitrarily large numbers of views, we can �ndexamples for k = 2 with ratio arbitrarily close to 3/4, but no worse. 24.2 An Experiment With the Greedy AlgorithmWe ran the greedy algorithm on the lattice of Fig. 4, using the TPC-D database described earlier.Figure 10 shows the resulting order of views, from the �rst (top view, which is mandatory) to thetwelfth and last view. The units of Bene�t, Total Time and Total Space are number of rows. Note,the average query time is the total time divided by the number of views (12 in this case).Number Selection Bene�t Total Time Total Space1. cp in�nite 72M 6M2. ns 24M 48M 6M3. nt 12M 36M 6M4. c 5.9M 30.1M 6.1M5. p 5.8M 24.3M 6.3M6. cs 1M 23.3M 11.3M7. np 1M 22.3M 16.3M8. ct 0.01M 22.3M 22.3M9. t small 22.3M 22.3M10 n small 22.3M 22.3M11. s small 22.3M 22.3M12. none small 22.3M 22.3MFigure 10: Greedy order of view selection for TPC-D-based exampleThis example shows why it is important to materialize some views and also why materializingall views is not a good choice. The graph in Fig. 11 has the total time taken and the space consumedon the Y-axis, and the number of views picked on the X-axis. It is clear that for the �rst few views15

1 2 3 4 5 6 7 8 9 10 11 1220M40M60M80M
Total Time

Total SpaceNumber of Materialized ViewsFigure 11: Time and Space for the greedy view selection for the TPC-D-based example.we pick, with minimal addition of space, the query time is reduced substantially. After we havepicked 5 views however, we cannot improve total query time substantially even by using up largeamounts of space. For this example, there is a clear choice of when to stop picking views. If wepick the �rst �ve views | cp, ns, nt, c, and p | (i.e., k = 4, since the top view is included in thetable), then we get almost the minimum possible total time, while the total space used is hardlymore than the mandatory space used for just the top view.4.3 A Performance Guarantee for the Greedy AlgorithmWe can show that no matter what lattice we are given, the greedy algorithm never performs toobadly. Speci�cally, the bene�t of the greedy algorithm is at least 63% of the bene�t of the optimalalgorithm. The precise fraction is (e� 1)=e, where e is the base of the natural logarithms.To begin our explanation, we need to develop some notation. Let v1; v2; : : : ; vk be the k viewsselected in order by the greedy algorithm. Let ai be the bene�t achieved by the selection of vi, fori = 1; 2; : : : ; k. That is, ai is the bene�t of vi, with respect to the set consisting of the top view andv1; v2; : : : ; vi�1.Let w1; w2; : : : ; wk be the optimal set of k views, i.e., those that give the maximum total bene�t.The order in which these views appear is arbitrary, but we need to pick an order. Given the w's in16

order w1; w2; : : : ; wk, de�ne bi to be the bene�t of wi with respect to the set consisting of the topview plus w1; w2; : : : ; wi�1. De�ne A =Pki=1 ai and B =Pki=1 bi.Now we must put an upper bound on the b's in terms of the a's. In the greedy solution, wecan look at any view and see how much that view's cost has improved. We can also attribute itsimprovement to various of the vi's.EXAMPLE 4.3 In Example 4.1, the cost associated with g improved from 100 to 20. Of thatimprovement, 50 is attributed to the selection of b for the greedy solution and 30 to the subsequentselection of d. 2Next, we want to compare the improvement to an arbitrary view u e�ected by the v's and bythe w's. Figure 12 suggests how the improvement in the cost of some u might be partitioned amongthe v's (top bar) and w's (lower bar). We have suggested that the improvement in u is due to v1,v3, and v7, in the amounts suggested. Likewise, the larger improvement in u due to the w's isdivided among w2, w3, w5, and w6, as shown.In GreedyIn Optimal v1 v3 v7w2 w3 w5 w6Figure 12: The improvement to any view u can be attributed to v's or w'sTo show the upper bound on B=A we need to attribute each piece of the bene�ts bi either tonone of the v's or to one particular vj . To do so, we examine the improvements to each view u assuggested in Fig. 12.EXAMPLE 4.4 We can attribute the contribution of w2 wholly to v1, because the region for w2is contained within the region for v1. The contribution of w3 is divided among v1, v5, and v7, inthe proportions shown. The contribution of w6 is not attributed to any of the v's, while part ofw5's contribution is attributed to v7 and part is not attributed. 2In general, order the improvements in the same sequence that the views are chosen. De�nexij to be the sum over all views u in the lattice of the amount of the bene�t bi (from wi) that isattributed to vj . An important inequality that holds for each j is� Pki=1 xij � ajThat is, the sum of the pieces of the bene�t of vj that is attributed to the various w's cannot exceedthe bene�t of vj .We can observe several inequalities from the fact that none of the w's was picked in place ofone of the v's (except in the case where wi = vi). Our �rst observation:� For all i: bi � a1.For if not, then wi would have been picked �rst by the greedy algorithm instead of v1. Similarly,considering the second choice by the greedy algorithm tells us:17

� For all i: bi � xi1 � a2.The reason is that the bene�t wi brings to the competition for second choice is bi minus the amountof bene�t of wi that was covered by v1; the latter is xi1. The bene�t a2 must be at least as greatas any competing choice. Generalizing the above, for each j we can write:� For all i: bi � xi1 � xi2 � � � � � xi;j�1 � aj .If we sum each of the above equations over i and remember that1. Pki=1 bi = B2. Pki=1 ai = A3. Pki=1 xij � ajwe get the family of inequalities in Fig. 13.(1) B � ka1(2) B � ka2 + a1(3) B � ka3 + a1 + a2� � �(k) B � kak + a1 + a2 + � � �+ ak�1Figure 13: Inequalities bounding the bene�t of the optimal solutionWe thus conclude that B is no greater than the minimum of the right sides of the inequalitiesof Fig. 13. It is easy to show that if for a given a1; a2; : : : ; ak the right sides are unequal, then wecan transfer some quantity from some aj to aj�1 or aj+1, resulting in no change to A but a looserbound on B. Our conclusion is that� For a �xed A, the tightest bound on B occurs when all the right sides in Fig. 13 are equal.Notice, however, that the di�erence between the ith right side and the (i + 1)st right side iskai+1� (k� 1)ai. Since this di�erence must be 0, we conclude that ai = kk�1ai+1. For these valuesof the a's, we observe:� A =Pk�1i=0 (kk�1)iak , because the terms of the sum are a1; a2; : : : ; ak.� B � k(kk�1)k�1ak. This bound comes most easily from the �rst inequality of Fig. 13, but itcould come from any of the inequalities, since they have equal right sides.Our conclusion, taken from the ratio of the above formulas, is:A=B � Pk�1i=0 (kk�1)i�k+1� 1k (1 + k�1k + (k�1k)2 + � � �+ (k�1k)k�1)� 1� (k�1k)kFor example, for k = 2 we get A=B � 3=4; i.e., the greedy algorithm is at least 3/4 of optimal.18

4.4 Matching the Worst Possible Ratio for the Greedy AlgorithmWe saw in Example 4.2 that for k = 2 there were speci�c lattices that approached 3/4 as the ratioof the bene�ts of the greedy and optimal algorithms. In fact,� For any k, the ratio A=B = 1� (k�1k)k can be reached.We omit the detailed construction of the sequence of bad cases, one for each k, from this paper.However, the intuitive idea is as follows. Construct a lattice with k identical subtrees, each of whoseroots gives the same, large bene�t B. These k nodes will be the optimal choice.Now add to the lattice one node v1 that includes among its descendants 1=kth of each of thesesubtrees, plus something extra so v1's bene�t is just slightly higher than B. Thus, v1 will be the �rstgreedy choice. Then, add to the lattice a node v2 that covers 1=kth of that portion of each subtreethat was not covered by v1, plus something extra, so v2's bene�t is just higher than B(k � 1)=k.Note that after v1 was picked, the bene�t of each of the subtree roots shrinks to B(k � 1)=k, so v2becomes the second greedy choice. Continue in this manner, with each of the greedy-choice nodescovering 1=kth of that portion of the subtrees that was not covered by any of the previous greedychoices. It is then possible to show that, while the optimal choice has bene�t kB, the bene�t ofthe greedy choices is just (1� (k�1k)k)B. We conclude that� For all k, the lower bound on the ratio of the greedy and optimal bene�ts is exact. That is,the ratio 1� (k�1k)k, shown in Section 4.3 actually occurs for at least one lattice for each k.As k ! 1, (k�1k)k approaches 1=e, so A=B � 1 � 1e = (e � 1)=e = 0:63. That is, for nolattice whatsoever does the greedy algorithm give a bene�t less than 63% of the optimal bene�t.Conversely, the sequence of bad examples suggested by Section 4.4 shows that this ratio cannot beimproved upon.4.5 Cases Where Greedy is OptimalThe analysis of Section 4.3 also lets us discover certain cases when the greedy approach is optimal,or very close to optimal. Here are two situations where we never have to look further than thegreedy solution.1. If a1 is much larger than the other a's, then greedy is close to optimal. To see why, considerthe last inequality in Fig. 13. It essentially says that B � a1. Since A is approximately a1 inthis case, we have B � A (approximately).2. If all the a's are equal then greedy is optimal. In proof, consider the �rst inequality ofFig. 13. It says that B � ka1, but since all the a's are equal, ka1 = A. Similarly, if the a's areapproximately equal, then B is approximately A, and the greedy approach is near-optimal.4.6 Extensions to the Basic ModelThere are at least two ways in which our model fails to reect reality.1. The views in a lattice are unlikely to have the same probability of being requested in a query.Rather, we might be able to associate some probability with each view, representing thefrequency with which it is queried. 19

2. Instead of asking for some �xed number of views to materialize, we might instead allocate a�xed amount of space to views (other than the top view, which must always be materialized).Point (1) requires little extra thought. When computing bene�ts, we weight each view by itsprobability. The greedy algorithm will then have exactly the same bounds on its performance: atleast 63% of optimal.Point (2) presents an additional problem. If we do not restrict the number of views selected,but �x their total space, then we need to consider the bene�t of each view per unit space used bya materialization of that view. The greedy algorithm again seems appropriate, but there is theadditional complication that we might have a very small view with a very high bene�t per unitspace, and a very large view with almost the same bene�t per unit space. Choosing the small viewexcludes the large view, because there is not enough space available for the large view after wechoose the small.On the other hand, if no view's space is more than some fraction f of the total space allowed,then the same analysis as given above says that the ratio of the bene�ts of the greedy and optimalalgorithms is no less than 0:63� f .5 The Hypercube LatticeArguably, the most important class of lattices are the hypercubes, in which the views are verticesof an n-dimensional cube for some n. The intuition is that there are n attributes A1; A2; : : : ; Anon which grouping may occur and an (n+1)st attribute B whose value is aggregated in each view.That is, each view is of the formSELECT C1, C2,...,Cp, SUM(B)FROM RGROUP BY C1, C2,...,Cp;where the C's are some subset of the A's. Figure 1 was an example of a hypercube lattice withn = 3, taken from the TPC-D benchmark database.The top view groups on all n attributes. We can visualize the views organized by ranks, wherethe ith rank from the bottom is all those views in which we group on i attributes. There are �ni�views in rank i.5.1 The Equal-Domain-Size CaseWe can, of course, apply the greedy algorithm to hypercube lattices, either looking for a �xednumber of views to materialize, or looking for a �xed amount of space to allocate to views. However,because of the regularity of this lattice, we would like to examine in more detail some of the optionsfor selecting a set of views to materialize.In our investigations, we shall �rst make an assumption that is unlikely to be true in practice:all attributes A1; A2; : : : ; An have the same domain size, which we shall denote r. The consequenceof this assumption is that we can easily estimate the size of any view. In Section 5.4, we shallconsider what happens when the domain sizes vary. It will be seen that the actual views selectedto materialize will vary, but the basic techniques do not change to accommodate this more generalsituation.When each domain size is r, and data in the data cube is distributed randomly, then there is asimple way to estimate the sizes of views. The combinatorics involved is complex, but the intuition20

should be convincing. Suppose only m cells in the top element of our lattice appear in the rawdata. If we group on i attributes, then the number of cells in the resulting cube is ri. To a �rstapproximation, if ri � m, then each cell will contain at most one data point, and m of the cells willbe nonempty. We can thus use m as the size of any view for which ri � m. On the other hand, ifri < m, then almost all ri cells will have at least one data point. Since we may collapse all the datapoints in a cell into one aggregate value, the space cost of a view with ri < m will be approximatelyri. The view size as a function of the number of grouped attributes is shown in Fig. 14.
n

logr mSize ofView mNumber of group-byAttributesFigure 14: How the size of views grows with number of grouped attributesThe size of views grows exponentially, until it reaches the size of the raw data, and then ceasesto grow. Notice that the actual data taken from Fig. 1 almost matches this pattern. The top viewand the views with two grouping attributes have the same, maximum size, except that the view ps(part, supplier) has somewhat fewer rows, due to the fact that the benchmark explicitly sets itto have fewer rows.5.2 The Space-Optimal SolutionOne natural question to ask when investigating the time/space tradeo� for the hypercube is whatis the average time for a query when the space is minimal. Space is minimized when we materializeonly the top view. Then every query takes time m, and the total time cost for all 2n queries ism2n.5.3 The Time-Optimal SolutionAt the other extreme, we could minimize time by materializing every query. Then, the time toexecute each query would be equal to its own size, and the total space needed to store the datacube would equal the time taken to execute each query once. However, under our model, the viewswhose size is m, which will be all those queries that group by at least k = logrm attributes, willhave the maximum size m, and these may as well be executed through the top view.De�ne the rank of a query or view to be the number of attributes on which it is grouped. Queriesorganize themselves into ranks as suggested in Fig. 15. There are two parameters of the problemwhose relationship determines what the time and space are for this case.21

n k
Figure 15: The ranks of the hypercube lattice1. The rank k at which the \cli�" in Fig. 14 occurs. That is, k = logr m, or rk = m.2. The rank j such that rj�nj� is maximized. This quantity is the sum of the sizes of the queriesof rank j, provided that j is still in the growing portion of the curve in Fig. 14. It is not hardto show that at the maximum, r = j=(n� j), or j = nr=(r + 1).If k > j, then the bulk of the space and time are used for queries that have rank approximatelyj. That is, to a �rst approximation, all 2n queries use space rj = rnr=(r+1), and the total space andtime are both (2rr=(r+1))n.On the other hand, if k < j, then almost all the time and space is consumed executing queriesin the at part of the curve of Fig. 14. Thus, except for some materialized queries in ranks lessthan k, whose total space is negligible, we can execute all the queries using the top view. Thus, thespace used is little more than m (recall that we do not have to materialize views in ranks betweenk and n� 1).Now, let us consider the time requirements. It is again possible to neglect the \small" queriesof rank below k. Each of the queries of rank k or more requires time m, so we have only to estimatethe total number of these queries. there are two subcases.1. k < j and k � n=2. Here, at least half the views take m space and time, so the the time isapproximately m2n. Thus, in this case the time and space are both approximately that ofthe space-optimal solution.2. k < j and k > n=2. Now, most of the space (and therefore time) is concentrated around rankj, but there are relatively few of these views. The total time is approximated by Pni=j �ni�ri.Since the total time per rank decreases as i grows above j, we can approximate this sum byits �rst term: �nj�rj .Figure 16 summarizes the time and space used for the three tradeo� points studied.5.4 Extension to Varying Domain SizesSuppose now that the domains of each attribute do not each have r equally-likely values. The nextsimplest model is to assume that for each dimension, values are equally likely, but the number ofvalues varies, with ri values in the ith dimension for i = 1; 2; : : : ; n.22

Strategy k, j, and n Space TimeSpace-optimal m m2nTime-optimal k > j (2rr=(r+1))n (2rr=(r+1))nk < j and k � n=2 m m2nk < j and k > n=2 m �nj�rjFigure 16: Summary of time- and space- optimal strategies for hypercubeNow, the \cli�" suggested in Fig. 14 does not occur at a particular rank, but rather the cli� isdistributed among ranks. If a view groups by a set of attributes whose domain sizes multiply tosomething less than m, the total number of rows in the raw data, then that view behaves as if itis \below the cli�," i.e., of rank less than k. If the product of the domain sizes for the groupingattributes of a view exceeds m, then this view is \on top of the cli�." However, the fundamentalbehavior suggested by Fig. 14 is unchanged. As we \drill down" by grouping on progressively moreattributes, our views stay �xed at the maximum size, until at some point the size drops, whereuponthe size of views decreases exponentially.The analysis of the space-optimal case does not change. For the time-optimal case, we need toreplace the condition k < j by \most of the space used by the various queries is among those viewswhose product of domain sizes for grouped attributes is less than m." Likewise, k � n=2 becomes\most views have a product of domain sizes for their grouped attributes that exceeds m."6 ConclusionsIn this paper we have investigated the problem of deciding which set of cells (views) in the data cubeto materialize in order to minimize query response times. Materialization of views is an essentialquery optimization strategy for decision-support applications. In this paper, we make the case thatthe right selection of the views to materialize is critical to the success of this strategy. We use theTPC-D benchmark database as an example database in showing why it is important to materializesome part of the data cube but not all of the cube.Our second contribution is a lattice framework that models multidimensional analysis very well.Our greedy algorithms work on this lattice and pick the right views to materialize, subject to variousconstraints. The greedy algorithm we give performs within a small constant factor of the optimalsolution for many of the constraints considered. Finally, we looked at the most common case of thehypercube lattice and investigated the time-space trade-o� in detail.6.1 Future WorkWe are investigating the following topics.� Progressively more realistic cost models. Models that capture indexing and clustering are the�rst step in this direction.� Data cubes that are stored in MDDB systems. The poor scalability of many MDDB systemsis due to the fact that they materialize the entire data cube. Thus the selection of the rightcells to materialize is very important here too.23

� Dynamic materialization. The views, in some sense, form a memory hierarchy with di�eringaccess times. In conventional memory hierarchies, data is usually assigned to di�erent memorystores (like cache, or main memory) dynamically based on the run time accesses. It wouldbe interesting to compare dynamic materialization with the static materialization scheme weinvestigate in this paper.AcknowledgementsWe thank Bala Iyer and Piyush Goel at IBM Santa Teresa Labs for help with the experiments.References[CS94] S. Chaudhuri and Kyuseok Shim. Including Group-By in Query Optimization. In Pro-ceedings of the Twentieth International Conference on Very Large Databases (VLDB),pages 354{366, Santiago, Chile, 1994.[ESS] Arbor Software Inc. Multidimensional Analysis: Converting Corporate Data into Strate-gic Information. White Paper. At http://www.arborsoft.com/papers/multiTOC.html[G93] Goetz Graefe. Query Evaluation Techniques for Large Databases. In ACM ComputingSurveys, Vol. 25, No. 2, June 1993.[GBLP95] J. Gray, A. Bosworth, A. Layman, H. Pirahesh Data Cube: A Relational AggregationOperator Generalizing Group-By, Cross-Tab, and Sub-Totals. Microsoft Technical ReportNo. MSR-TR-95-22.[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-Query Processing in Data Ware-housing Environments . In Proceedings of the 21st International VLDB Conference, pages358-369, 1995.[HNSS95] P. J. Haas, J. F. Naughton, S. Seshadri, L. Stokes. Sampling-Based Estimation of theNumber of Distinct Values of an Attribute In Proceedings of the 21st International VLDBConference, pages 311-320, 1995.[OG95] P. O'Neill and G. Graefe. Multi-Table Joins Through Bitmapped Join Indexes. InSIGMOD Record, pages 8-11, September 1995.[TPCD] F. Raab, editor. TPC Benchmark(tm) D (Decision Support), Proposed Revision 1.0.Transaction Processing Performance Council, San Jose, CA 95112, 4 April 1995.[Rad95] Alan Radding. Support Decision Makers With a Data Warehouse. In Datamation, March15, 1995.[STG] Stanford Technology Group, Inc. Designing the Data Warehouse On RelationalDatabases. White Paper.[TM75] J. P. Tremblay and R. Manohar. Discrete Mathematical Structures with Applications toComputer Science. . McGraw Hill Book Company, New York, 1975.[X94] John Xenakis, editor. Multidimensional Databases. In Application Development Strate-gies, April 1994. 24

[YL95] W. P. Yan and P. A. Larson. Eager Aggregation and Lazy Aggregation. In Proceedingsof the 21st International VLDB Conference, pages 345-357, 1995.

25

