
4

INDEMICS: An Interactive High-Performance Computing Framework
for Data-Intensive Epidemic Modeling

KEITH R. BISSET and JIANGZHUO CHEN, NDSSL, Virginia Bioinformatics Institute,
Virginia Tech
SURUCHI DEODHAR, NDSSL, Virginia Bioinformatics Institute, Virginia Tech,
Department of Computer Science, Virginia Tech
XIZHOU FENG, NDSSL, Virginia Bioinformatics Institute, Virginia Tech, Department of Mathematics,
Statistics, and Computer Science, Marquette University
YIFEI MA, NDSSL, Virginia Bioinformatics Institute, Virginia Tech, Department of Computer Science,
Virginia Tech
MADHAV V. MARATHE, NDSSL, Virginia Bioinformatics Institute, Virginia Tech,
Department of Computer Science, Virginia Tech

We describe the design and prototype implementation of INDEMICS (Interactive Epidemic Simulation)—a
modeling environment utilizing high-performance computing technologies for supporting complex epidemic
simulations. INDEMICS can support policy analysts and epidemiologists interested in planning and control of
pandemics. INDEMICS goes beyond traditional epidemic simulations by providing a simple and powerful way
to represent and analyze policy-based as well as individual-based adaptive interventions. Users can also
stop the simulation at any point, assess the state of the simulated system, and add additional interventions.
INDEMICS is available to end-users via a web-based interface.

Detailed performance analysis shows that INDEMICS greatly enhances the capability and productivity of
simulating complex intervention strategies with a marginal decrease in performance. We also demonstrate
how INDEMICS was applied in some real case studies where complex interventions were implemented.

Categories and Subject Descriptors: I.6.3 [Simulation and Modeling]: Applications; H.2.8 [Database
Applications]: Applications

General Terms: Design, Human Factors, Performance

Additional Key Words and Phrases: Parallel computation, interactive computation, infectious disease, net-
work dynamics, modeling and simulation

ACM Reference Format:
Keith R. Bisset, Jiangzhuo Chen, Suruchi Deodhar, Xizhou Feng, Yifei Ma, and Madhav V. Marathe. 2014.
INDEMICS: An interactive high-performance computing framework for data-intensive epidemic modeling. ACM
Trans. Model. Comput. Simul. 24, 1, Article 4 (January 2014), 32 pages.
DOI: http://dx.doi.org/10.1145/2501602

Preliminary versions of this article appeared in Proc. 24th International Conference on Supercomputing
2010 as “Indemics: An interactive data intensive framework for high-performance epidemic simulation” and
in Proc. Winter Simulation Conference 2011 as “Efficient implementation of complex interventions in large
scale epidemic simulations.”
Authors’ correspondence: Jiangzhuo Chen, 1880 Pratt Drive, MC 0477 Virginia Tech, Blacksburg, VA 24061.
(chenj@vbi.vt.edu) and Madhav V. Marathe (mmarathe@vbi.vt.edu).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1049-3301/2014/01-ART4 $15.00

DOI: http://dx.doi.org/10.1145/2501602

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

http://dx.doi.org/10.1145/2501602
http://dx.doi.org/10.1145/2501602

4:2 K. R. Bisset et al.

1. INTRODUCTION

Pandemics have a significant impact on public health and human society. The 2009
H1N1 influenza pandemic exemplified the scale and scope of the societal impacts
of global outbreaks of infectious diseases—60 million cases of H1N1 were reported
between April 2009 and April 2010 in the United States. The 2009 H1N1 pandemic
led to 274,000 hospitalizations and 12,470 deaths, according to the estimates provided
by the Centers for Disease Control and Prevention [CDC 2010; Lipsitch et al. 2011].
Fortunately, H1N1 was not very virulent. This, coupled with a globally coordinated
response by world and national public health authorities, reduced the overall casu-
alties. Controlling future pandemics and reducing their economic and social burden
will be challenging due to a number of societal trends. This includes increased and
denser urbanization, increased local as well as global travel, and a generally older and
immunocompromised population. These trends are likely to continue in the future. A
recent report by McKinsey predicts that by 2025, 600 million of the world’s inhabitants
will live in 440 emerging cities in the developing world that are likely to lack good
public health infrastructure [Dobbs et al. 2011]. As a result, a pandemic caused by a
highly virulent agent can have a far-reaching impact.

Computational models play an important role in elucidating the space-time dynamics
of epidemics. The H1N1 pandemic reaffirmed the need for developing analytical tools
and methods to detect, assess, and respond to future pandemics; see Lipsitch et al.
[2011], Kerkhove and Ferguson [2012], Wu and Cowling [2011], and Fineberg and
Wilson [2009]. The role of computational models is all the more important due to ethical
reasons and lack of data. Computational models can assist in evaluating a diverse set of
interventions aimed at preventing and controlling pandemics. Computational models
provide a powerful tool to study the role of individual behavior and public policies in
containing the pandemics.

2. RELATED WORK

Traditionally, mathematical and computational modeling of epidemics has focused
on aggregate models using coupled rate equations. See Anderson and May [1991],
Kermack and McKendrick [1927], Bailey [1975], Hethcote [2000], and Vynnycky and
White [2010] for comprehensive reviews of this approach. In this approach, a popu-
lation is divided into subgroups (compartments) according to an individual’s health
state (e.g., susceptible, exposed, infected, and recovered) and demographics. The evolu-
tion of the infectious disease is characterized by ordinary differential equations. Over
the years, aggregate differential equation-based models have been employed to an-
alyze patterns of epidemic spread and corresponding mitigation strategies [Rvachev
and Longini 1985; Hufnagel et al. 2004]. The spatio-temporal epidemiological modeler
(STEM) [Edlund et al. 2010] is an open-source disease simulation system using this
approach. Aggregate differential equation-based models have proved to be immensely
successful. They yield analytical expressions for a number of important epidemic pa-
rameters, including number of infected individuals, mortality rate, and so forth. Exten-
sions of the models to represent more complicated compartments that capture either
the disease history or a specific group of individuals in a population have also been
studied. An important assumption in all aggregate differential equation-based mod-
els is homogeneous mixing. This limits use of these models for spatially sensitive
processes.

Another methodology used to model the epidemic spread process is to use spatially
explicit models developed using cellular automata [Sirakoulis et al. 2000; Meyers et al.
2006; White et al. 2007a]. Cellular automata-based models allow one to represent

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:3

individual-level interactions. Nevertheless, these interactions are highly regular and
hence do not capture the complicated social interaction patterns in an urban region.

In recent years, high-resolution individual-based computational models have been
developed to support planning, control, and response to epidemics. These models sup-
port networked epidemiology—the study of epidemic processes over explicit social con-
tact networks. Research in this area can be divided into three distinct subareas.

The first subarea aims to develop analytical techniques and computer simulations
over classes of progressively sophisticated random graphs; see Meyers [2007], Meyers
and Dimitrov [2010], Pastor-Satorras and Vespignani [2002], Barrat et al. [2008], and
Newman et al. [2002] for an extensive and recent discussion on this topic. These models
relax the mean field assumption to some extent but still use the inherent symmetries
in random graphs to analytically compute important epidemic quantities of interest.
The primary goal of these results is to obtain closed-form analytical results.

The second subarea aims to develop individual-based models using important statis-
tics of a region. The two important statistics used are (i) density (which is usually
obtained using LandScan data) and (ii) basic census information that provides the de-
mographic distribution of individuals within a population. A simple template is used
to represent a community, and these communities are joined hierarchically to obtain
larger regions. See Germann et al. [2006] and Ferguson et al. [2003, 2006] for exam-
ples of this approach. These models can be extended to obtain hybrid models as well.
In a hybrid model, counties are represented as nodes and edges are added between
counties to capture the movement of individuals—see Colizza et al. [2007], Merler and
Ajelli [2010], Ajelli et al. [2010], and Colizza et al. [2005] for a comparative study. Epi-
demic dynamics within a county are computed using an individual-based model. The
dynamics over a network of counties are captured using coupled rate equations. The
Global-Scale Agent Model (GSAM) in Parker and Epstein [2012] is a high-performance
agent-based epidemic model capable of simulating a disease outbreak in a population
of several billion agents. FluTE in Chao et al. [2010] is a publicly available parallel
simulation engine that also falls in this broad category of models.

The final class of models use the most realistic representation of social contact
networks; see Keeling and Eames [2005], Meyers [2007], Barrett et al. [2008], and
Eubank [2002]. EPISIMS [Eubank 2002], EPISIMDEMICS [Barrett et al. 2008; Bisset and
Feng et al. 2009], and EPIFAST [Bisset and Chen et al. 2009] model each individual
in the United States with detailed demographic profiles and daily activities. They are
interaction-based simulation systems, where disease spreads via social interactions
between individuals. Perumalla and Seal [2011] build on the work in Barrett et al.
[2008] to obtain a highly scalable simulation system; the article contains a number of
interesting technical ideas that lead to substantially improved scaling.

The primary focus of the aforementioned models is on simulating disease transmis-
sion. As a result, these simulations do not have well-defined modules to represent
policies and interventions—interventions are programmed in an ad hoc manner and
are not transparent to the user. Moreover, none of the simulations support adaptive
interventions—interventions in which a user formulates new interventions based on
assessing the current system state.

Finally, our work is also related to recent work on building scalable database-oriented
methods to support Massively Multiplayer Online Games (MMOGs) [White et al. 2007b;
Sowell et al. 2009; Wang et al. 2010]. The authors explore the use of databases to
support real-time strategies for such games. The real-time strategies are formulated
using relational algebra, and data computation is implemented by relational databases.
In a recent article, Wang et al. [2010] extended their work by showing how certain social
simulations can be implemented using a MapReduce framework.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:4 K. R. Bisset et al.

3. OUR CONTRIBUTIONS

Here, we present INDEMICS (Interactive Epidemic Simulation)—a High-Performance
Computing (HPC)-oriented modeling environment to support networked epidemiology.
INDEMICS is designed to support real-time planning, situation assessment, and course
of action analysis, as it pertains to public health epidemiology. It extends the current
computational modeling environments in several ways. This includes (i) providing a
computational framework that allows a user to easily represent a broad range of policy-
based as well as individual-based interventions; (ii) allowing a user to stop the simu-
lation to assess the system state and to formulate interventions based on the system
state (in other words, policies and individual behaviors that are adaptive and sensi-
tive to a system state); and (iii) allowing a user to access the system via a web-based
interface; this makes INDEMICS accessible to public health analysts and policy makers
who are not necessarily computing experts. INDEMICS is designed to improve the overall
human productivity and ease of use of epidemic modeling environments without sacri-
ficing computational efficiency. Current simulation frameworks primarily focus on the
epidemic transmission process; as a result, interventions and policies are implemented
in an ad hoc manner when using these simulations. Additionally, in many simulations,
these components are intertwined with the epidemic transmission process. As a result,
(i) changes to the system and scenario descriptions have to be done by the software de-
velopers who are intimately familiar with the code and (ii) software maintenance and
reuse become cumbersome and error prone. In designing INDEMICS, care has been taken
to address these shortcomings. INDEMICS is based on three important technical ideas.

First, we develop a set of abstractions that allow us to decouple three primary com-
ponents of an epidemic simulation: (i) the data-intensive and complicated intervention
and behavioral adaptation component, (ii) the data-intensive state assessment, and
(iii) the relatively generic but computationally intensive disease transmission com-
ponent. The first two components often demand flexibility, while the last requires
substantial computational speed. Existing HPC-based simulation systems do not ex-
plicitly decouple them. This limits the ways in which the state of the system can be
interrogated. It also requires additional effort from an expert and thus limits the possi-
ble interventions that can be simulated. The decoupled system architecture allows us
to independently optimize the intervention and behavioral adaptation simulations and
the disease transmission simulation. The abstractions formalize the communication
and data transfer that takes place when these modules interact. It requires a delicate
balance between the amount of data that is exchanged and the frequency of this ex-
change. This turned out to be an extremely important aspect of INDEMICS and ultimately
led to a simulation environment that had an acceptable execution time and substan-
tially improved human productivity. Our abstractions are based on a model called the
Coevolving Graphical Discrete Dynamical System (CGDDS). CGDDS is used to model
the problem of interaction-based epidemic propagation and corresponding intervention
simulation. In addition, we overlay a Partially Observable Markov Decision Process
(POMDP) over CGDDS to model intervention policies.

The second technical idea is the use of a Relational DataBase Management System
(RDBMS) to store data that drives the simulation as well as the data that is produced
by the simulation as it progresses in time. Our work is motivated by a similar approach
advocated by Heber and Gray in the context of finite element mesh simulations [Heber
and Gray 2007a, 2007b]. Extending the work of Heber and Gray, we show how an
RDBMS can be used not only to store the input data and the output data produced
by the simulations but also as a part of the simulation engine itself. The data stored
in the database consists of four important components: (i) data corresponding to the
demographic attributes associated with each individual, (ii) a dynamic social contact

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:5

network that represents the set of proximity relationships between individuals (who
meets whom at what location and when), (iii) a temporal dataset that captures the
disease transmission network (also called a dendogram), and (iv) data summarizing
the interventions—when they are applied, to whom they are applied, and how they are
applied. The dendogram is composed of a time series representing when an individual
was infected and the individual who transmitted the infection. These four datasets
capture the basic elements of an epidemic simulation. Each dataset is conveniently
stored in a relational database (other kinds of databases can also be considered). Situ-
ational assessment questions as well as interventions and behavioral adaptations that
a policy maker may wish to implement are implemented using a relational database
query language such as Structured Query Language (SQL). SQL is a natural fit to
represent interventions and behavioral adaptations. Using SQL, a user can specify the
specific interventions naturally without worrying about how they are implemented.
Moreover, we can leverage built-in query optimization engines and automatic query
parallelization available as a part of today’s database systems to improve computa-
tional efficiency. To intuitively see why SQL would be a natural fit for this domain,
note that a situation assessment query typically consists of finding the health state of
a set of individuals in a spatiotemporal region. SQL is an appropriate language to spec-
ify this, since SQL specifies queries using set operations. SQL is more high level than
C++ or many other programming languages. It is functional as opposed to imperative—
users specify what is wanted rather than how to compute it [Heber and Gray 2007a,
2007b]. Implementing this within existing simulation codes would require one to write
potentially complicated codes to select such sets. SQL-based queries can be created
or modified without modifying the HPC code that handles the disease transmission
component. This greatly improves the human productivity and ease of use.

Our final technical idea is a set of software techniques to start and stop the disease
transmission simulation EPIFAST that is used within the INDEMICS framework. EPIFAST

is a highly efficient high-performance computing simulation environment [Bisset and
Chen et al. 2009] designed specifically to simulate disease transmission over large
social networks. See Bisset et al. [2011] for the description of the basic algorithm, its
performance analysis, and a comparison with other known simulations. INDEMICS was
designed to be interactive—a user can stop the simulation and interrogate the system
state before deciding the next set of actions. EPIFAST was not originally designed to sup-
port this requirement. We modified EPIFAST so that the simulation can be stopped after
any simulation day, new interventions added and existing interventions modified, and
then resumed. The stopping criteria can be a fixed number (e.g., day 30) or a function
of the three data types discussed earlier. When EPIFAST is stopped, the incremental
changes in the system state are transferred to the database. The system state relevant
to EPIFAST is also held in memory. The abstraction and the data type discussed earlier
prove useful—it turns out that the relevant system state needed to restart EPIFAST

from the point at which it was stopped is quite modest.
Implementation. An initial version of INDEMICS has been implemented using the soft-

ware services paradigm and is currently in use. It is accessible to a user over the
Internet via the world wide web. This makes INDEMICS accessible pervasively. We have
carried out an initial performance analysis of INDEMICS —we can show that the system
scales easily to support realistic case studies over social contact networks with millions
of agents. We have recently used INDEMICS for two interesting case studies; our results
appear in Marathe et al. [2011] and Liao et al. [2012].

Article organization. In Section 4, we formalize our simulation framework as an in-
teractive CGDDS. In Section 5, we formalize the concept of interventions in epidemics.
In Section 6, we introduce INDEMICS, an interactive epidemic simulation framework. We

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:6 K. R. Bisset et al.

evaluate its performance in Section 7. The capabilities of INDEMICS are demonstrated
in Section 8 using a case study that was difficult to carry out with other simulation
tools. Finally, we conclude in Section 9. Basic material covering within- and across-host
disease models, epidemic propagation over a network, and interventions is described
and illustrated in the appendix. Specifically, we refer the reader to Figure 14 in the
appendix for a concrete example of stochastic disease transmission in a social contact
network with and without interventions. We also refer the interested reader to Barrett
et al. [2008] and Bisset and Chen et al. [2009] for more details.

4. FORMALIZATION OF INTERACTIVE EPIDEMIC SIMULATION

The formal mathematical model consists of two parts: (i) a CGDDS framework that
captures the coevolution of disease dynamics, social network, and individual behavior,
and (ii) a POMDP that captures various control and optimization problems formulated
on the phase space of this dynamical system. We will first extend the CGDDS described
in Barrett et al. [2009] in Section 4.1 so that (i) it covers normal pharmaceutical and
nonpharmaceutical interventions, (ii) the system progresses in a synchronized man-
ner, and (iii) the vertex state modification functions are separated into propagation
functions, which change the vertex health state based on information of its neighbor-
hood, and intervention functions, which change other states of a vertex based on global
information. Later in Section 4.2, we introduce an extended POMDP to model the in-
tervention decision-making process as a dynamic mapping from the system states to
the intervention actions. Finally, in Section 4.3, we overlay the extended POMDP over
the extended CGDDS to form an interactive CGDDS, which formally describes our
INDEMICS framework. We elaborate on the extended CGDDS using EPIFAST [Bisset and
Chen et al. 2009] and the interactive CGDDS using INDEMICS.

4.1. Extended CGDDS

An extended CGDDS, represented by symbol S over a given domain D of state values
and a given domain L of label values, is a triple (G,F , W), whose components are as
follows.

(1) Graph G(V, E): Let the vertex set V = {v1, v2, . . . vn} represent the set of n≥ 1 agents
(individuals). For each vertex vi, let vector si denote its states si = (s1

i , s2
i , . . . sk

i) ∈
D = (D1 × D2 × · · · × Dk), where k is the number of states of vertex vi. Intuitively,
the states comprise the agent’s health state, behavioral state (e.g., level of fear, risk
aversion, etc.), and static demographic attributes.

Let the edge set E = {e1, e2, . . . , em} ⊆ (V × V) represent the contacts between
agents. For any edge e ∈ E, let vector �e denote its labels �e = (�1

e , �
2
e , . . . , �

h
e) ∈ L =

(L1 × L2 × · · · × Lh), where h denotes the number of labels. In our social contact
network, the edge labels include the contact duration and the contact type (home,
school, work, shopping, or others).

(2) Functions F = (f, gV , gE), where f is a set of local transition functions; gV is a set
of vertex modification functions; and gE is a set of edge modification functions.

For each vertex vi, let fi : D×D
Vi ×L

Ei �→ D be its local state transition function,
where Vi and Ei are the neighboring vertices and edges of vi. Normally, Vi are
vertices adjacent to vi and Ei are edges incident on vi. The fi function corresponds
to the propagation process that changes the states of an agent based on (i) the
current states of the agent, (ii) the states of all its neighboring agents, and (iii) the
current labels on the contact edges with its neighboring agents. These variables
determine a distribution over D; then a state is chosen from the distribution as the
output of fi. So fi is a random function.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:7

Let gV = {gV
1 , gV

2 , . . . gV
kV

} be a set of kV vertex modification functions, where each
gV

j : D
V × L

E �→ D
V directly changes states of vertices based on the current state

of the whole graph. We assume V is constant.
Let gE = {gE

1 , gE
2 , . . . gE

kE
} be a set of kE edge modification functions, where each

gE
j : D

V × L
E �→ L

V×V changes the set of edges and the edge labels based on the
current state of the whole graph. Note that gE functions may add new edges to G,
and that we abuse the notation a little with the assumption that for vertex-pair
u, v with no contact, the labels on them are null.

Note that gV and gE can be random functions, too.
(3) String W over the alphabet gV ∪ gE: Let W = w1

1w2
1 . . . w

j1
1 . . . w1

t w2
t . . . w

jt
t . . . w1

T w2
T

. . . w
jT
T be a schedule of modifications on graph G, including its vertex states and

edge labels, where T represents the number of time steps. The tth substring of
W , w1

t w2
t . . . w

jt
t , denotes the updates on vertices and edges at time step t. The fi

functions are implicit in the schedule and they are applied at each time step; see
Algorithm 1.

In an extended CGDDS representing epidemic dynamics in a social contact network,
G is the contact network, f functions correspond to between-host disease progression;
gV functions correspond to within-host disease progression, pharmaceutical interven-
tions (PIs, e.g., antiviral, vaccination), and behavioral adaptations that directly change
people’s states (e.g., increase of fear level as the epidemic takes off, use of face masks);
and gE functions correspond to nonpharmaceutical interventions (NPIs, e.g., school clo-
sure, quarantine and social distancing) that change the graph structure. Public policy
is a combination of PIs and NPIs that simultaneously affects a group of individuals.
Individual behavioral adaptations affect a single individual and his or her interac-
tions with his or her neighbors in the social contact network. Public policy provides a
guideline; individuals interpret and comply with the policy based on their individual
attributes. For example, public policy might suggest that individuals use face masks.
Individuals within a population comply with this policy decision based on their percep-
tion of disease, risk aversion, economic condition, and so forth.

Note that although theoretically an extended CGDDS model can be implemented in
a simulation tool, it is difficult if not impossible to have a complete representation of
the CGDDS in the software code. For example, in the current EPIFAST implementation,
D is fixed, and expanding D needs significant code changes. Also, the available gV and
gE functions are very limited; a new modification function usually means nontrivial
code changes. In Table I, we elaborate on the extended CGDDS using our EPIFAST

implementation [Bisset and Chen et al. 2009] as a concrete example.
Algorithm 1 shows the disease propagation loop with static interventions in the

extended CGDDS. Note that the propagation step is computed in a synchronized way
among vertices to make sure that the execution order does not matter. That is, the
state updates are realized only when all vertices have finished executing the local state
transitions (fi). A new vertex state is computed for each vertex based on a snapshot of
the current system; then each vertex realizes its new state.

Although the local transition in this algorithm has been precisely modeled, the in-
tervention model is not close to reality: intervention scenarios are deterministic and
given in the schedule string W before the start of the computation. The extended
CGDDS does not seem adequate to model real-world systems such as an epidemic evo-
lution. The interventions in an epidemic usually involve decision-making processes,
both at the public health level and at the individual level, based on the ongoing progress
of the epidemic. The interventions (gV and gE functions) coevolve with the propagation

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:8 K. R. Bisset et al.

Table I. Extended CGDDS in EPIFAST Implementation: A Concrete Example

CGDDS component in EPIFAST

D SEIR (Susceptible, Exposed, Infectious, and Recovered; see Appendix A.1) state,
infectivity, vulnerability, diagnosis, symptomatic state

L contact duration, type
f stochastic transmission from infectious vertex to susceptible vertex with

probability determined by the infectivity of infectious vertex, the vulnerability
of susceptible vertex, and the duration of contact between them

gV gV
1 : seeding (e.g., for five preselected vertices, set their states to exposed if they
are still susceptible)

gV
2 : within-host transition of SEIR state (e.g., if vertex v was exposed 2 days ago,
then its state changes to infectious; if it was exposed 7 days ago, then its state
changes to removed; otherwise, its state does not change)

gV
3 : diagnosis (vertices in infectious state show symptoms and get diagnosed
randomly) PI’s (e.g., gV

4 : apply antiviral to preselected vertices to reduce their
infectivity and vulnerability)

gE NPIs (e.g., gE
1 : diagnosed vertices stay home, so they have more contacts with

household members and no contacts with other people such as coworkers; gE
2 :

vertices with a symptomatic coworker reduce contacts in the workplace)
W predetermined schedule, e.g., gV

1 on day 1, gV
2 and gV

3 and gE
2 on each day, gV

4 on
day 30, gE

1 on each day after day 60

process. To this end, we introduce POMDP to capture the online decision-making pro-
cess for interventions.

ALGORITHM 1: Pseudo-code of computations in the extended CGDDS. Note that the functions
that modify the vertex states or edge labels (policies or individual behavioral adaptations) are
applied sequentially. In contrast, the disease states of vertices are updated in parallel.
for t = 0 to T do

let w1
t w

2
t . . . w

jt
t be the tth substring in W ; /* interventions for this time step */

apply in increasing order of j, 1 ≤ j ≤ jt, function w
j
t (function from sets gV or gE) to modify

vertex states or edge labels;
for each vertex vi ∈ V in parallel apply function fi to change the health state;
/* propagation */

4.2. Extended POMDP

We model the decision-making process for interventions in the schedule string W of
the extended CGDDS as a POMDP, which has been widely employed to model various
control and optimization problems. We make a necessary and reasonable modification
on POMDP to model the intervention generation. We specify our extended POMDP
using the terminology in Mundhenk et al. [2000]. Recall that a POMDP M consists
of a finite set of states S, an initial state s0 ∈ S, a finite set of actions A, a finite set
of observations O, a probabilistic state transition function ts, an observation function
o : S �→ O, and a reward function r, which gives the reward for taking action a ∈ A
while the system state is s ∈ S. Our extended POMDP is formally specified as follows:

(1) States S ⊆ (DV × L
V×V) are all possible vectors of vertex states and edge labels.

Each system state is a vector of length n + (n
2).

(2) Actions A are interventions that modify vertex states and edge labels.
(3) State transition ts computes the disease propagation with interventions.
(4) Reward function r can be the number of infected cases, or it can be a combination

of the economic and social costs of applying the interventions and the economic

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:9

and social costs of the disease outbreak (mortality and morbidity), or it can consist
of vertex-level local functions. Maximization of the output of r maps observations
to actions. The policy to determine actions based on observations can be history-
dependent πh : O∗ �→ A [Mundhenk et al. 2000].

With the extended POMDP overlaid on the extended CGDDS, in each time step,
CGDDS drives the system to a new state, POMDP derives intervention actions based
on the observed system state, and the derived actions update CGDDS. This is described
in Algorithm 2. Compared to Algorithm 1, the interventions in Algorithm 2 are dynamic
and the actions are related to the runtime system states. The mapping from system
states to intervention actions in Algorithm 2 is not decoupled in current modeling
environments. This has the following weaknesses: (i) unless all possible intervention
scenarios are known and can be enumerated in the system, re-engineering on the
intervention mapping for new policy scenarios is inevitable; (ii) the data that can be
included in the vertex state for computing interventions is limited to what is already
implemented within the simulation tool; and (iii) there is no control and optimization
based on the reward function.

ALGORITHM 2: Pseudo-code of computations in the extended CGDDS and extended POMDP.
for t = 0 to T do

compute interventions in wt = w1
t w

2
t . . . w

jt
t based on the observed system state o(st), st ∈ S;

apply each w
j
t function to modify vertex states or edge labels; /* apply interventions */

apply all fi functions to change the health states of all vertices simultaneously; /* disease
spread */

4.3. Interactive CGDDS

Let DB be a data management system and Q be a set of queries that map from O
(observations) to A (actions). We can then formalize an interactive CGDDS as two
algorithms given in Algorithms 3 and 4. Algorithm 3 corresponds to the propagation
dynamics component and Algorithm 4 corresponds to the intervention computation
component. The coordinator is embedded in Algorithm 4.

ALGORITHM 3: SysDif: Propagation computation in the interactive CGDDS.
for t = 0 to T do

wait for wt from SysInt; /* interventions for this time step */

receive wt = w1
t w

2
t . . . w

jt
t ;

apply each w
j
t function to modify vertex states or edge labels;

apply all fi functions to change the health states of all vertices simultaneously; /* disease
spread */
send the changes in the observable system state o(st) to SysInt; /* newly diagnosed
cases */

ALGORITHM 4: SysInt: Intervention computation in the interactive CGDDS.
for t = 0 to T do

read query qt ∈ Q from the user;
compute wt by running query qt on DB; /* POMDP */
send wt to SysDif; /* interventions for this time step */
wait for updates on observable system state o(st) SysDif;
receive updates on o(st) and store them in DB; /* newly diagnosed cases */

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:10 K. R. Bisset et al.

A major difference between the interactive CGDDS and the extended CGDDS in
Section 4.1 is the computation of the schedule string W and the scope of implementable
modification functions gV and gE. This can be better explained by comparing our
INDEMICS implementation and the EPIFAST implementation. Specifically, INDEMICS can
represent any intervention that can be described in EPIFAST and can easily express
many more interventions that are difficult to realize in EPIFAST without significant code
development. For example, the household intervention, where all vertices with one or
more sick family members voluntarily take social distancing actions, is a gE function
that is difficult for EPIFAST because the household data pertaining to each individual is
not available within EPIFAST. Even if we code this data in EPIFAST, a slight change will
move this intervention outside of EPIFAST’s gE set; for example, only households with a
senior or a young child will take action, or only households living in a specific county
will take action, or maybe household members have different thresholds—some wait
until the second sick case in the family while others are more cautious—depending on
age. The targeted intervention, where antiviral is applied to diagnosed vertices only, is
a gV function that is implemented in EPIFAST—after substantial programming effort.
The vertices are selected based on their current diagnosis states. If the selection is also
based on another kind of state (e.g., current fear level), then EPIFAST cannot handle
it. All these interventions, however, can be easily handled by INDEMICS implementation
with simple scripting.

The interactive CGDDS decouples the primary components of an epidemic simulation
described in Section 3.

Before proposing an architecture for INDEMICS and implementing it, we bound the
communication complexity between the propagation dynamics and intervention compu-
tation components. The communication includes the following: (i) the extended CGDDS
generates dynamic data about system state updates, which needs to be stored in the
data management system; (ii) the extended POMDP needs to query the data manage-
ment system and to obtain results; (iii) the extended POMDP generates interventions,
which need to be sent to the extended CGDDS; and (iv) bookkeeping messages keep
the two modules synchronized. A proposition on the communication complexity is pre-
sented in Appendix A.5.

5. INTERVENTIONS AND SITUATION ASSESSMENT

In this section, we formalize the concept of an intervention, used for mitigating epidemic
propagation. Informally, an intervention changes one or more attributes of a set of
individuals. Some of the attributes correspond to behavioral changes, such as home
isolation, use of a face mask, cutting down nonessential activities, and so forth. Other
attributes correspond to disease-specific changes such as immunity of an individual
to a disease, level of infectiousness, infectious period duration, and so forth. The first
type of interventions change the social contact network by adding or deleting edges, or
modifying the edge labels (usually contact durations). The second type of interventions
change the vertex states directly. Interventions are either a result of public policies, in
which a group of individuals are simultaneously affected, or based on the perception
of disease by individual members or by households. From an abstract standpoint, an
intervention changes the label of a subset of vertices or edges of the interaction network.
Furthermore, the functions used to compute this set depend on attributes associated
with the vertices and edges of the network as well as environmental factors. The set
of possible functions grows even faster and is at least double exponential in the size of
the representation. As a result, it is not possible to develop a set of fixed templates that
capture the range of interventions. Nevertheless, for a certain class of interventions,
including many studied in practical settings, it is possible to specify the interventions
using SQL. For the purposes of this article, an intervention consists of three steps:

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:11

Table II. Examples of Interventions Studied in the Literature

Intervention Subpopulation Triggering condition Action
Antiviral treatment of
diagnosed cases
[Halloran et al. 2008]

diagnosed people >1% of population are
infected

reduce their
infectivity

Home isolation of
diagnosed cases
[Halloran et al. 2008]

diagnosed people >1% of population are
infected

remove their contacts
with nonhousehold
members

School closure when
disease prevalence is high
[Halloran et al. 2008]

all school-age children >1% of population are
infected

remove in-school
contacts between
them

Deference of travel to
unaffected areas [WHO
2004]

people who live in an
affected area and
plan to travel to
unaffected areas

>1% of population are
infected

remove their contacts
with people outside
of the affected area

Avoidance of contact with
high-risk environments
[WHO 2004]

people going to
high-risk
environments

early phase: disease
prevalence > 0.1%

remove their contacts
with people in
high-risk
environments

Vaccination of people in
any census block with an
outbreak [Marathe et al.
2011]

all people living in
affected census
blocks

number of diagnosed
cases in the block
> 1% of block
population

increase their
immunity

Social targeting with
antiviral prophylaxis
[Ferguson et al. 2005]

individuals in the
same household,
school, or workplace
with diagnosed
cases

cases are diagnosed in
this household,
school, or workplace

increase their
immunity

—Compute the set of individuals (vertices) S using a function I. I is a function of the
relational data R; the dendogram until the present time t, given by Dt; and the social
contact network G (V, E). R represents demographic information about individuals
and locations in a relational format.

—Apply an evaluation criterion that is a function F over the set S. F is usually an
aggregation function. For example, F could evaluate “|S| > 1% of the population
size.”

—An action function H that computes the set S = {(S1, A1), (S2, A2), . . .}, where Si is
a set of individuals and Ai is an action that modifies the individuals’ attributes (one
or more labels of the vertices in Si or the labels associated with edges that have one
endpoint in set Si).

Situation assessment consists of just the first two steps. It does not change the
state of the system. An intervention that is applied as a result of a public policy
implementation results in a set S where each element set Si contains one or more
elements. An individual-based intervention results in a set S where every element set
Si has exactly one element, corresponding to the individual, represented by the node.
A household-level intervention changes the labels of a set of nodes that constitute the
household. Closing a school results in changing the labels of the edges that capture the
interactions between students attending the school as well as the labels that correspond
to their family interactions (assuming that the children stay at home). Table II lists a
few examples of interventions studied in the literature.

The class of functions I, F, and H studied are precisely those that can be expressed
using an SQL-like scripting language, which we have specifically designed for rep-
resenting intervention simulations. Examples of interventions written in this script-
ing language can be found in Algorithms 5 and 6. The computational complexity of

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:12 K. R. Bisset et al.

Fig. 1. The high-level architecture of INDEMICS. The INDEMICS middleware platform coordinates and syn-
chronizes the communication between the INDEMICS Epidemic Propagation Simulation Engine, the INDEMICS

Clients, and the INDEMICS Intervention Simulation and Situation Assessment Engine.

computing these functions depends on the computational complexity of evaluating the
corresponding SQL queries. This naturally places limitations on the kinds of interven-
tions and situation assessment queries that can be answered by our method.

6. INDEMICS ARCHITECTURE AND IMPLEMENTATION

We now describe the software architecture of INDEMICS and its implementation. We also
describe the data structures used to internally represent data within each module and
the format for data interchange. The architecture builds on the interactive CGDDS
framework described in Section 4.

6.1. System Architecture

As shown in Figure 1, INDEMICS consists of four loosely coupled modules:

—the INDEMICS Middleware Platform (IMP),
—the INDEMICS Epidemic Propagation Simulation Engine (IEPSE),
—the INDEMICS Intervention Simulation and Situation Assessment Engine (ISSAE),

and
—the INDEMICS Client (IC).

These modules may be distributed across multiple heterogeneous computer systems.
As an example, we may deploy the IEPSE on an HPC cluster, the IC on a desktop,
and the ISSAE on a high-end database server platform. Each module can also have
multiple concurrent instances.

To reduce the communication dependencies between these loosely coupled mod-
ules, distributed across the network, these modules are connected in a star-shaped

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:13

Fig. 2. Details of INDEMICS middleware and data communication. The INDEMICS server plays the role of
message/data-delivering center. The INDEMICS adapter hides the details of data transformations and commu-
nication by providing a set of APIs to EPIFAST, INDEMICS clients, and the database.

architecture, where IMP is the central hub of the framework and coordinates the
interaction between the remaining three components. The architecture provides
better system modularity and portability. The IMP also provides mechanisms for
data transformation, synchronization, and concurrency control to support multiple
concurrent instances of each of the modules. The following sections describe the
modules of the INDEMICS framework in detail. The architecture described in Section 6.1
can be implemented using various approaches based on the type of simulation engine
chosen to simulate the epidemic propagation process and the database management
system chosen for intervention simulation and situation assessment.

6.1.1. INDEMICS Middleware Platform. The INDEMICS Middleware Platform (IMP) is the
central hub in the INDEMICS framework and is responsible for synchronizing and coor-
dinating the interactions between the IC, the ISSAE, and the IEPSE in a distributed
environment. All database accesses from the IEPSE or the IC go through the IMP.

To account for the differences in data formats across different modules, the IMP
is responsible for appropriate data transformations to facilitate communication. Also,
to make the INDEMICS framework independent of the specific implementations of its
components and hide the implementation details of the message communication layer,
as shown in Figure 2, INDEMICS abstracts the interactions between the IMP and other
components and wraps them with a set of APIs (application programming interfaces),
which are part of the IMP.

The implementation of the IMP has been designed to provide interfaces that hide
low-level socket communication and allow higher-level abstractions for structured data

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:14 K. R. Bisset et al.

Fig. 3. The computation flow diagram of INDEMICS. The INDEMICS server coordinates the computations in the
simulation engine and the client, and queries the database with control messages. The server also relays the
data between the database and the simulation engine.

to support communication with diverse modules with different data transfer and stor-
age formats. The current implementation as shown in Figure 2 of the IMP has two
subcomponents: the INDEMICS adapter and the INDEMICS server.

Figure 3 shows the computation flow diagram of INDEMICS. As seen in the diagram,
the IC, the ISSAE, and the IEPSE wait for confirmation from the INDEMICS server before
moving to the next execution step and notify the INDEMICS server when they finish the
current processing. This ensures that the computations are synchronized and the data
remains consistent across all the modules.

The INDEMICS adapter has a collection of APIs that abstract the implementation
details of the middleware from the other modules. The implementation of the INDEMICS

adapter can be accomplished using any language that simplifies the interactions with
the IEPSE as well as the IC. In the current INDEMICS system, the adapter that interfaces
with EPIFAST is implemented using C++, and the interface with the IC is a Java-based
implementation.

The INDEMICS server is capable of supporting multiple concurrent simulation sessions.
As shown in Figure 2, each simulation session is registered with the simulation pool
of the INDEMICS server and is managed by the session manager. The server prepares
corresponding data tables for the session in the database using the database schema
described earlier. The session manager manages appropriate data being passed from
the database and the IC to the appropriate simulation session based on a session
identifier. The message and data deliverer module of the INDEMICS server handles the
data transformations for the data being passed to and from the database system.

6.1.2. The INDEMICS Epidemic Propagation Simulation Engine. The INDEMICS Epidemic Prop-
agation Simulation Engine (IEPSE) provides the core computations that simulate dis-
ease propagation over a dynamic social contact network. The simulation engine can be
derived from existing noninteractive simulation engines, with modifications to support
online interactions. The simulation engine can also be enhanced with desirable features
such as rollback and check pointing to allow users to reprocess disease propagation over
a given time period, perhaps with a different set of interventions.

In our current INDEMICS implementation, we have chosen the extended version of
EPIFAST [Bisset and Chen et al. 2009] as the disease propagation simulation engine.
However, as described before, any other CGDDS-based simulation tool can fit in this

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:15

framework. In a more complex setting, we can combine several simulation engines from
multiple disciplines to study the coevolution of multiple dynamical systems.

EPIFAST is an agent-based simulation engine that simulates disease propagation in
a region, represented as a social contact network. It is a concrete implementation of
the CGDDS framework described in Section 4. EPIFAST executes over multiple time
steps using the SEIR model. Over these time steps, the agents of the simulation, which
represent people in the simulated region, change their current disease state to a new
disease state with probabilities defined in the EPIFAST algorithm.

To support external interventions, EPIFAST has been modified to include an extended
CGDDS system as described in Section 4.1, with a mechanism to start and stop the
disease transmission process. EPIFAST stores different intervention types as vertex and
edge modification functions on the social contact network, represented by gV and gE

(defined in Section 4.1), respectively, that lead to changes in the probability of infection
transmission. In the INDEMICS system, EPIFAST receives external interventions as input
from the INDEMICS middleware in the form of the targeted subpopulation to be inter-
vened (i.e., list of nodes to be intervened) and the intervention type to be applied (input
value to the vertex or edge modification functions). For specific interventions such as
vaccination, EPIFAST receives intervention properties such as efficacy and compliance
rates. After receiving and applying interventions, EPIFAST proceeds with the propaga-
tion computation for the next time step. The output from EPIFAST is a list of nodes that
are infected in the current time step, and this data is passed to the database through
the middleware. The amount of data that is passed to and from EPIFAST is very small
compared to the scale of the entire simulation data. This ensures that the INDEMICS

simulation system is scalable and efficient.

6.1.3. The INDEMICS Intervention Simulation and Situation Assessment Engine. As discussed
earlier, we use RDBMS to support the INDEMICS Intervention Simulation and Situa-
tion Assessment Engine (ISSAE). The current version of INDEMICS uses the Oracle 11g
relational database management system for this purpose. This database comes with
built-in capabilities for error handling, query optimization, synchronization, and fault
tolerance to recover in case of system failures. The data stored in the INDEMICS database
is broadly classified into four main categories as follows: (i) social contact network data
representing the set of proximity relationships for the given region, (ii) demographic
data about individuals in the given region, (iii) temporal data about disease transmis-
sion at every time step, and (iv) intervention data about the intervention strategies
applied.

6.1.4. The INDEMICS Client. (IC)
The INDEMICS Client (IC) (also known as the user interface) provides an interface

to the INDEMICS system. IC interfaces may have distinct implementations to match
different application requirements specific to users (e.g., researchers or students in a
classroom). Communication with the INDEMICS server is facilitated using the INDEMICS

adapter.
Our current implementation of IC provides an interactive console interface to allow

the users to input runtime instructions to query the system state, intervene the system
dynamics, and control the simulation (e.g., rollback, pause, and resume). INDEMICS also
supports a batch client, which uses a script file consisting of a set of interaction rules
to automatically feed the instructions to the INDEMICS server. The batch script has
embedded SQL statements. This provides a high-level query language interface to the
users for situation assessment and subpopulation selection for applying interventions.
The interface also allows selecting types of intervention actions to be applied to the
subpopulation such as vaccination, social distancing, antiviral prophylaxis, and so on.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:16 K. R. Bisset et al.

Fig. 4. Screen shot of Interface to Synthetic Information Systems (ISIS) web-based interface for running
simulations using INDEMICS. Using ISIS, users can set up and manage experiments for studying the effects
of complex interventions to epidemic propagation simulation. Implementation details of ISIS interface for
INDEMICS have been explained in Deodhar et al. [2012].

The IMP translates the embedded SQL statements to actual SQL statements that can
be applied to the RDBMS for retrieving data.

Our INDEMICS implementation has also been integrated with a web-based user in-
terface called the Interface to Synthetic Information Systems (ISIS) developed by our
group for setting up epidemic simulation experiments and for analyzing the simulation
results graphically [Deodhar et al. 2012]. Using the web interface, the users (epidemi-
ologists and public health policy makers) can easily set up experiments with complex
interventions, without having to know anything about the HPC-based environment or
the INDEMICS deployment. Figure 4 shows a screenshot of the ISIS interface for config-
uring a simulation experiment with complex interventions using the INDEMICS model.

6.2. Data Abstractions and Specification

In this section, we describe the internal data structures and formats for data inter-
change. The data representation and abstractions have been designed to ensure min-
imum amount of data transfer and optimal frequency of data exchange between the
modules, in order to satisfy performance requirements. This also ensures conformance
to Proposition A.1.

6.2.1. EPIFAST. As described before, EPIFAST is a concrete implementation of the ex-
tended CGDDS framework described in Section 4.1. The primary input to EPIFAST is a
social contact network that represents proximity relationships between individuals of
the population. It is represented by the Graph G (V, E), where V is a set of vertices rep-
resenting the individuals of the population and E represents contacts between them.
Each vertex in V has an associated vector (pid, h, t1, t2, l1), where

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:17

—pid is the person identifier of the given vertex,
—h is the health state from the SEIR model,
—t1 is the time at which the vertex is infected,
—t2 is the time of recovery, and
—l1 is the list of interventions applied on the vertex.

Each edge in E has an associated vector (V1, V2, p), where

—V1 and V2 are the vertices on which the edge is incident and
—p is the probability of transmission between the vertices as defined in the EPIFAST

algorithm.

EPIFAST reads the entire graph G (V, E) into the main memory from a flat file at the
beginning of the simulation. G (V, E) remains unchanged throughout the simulation.
Interventions change the edge attributes and can simulate edge deletion by using the
appropriate edge label.

The other input to EPIFAST is a list of interventions selected by the user from the
ISSAE. For implementation, interventions are represented as I = (pid, A), where

—pid represents the identifier of the person to be intervened and
—A represents the intervention action to be implemented. A is a vector given by

(type, del, eff, dur, compl), where
—type is the type of the intervention to be applied such as vaccination, social dis-

tancing, and antiviral,
—del represents the delay in implementing the intervention action in the real world,

and
—dur, eff , and compl represent the duration, efficacy, and compliance rate, respec-

tively, of the intervention action applied on the targeted population.

After the intervention I is obtained from INDEMICS at every time step, EPIFAST applies
the algorithm as described in Bisset and Chen et al. [2009] and computes disease
propagation to generate a list of individuals infected in the next time step.

The output from EPIFAST is a vector O of the form (infected, infector, infDur,
diagnosed), where

—infected represents the set of newly infected vertices in the current time step,
—infector represents the corresponding vertices that infected them,
—infDur is the duration for which the vertex would remain in the infectious health

state, and
—diagnosed are the vertices that are diagnosed.

The output from EPIFAST is passed to ISSAE through the IMP at every time step.

6.2.2. RDBMS-Based Situation Assessment and Intervention Simulation Engine. As described
before, ISSAE is based on RDBMS; it stores and processes the four kinds of datasets: the
social contact network data N, demographic data R, infection dendogram data D, and
intervention data I. Demographic data for each region is stored in a simple relational
format in a table given by the tuple R = (pid, age, gender, income). R is static and
remains unchanged for the duration of a simulation. New demographic value sets can
be added to the tuple based on availability of information for the population.

The social contact network data N is stored as a tuple N = (pid1, pid2), where pid1
and pid2 represent the endpoints of an edge in the social contact network. This is
a copy of the data used by EPIFAST to simulate epidemic propagation. It is stored in
the RDBMS so that interventions based on social contact network structure can be
formulated.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:18 K. R. Bisset et al.

The temporal data D related to infections is stored in a separate table that can be di-
rectly updated based on the output received from EPIFAST. This data can be represented
by the tuple (infected, infector, infDur, diagnosed) described earlier.

ISSAE is used to support situation assessment and intervention simulation. Section 5
has already described this in detail. The output obtained from ISSAE is given by
S = {(S1, A1), (S2, A2), . . .}, where Si contains person identifiers on whom to apply
interventions and Ai represents the intervention actions. IMP sends this to EPIFAST.
When EPIFAST resumes computation, it uses the new vertex and edge labels to evaluate
the epidemic propagation for the next time step. For instance, if it is observed that more
than a predefined threshold of school-age individuals are infected in the current time
step, then it would be appropriate to apply an intervention action, such as vaccination,
to the school-age population in the next time step.

7. PERFORMANCE EVALUATION

In this section, we present the experimental results on the performance of our INDEMICS

implementation. We designed and performed a series of experiments simulating disease
propagation in several U.S. metropolitan areas with different complex intervention
strategies to show the performance of INDEMICS in realistic applications.

In our experiments, the IEPSE in INDEMICS is EPIFAST, a parallel code, and it runs on
a shared-nothing Linux cluster. The cluster consists of 96 compute nodes, each having
two Intel Quad Core Xeon E5440 processors running at 2.83GHz and 16GB mem-
ory (2GB/core). We note that the simulations do not use all the CPUs in the cluster.
The RDBMS in the INDEMICS framework is an Oracle Database 11g running on a sepa-
rate server with 16 CPU cores and 64GB memory. The Linux cluster and the database
server are located in a campus-wide computing center. The INDEMICS server runs on the
head node of the cluster.

In our epidemic simulations, the epidemic evolution depends on the contact network
including its structure, contact durations, and interventions that change the network,
as well as parameters of the SEIR disease model. In the appendix, we explain the SEIR
model and disease propagation in a network with or without interventions. The disease
model parameters include the transmission coefficient, the incubation period, and the
infectious period. In Appendix A.4, we explain these parameters and how they are re-
lated to the basic reproductive number R0 (see Appendix A.4 for the R0 definition). We
emphasize, however, that our work is not about epidemic modeling; instead, it
provides a modeling environment to support epidemic simulations. Therefore,
INDEMICS does not pertain to any specific disease model. Although we ensure that the
disease parameters used in our case studies are consistent with published epidemio-
logical parameters [Halloran et al. 2008; Germann et al. 2006; Wu and Cowling 2011;
Fraser et al. 2009], our experimental results regarding the capability and efficiency of
INDEMICS are not limited to the specific disease parameters chosen in our simulations.

7.1. The Performance Overhead of INDEMICS

To integrate it with the INDEMICS framework, we have extended EPIFAST by adding
the stop-and-resume feature to allow synchronized data and message communication
between the simulation and the INDEMICS server. This introduces several additional
I/O operations for EPIFAST: reading the information of intervention actions from the
RDBMS via the INDEMICS server before each simulation step and writing current sys-
tem states to the RDBMS via the INDEMICS server after each simulation step. These
communications create performance overhead. In our INDEMICS implementation, we
have taken care to minimize the performance overhead. For instance, only the IDs of
the individuals whose health states change during the current time step are sent to

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:19

Fig. 5. The performance overhead of INDEMICS. The plot shows the ratio of execution time with INDEMICS by
that with EPIFAST on each simulation day.

the database, and only the IDs of the intervened individuals are sent to the simulation
engine.

We evaluate the performance overhead by running both EPIFAST (standalone) and
INDEMICS (with the extended version of EPIFAST) to simulate the same intervention
scenarios. The epidemic dynamics and the computations in the simulations are exactly
the same between EPIFAST and INDEMICS. Figure 5 shows the ratio of the execution time
of each simulation time step (day) using these two simulation systems for the Miami
population with the scenario in Algorithm 5.

ALGORITHM 5: Intervention scenario: vaccinate preschoolers when over 1% of them are sick.
CREATE TABLE Preschool (pid) AS (SELECT pid FROM Person WHERE 0 ≤ age ≤ 4);
/* based on demographic data */
DEFINE nPreschool AS (SELECT COUNT(pid) FROM Preschool);
for day from 1 to 300 do

/* based on demographic and disease dynamic data */
WITH Infected Preschool (pid) AS (SELECT pid FROM Preschool AND Infected Person
WHERE Preschool.pid = Infected Person.pid)
DEFINE nInfectedPreschool AS (SELECT COUNT(pid) FROM Infected Preschool);
/* check triggering condition */
if nInfectedPreschool > 1%× nPreschool then

apply vaccines to (SELECT pid FROM Preschool); /* intervention subpopulation
and action */

Figure 5 indicates that INDEMICS incurs little overhead in the early period (day 0 to
60) and died-out period (after day 220) but incurs large overhead during the outbreak
period (day 61 to day 119). On day 120, when the intervention is triggered and applied,
the overhead reaches the maximum. This observation is within our expectation: the
overhead of INDEMICS is roughly proportional to the data size communicated between
the simulation engine and the database. When more people are infected, we observe

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:20 K. R. Bisset et al.

Table III. Urban Regions Used in Our Experiments in Section 7.2

Region Population |V | Contacts |E| Avg. age Households Median HH income CPUs
Miami 2.1M 53M 36.1 0.7M 35K 16
Chicago 9.0M 262M 34.3 3.3M 50K 16
LA 16.2M 460M 32.9 5.4M 46K 32

larger overhead as their IDs need to be sent to the database. On day 120, when the 1%
threshold is exceeded, transferring the intervened preschool subpopulation data from
the database to the simulation engine causes additional overhead. We note that the
total execution time of INDEMICS is only 70% greater than that of EPIFAST.

7.2. The Performance of INDEMICS in Complex Interventions

The strength of INDEMICS is its capability and flexibility in simulating complex adaptive
intervention scenarios. We evaluated the INDEMICS performance for a series of compli-
cated interventions that are not available and difficult to implement within EPIFAST.
These intervention scenarios reinforce the belief that INDEMICS should be deployed for
studies with new complex interventions in a short turnaround time instead of using the
conventional HPC-based simulation engine like EPIFAST that may give slightly better
performance but occur a long development time.

Interventions. The intervention strategies in this experiment are household in-
tervention and targeted intervention. In the household intervention strategy, all
members of households with one or more diagnosed household members take social dis-
tancing actions. The targeted intervention is to treat people with a certain health
state immediately (e.g., administer antiviral drugs to sick school-age children when
they are diagnosed).

We chose these two intervention strategies because they are very distinct in several
characteristics.

(1) The targeted intervention is a public-health-level policy intervention; the household
intervention is an individual/household-level behavioral self-protection reaction.

(2) From the perspective of the information scope used in the intervention simu-
lation, both interventions need the health state information of each individual,
which is already available in the simulation engine. In addition, the targeted
intervention needs age of each individual; the household intervention needs the
household membership data; both are stored in the database.

(3) From the perspective of computational complexity for generating the intervention,
the household intervention is more complex, because it requires two RDBMS table-
join operations for choosing who will be intervened, while the targeted intervention
needs only one.

(4) Finally, from the perspective of intervention effectiveness, the household interven-
tion in our experiments is more effective in containing the epidemic, because it is
a proactive strategy, while the targeted intervention is reactive.

In summary, these two interventions are representative ones in various aspects.

Populations. These two interventions are simulated in three U.S. urban areas:
Miami, Chicago, and Los Angeles (LA). They are chosen because of their diversity
in geographic location, population size, age distribution, and household income and
size distributions. Some statistics of these populations and the number of processors
used for the disease propagation simulations (EPIFAST) are given in Table III. Since
the population of Los Angeles is eight times larger than Miami and twice the size of
Chicago, we use twice the number of processors for the Los Angeles simulation for the
speed-up.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:21

Table IV. The Running Time for Data Communication, Disease Propagation Simulation, Intervention
Computation by Database, and Total Execution Time (All in Seconds)

Intervention Communication (sec) Propagation (sec) DB query (sec) Total (sec)
Miami Household 0.2 14 370 384
Miami Targeted 7.8 17 36 61
Chicago Household 0.2 21 387 408
Chicago Targeted 45 29 132 206
LA Household 0.2 16 1,015 1,031
LA Targeted 89 50 247 386

Fig. 6. Cost of the disease propagation simulation. The average running time is shown for each simulation
day. The width of each curve represents one standard deviation above and below the average. Note that in
the right plot, the Los Angeles curve has a variation spike on day 120—it is an isolated case due to the
fluctuation of the HPC resource at that moment.

Each intervention in these three regions has been simulated 20 times with identical
disease configurations but different infection seeds, and the average running time
is logged. The epidemic simulations start on day zero with initial health conditions
for each person and terminate on the 300th day. The total execution time for these
300 simulation days is given in Table IV.

From Table IV, we observe that the cost of database query (DB) is much more domi-
nant in the household intervention scenario than in the targeted intervention scenario.
We show this for Miami in Figure 9 too. The major reason is that the household in-
tervention is computationally more complex than the targeted intervention. Although
the database query looks expensive, it is still meaningful to utilize the RDBMS. First,
using an RDBMS and its query language avoids re-engineering work on the simu-
lation engine for new intervention scenarios, which usually takes several weeks of
development efforts [Ma et al. 2011]. Second, the RDBMS in our experiments is just
a commodity RDBMS; if we incorporate a cluster-based DBMS [Simmhan et al. 2009],
then the performance of INDEMICS could be significantly improved.

In addition to the total execution time, we also present the detailed execution
time for each simulation day. The daily execution time for the disease propagation
simulation, the database query, and the communication are shown in Figures 6, 7, and
8, respectively. Because the quantity of intervened individuals generally grows with
the infected cases, the communication time to exchange the daily health information
and the intervention subpopulation changes in the same direction as the quantity of
the daily new infection cases (Figure 8); the simulation time to implement the ver-
tex state and edge label changes also changes in the same direction (Figure 6). The
database query time in the intervention simulations is remarkably distinct, because
the complexity of the intervention simulation depends on the daily infection cases, as

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:22 K. R. Bisset et al.

Fig. 7. Cost of the database query in the intervention scenario simulation. The average query time is shown
for each simulation day. The width of each curve represents one standard deviation above and below the
average. Note that in the left plot, the Chicago and Miami curves overlap with each other.

Fig. 8. Cost of data communication between the epidemic propagation simulation and the database. The
average communication time is shown for each simulation day. In the right plot (targeted intervention), the
width of each curve represents one standard deviation above and below the average. In the household inter-
vention case, both the average communication time and its standard deviation are less than 1 millisecond
on any simulation day. For readability, we do not show the standard deviation in the left plot.

well as many other factors, such as the query complexity and the size of the static data
(e.g., size of the household table).

7.3. Scalability

We carried out an experiment to assess the scalability of INDEMICS as a function of
the social contact network size. We selected eight U.S. areas with increasing popula-
tion sizes: Miami, Seattle, Boston, Dallas, Indiana (state), Virginia (state), New Jersey
(state), and Chicago. Their social contact networks have similar average degrees. The
intervention applied in the experiment is the household pharmaceutical intervention
(PI), where all household members of any household are vaccinated immediately af-
ter one household member is diagnosed. It is similar to the household intervention
described in earlier subsections, which involves social distancing actions. In all simula-
tions, we used 40 processors (five compute nodes and eight processors per node) of the
aforementioned cluster and the same Oracle database. We ran 10 replicates for each
area. The eight areas are summarized in Table V.

We plot the execution times against the population size in Figure 10. Each data point
in the plot shows the mean value and one standard deviation below and above the mean.
The running time seems to have small variances across replicates. The complexity of

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:23

Fig. 9. The performance comparisons between the disease propagation simulation (Sim.), the intervention
simulation (DB), and the communication (Comm.) for Miami household intervention (left figure) and targeted
intervention (right figure). The database query time in the household intervention simulation is dominant
because of the query complexity.

Table V. The Regions in the Scalability Experiments

Region Population size (million) Contacts (million) Mean household size
Miami 2.1 53 2.87
Seattle 3.2 87 2.50
Boston 4.1 110 2.54
Dallas 5.1 141 2.71
Indiana 6.1 172 2.47
Virginia 7.2 204 2.47
New Jersey 8.2 212 2.60
Chicago 9.0 262 2.72

the database queries for computing the individuals to be intervened increases with
population size in general but also depends on the disease prevalence and the average
household size in the population.

We find that the total execution time for a simulation with such an intervention
varies from 2 minutes to about 10 minutes. This shows that INDEMICS scales well to
large populations with millions of people. For a complete case study for a large urban
region or a state with a factorial design of, for example, two diagnosis rates (probability
of sick people being identified) by two intervention actions (vaccine or antiviral) by two
compliance rates (fraction of people following the intervention policy), and 20 replicates
per setting, it takes only about 6 hours to 1.5 days to run the whole study using a small
amount of computing resources.

8. CASE STUDY

There are two important motivations to employ INDEMICS for complicated epidemic in-
tervention case studies. First, INDEMICS manages supplemental data for the case studies
separately from the simulation engine. Hence, it is not required to modify the simula-
tion engine code to accommodate new intervention scenarios. Second, the intervention
scenarios are written in an SQL-like scripting language specifically designed for in-
tervention simulations; see Algorithms 5 and 6 for two examples. Scripting in this
language usually takes much less time than coding for the simulation engine.

We have used INDEMICS to assist public health decision makers and economists in-
terested in assessing the efficacy of intervention strategies to control pandemics. In

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:24 K. R. Bisset et al.

Fig. 10. Plot summarizing how INDEMICS scales as a function of the size of the social contact network.
The curves show the average running time of the epidemic propagation simulation (EPIFAST), that of the
intervention simulation (database query), and that of the whole simulation. Standard deviations are shown
with error bars and they are very small at most data points.

this section, we describe a case study where INDEMICS was used to compare complex
intervention strategies for epidemic control and prevention.

8.1. Scenario of Case Study

The case study aimed at evaluating three intervention strategies for containing a
potential influenza outbreak in a region. The case study has been published in Marathe
et al. [2011]. Here, we discuss how INDEMICS improved human productivity and led to
the completion of the study in a timely manner.

(1) School Intervention. In any school, if the fraction of students diagnosed with the
flu exceeds a given threshold, say, 5%, then apply vaccination or antiviral to all
students in this school.

(2) Block Intervention. In any census block, if more than a given fraction of the
people living in this block are diagnosed with the flu, then apply vaccination or
antiviral to all people living in this block.

(3) Distance-1 Intervention. It is based on individual decision making. If a per-
son observes that more than a threshold fraction of his or her social contacts are
diagnosed with the flu, then he or she will take the vaccine or antiviral.

The purpose of this study is to examine the effectiveness and social cost of the three
interventions as a function of influenza disease model parameters. In our experiment
design, we vary the disease infectivity (R0), diagnosis rate, and intervention compli-
ance rate. Two types of pharmaceutical interventions, vaccination and antiviral, are
considered. The trigger threshold of interventions are set as 1% and 5%. Totally, we
have 160 different experiment cases.

8.2. Study Implementation and Observations

We use the school intervention to demonstrate the implementation of an intervention in
INDEMICS. The similar approach applies to other interventions, with different INDEMICS

scripts. There are two steps to implement an INDEMICS intervention: data preparation

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:25

and script development. First, we create a table Student_School in the database for
the student-school relation. Second, we specify the school intervention using the inter-
vention scripting language, as illustrated in Algorithm 6. Then we run it together with
the propagation simulation.

ALGORITHM 6: School Intervention: vaccinate all students in any school where over 1% of the
students in this school are sick.
for replicate from 1 to 25 do

CREATE TABLE School Diagnosed Today (school, diagnosed, day); /* number of
students newly diagnosed */
CREATE TABLE School Diagnosed Total (school, diagnosed, day); /* number of
students still sick */
for day α from 1 to 300 do

/* count number of newly diagnosed students in each school */
INSERT (SELECT school, COUNT(pid), α FROM Student School, Daily Diagnosed
WHERE Student School.pid = Daily Diagnosed.pid GROUP BY school) INTO
School Diagnosed Today;
/* count number of students still sick in each school */
INSERT (SELECT school, SUM(diagnosed), α FROM School Diagnosed Today WHERE
α − 7 < day <= α) INTO School Diagnosed Total;
/* find schools where over 1% students are sick to be intervened */
WITH Infected School (school) AS (SELECT school FROM School Diagnosed Total,
School Intervened WHERE diagnosed / school-size > 0.01 and day = α)
SET intervened day = α in School Intervened WHERE intervened day = NA and
school ∈ Infected School;
/* find students in these schools and apply vaccines to them */
WITH Targeted School (school) AS (SELECT school FROM School Intervened WHERE
intervened day = α)
APPLY vaccination treatment on (SELECT pid FROM Targeted School, Student School
WHERE Targeted School.school = Student School.school);

By using INDEMICS, it only took us 1 day to implement the three intervention strate-
gies in INDEMICS scripts. We ran 4,000 simulation replicates (160 different cases and
25 iterations per case) in 3 days. Without INDEMICS, adding code to represent the three
interventions in EPIFAST would have taken us weeks. The main reasons for this are
the following: (i) EPIFAST needs access to the data necessary for mapping students to
schools or individuals to census blocks, and codes would be needed to read this data
and create an appropriate data structure; (ii) codes would be needed to count the di-
agnosed people in each school or block or in the first neighborhood (measured using
the social contact network) of every individual using a parallel algorithm, since the
individuals are distributed across processors in the current code; (iii) all individuals in
the schools or blocks that need to be intervened would need to be identified, and this
needs to be done using a parallel code too. Implementing the distance-1 intervention
is relatively easier than the other two interventions, but all of them need extra care
for parallel computing and to ensure correctness. It would take substantial recoding
should the policy analyst choose workplace instead of schools to vaccinate individuals.
This change is trivial to implement when using SQL.

We summarize some of the case study results. Further results of the study are
reported in Marathe et al. [2011]. In Figures 11 and 12, we plot the daily infections
count and number of people selected for interventions. Ideally, one would like to see an
intervention where both the disease prevalence (solid line) and the cost of intervention
(dotted line) are low. In the vaccination case, none of the three interventions shows this.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:26 K. R. Bisset et al.

Fig. 11. Number of people exposed versus the num-
ber of vaccines (VAX) used on a daily basis with each
of the three interventions.

Fig. 12. Number of people exposed versus the num-
ber of courses of antiviral (AV) used on a daily basis
with each of the three interventions.

The school intervention uses a small amount of vaccines but has a high peak in the epi-
demic curve. The block intervention has a small epidemic but uses too many vaccines.
The distance-1 intervention has neither a low cost nor a low disease prevalence. In the
antiviral case, the distance-1 intervention clearly is the optimal intervention strategy
with the lowest epidemic and the lowest number of antiviral courses used.

9. CONCLUSIONS AND FUTURE WORK

We presented an HPC-based service architecture to support epidemic modeling. A key
feature of the architecture is to decouple the three components of the system: disease
progression simulation, situation assessment, and intervention simulation. The dis-
ease simulation is a compute-intensive component and is suitable for implementation
on a traditional HPC-cluster. The latter two components are data intensive and we
investigated the use of RDBMS to support them. The decoupling results in additional
computational time due to the increased communication complexity and computing
the interventions using RDBMS. But this is better than programming the interven-
tions and results in a significant decrease in the overall time of completing a study.
In addition, the decoupling allowed the system to be more easily accessible to public
health analysts who were not computing experts. INDEMICS is a prototype implementa-
tion that realizes the architecture. A simple user interface allows the user to interact
with INDEMICS.

INDEMICS can be improved in a number of ways. First, as discussed earlier, the class
of interventions that are currently supported are based on the state of the system from
the beginning to the current time. We plan to investigate extensions that will support
interventions that are based on one or more possible future system states. Second, in-
terventions that are based on complicated measures of the graphical structure around
a given individual are extremely expensive since the network is currently stored in
an RDBMS. We are currently investigating the use of heterogeneous database tech-
nologies to support the diverse forms of data. Finally, the user interface needs to be
further extended and combined with simple programming language support to specify
interventions. Our assessment is that a simple domain-specific language might suffice
for this purpose. A program written in this language can then be translated into a
series of SQL statements to represent complex interventions.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:27

Fig. 13. State transitions in the SEIR disease model.

APPENDIX

In this section, we describe details about the models used in epidemic simulations in
this work. More details can be found in, for example, Barrett et al. [2008] and Bisset
and Chen et al. [2009].

A.1. SEIR Model for Within-Host Disease Progression

In our epidemic simulations, transitions of the health state within each vertex follow
the classic SEIR model. Each vertex is in one of the following four health states at any
time: susceptible, exposed, infectious, and removed. A vertex starts in the susceptible
state and remains so unless he or she has contacts with one or more infectious vertices,
in which case he or she probabilistically becomes exposed (infected). If a vertex v
becomes exposed, he or she remains so for �tE(v) days (called latent phase or incubation
period), during which he or she is not infectious. Then he or she becomes infectious
and remains so for �tI(v) days, during which he or she can spread the disease to his
or her contacts probabilistically. Finally, he or she becomes removed (or recovered) and
remains so permanently. Figure 13 shows state transitions in the SEIR model.

A.2. Contact Network

A social contact network G (V, E) is a directed, edge-labeled network. Vertices corre-
spond to individuals in a population, and edges represent the contacts between pairs
of vertices. Each edge has a weight label that is the duration of the contact and a
type label that is the contact type (home, work, school, shopping, or others). Edge (u, v)
with weight w(u, v) represents that vertex u has a contact of duration (in units of time)
w(u, v) with vertex v each day, during which an influenza-like illness may transmit
from vertex u to vertex v with probability p(u, v). Probability p(u, v) depends on the
disease infectivity as well as the states of two vertices and the contact between them.
In Figure 14, we show three possible trajectories (out of many) of disease propagation
in a small contact network. The figure shows the randomness of epidemic dynamics,
as well as how interventions may change the network and affect the epidemic.

The contact network represents five coworkers in a workplace (office, for instance)
and they have contacts with each other during working hours every day. For simplic-
ity, we assume the disease has zero incubation days; so there are only three states:
susceptible (green), infectious (red), and removed (white). Although generally different
vertices have heterogeneous infectious durations, in this example we assume that the
infectious period lasts exactly 1 day for each infected vertex. Suppose the epidemic
starts with vertex A being infectious (t = 1).

In scenario 1 ⇒ 1.1, A infects B and D, so on the second day (t = 2), B and D are
infectious. The edges along which disease transmits are marked with arrows. Both B
and D infect vertex C so at t = 3 C becomes infectious. Finally, C infects E, so all five
vertices are infected in this scenario.

In scenario 1 ⇒ 1.2, after C is infected, he takes sick leave. This removes the contacts
between C and other vertices in the network (edges removed in t = 4 network). In this
scenario, C’s intervention action prevents disease transmission to vertex E.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:28 K. R. Bisset et al.

Fig. 14. This example shows the stochastic disease propagation in a social contact network and the effect
of interventions.

Scenario 2 is another trajectory of the epidemic, where A infects only vertex B. B
infects D and E. Observing his coworkers’ symptoms, vertex C takes extra caution at
work (e.g., washing hands often, opening windows for ventilation, and taking antiviral
drugs). These measures do not avoid contacts but reduce the probability of disease
transmission through the contacts—shown with edges being dotted lines. In this sce-
nario, vertex C is not infected.

We note that there are many more possible scenarios and outcomes of the epidemic
dynamics in this network than can be shown in the figure. What really happens in
an epidemic is one random instance whose distribution depends on interventions both
applied at the public health level and adopted at the individual level.

A.3. SEIR Model for Between-Host Disease Propagation

With the SEIR model, the disease spreads in a population in the following way. On any
day, if any vertex u is in the infectious state, and he or she has contact with vertex v, and
v is in the susceptible state on that day, then the probability of the disease transmission
from u to v on this day is:

p(u, v) = 1 − (
1 − ro

uri
v

)w(u,v)
,

where w(u, v) is the weight of edge (u, v); ro
u is the probability of vertex u infecting

any other vertex in one unit of time of contact; and ri
v is the probability of vertex

v getting infected by any other vertex in one unit of time of contact; the latter two
variables depend on the demographics of the two vertices, as well as their immunity.
So the disease propagates probabilistically along the edges of the contact network. In

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

INDEMICS: An Interactive High-Performance Computing Framework 4:29

Figure 14, we show three possible trajectories of disease propagation in a small contact
network.

A crucial assumption made in almost all epidemic models is that of independence: we
assume that the spread of infection from a vertex u to vertex v is completely independent
of the infection from a vertex u′ to vertex v. Similarly, an infected vertex u spreads the
infection to each neighbor v, independent of the other neighbors of u. This is a central
assumption in almost all the epidemic models and the analytical results based on
percolation.

A.4. Parameters in Our SEIR Disease Model

In epidemiology, the basic reproductive number R0 has been a key parameter and
widely used in the study of infectious disease. In general, R0 is defined as the expected
number of secondary cases one case generates over the course of its infectious period
[Fraser et al. 2009]. In contact network epidemiology where complete mixing is not
assumed, this parameter obviously depends on the network structure, as well as the
durations that infected vertices remain infectious, which may be heterogeneous among
vertices. There are various ways of formulating and estimating R0 from epidemic data;
see Heesterbeek [2002], Heffernan et al. [2005], Meyers [2007], and Goldstein et al.
[2009] for details.

In our epidemic simulations, instead of R0, we specify the following parameters re-
lated to the disease: transmission coefficient β, which is the probability of transmission
per unit time of contact, distribution of incubation period, and distribution of infectious
period. For each vertex, we sample its incubation period from the incubation period
distribution, and likewise for its infectious period. Let �tI be the average infectious
period (in days) among vertices. Given these parameters and the contact network, the
basic reproductive number R0 can be approximated as d̄βw̄�tI , where d̄ is the average
degree of the network and w̄ is the average daily contact duration (in units of time)
between two vertices.

A.5. Proposition on Communication Between Propagation Dynamics and Interventions

Suppose that the query results for the interventions consist of either values of aggregate
functions or subsets of vertices chosen for the interventions (e.g., school-age individuals
who are sick). This usually holds in practice. We have the following proposition.

PROPOSITION A.1. The communications between the propagation dynamics component
and intervention computation component of the interactive CGDDS in each time step
are at most O(k|V | + |V ||gV | + |E||gE|).

PROOF. Consider the communications: (i) in the worst case each vertex changes all its
states and the data that needs to be communicated is O(k|V |), where k is the number of
states (see Section 4.1); (ii) the query results are O(|V |); (iii) in the worst case, different
interventions are generated for each vertex and each edge and the data that needs to
be communicated is O(|V ||gV |+|E||gE|); and (iv) the total amount of data in the control
messages used for synchronizing the components is O(1).

In fact, an epidemic simulation usually involves only health state updates in the
CGDDS and a constant number of possible vertex or edge modification functions. So
in each time step, for (i), the data is only O(|V |); for (iii), the data is only O(|V | + |E|).
Furthermore, in most common scenarios, the total data communication is O(|V |) in the
whole simulation. For example, with the SEIR model (see Appendix A.1), each indi-
vidual changes his or her health state only for O(1) number of times during the whole
simulation; epidemic interventions can usually be specified by listing the involved indi-
viduals, although the interventions may change contact properties. In our performance

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:30 K. R. Bisset et al.

tests presented in Section 7, we show that communications take only a small fraction
of the total simulation running time.

ACKNOWLEDGMENT

We thank the reviewers and TOMACS editors for their extensive comments and suggestions that have
greatly improved the manuscript. We also thank members of the Network Dynamics and Simulation Science
Laboratory (NDSSL) for their helpful suggestions and comments. This work has been partially supported by
NSF HSD Grant SES-0729441, NSF PetaApps Grant OCI-0904844, NSF NetSE Grant CNS-1011769, NSF
SDCI Grant OCI-1032677, DTRA Grant HDTRA1-11-1-0016, DTRA CNIMS Contract HDTRA1-11-D-0016-
0001, and NIH MIDAS Grant 2U01GM070694-09.

REFERENCES

M. Ajelli, B. Gonçalves, D. Balcan, V. Colizza, H. Hu, J. Ramasco, S. Merler, and A. Vespignani. 2010.
Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured
metapopulation models. BMC Infectious Diseases 10, 190 (2010).

R. M. Anderson and R. M. May. 1991. Infectious Diseases of Humans. Oxford University Press, Oxford.
N. Bailey. 1975. The Mathematical Theory of Infectious Diseases and Its Applications. Hafner Press, New York.
A. Barrat, M. Barthelemy, and A. Vespignani. 2008. Dynamical Processes in Complex Networks. Cambridge

University Press.
C. L. Barrett, K. Bisset, J. Chen, S. Eubank, B. Lewis, V. S. A. Kumar, M. V. Marathe, and H. S. Mortveit. 2009.

Interactions among human behavior, social networks, and societal infrastructures: A case study in com-
putational epidemiology. In Fundamental Problems in Computing: Essays in Honor of Professor Daniel
J. Rosenkrantz, Chapter 18, S. S. Ravi and Sandeep K. Shukla (Eds.). Springer, Netherlands, 477–507.

C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng, and M. V. Marathe. 2008. EpiSimdemics: An efficient
algorithm for simulating the spread of infectious disease over large realistic social networks. In
Proceedings of the ACM/IEEE Conference on Supercomputing. 290–294.

K. Bisset, J. Chen, C. J . Kuhlman, V. S. A. Kumar, and M. V. Marathe. 2011. Interaction-based HPC
modeling of social, biological, and economic contagions over large networks. In Proceedings of Winter
Simulation Conference (WSC). 2933–2947.

K. R. Bisset, J. Chen, X. Feng, V. S. A. Kumar, and M. V. Marathe. 2009. EpiFast: a fast algorithm for
large scale realistic epidemic simulations on distributed memory systems. In Proceedings of the 23rd
International Conference on Supercomputing. 430–439.

K. R. Bisset, X. Feng, M. V. Marathe, and S. M. Yardi. 2009. Modeling interaction between individuals, social
networks and public policy to support public health epidemiology. In Winter Simulation Conference.
2020–2031.

CDC. 2010. Updated CDC Estimates of 2009 H1N1 Influenza Cases, Hospitalizations and Deaths in
the United States, April 2009–April 10, 2010. Retrieved September 29, 2011 from http://www.cdc.
gov/h1n1flu/estimates_2009_h1n1.htm.

D. L. Chao, M. E. Halloran, V. Obenchain, and I. M. Longini Jr. 2010. FluTE, a publicly available stochastic
influenza epidemic simulation model. PLoS Computational Biology 6, 1 (2010).

V. Colizza, A. Barrat, M. Barthelemy, A. Valleron, and A. Vespignani. 2007. Modeling the worldwide spread
of pandemic influenza: Baseline case and containment interventions. PLoS Medicine 4 (2007), 95.

V. Colizza, A. Barrat, M. Barthelemy, and A. Vespignani. 2005. Prediction and predictability of global
epidemics: the role of the airline transportation network. Arxiv preprint q-bio.OT/0507029 (2005).

S. Deodhar, K. Bisset, J. Chen, Y. Ma, and M. V. Marathe. 2012. Enhancing software capability through
integration of distinct software in epidemiological systems. In Proceedings of the 2nd ACM SIGHIT
International Health Informatics Symposium. 171–180.

R. Dobbs, S. Smit, J. Remes, J. Manyika, C. Roxburgh, and A. Restrepo. 2011. Urban world: Map-
ping the economic power of cities, McKinsey Global Institute. Retrieved from http://www.mckinsey.
com/insights/mgi/research/urbanization/urban_world.

S. B. Edlund, M. A. Davis, and J. H. Kaufman. 2010. The spatiotemporal epidemiological modeler. In
Proceedings of the 1st ACM International Health Informatics Symposium. 817–820.

S. G. Eubank. 2002. Scalable, efficient epidemiological simulation. In ACM Symposium on Applied
Computing. Madrid, Spain, 139–145.

N. M. Ferguson, D. A. T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai1, S. Iamsirithaworn, and
D. S. Burke. 2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature
437 (2005), 209–214.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

http://www.cdc.gov/h1n1flu/estimates2009h1n1.htm
http://www.cdc.gov/h1n1flu/estimates2009h1n1.htm
http://www.mckinsey.com/insights/mgi/research/urbanization/urbanworld
http://www.mckinsey.com/insights/mgi/research/urbanization/urbanworld

INDEMICS: An Interactive High-Performance Computing Framework 4:31

N. M. Ferguson, D. A. T. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, and D. S. Burke. 2006. Strategies
for mitigating an influenza pandemic. Nature 442 (2006), 448–452.

N. M. Ferguson, M. J. Keeling, W. J. Edmunds, R. Gani, B. T. Grenfell, R. M. Anderson, and S. Leach. 2003.
Planning for smallpox outbreaks. Nature 425 (2003), 681–685.

H. V. Fineberg and M. E. Wilson. 2009. Epidemic science in real time. Science 324 (May 2009), 987.
C. Fraser, C. A. Donnelly, S. Cauchemez, and W. P. Hanage et al. 2009. Pandemic potential of a strain of

influenza A (H1N1): Early findings. Science 324, 5934 (2009), 1557–1561.
T. C. Germann, K. Kadau, I. M. Longini, and C. A. Macken. 2006. Mitigation strategies for pandemic influenza

in the United States. Proceedings of the National Academy of Sciences 103, 15 (2006), 5935–5940.
E. Goldstein, K. Paur, C. Fraser, E. Kenah, J. Wallinga, and M. Lipsitch. 2009. Reproductive numbers, epi-

demic spread and control in a community of households. Mathematical Biosciences 221, 1 (2009), 11–25.
E. Halloran, N. M. Ferguson, S. Eubank, Jr. I. M. Longini, D. A. T. Cummings, B. Lewis, S. Xu, C. Fraser,

A. Vullikanti, T. C. Germann, D. Wagener, R. Beckman, K. Kadau, C. Barrett, C. A. Macken, D. S.
Burke, and P. Cooley. 2008. Modeling targeted layered containment of an influenza pandemic in the
United States. Proceedings of the National Academy of Sciences 105 (2008), 4639–4644.

G. Heber and J. Gray. 2007a. Supporting finite element analysis with a relational database backend, part I:
There is life beyond files. CoRR abs/cs/0701159 (2007).

G. Heber and J. Gray. 2007b. Supporting finite element analysis with a relational database backend, part II:
Database design and access. CoRR abs/cs/0701160 (2007).

J. A. P. Heesterbeek. 2002. A brief history of R0 and a recipe for its calculation. Acta Biotheoretica 50, 3
(2002), 189–204.

J. M. Heffernan, R. J. Smith, and L. M. Wahl. 2005. Perspectives on the basic reproductive ratio. Journal of
the Royal Society Interface 2, 4 (2005), 281–293.

H. W. Hethcote. 2000. The mathematics of infectious diseases. SIAM Rev. 42, 4 (Dec. 2000), 599–653.
L. Hufnagel, D. Brockmann, and T. Geisel. 2004. Forecast and control of epidemics in a globalized world.

Proceedings of the National Academy of Sciences 101 (2004), 15124–15129.
M. J. Keeling and K. T. D. Eames. 2005. Networks and epidemic models. J. R. Soc. Interface 2 (2005), 295.
M. Van Kerkhove and N. Ferguson. 2012. Epidemic and intervention modelling—a scientific rationale for

policy decisions? Lessons from the 2009 influenza pandemic. Bull World Health Organ. (2012), 306–10.
W. O. Kermack and A. G. McKendrick. 1927. A contribution to the mathematical theory of epidemics.

Proceedings of the Royal Society of London. Series A 115, 772 (1927), 700–721.
S. Liao, Y. Ma, J. Chen, and A. Marathe. 2012. Paid sick-leave: Is it a good way to control epidemics? In the

2nd International Conference on Complex Sciences: Theory and Applications (COMPLEX).
M. Lipsitch, L. Finelli, R. T. Heffernan, G. M. Leung, and S. C. Redd. 2011. Improving the evidence base

for decision making during a pandemic: The example of 2009 Influenza A H1N1. Biosecur Bioterror. 9,
2 (2011), 89–115.

Y. Ma, K. R. Bisset, J. Chen, S. Deodhar, and M. V. Marathe. 2011. Efficient implmentation of complex
interventions in large scale epidemic simulations. In Proceedings of the Winter Simulation Conference.

A. Marathe, B. Lewis, C. Barrett, J. Chen, M. Marathe, S. Eubank, and Y. Ma. 2011. Comparing effectiveness
of top-down and bottom-up strategies in containing influenza. PLoS ONE 6, 9 (Sept. 2011), e25149.

S. Merler and M. Ajelli. 2010. The role of population heterogeneity and human mobility in the spread of
pandemic influenza. Processings of Royal Society 277, 1681 (2010), 557–565.

L. A. Meyers. 2007. Contact network epidemiology: Bond percolation applied to infectious disease prediction
and control. Bulletin of The American Mathematical Society 44 (2007), 63–86.

L. A. Meyers and N. Dimitrov. 2010. Mathematical approaches to infectious disease prediction and control.
INFORMS, Tutorials in OPerations Research (2010).

L. A. Meyers, M. E. J. Newman, and B. Pourbohloul. 2006. Predicting epidemics on directed contact
networks. Journal of Theoretical Biology 240, 3 (2006), 400–418.

M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. 2000. Complexity of finite-horizon Markov decision
process problems. J. ACM 47, 4 (2000), 681–720.

M. Newman, I. Jensen, and R. M. Ziff. 2002. Percolation and epidemics in a two-dimensional small world.
Physical Review E 65 (2002), 021904.

J. Parker and J. M. Epstein. 2012. A distributed platform for global-scale agent-based models of disease
transmission. ACM Transactions on Modeling and Computer Simulation 22, 1 (2012).

R. Pastor-Satorras and A. Vespignani. 2002. Epidemics and immunization in scale-free networks. In
Handbook of Graphs and Networks, S. Bornholdt and H. G. Schuster (Eds.). Wiley-VCH, Berlin.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

4:32 K. R. Bisset et al.

K. S. Perumalla and S. K. Seal. 2011. Discrete event modeling and massively parallel execution of epidemic
outbreak phenomena. SIMULATION (2011).

L. A. Rvachev and I. M. Longini. 1985. A mathematical model for the global spread of influenza.
Mathematical Biosciences 17 (1985), 3–22.

Y. Simmhan, R. Barga, C. van Ingen, M. Nieto-Santisteban, L. Dobos, N. Li, M. Shipway, A. S. Szalay,
S. Werner, and J. Heasley. 2009. GrayWulf: Scalable software architecture for data intensive computing.
In HICSS. 1–10.

G. Ch. Sirakoulis, I. Karafyllidis, and A. Thanailakis. 2000. A cellular automaton model for the effects of popu-
lation movement and vaccination on epidemic propagation. Ecological Modelling 133, 3 (2000), 209–223.

B. Sowell, A. Demers, J. Gehrke, N. Gupta, H. Li, and W. White. 2009. From Declarative Languages to
Declarative Processing in Computer Games. In CIDR.

E. Vynnycky and R. G. White. 2010. An Introduction to Infectious Disease Modelling. Oxford University Press.
G. Wang, M. Salles, B. Sowell, X. Wang, T. Cao, A. Demers, J. Gehrke, and W. White. 2010. Behavioral

Simulations in MapReduce. Proceedings of the VLDB Endowment 3, 1 (2010), 952–963.
S. H. White, A. M. del Rey, and G. R. Sánchez. 2007a. Modeling epidemics using cellular automata. Appl.

Math. Comput. 186, 1 (2007), 193–202.
W. M. White, A. J. Demers, C. Koch, J. Gehrke, and R. Rajagopalan. 2007b. Scaling games to epic proportion.

In SIGMOD Conference. 31–42.
WHO. 2004. WHO consultation on priority public health interventions before and during an influenza

pandemic. Available at http://www.who.int/csr/disease/avian_influenza/consultation/en/.
J. T. Wu and B. J. Cowling. 2011. The use of mathematical models to inform influenza pandemic preparedness

and response. Experimental Biology and Medicine 236, 8 (2011), 955–961.

Received October 2011; revised April 2013; accepted May 2013

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 4, Publication date: January 2014.

