Computational Thought

Lecture notes 21SEP09

Professor Shasha began class by testing himself on our names and proceeded to hand out kit Kats to the class.

He then went on to discuss the reading from Out of Their Minds on John Backus. One student suggested that he had a lot to do with noun phrases and verb phrases and he thought from a programming perspective.

Professer Shasha added that he did not do very well in school high school and was very lackadaisical in his schoolwork. Backus got his first job at IBM when he went on a tour of the Selective Sequence Electronic Calculator and was offered a job by the director.

A point was made that his life was a collection of coincidences

Backus found Assembly language too low level for example:

25 means add

26 means subtract

 25 123 456 567

 ^
 ^

 ^

 ^

add
location1 to
location2 send to
location3

Backus decided that this was too hard to remember

Professor Shasha made a transition to floating point numbers, which allow for the ability to represent very large and very small numbers with fewer significant digits. For example the following diagram represents the possibilities:

0\

0 0\

0 0 0\

 | 2

0 1 | 4

0 0 1 |

1/

1 0 |

0 1 0 |

1 1/

0 1 1 | 8
…
Exponential increase

1 0 0 |

1 0 1 |

1 1 0 |

1 1 1/

So 32bits would have …

2^32 = 2^10 * 2^10 * 2^10 * 2^2 = 4 billion possibilities

{+127

-127}

8bits 24 bits left to represent a number

Backus found it hard to remember the scale so he preferred floating point numbers.

Professor Shasha then brought up von Neumann who disagreed with Backus.

von Neumann worked at the institute for advance studies where he worked on a machine to compute trajectories of artillery called EDVAC.

 J. Presper Eckert and John William Mauchly work with von Neumann at the University of Pennsylvania on the architecture that all computers should have.

Example of von Neumann Architecture

Instruction

\/

Processing unit

\/

Memory

\/

Location1 (location2 (location3

\/

 \/

 \/

Input1
 input2
 Result

\/

Back to Memory

von Neumann got credit even through he though he wasn’t the only one working on it because he was the one that documented everything so it made him look like he was responsible.

Professor Shasha told a story about how someone once asked if von Neumann had read A Tale of Two Cities and he could recall pages and pages of text from the book word for word by just reading it once. This is why von Neumann felt it was not a big problem to memorize scales.

Backus proposed to his manager that they develop a programming language called Fortran that utilizes variables.

Example:

X=5

Y=7

Z=x+y

This is much easier than Assembly language and Backus figured that other people would have a problem memorizing assembly.

von Neumann thought it would be too slow but Backus succeeded in making it almost as fast as assembly.

Someone eventually came up with a problem in the programming language, which was recursion, and Backus set out to fix it by creating a new language.

Recursion Example:

FACT(5) --> 5!

//n is positive integer

FACT(n)

If n equals 1 then

Return 1;

Else

N * FACT(n-1);

FACT(5)

\

5 * FACT(4)

\

4 * FACT(3)

\

3 * FACT(2)

\

2 * FACT(1)

\

 1

Recursion makes it easier to write programs however it was not possible in Fortran

McCarthy Introduced the idea of recursion because he wanted to do calculus and he didn’t want to worry about how many times something needed to be done.

After looking at Fortran Backus realized that it was not enough so he tried to go back but nothing would be resolved in their meetings during the designing of Algol because there was no clear notation for discussing language features. So he introduced context free grammar.

Example:

S (if boolean expression

Then S

Else S

If Boolean expression then S

S (x = number
If x > 3 then if x > 5 then y = 10 else y =12

There are two ways to parse this^^

Option 1:

If x <= 3 then y is 12

If x > 3 and x <= 5 then y is not assigned

If x > 5 then y is 10

Option 2:

If x <= 3 then y is not assigned

If x > 3 and x <= 5 then y is 12

If x > 5 then y is 10

Backus wanted a way to make these ambiguous problems more clear when parsing so he created a grammar where each statement would have an end.

Backus introduced context free grammar.

Fortran had an efficient way to translate to machine code, which made the programming field more feasible.

Professor Shasha went on to discuss how much money IBM had and that the cost to build the computers was 15% of the IBM, so IBM had a ton of money. They made Backus an IBM fellow, which gave him immense resources to do with what he wanted.

Backus eventually became frustrated with the fact that one couldn’t tell what was going on in a program by reading the code.

The problem was that trying to make programs use English makes the programs too long but less English makes it too unreadable.

Ken Iverson invented APL or A Programming Language
An example is its use in Inner product:

Innerproduct = (insert +)(ApplyToAll *)(Transpose)

ApplyToAll – element-by-element application relative to position

Insert + - put “+” between products

This concept of programming gets more important now to take advantage of multicore machines to make programs really fast. APL only requires one to memorize 40 operators.

Professor Shasha then presented a similar language K.

K language example:

V: 1+ !10

 ^ ^

add 1 numbers 1-9

Output:

V

1 2 3 4 5 6 7 8 9 10

V * V //element by element square

Output:

1 4 9 16 25 36 49 64 81 100

v +/:\: v

outputs the 1-10 multiplication table

+\V //adds all previous numbers in the set

*\v //factorial

Following this example Professor Shasha took another break to distribute kit kats to the young eager minds and then proceeds to inform them of a test on Wednesday that will be on Context free Grammar. The class then transitions to the wrong number problem, which assigned to be completed the previous Wednesday.

Yuri was chosen by the random name generator to give his solution and although he was unable to construct his own solution he presented the accepted solution

Wrong number Problem:

There are 100,000 5-digit numbers (00000 – 99999)

Take 1 2 3 4 5 - construct some function so that when any two digits are transposed it will reach a non working number.

1 2 3 4 5

a+b+c+d+e

1a+2b+1c+3d+1e

1+4+3+12+10 = 30 + 0

transposing a number will result in a number that will not add up to a number divisible by 10 thus non working

Professor Shasha then assigned homework to be completed for class on Wednesday.

Homework: Read page 20-24 in Computer Science book called Bits and their storage. (Read all of 1.1)

Teng Chao presents another solution to the wrong number problem showing why a using a 3 would not work in place of a 2 as previously suggested thus confirming Professor Shasha’s solution to the problem.

Professor Shasha shows a sign of relief and dismisses the class.
