
c Copyright 1997Ton Anh Ngo

The Role of Performance Modelsin Parallel Programming and LanguagesbyTon Anh NgoA dissertation submitted in partial ful�llmentof the requirements for the degree ofDoctor of PhilosophyUniversity of Washington1997Approved by (Chairperson of Supervisory Committee)Program Authorizedto O�er DegreeDate

Doctoral DissertationIn presenting this dissertation in partial ful�llment of the requirements for the Doctoraldegree at the University of Washington, I agree that the Library shall make its copiesfreely available for inspection. I further agree that extensive copying of this dissertationis allowable only for scholarly purposes, consistent with \fair use" as prescribed in theU.S. Copyright Law. Requests for copying or reproduction of this dissertation may bereferred to University Micro�lms, 300 North Zeeb Road, Ann Arbor Michigan 48106, towhom the author has granted \the right to reproduce and sell (a) copies of the manuscriptin microform and/or (b) printed copies of the manuscript made from microform."SignatureDate

University of WashingtonAbstractThe Role of Performance Modelsin Parallel Programming and Languagesby Ton Anh NgoChairperson of the Supervisory Committee: Professor Lawrence SnyderDepartment of Computer Scienceand EngineeringA program must be portable, easy to write and yield high performance. Unfortu-nately, these three qualities present conicting goals that require di�cult and delicatebalancing, and for parallel programs, the parallelism adds yet another level of complex-ity. The di�culty has proved to be a persistent obstacle to parallel systems, even for thedata parallel class of applications where the parallelism is abundant and the computationis highly regular. This thesis is an e�ort to �nd this delicate balance between scalability,portability and convenience in parallel programming. To establish the framework foranalyzing the many disparate and conicting issues, I develop the concept of modelingand apply it throughout the study. In addition, the empirical nature of the problem callsfor experimental comparisons across current parallel machines, languages and compilers.The nonshared memory model is �rst shown to be more portable and scalable be-cause it exhibits better locality, then two data parallel languages, HPF and ZPL, arestudied in detail. HPF o�ers many advantages and enjoys wide attention in industry andacademia, but HPF su�ers from a signi�cant gap in its performance model that forces

the user to rely completely on the optimization capability of the compiler, which in turnis nonportable.On the other hand, ZPL's foundation in a programming model leads to predictablelanguage behavior, allowing the user to reliably choose the best algorithm and implemen-tation. In this respect, a new language abstraction is proposed that promotes scalabilityand convenient programming: mighty scan generalizes the parallel pre�x operation toapply to conceptually sequential computation that is di�cult to parallelize.

Table of ContentsList of Figures : vList of Tables : viiChapter 1: Introduction : 11.1 Modeling : 11.2 Parallel programming and modeling : 31.2.1 Model for machines : 71.2.2 Model for compilers : 101.2.3 Model for languages : 121.2.4 The larger picture : 131.3 Thesis outline : 13Chapter 2: Programming Models for Data Parallel Problems : : : : : : : : : : : : 172.1 Introduction : 172.2 Methodology : 202.2.1 The Machines : 202.2.2 The applications and the implementations : : : : : : : : : : : : : : 232.3 LU Decomposition : 252.3.1 The problem : 262.3.2 The parallel algorithms : 272.3.3 Volume of data references : 29

2.3.4 Performance results : 322.4 Molecular Dynamics Simulation : 342.4.1 The problem : 342.4.2 The algorithm : 372.4.3 Volume of data references : 412.4.4 Performance results : 442.5 Conclusion : 45Chapter 3: Two Data Parallel Languages, HPF and ZPL : : : : : : : : : : : : : : 533.1 Introduction : 533.2 A review of HPF : 563.3 A review of ZPL : 583.4 Expressing parallelism : 613.4.1 Parallel computation : 613.4.2 Array reference : 643.5 Distributing parallelism : 663.5.1 Distributing the data : 663.5.2 Distributing the computation : 733.6 Conclusion : 75Chapter 4: The Performance Model in HPF and ZPL : : : : : : : : : : : : : : : : 784.1 Introduction : 784.1.1 The performance model : 794.1.2 ZPL's performance model : 814.1.3 HPF's performance model : 824.1.4 A methodology to evaluate the performance model : : : : : : : : : 834.2 Selecting an implementation: array assignment : : : : : : : : : : : : : : : 864.2.1 Quantifying the performance model : : : : : : : : : : : : : : : : : 864.2.2 Results : 88ii

4.3 Selecting an algorithm: matrix multiplication : : : : : : : : : : : : : : : : 984.3.1 HPF versions : 984.3.2 ZPL versions : 1004.3.3 Results : 1014.4 Current HPF solutions : 1084.5 Conclusions : 109Chapter 5: Benchmark Comparison : 1115.1 Introduction : 1115.2 Methodology : 1135.2.1 Overall approach : 1135.2.2 Benchmark selection : 1155.2.3 Platform : 1165.2.4 Embarrassingly Parallel : 1185.2.5 Multigrid : 1205.2.6 Fourier Transform : 1245.3 Parallel Performance : 1265.3.1 NAS EP benchmark : 1265.3.2 NAS MG benchmark : 1315.3.3 NAS FT benchmark : 1335.3.4 Communication : 1345.3.5 Data Dependences : 1355.4 Conclusion : 137Chapter 6: Mighty Scan, parallelizing sequential computation : : : : : : : : : : : : 1406.1 Introduction : 1406.2 A case study : 1426.2.1 Idealized execution : 1436.2.2 An algorithmic approach : 144iii

6.2.3 Pipelining : 1476.3 Implementations by HPF and ZPL : 1496.3.1 DO loop implementation : 1496.3.2 An array oriented approach: F90 and ZPL : : : : : : : : : : : : : : 1526.4 A new construct for ZPL : 1536.5 Conclusions : 155Chapter 7: Conclusions : 1577.1 Contributions : 1577.2 Summary : 1587.3 Future works : 161Bibliography : 162Appendix A: Performance data : 174A.1 LU on shared-memory machines : 174A.2 WATER on shared-memory machines : 176A.3 HPF and ZPL programs on nonshared-memory machine : : : : : : : : : : 177
iv

List of Figures1.1 A user perspective of parallel system : 51.2 Realizing a parallel programming model : : : : : : : : : : : : : : : : : : : 81.3 Experimental comparisons of the programming models and languages. : : 152.1 Machine memory hierarchy : 202.2 LU speedup based on model: n=512, t=4 : : : : : : : : : : : : : : : : : : 322.3 LU execution time: Sequent and Cedar : 352.4 LU execution time: Buttery and KSR : 362.5 LU execution time: DASH : 372.6 LU speedup: Sequent and Cedar : 382.7 LU speedup: Buttery and KSR : 392.8 LU speedup: DASH : 402.9 WATER speedup based on model : 432.10 WATER execution time: Sequent and Cedar : : : : : : : : : : : : : : : : : 462.11 WATER execution time: Buttery and KSR : : : : : : : : : : : : : : : : : 472.12 WATER execution time: DASH : 482.13 WATER speedup: Sequent and Cedar : 492.14 WATER speedup: Buttery and KSR : 502.15 WATER speedup: DASH : 512.16 PnsPs factor for all machines : 523.1 Reference to a distributed array in ZPL. : : : : : : : : : : : : : : : : : : : 65v

3.2 Example of HPF data layout. : 683.3 Example of ZPL data layout. : 704.1 Cross compiler performance for HPF array assignment. : : : : : : : : : : : 904.2 Communication for array assignment using di�erent index expressions: p=8. 934.3 Execution time for array assignment using di�erent index expressions: p=8 954.4 Matrix Multiplications by ZPL and 3 HPF compilers: 2000x2000, p=16 : 1025.1 Illustrations of EP as implemented in HPF and ZPL. : : : : : : : : : : : : 1215.2 Illustrations for the Multigrid algorithm. : : : : : : : : : : : : : : : : : : : 1235.3 Illustrations of FT implementation. : 1255.4 Performance for EP (log scale). : 1275.5 Performance for MG (log scale). : 1285.6 Performance for FT(log scale). : 1296.1 Two methods for array partitioning. : 1426.2 Three possible parallel executions. : 144

vi

List of Tables2.1 Characteristics of the shared memory machines : : : : : : : : : : : : : : : 212.2 Volume of data references for LU : 312.3 Volume of data references for WATER : 423.1 High level comparison of HPF and ZPL : : : : : : : : : : : : : : : : : : : 554.1 Array assignment in HPF and ZPL : 894.2 Choices of array assignment in HPF. : 924.3 Matrix multiplication algorithms expressed in HPF. : : : : : : : : : : : : 994.4 Matrix multiplication algorithms expressed in ZPL. : : : : : : : : : : : : : 1014.5 Pseudo-code for the matrix multiplication algorithms by three HPF com-pilers. : 1034.6 Speedup ratio from 16 to 64 processors, 2000 � 2000 matrix multiplication.1075.1 Sources of NAS benchmarks for HPF and ZPL : : : : : : : : : : : : : : : 1175.2 Communication statistics for EP class A, MG class S and FT class S: p=8 1355.3 Dependence ratio mn for EP, MG and FT. : : : : : : : : : : : : : : : : : : 1376.1 The forward elimination step from tomcatv. : : : : : : : : : : : : : : : : : 1506.2 Pseudo-code for the tomcatv segment by HPF and ZPL compilers. : : : : 1516.3 tomcatv expressed using SCAN and the resulting SPMD code. : : : : : : 154A.1 Performance (seconds) of LU Decomposition on 5 shared memory machines.174vii

A.2 Performance (seconds) of WATER on 5 shared memory machines. : : : : 176A.3 Characteristics of the IBM SP2 used for the cross-compiler comparison : : 178A.4 Performance (seconds) of Matrix Multiplication on the IBM SP2: 2000�2000178A.5 Performance (seconds) of NAS 2.1 benchmarks on the IBM SP2: EP, FT,MG. : 179

viii

AcknowledgmentsThis dissertation would not have been possible without the ever ready encouragementand guidance from my adviser, Lawrence Snyder.I am also indebted to the IBM Thomas Watson Research Laboratory, YorktownHeights, NY for supporting my entire graduate program, and to my managers FranAllen, Kevin McAuli�e, William Brantley, Edith Schonberg, Lee Nackman, Jim Russelland John Barton.The experimental work in this thesis required the parallel computing resources of theLawrence Livermore National Laboratory, Stanford University, the University of Illinoisat Urbana-Champaign, the Cornell Theory Center, the Caltech Center for AdvancedComputing Research and the San Diego Supercomputing Center. I would like to expressmy gratitude to these institutes for making their resources available.I also would like to thank my colleagues Manish Gupta and Bradford Chamberlainwho have always been ready to help with issues on HPF and ZPL.

ix

DedicationsMy parents, Dinh Pham and Bao Ngo, and my brothers and sisters Tuan, Dung, Tuand Thu have always been supportive in quietly reminding me that I do need to �nish mygraduate study some time. Dung has been especially stimulating despite the extremelydi�cult life challenge he is facing. To them, I dedicate this work.My wife, Hue, and I have found that medical school, graduate school and children allat once is not exactly fun, but along our arduous journey together, we have discovereda strong sense of closeness. Nevertheless, we would not recommend to anyone to try it,at least not without a lot of help and a healthy sense of humor.

x

Chapter 1Introductionmodel 1(n) (Webster 7th dictionary)DEFINITIONS:[1 (obs)] a set of plans for a building[2 (dial Brit)] COPY, IMAGE[3] structural design[4] a miniature representation of something;also : a pattern of something to be made[5] an example for imitation or emulation[6] a person or thing that serves as a pattern for anartist; esp : one who poses for an artist[7] ARCHETYPE[8] one who is employed to display clothes or other merchandise:MANNEQUIN[9a] a type or design of clothing[9b] a type or design of product (as a car or airplane)[10] a description or analogy used to help visualize something(as an atom) that cannot be directly observed[11] a system of postulates, data, and inferences presented as amathematical description of an entity or state of a�airs1.1 ModelingThis thesis is based on the concept of modeling. Although the term model is heavilyused in many �elds and our focus in this study will be quite narrow in contrast to thisgeneral term, it is helpful to remember that it forms the underlying basis for this work.

2In the simplest terms, a model reects our understanding of how a certain systemoperates; it captures the information that is necessary and su�cient for our expected useof the system. For instance, when we operate an automobile, we have in mind a certainmodel of the machinery: we expect features such as a steering wheel, an acceleratorpedal, a brake pedal, etc. We expect these features to function in a certain manner: theaccelerator should move the car and the brake should stop it. We operate these featuresand indeed they function as expected. We are also conscious of the size of the car, i.e.,how far ahead and behind are the front and back bumpers, so that we can avoid collidingwith other cars. This conformity to a consistent model allows a person to step into a carof any make or model and drive with no di�culty.A model may capture di�erent levels of detail depending on the needs of the user.For instance, an auto mechanic may look at an automobile and think in terms of theengine, transmission, carburetor, electrical wiring, while a car salesman may think interms of front-wheel drive, antilock brakes, and service contract.Furthermore, the model must be accurate for the system to be operated e�ectively.Consider a race car driver whose goal is to drive as fast as possible without wrecking thecar. Among other things, he must learn precisely how the car steering responds at highspeeds, or more formally, he must acquire in his mind an accurate model of the car'ssteering behavior. A number of scenarios can occur that prevent such a mental model:(1) the steering is soft because of the car's poor design, (2) some last minute repair workhad altered the steering and the instruction given to the driver concerning the changeturns out to be inaccurate, or (3) the car is new and he has not gained enough experiencewith its behavior. Clearly, if the driver is not sure how the car will steer at high speeds,he will have to be conservative and drive at a lower speed.Modeling is also pervasive in computer science. An example of a successful modelcan be found in the design of the memory for a sequential machine. Computer architectse�ectively model a program as a stream of references that exhibit some temporal andspatial locality. Designers then optimize to this model, and the result is the cache, a

3ubiquitous and very successful feature.Interestingly, this example can be carried further to illustrate an instance when themodel fails. A cache under the expected operating conditions will yield an averagememory access time that is much better than that of the main memory, thereby creatingan illusion (i.e., model) of a uniformly fast memory. A user then can program according tothis model by largely ignoring the memory access time. However, unfavorable behaviorscan occur, such as a long sequence of consecutive addresses or a stride in the referenceswhich makes use of only one word per cache line. In these cases, the original model oftemporal and spatial locality fails, resulting in the failure of the cache and consequentlyof the user perception of a uniformly fast memory. The user then encounters surprisinglypoor performance. Fortunately in this particular case, cache blocking by the compilerhas been successful in identifying these reference patterns and breaking the long sequenceor adjusting the memory stride. In other words, the compiler is able to transform theprogram so that it �ts the original model on which the cache design is based.In this thesis, I will focus on the topics of programming for parallel machines, andthe modeling concept is used to study the issues and problems.1.2 Parallel programming and modelingParallel systems are among the few disciplines in computer science in which very sub-stantial bene�ts appear feasible but have remained elusive despite extensive research.Consequently, it is not surprising that the interest in parallel systems has waxed andwaned over the years. The late 80's and the early 90's saw a surge in the developmentof parallel machines and software, driven by the availability of cheap microprocessors.In the last few years however the number of vendors as well as the variety of parallelmachines has been dwindling. The level of interest in parallel systems at the currenttime seems low, yet the relentless quest for more computing power has not eased andit is conceptually clear that parallel machines can lead to faster execution times thana sequential machine. This motivates the question, \What are the major obstacles in

4realizing the potential of parallel systems?" In seeking an answer, it is helpful to considera more elementary question, \What does a user expect from a parallel machine?" Thefollowing expectations are identi�ed.Foremost is performance, or more precisely scalable performance, the principal bene�tfrom a parallel machine. It is clear that a user who considers a parallel machine does soout of necessity. Without scalable performance, there is little motivation for the user todepart from the familiar sequential machine. Scalable performance has two components:(1) competitive scalar performance against a state of the art sequential machine, and (2)good speedup.The second expectation from users is the durability of their software. Program de-velopment is costly without the added di�culty of parallel programming; therefore, theusers expect their programs to be portable not only across di�erent parallel platformsbut also across generations of parallel machines. It should be stressed that portabilitymust include both correctness and performance; otherwise, a correct but slow programis no more useful than a fast program that produces incorrect results.The third expectation is ease of use. This may seem to have lower priority than the�rst two, but it is clear that parallel machines will not gain a critical mass of users untilthey can be made readily accessible. We next consider how various aspects of parallelsystems are meeting these requirements.A contract between the user and the systemFigure 1.1(a) shows a user's perspective in developing a parallel program. From theproblem speci�cation, a user typically chooses an algorithm, implements it in a particularlanguage, compiles the program with a particular compiler, then runs the program on aparallel machine. On a closer look (Figure 1.1(b)), we can see that the portability issuemainly involves the compilers and the parallel machines since the goal in portability isto be able to run the same program without modi�cations on di�erent platforms. Thelanguage is only involved in the sense that one standard language is used. The ease ofuse issue falls entirely within the language since it depends on the type of abstractions

5
machinealgorithm language compiler(a) Developing a parallel program

PortabilityEase of useScalability

algorithm language compiler machine(b) Satisfying the three user expectationsFigure 1.1: A user perspective of parallel systemfor parallelism that the language provides.Scalability ultimately rests with the user in the choice of the algorithm. Since thelanguage is the only interface accessible to the user, he/she would learn the abstractionsand functionality provided by the language and, in the process, form a mental pictureof how the parallel execution is to proceed. This mental picture, or more formallythe programming model, is then used to select the best algorithm for the problem and toimplement the algorithm in the most e�cient manner. The responsibility of the compilerand the machine is to accurately implement the programming model that that languagepresents. The programming model thus serves as the contract between the user and theparallel system. It follows that if either of the parties of the contract fails, e.g. theuser fails to �nd a scalable solution or the system fails to meet the expectation, thenscalability is not achieved.As an example, consider the case of KAP, a parallelizing compiler for Fortran pro-grams. A KAP user would program in the standard Fortran syntax with the understand-

6ing that when a loop is encountered, a number of processors will wake up and executethe loop in parallel. Under this programming model, the user will choose and implementan algorithm based on a number of assumptions: (1) the loop that is expected to executein parallel will indeed execute in parallel, (2) the overhead for entering the parallel exe-cution is negligible, and (3) the data can be accessed with an average low latency. Then,the task for the user is to ensure that the DO loop dominates the program execution,while the task for the parallelizing compiler is to deliver the expected performance. Ifthe compiler meets the expectation, then the program scales; otherwise, the programdoes not scale. In the latter case, the failure is not due to the algorithm since it is indeedscalable according the programming model; rather, the failure rests with the compiler inimplementing the model.The glue for the components of a systemThus far we have only discussed modeling as an interface between the user and thelanguage, yet modeling exists between other components as well. Consider the modelsin a native system as illustrated in Figure 1.2(a). In the development of many parallelsystems, the e�ort has tended to focus on the hardware, leaving the software oftenunder-developed and primitive. In addition, machine vendors are often motivated towardproprietary software that closely mirrors the functionality of the hardware. The resultis a tight coupling between the machine, the compiler, and the associated language.In other words, the machine is designed for a particular architecture, the language isdesigned to match the machine capability, and the compiler translates directly fromthe language syntax to the machine function. The models that exist between thesecomponents contain speci�c details that help make the system e�cient. However adisadvantage is that programs tuned to the system may not be portable. An example isthe Connection Machine CM-2 and its C* language: the where construct is an excellentmatch for the SIMD control mechanism in the hardware, but implementing this languageabstraction on an MIMD may involve more overhead.Figure 1.2(b) shows a more loosely coupled scheme in which a language, preferrably

7a standard one, is targeted by many compilers. The compiler in turn can target a num-ber of parallel machines. In this approach, a language designer must make a numberof assumptions about the capability of the compilers, i.e. a compiler model. Likewise,a compiler developer who intends to port the compiler implementation to multiple ma-chines must have a certain model common to all the machines. A compiler for distributedmemory machines could expect the machine to provide common communication func-tions such as asynchronous send/receive or even a standard communication interfacesuch as MPI.The decoupling of the components renders the modeling aspect more critical becausea mismatch in the chain of models has the potential of degrading the scalability ofthe entire system. Accurate modeling thus becomes the \glue" that ties together thecomponents of a fully portable parallel system. Clearly, any reasonable model can beused between any two components. The only requirement is that the model can beimplemented faithfully, or conversely, the model accurately captures the performance ofthe components being modeled.Having established the high level picture, we can summarize the overall approach forscalable, portable and easy to use systems: (1) the parallel language must be designedcarefully for ease of use; (2) for portability, the language must be supported on multiplecompilers and machines; (3) for scalability, the modeling must be kept accurate across allcomponents of the parallel system. We now briey survey the state of the art in parallelmachines, compilers and languages to understand the types of model that are in use.1.2.1 Model for machinesThe model at the machine level can typically be derived from a description of the machinearchitecture and organization. Parallel architectures proposed over the years cover awide spectrum ranging from shared memory and distributed memory to data ow andmultithreading. Since the processing elements are not di�erent from the uniprocessors,the models for parallel machines are generally distinguished by the memory system:

8
algorithm

Model
language machinecompiler(a) Native models: tight coupling between the machine,the compiler and the language leads to poor portability

Model
algorithm language compiler machine

Model Model(b) More portable models: each phase is decoupledFigure 1.2: Realizing a parallel programming modelshared memory and nonshared memory. Note that we use the term nonshared insteadof the more conventional term distributed to avoid confusion since a shared memorymachine may have a distributed memory organization.Shared memory architecture is characterized by a single address space for all proces-sors, while in the nonshared memory architecture each processor explicitly manages itsaddress space and shares data only through explicit messages that involve both the senderand the receiver. The shared memory model can be further quali�ed by the knowledge ofthe physical location of an address. In other words, a processor is able to directly accessany memory address, but it may or may not be able to determine whether the addressis local or nonlocal. This knowledge imparts on the shared memory model some char-acteristics of the nonshared memory model; therefore for our purpose, this specializedmodel is called a hybrid model.Shared memory machinesAn early memory model for shared memory parallel machines is the Parallel RandomAccess Memory model (PRAM), which extends the sequential Random Access Memory

9model (RAM) by assuming that each processor can access any memory location in unittime. The simpli�cation allows a programmer to reason about the complexity of di�erentalgorithms so that an e�cient algorithm can be chosen. For the shared memory archi-tectures, a number of machines present a pure shared memory model by implementinga memory with a uniform memory access time (UMA). These include symmetric multi-processors based on a bus or crossbar (SMP, currently marketed by numerous vendorssuch as Sequent, SGI), as well as earlier machines that use a multistage interconnect net-work (MIN) to connect the processors to a global memory. In the actual implementation,the memory access time is not strictly uniform, but, as with the cache in a sequentialmachine, there is no direct method for the user to control the access time. Other ar-chitectures fall into the category of pure shared memory as well. Cache Only MemoryArchitecture (COMA) implemented in the Kendall Square Research machine does notallow the general user to di�erentiate among memory locations since the machine's re-sponsibility is to dynamically relocate the memory sections in use to the local processor.Data ow machines such as the Monsoon machine[Papadopoulos & Culler 90] closelymatch the data ow programming model, which has no explicit notion of data location.Finally, the Tera machine relies on the program parallelism to mask the high latency ofthe global shared memory, so that if su�cient parallelism exists, the global memory willappear to be uniformly fast.Hybrid machinesLarge scale shared memory machines by necessity must distribute its physical mem-ory. To take advantage of the processor locality, many machines provide some mecha-nisms for the user to distinguish di�erent levels in the memory hierarchy, resulting ina model of nonuniform memory access time (NUMA). The IBM RP3 and BBN Butter-y distinguished local and remote addresses while the Stanford DASH could recognizenode, cluster and remote memory addresses. Recent advances in network technology inreducing the latency and improving the bandwidth are also shifting the focus to clustersof SMP's. These clusters (Distributed Shared Memory, or DSM) are generally connected

10through a high performance switch and have a hardware coherent cache. Thus departingfrom pure shared memory, these machines present a hybrid model that has both sharedand nonshared memory characteristics: hardware for shared memory is provided, but theunderlying communication mechanism is also exposed to varying degrees, which could beas simple as fetching a �xed size cache line, or more full-edged with put/get of variablesize messages (Cray T3D, T3E).Nonshared memory machinesAt the other end of the spectrum are the message passing machines with the purenonshared memory model. Early machines such as the Caltech Hypercube support littlemore than the basic send and receive, but more recent machines (SP2, Paragon, CM-5)enrich the communication functionality to include asynchronous and collective commu-nication. The level of communication tends to be coarse in most machines, therebyencouraging coarse grained parallelism, but �ne grained communication at the level ofprogram variables is also possible in machines such as the Transputer.1.2.2 Model for compilersA language designer must be aware of the capability of the compiler technology to ensurea viable implementation of the language. Within the framework in Figure 1.2(b), thisawareness constitutes the compiler model. In general however, the model that compilerspresent is not commonly recognized as a separate entity. It is not always clear whethera language design is based on an existing compiler model or assumes a future compilermodel with the expectation that new compiler optimizations will be developed. In thelatter case, the language designer has in e�ect created and used a new model that somefuture compiler must satisfy. We briey survey some current approaches in parallelcompilers to understand the models in use.When a parallel language is extended from a sequential language through libraries,no additional e�ort is required from the compiler. The compiler treats a parallel programno di�erently than a sequential program; therefore no compiler model exists with respect

11to parallelism. Examples include C/Fortran compilers for shared memory programs thatuse the conventional thread abstractions (lock, spawn, etc.) as well as message passingprograms that use the standard communication libraries (PVM, MPI, etc.).Compilers for sequential languages typically optimize for locality in the spatial andtemporal dimensions of the reference pattern. Compilers for shared memory parallellanguages must deal with the additional processor dimension in the reference pattern.On a cache-coherent shared memory machine, a compiler may manipulate the datasharing pattern, for instance by reorganizing the memory layout to minimize the falsesharing e�ect[Jeremiassen & Eggers 95]. In this case, the compiler model would includethe capability to identify the shared data, analyze the access patterns and perform thenecessary transformations.For parallelizing compilers, the model requires extensive capabilities. The compilermust be able to analyze and disambiguate dependences in the DO loops and perform thenecessary transformations so that the loops can be executed in parallel. If the memoryhierarchy is not uniform, the compiler must partition the data to maximize locality. Thecompiler must also minimize any overhead involved in creating the parallelism such asdata copying, synchronization, managing worker threads, etc.HPF and directive-based parallel Fortran variants assume a compiler able to exploitthe data distribution directives. Since these languages mainly target distributed memorymachines, the compiler must (1) analyze the index expression to determine whether eachmemory reference is local or remote, (2) generate the communication required, andmost importantly, (3) optimize the communication so that the program performance isscalable. In addition, the standard Fortran semantics must be observed.For ZPL[Lin & Snyder 93], the design of the language follows the philosophy thatan e�cient compiler implementation must exist for the abstractions. Although it seemscontradictory to be proposing new powerful language abstractions that only requireexisting compiler optimization techniques, being designed from �rst principles and beingdeveloped incrementally allows the language to evolve with new compiler technology. In

12this case, the compiler model is simply one that e�ciently implements the language.1.2.3 Model for languagesModels at the language level are also called programming models. They are interestingfor several reasons. First, they are the direct interface between a user and the machine;therefore they must focus on the user's needs, e.g., ease of use. Second, it is easy tocreate and implement a new programming model because it can be easily interpretedin software. This has lead to a rich diversity of models, which allow for many ways tocategorize them; however to be consistent with the machine model, we will classify themas shared-memory and nonshared-memory and discuss the variations within each class.In the shared memory class, the most elementary model is one that directly reectsthe functionality of the hardware. Control for hardware features such as lock, barriersynchronization, cache prefetch, etc. are coded in libraries which are then used to extenda sequential language. The model is the most e�cient since it accurately captures thecapabilities of the machine, but tends to be rigid. Di�erences in syntax and functionali-ties between machines also hamper program portability, although standard macros suchas those from Argonne National Laboratory have been developed to ease this problem.For languages targeted by parallelizing compilers such as KAP or PTRAN, the orig-inal sequential programming model is only extended with the awareness that parallelismwill arise from the loops. A user would only need to ensure that loops constitute a majorpart of the dynamic execution of the otherwise sequential program.Elementary nonshared memory languages are also extended from sequential lan-guages with communication libraries. These libraries control the low level hardwareand may add functionality such as message bu�ering, error recovery, and collective com-munication; therefore the programming model is usually richer than the actual machine.Di�erences in syntax and functionality lead to some portability problems, although theyare alleviated to some degree by standard communication interface such as PVM andMPI.

13Data parallel languages present an interesting model that has some characteristics ofnonshared memory but allows on a global view of the program computation. Examplesinclude C*, High Performance Fortran and similar variations, and ZPL. The nonsharedmemory quality can exist as data partitioning directives as with HPF, or can be implicitin the language abstractions as in ZPL. Under this model, the user programs with theknowledge that the data will be distributed, but is spared the tedium of coding low levelcommunication to manage the distributed data.1.2.4 The larger pictureOur discussion thus far has identi�ed the following points:1. Parallel programs must be scalable, portable and easy to write2. Scalability originates in the choice of the algorithm3. Ease of use is provided by the language4. Portability requires the support of multiple compilers and machines5. The appropriate models bind together the algorithm, the language, the compilerand the machine to form an e�ective system.In this framework, a system as a whole is only as e�ective as the least e�ectivelink. This observation thus lays the basis for the methodology throughout the thesis:to evaluate a system, it su�ces to evaluate the models that bind together the compo-nents. Evaluating the model in turn will involve formulating some questions that can beanswered by experimental data.1.3 Thesis outlineHaving laid out the framework, the point of departure for this thesis can be stated asfollows. Our goal is to understand the best approach for achieving scalability, portability

14and ease of use in parallel programming. The scope is limited to the class of dataparallel problems. The studies involve experimental comparison across parallel machines,compilers and languages. The concept of modeling serves as the basis for analyzing theobserved behavior.This thesis asserts that an accurate performance model is a fundamental requirementfor a parallel system. It makes the following contributions:� An experimental comparison and analysis of two general programming models: theshared and nonshared memory models.� An experimental comparison and analysis of two data parallel languages: HPF andZPL.� A new high level data parallel abstraction that promotes scalability, portabilityand ease of use: Mighty scan.Chapter 2 begins with the issues of scalability and portability, omitting for the timethe question of ease of use. Given the shared and nonshared memory programming mod-els on di�erent machines (Figure 1.3(a)), the question is which model is more portableacross the machines. The data provides experimental evidence to support the choice ofa nonshared memory programming model.Having established a candidate programming model, we next consider the issue ofease of use. In the last few years, considerable research has focused on high level parallellanguages that are based on the nonshared memory programming model and that targetboth scalability and portability. Although the data parallel model is not adequate to ad-dress general parallel programming, the prevalence of data parallel problems in scienti�capplications has motivated the development of many data parallel languages, all with thegoal of enabling easier programming while achieving scalable and portable performance.In this thesis we will consider HPF and ZPL (Figure 1.3(b)). Compilers for both HPFand ZPL are now widely available on many platforms. HPF vendors include APR (Ap-plied Parallel Research), PGI (Portland Group Inc.), IBM, and DEC, and the supported

15
machine

shared memory

algorithm nonshared memory

shared memory

nonshared memory

machinecompiler

language compiler

language(a) Evaluating the portability of programming models
nonshared memory

shared memory

compilerlanguage

machine

language b

algorithm

compiler b

compiler alanguage a(b) Evaluating the portability of languagesFigure 1.3: Experimental comparisons of the programming models and languages.Note: the lighter shaded diagrams belong in the overall picture but are not currentlyunder consideration.

16platforms include the IBM SP2, Cray T3D, Intel Paragon, DEC SMP AlphaServer, andSGI PowerChallenge. The ZPL compiler from the University of Washington supportsthe Intel Paragon, Cray T3D, IBM SP2, KSR2 and network of DEC Alpha workstations.Such a wide availability allows for detailed comparisons and analysis between HPF andZPL as well as among HPF compilers.The reader may question at this point the practical purpose of comparing HPF andZPL since it appears that HPF, being based on Fortran, is more likely to be acceptedas the standard parallel language. My contention, to be borne out by the results of thisthesis, is that HPF lacks a robust programming model to assure the programmers that analgorithm implemented in HPF will be scalable and portable. In this respect, the choiceof ZPL for a comparison with HPF is appropriate since ZPL has a strong foundationin a programming model. One can argue that because of the high visibility of HPF, afailure of the language due to performance problems will not only disappoint the usercommunity but will also have an adverse e�ect on continuing research in parallel systemsas a whole. Therefore, if HPF is failing to meet user expectations, it is imperative thatwe understand the source of the problem.Chapter 3 will focus on key features of both languages that are critical to scalabil-ity and portability. While it is di�cult to measure the syntactic appeal of a languageabstraction, the ease of use ultimately depends on whether the performance of the ab-straction meets the user expectation. In Chapter 4 this will be quanti�ed through anexperimental characterization of a number of basic language abstractions in both lan-guages.Chapter 5 will carry the comparison to the NAS benchmarks. This chapter will alsobriey consider the interesting issue of native and nonnative compilation.Chapter 6 will consider the problem of a computation with a recurring dependence.A number of solutions are studied and a new language abstraction is proposed thatgeneralizes the parallel pre�x operation.Finally Chapter 7 will summarize the �ndings of this thesis and outline future work.

Chapter 2Programming Models for DataParallel Problems2.1 IntroductionIn Chapter 1 portability and scalability have been identi�ed as critical requirementsfor software development, particularly for parallel applications. Portability for parallelprograms, however, is hampered by the rich diversity in parallel architectures. Parallelmachines in general present one of two memory models: shared memory and nonsharedmemory. If the programmer is to adhere to the memory model of the machine, thendi�erent versions of the program must be written, contradicting the goal of portability.At the same time, choosing one model may preclude executing the program on machinesthat do not support the model.To remedy this problem, a straightforward solution is to emulate the program's pro-gramming model if such a model is not directly supported by the machine. Since aprogramming model is an abstraction, it can be readily constructed in software, albeitat a certain cost. For instance, on a nonshared memory machine, a software layer canprovide the view of a single address space. Conversely, a nonshared memory program-ming model can be created trivially on a shared memory machine by emulating the send

18and receive. The focus then shifts to the cost of such an emulation because this cost di-rectly a�ects the scalability. If it is negligible, then the portability problem with respectto the shared and nonshared memory models can be considered solved.Shared memory programs can be executed on nonshared memory machines by usingthe Shared Virtual Memory system proposed by Li and Hudak[Li & Hudak 89]. In thisapproach, the operating system maintains a consistent cache of memory pages to createthe view of shared memory in a nonshared memory machine. Priol and Lahjomri [Andre& Priol 92] measured the performance of a number of shared memory programs runningon a Shared Virtual Memory system for the iPSC/2 and compared against the nativenonshared memory programs on the same machine. They found that the shared memoryprograms tend to have di�culty with the granularity of sharing.In this chapter, we examine the case of executing nonshared memory programs onshared memory machines. Real world instances of this approach can readily be found.Large scale nonshared memory machines (e.g., Intel Paragon, IBM SP2) are targetedby data parallel languages such as HPF[Forum 93] and ZPL[Lin & Snyder 93]. At thesame time, as a testimony to the low cost and e�ectiveness of the class of small scalebus-based shared-memory machines, many computer vendors presently o�er symmetricmultiprocessors (SMP). It is logical then to add the proper software emulation on theseSMPs to execute the nonshared memory programs generated by HPF and ZPL. In fact,ZPL programs can be run on both shared memory machines such as the KSR andnonshared memory machines such as the Paragon. Similarly, the DEC HPF compilersupports both a network of workstations and the DEC SMP server [Harris et al. 95].One motivation for choosing the nonshared memory model is that this model o�ersaccurate performance prediction. Anderson and Snyder [Anderson & Snyder 91] ana-lyzed several algorithms developed with the shared and nonshared memory models andfound that the shared memory model produces overly optimistic performance predictionthat leads to suboptimal algorithms. To achieve portability for the nonshared memorymodel requires emulation that may a�ect the scalability and this tradeo� needs to be

19quanti�ed. In this chapter, this question is formulated as a comparison of shared memoryand nonshared memory versions of two applications, LU Decomposition and MolecularDynamics simulation. The comparisons are made in two ways:1. The data reference pattern of each application is used to construct a simple ana-lytical model of the parallel execution to predict the behavior.2. The performance of the programs is measured on �ve shared memory machineswith widely di�ering memory organizations.In related work, Lin and Snyder [Lin & Snyder 90] have examined the performanceof shared and nonshared memory programs on several shared-memory machines. Theyfound that the nonshared memory program can outperform the shared memory versionin many cases. However, the study included only two simple programs, matrix multi-plication and Jacobi iteration, and only two machines, the Sequent Symmetry and theBBN Buttery GP1000. Although the results were interesting, the data set was deemedinsu�cient for making generalizations.Leblanc [LeBlanc 86] also made a similar comparison using Gaussian Elimination onthe BBN Buttery. He observed that the model should be chosen based on the natureof the application, and that the shared model may encourage too much communication.However, since the version of Gaussian Elimination used did not include the di�cultpartial pivoting step, the computation is not very di�erent from matrix multiplication.In addition, the measurements were collected from only one older class of machine thatuses relatively slow processors.The study in this chapter contributes to the results from previous work by includingmany contemporary large scale shared memorymachines and by considering an analyticalmodel for the benchmarks that corroborates the observed performance. The second pointis particularly signi�cant because measured performance may include unknown systeme�ects that may bias the results. An analytical model that is validated by real datawill con�rm that the hypothesized e�ect, i.e., the memory model, is indeed the primarye�ect.

20
Figure 2.1: Machine memory hierarchyThe remainder of the chapter is organized as follows. Section 2.2 de�nes the scopeof the problem and describes the methodology of the experiments, including the ma-chines and the implementation. Sections 2.3 and 2.4 describe in detail each of the twoapplications and the results. Conclusions are found in Section 2.5.2.2 MethodologyTo facilitate the discussion in this chapter, we use the subscripts s and ns: Ps is a sharedmemory program while Pns is a nonshared memory program.2.2.1 The MachinesThe shared-memory machines used in the experiment are the Sequent Symmetry,the BBN Buttery, the Cedar at CSRD, Illinois, the Kendall Square Research KSR-1,and the DASH at Stanford. They represent a wide range of memory hierarchies fromrelatively uniform access (Sequent) to non-uniform access (Cedar, Buttery, KSR-1, and

21Table 2.1: Characteristics of the shared memory machines(Note: (1) access ratio is normalized to the access time of the memory closest to the processor, (2) * issum of all local memories)Machine Sequent CSRD Cedar Buttery Kendall Square DASHModel Symmetry A Cedar TC2000 KSR-1 DASHSite U. Washington U. Illinois LLNL U. Washington Stanfordnodes 20 32 128 32 48processors Intel 80286 MC 68020 MC 88100 custom MIPS R3000I cache combined 16 Kb/node 32 Kb/node 256 Kb/node 64Kb/nodeD cache 64 Kb/node 128 Kb/cluster 16 Kb/node 256 Kb/node 64Kb/L1256Kb/L2128 Kb/clusterlocal mem 0 32 Mb/cluster 16 Mb/node 32 Mb/node 14 Mb/nodeglobal mem 32 Mb 256 Mb 2 Gb* 1 Gb* 168 Mb*network bus-based omega buttery ring meshaccess ratio 1 1:4.5 1:3.7:12.7 1:10:75:285 1:4.5:8:26DASH). The Sequent, KSR-1 and DASH employ hardware coherent caches while theCedar and the Buttery do not. Figure 2.1 and Table 2.1 show the general organizationand some relevant characteristics of each machine. Note that the access ratio is theaccess time of each memory level normalized to the access time of the level closest to theprocessor. This parameter is intended to give an indication of the depth of the memoryhierarchy.One important point worth noting is that although several machines are being stud-ied, the focus of the comparisons is between two programs on each machine. Therefore,while the speed of the processor relative to the memory performance plays a central rolein determining the performance of a program, it can be factored out in a comparisonbetween programs on the same machine. The same argument applies to the di�erencesin the memory performance between the machines due to the memory architecture, e.g.,memory bandwidth, cache line size, etc.Following is a brief description for each parallel machine used in this study.The Sequent Symmetry is a small scale bus-based machine. Because of the low speedof the processors, the bus is able to support 20 nodes. Cache coherency is maintainedby bus-snooping using a modi�ed Illinois protocol[Gi�ord 87]. Since the main memory

22resides on the bus, the access time is the same from any processor cache, and since thereis no control over the cache, each processor will only see a certain average access time.Because of these characteristics, the Sequent bears the closest resemblance to the PRAMmodel1 when compared to the other machines. For this reason, the access ratio of theSequent in Table 2.1 is approximated as 1.The Cedar has a cluster architecture: each bus-based cluster contains 8 processorssharing a local memory and the clusters are connected to the global memories through aswitch. Therefore there are two levels of memory hierarchy. Note that the intra-clustercommunication can be done at the cluster memory level, but inter-cluster communicationmust use the global memory.In the Buttery TC2000, each processor node contains a cache and a local memory.Each node is connected to the local memories of all other nodes through a multistageinterconnection network (MIN); the global memory thus consists of the aggregate of alllocal memories. There are three levels of memory hierarchy: the cache, the local memory,and the remote memory. Although memory locations can be assigned a variety of cacheattributes, the most commonly used attributes are cacheable local and non-cacheableglobal, which represent only two levels of memory hierarchy. Since there is no hard-ware coherency mechanism, the machine provides various cache invalidation functions tosupport software caching. Finally, to avoid hot spots in this memory organization, theglobal address space is interleaved across all nodes.The KSR-1 employs an AllCache architecture [Kendall Square Research 92]: insteadof a main memory, each node possesses a large cache that is kept coherent with all othercaches through a snoopy mechanism at the ring level and a directory-based scheme withinthe ring hierarchy. In addition to the main cache, there are also instruction and datasubcaches on each node. The nodes are connected in a hierarchy of rings; therefore, thereare multiple levels of memory hierarchy, beginning with the subcache, to the local cache,the caches within the same ring, the caches within the next ring level, and so on. Because1Parallel Random Access Memory model: each processor can access any memory location in unittime.

23the unit of communication on the ring is a 128 byte cache line, the granularity of shareddata is an important issue. While the architecture provides a combining mechanism byservicing a cache miss at the lowest level of the ring hierarchy, the machine used in theexperiment only contains one ring; therefore this combining e�ect is not visible.The Stanford DASH also uses a directory scheme for cache coherency [Lenoski et al.93]; however, it is organized as a collection of bus-based clusters connected in a meshtopology. Each cluster contains 4 processor nodes, a cluster memory and a cluster cache.Each node in turn contains a level 1 and a level 2 cache, with coherency maintainedat the level 2 cache through bus snooping. Consequently, there are at least 5 levels ofmemory hierarchy: level 1 cache, level 2 cache, cluster memory, remote cluster memory,and remote dirty cluster memory. The cluster cache that resides in the interface betweena cluster and the other clusters combines requests to the same address. Since there isa home node for each memory location, the system also provides functions for dataplacement.2.2.2 The applications and the implementationsIn this study, we focus on the class of data parallel applications by using the LU decompo-sition problem and the WATER benchmark from the Stanford SPLASH suite. Althoughthere are other important classes of parallel applications, the data parallel class coversa large number of scienti�c problems and this class stands to bene�t immediately andsigni�cantly from parallelization.E�cient algorithms exist for both problems in both shared and nonshared memorymodels, and the algorithms employ static data partitioning and load balancing. Thefollowing sections will analyze these algorithms in detail. Note that because our focusis on the portability issue of parallel programs, we are not considering applications withan irregular structure for which an e�cient nonshared memory solution may not beobvious. While an algorithm for such irregular applications may perform reasonablywell on a shared memory machine, the same algorithm is unlikely to perform well on

24a nonshared memory machine with emulated shared memory because of the signi�cantdi�erence in the memory latency. In other words, with respect to portability, we considerthat portable solutions for such problems have not yet been developed.In implementing the algorithms, all programs are written in the SPMD style. Theperformance is measured only for the useful computation; the initialization costs are notincluded.In Ps, data resides in the global memory and the standard lock and barrier mecha-nisms are used for synchronization. In instances where an architecture provides a majorfeature to support the shared memory, simple machine speci�c optimizations for dataplacement are used, and they are described in the following sections. In general, however,aggressive optimizations that are not portable are excluded.In Pns, data is placed in the level of memory closest to the processor. On machineswith coherent caches, this e�ect is achieved automatically through the data referencepattern: since a processor only accesses its data partition, data is allowed to migrateto the highest level of the cache. Note that although data in Ps also migrates to thelevel closest to a processor, the data may be written by other processors and as a resultbe forced out of this level. In general, data locality (in the processor dimension) is aninherent advantage of Pns.The sends and receives are emulated with straightforward block copy, and simpleone-reader/one-writer ports implement some connection topology (binary tree, mesh,etc.). The bu�ers used for communication are placed in the global memory. Datacommunication is more expensive in Pns than in Ps because it must be emulated throughsoftware, incurring costs in code to manage the bu�ers as well as additional loads andstores to read and write the bu�ers. In contrast, Ps communicates data simply by writingto the shared address space. Although the software emulation can be further optimizedby passing pointers, such optimizations are excluded in this study.Given the advantages and disadvantages described above, the performance tradeo�for Pns will be between the communication overhead and better processor locality.

25An important issue in implementing the shared and nonshared memory versions isthe relative ease of the implementations. Given the current state of the art in parallellanguages, a shared memory program is generally easier to write than a nonshared mem-ory program and this holds true in our implementations. However, since our focus isportability, there are several points worth noting. First, it is easier to arrive at a workingshared memory program from scratch because the model allows the programmer to ig-nore data placement. In many cases, the pattern of reference allows the data to migratenaturally to the processors that use them, yielding good performance with little e�ortby the user. However, it is generally recognized that the program must be optimizedfor data locality to obtain scalable performance. This optimization step is di�cult sincemachine speci�c techniques are not portable and portable techniques will likely requiresigni�cant restructuring of the program or the algorithm. Second, the di�culty in writ-ing a nonshared memory program reects the lack of appropriate language support forthe nonshared memory model rather than a fundamental limit in the model. Currentdevelopments in parallel languages for nonshared memory machines such as HPF andZPL may provide a solution to this problem. As a result, we believe the issue of easeof programming should be excluded for the focus of this chapter. This issue will berevisited in the following chapters.
2.3 LU DecompositionThe following two sections describe the two sets of experiments. The problem and thealgorithm are �rst described, followed by an analysis of the data locality in the Ps andPns versions. Results and discussion follow.

262.3.1 The problemTypical of matrix problems, LU decomposition is a numerical method for solving largesystems of linear equations. Given the system of equations:Ax = bwhere A is the coe�cient matrix and b is the constant vector, A is decomposed into alower and upper triangular matrices L and U:LUx = bLetting Ux = y, we can solve directly for y by forward-eliminationLy = band then for x by backward-substitution.Ux = yThe sequential algorithm consists of iterating over the diagonal of the matrix, eachiteration consisting of two steps: partial pivoting (line 2) and row update (lines 3:6).LUseq(1) for (k=0; k<row; k++)(2) partial pivot(3) for (i=k+1; i<row; i++)(4) Aik = Aik=Akk;(5) for (j=k+1; j<col; j++)(6) Aij = Aij - Aik * AkjThe partial pivoting step is necessary for numerical stability in the division step dueto the limited precision in digital computers: it involves searching the pivot column k forthe largest element and then swapping that row with the pivot row k. With a complexity

27of O(n2) compared to the O(n3) of the row update step, this step only constitutes aminor part of the computation; however, it introduces additional serialization into thealgorithm.2.3.2 The parallel algorithmsSince LU decomposition is a well-studied problem, optimized parallel algorithms arewidely available in the literature [Ashcraft 91, Karp 87, Robert 90].The computations in the row update step for each iteration are independent and canbe parallelized easily. The partial pivoting step is more di�cult to parallelize e�ectivelybecause the parallelism available is small compared to the communication/synchronizationrequired for parallelization. Therefore, the optimized algorithm employs pipelining. Dur-ing the current iteration, a processor performs the complete LU decomposition on a setof t columns and saves the transformation, while the remaining processors update thesubmatrix using the saved transformation from the previous iteration. The value oft controls the granularity of the task partitioning and is chosen to best balance theworkload and the communication/synchronization overhead.The pseudo-code for the optimized parallel LU decomposition algorithm is shownbelow. LUs(1) P0 factors col[0:r](2) for (k=r; k<row; k+=t)(3) switch transformation bu�er(4) if (own column(k))(5) updates col[k:k+t] using transformation (k-t)(6) factors col[k:k+t] saving transformation k(7) else(8) updates col[k+t:col-1] using transformation (k-t)LUns

28(1) P0 factors col[0:t](2) and broadcasts the transformation(3) for (k=r; k<row; k+=t)(4) if (own column(k))(5) updates col[k:k+t] using transformation (k-t)(6) factors col[k:k+t] saving transformation k(7) broadcasts the transformation k(8) else(9) updates col[k+t:col-1] using transformation (k-t)LUs and LUns thus implement the same algorithm. The di�erences are:1. Any processors can update any portion of the matrix in LUs, while the matrixis partitioned statically by columns in LUns. Because the iteration traverses thediagonal of the matrix, partitioning the columns by blocks will result in a poor loadbalance in LUns. Some processors will be idle once k has passed their sections.To alleviate this problem, sets of r columns are assigned to the processor in aninterleaved fashion (cyclic).2. LUs requires barrier synchronizations before and after switching the transformationbu�er in line 3. LUns requires broadcasting the newly computed transformationbu�er to all processors in lines 2 and 7.On the Cedar and the Buttery where there exists a local memory but no coher-ent cache, we improve the data locality of LUs by performing software caching in theinnermost loop. On Cedar where there is a cluster level memory, we also optimize thecommunication in LUns by using the cluster memory for intra-cluster messages and theglobal memory for inter-cluster messages. Other techniques for improving LU by usingprimitives at the user level have been proposed by Qin[Qin & Baer 97].

292.3.3 Volume of data referencesSince LU decomposition is a static algorithm, the amount of scalar computation and thevolume of references to the matrix should be nearly identical for the sequential, sharedmemory, and nonshared-memory versions. 2. The total number of processor cycles tocompute and perform this volume of references represents a lower bound on the executiontime of the program. Since the data placement is static in the memory hierarchy andthe ratio of access times to each level of memory is known, we can derive an indicatorof the relative performance of Ps and Pns. We assume the synchronization cost is smalland the load balance is perfect. For the following analysis, we only assume a local andglobal level of memory and that read and write have the same latency. The matrix isalso assumed to be square, i.e., n=column=row.Referring to the LUseq algorithm above, in each outermost iteration k the partialpivot step consists of scanning a column (1 read) and swapping two rows (2 reads + 2writes) beginning from the diagonal element. The number of references is:(3r+ 2w) � (n� k)The row update step consists of dividing the column by the pivot element (2 reads + 1write) and adjusting the rows (3 reads + 1 write). The number of references is:((2r+ 1w) + (3r + 1w) � (n� k � 1)) � (n� k � 1)Summing up over the diagonal iterations, we obtain the volume of references to thematrix:row�1Xk=0 (3r + 2w) � (n� k) + ((2r+ 1w) + (3r+ 1w) � (n� k � 1)) � (n� k � 1)Simplifying and substituting the summations with the equivalent polynomials, weobtain the expression: n3(r + 13w) + n2(r + w) + n(r + 23w)2Discounting small variations due to variable reuse and the references of global parameters.

30In addition to accessing the matrix data, the transformation data in Pns needs to bebroadcast to the worker processors. This is done through a binary tree: the bu�er issent to the root processor and is propagated down the tree. Each message requires a pairof sends and receives; each send and receive operation in turn involves a local read anda global write, or a global read and a local write, respectively. A message transmissionthen requires ((2 global + 2 local) * size) references. The elapsed time for propagatingthrough the binary tree requires the equivalence of (log p + 1) transmissions. The sizeof the transformation bu�er in each k iteration is (n-k)*t, where t is the parametercontrolling the task granularity. The total time for all tree broadcasts is then:(log p+ 1) � (2global+ 2local) � n�1Xk=0;k=k+t(n� k) � tSubstituting the summation and simplifying yields:(log p+ 1) � (global+ local) � n � (n+ t)We can compute an estimate of the relative performance of Ps and Pns with theassumptions:1. The matrix references for Ps will be to the global memory and for Pns to the localmemory.2. The computation and thus the matrix references are perfectly distributed amongthe processors.3. Pns requires the additional tree broadcast operations.4. The references are free of contention.Table 2.2 summarizes the expressions for the reference counts and the oating pointoperation counts (FLOPS) in part (a); part (b) shows the reference counts that representthe elapsed time for the tree broadcast; and part (c) tabulates the reference counts to thelocal and global memory based on the assumption that data is placed in global memory

31Table 2.2: Volume of data references for LUPhases FLOPS read writepartial pivot 12(n2 � n) 32(n2 + n) n2 + ncolumn update 16(4n3 � 3n2 � n) 12(2n3 � n2 � n) 13(n3 � n)Total 23(n3 � n) n3 + n2 + n 13(n3 + 3n2 + 2n)(a) Flops and reference count for LU computation phases: n = size of nxn matrixPhases read writeTotal 12n(n+ r)(log p+ 1)(loc+ glob) 12n(n + r)(log p+ 1)(loc+ glol)(b) Elapsed time for LUns communication in terms of reference count:n = size of nxn matrix, p = processor number in powers of 2Program local read+write global read+writeLUs 0 13(4n3 + 6n2 + 5n)LUns 13(4n3 + 6n2 + 5n) n(n+ r)(log p+ 1)+n(n+ r)(log p+ 1)(c) LUs and LUns references to memory hierarchyin LUs and in local memory in LUns. From this information, we can derive a simplemodel for the parallel execution of LUs and LUns:total cycles = communication cost+ parallel taskparallel task = 1p(FLOPS � FLOPS cycle+ global � global cycle+ local � local cycle)Figure 2.2 plots the speedup based on the number of cycles required by Ps and Pns forratios of memory hierarchy of 1:1, 1:2 and 1:4, with n=512, t=4, and FLOPS cycle=1.Our simple model predicts that Pns easily outperforms Ps when there is any gapbetween the local and global memory. Naturally, many factors are ignored, such as theload balancing, the synchronization, the network contention, the actual higher cost foremulating the communication, etc. However, if the data locality controls the �rst ordere�ects and these factors are secondary, then the estimate can be qualitatively correct.In the next subsection we will look at the results measured on the �ve machines.

32
Figure 2.2: LU speedup based on model: n=512, t=42.3.4 Performance resultsFigures 2.3 through 2.8 show the performance and the speedup of the two versions of LUdecomposition on the �ve machines for three di�erent problem sizes. The speedups arebased on the performance of a straightforward sequential version of LU decomposition.Referring to the predicted speedup curves in Figure 2.2 and the local:global accessratio for each machine in Table 2.1, we �nd that the results match the model predictionwell.We �rst consider the results from the Sequent, the Cedar and the Buttery sincethe ratios of these machines are more precise. The ratio of 1:1 on the Sequent givesLUs a slightly better performance than LUns for all problem sizes. On the Cedar wherethe ratio is 1:4.5, LUns o�ers the better performance. Although the Buttery has threelevels of memory hierarchy, the program only uses two levels (the default cacheable localand noncacheable global attributes); therefore the e�ective ratio is 1:12.7. This largegap in access latency translates directly into a large gap in the performance between

33LUs and LUns. The steep hierarchy on the Buttery gives LUns an advantage that faroutweighs the nonshared memory simulation overhead. We note a number of programoptimizations on the Cedar and the Buttery:1. For LUs on Cedar and Buttery, software caching is performed in the innermostloop by copying a column into local memory for performing the column update; thisprevents repeated access of the same column from global memory while updatingusing the saved transformation.2. For LUns on Cedar, intra-cluster communication uses the cluster memory, whileinter-cluster communication uses the global memory.Since the Buttery cache is controlled by software, more advanced caching techniquesmay improve the performance of LUs, but it seems di�cult to recapture the large per-formance gap. It thus appears that a nonshared memory program matches well a largescale shared memory machine with private per processor cache. Since the Sequent hasa coherent cache while the Buttery does not, a natural question is whether the behav-ior found on the Sequent would be observed on the Buttery if a coherent cache wereimplemented. A coherent cache improves the performance of both Ps and Pns: it willreduce the global data references in Ps and e�ectively eliminate the spin-lock tra�c inPns communication.To search for an answer, we consider the results from the KSR-1 and the DASH, twomachines that employ large scale coherent caches. Given the very large ratios for thesemachines, our simple model predicts that the shared-memory version would not yieldany speedup. On the other hand, if we extrapolate from the performance on the Sequent,the coherent cache would be able to hide the memory hierarchy and to present a moreuniform access to memory, thus giving LUs a slight advantage over LUns. The resultsshow that LUs achieves a reasonable speedup on both machines, but that it trails LUnsby a signi�cant amount in both actual performance and speedup. Clearly, the actualbehavior lies in the middle ground between our two extreme predictions: by reducing

34the number of remote accesses, the coherent cache is very e�ective in reducing the gap inthe memory hierarchy, but not to the degree where data locality is rendered unnecessary.The di�erence in fetching from local and remote memory by the cache is visible in theprogram performance.With respect to scaling with problem size, the relative di�erence in performancebetween LUs and LUns is maintained in every case, and the speedup improves as theproblem size increases. Not surprisingly, this behavior reects the dominant computationcost relative to the cost of communication or memory references, O(n3) versus O(n2) forLU.With respect to scaling with the number of processors, we observe that while thespeedup and performance appear reasonable for up to 32 processors on Cedar, KSR-1and DASH, neither LUs nor LUns achieves any speedup beyond 32 processors on theButtery when the number of processors approaches 100. A partial explanation for thepoor scaling in LUns can be found in our simple implementation of the communication:(1) all messages are point to point, and (2) a processor spin-locks on a global variablewhile waiting for an empty write port or a full read port. Each of these factors consti-tutes a component in the overall communication cost that increases with the number ofprocessors.2.4 Molecular Dynamics Simulation2.4.1 The problemThe WATER benchmark from the Stanford SPLASH suite is a simulation of severalhundred water molecules in a cubical box in the liquid state at room temperature [Singhet al. 92]. The program is representative of the n-body problem, in which each bodyinteracts in certain ways with all other bodies in the system. In this case, the simulationcomputes the forces and potentials among the water molecules to predict various staticand dynamic properties of water. To compute all pair wise interactions, a processor

35

Figure 2.3: LU execution time: Sequent and Cedar

36

Figure 2.4: LU execution time: Buttery and KSR

37
Figure 2.5: LU execution time: DASHin any partitioning scheme will have to access the data in all sections, giving an initialappearance of poor data locality in the problem. However, the version in this studyachieves a good speedup thanks to a favorable ratio of computation to communication,as will be described in the following subsections.2.4.2 The algorithmThe program was manually parallelized from a sequential version, the MDG benchmarkin the Perfect Club suite. After initializing the displacements and velocities, the algo-rithm consists of iterating over a large number of time steps until the system convergesto a steady state. Each time step consists of seven computation phases separated bybarrier synchronizations:1. Predict new values for displacement and the derivatives.2. Compute the intramolecular forces between the atoms of each molecule.

38

Figure 2.6: LU speedup: Sequent and Cedar

39

Figure 2.7: LU speedup: Buttery and KSR

40
Figure 2.8: LU speedup: DASH3. Compute the intermolecular forces between the atoms of each pair of molecules.4. Correct the predicted values for forces.5. Handle the boundary conditions by moving the molecules back into the box if theyare out of the box.6. Compute the kinetic energy in each of the three spatial dimensions.7. Compute the potential energy as the sum of the intermolecular and intramolecularpotentials.The computation complexity is O(n2), but the actual number of pair wise interactionsto be computed is reduced by de�ning a cuto� radius of half the box dimension.The WATERs version was ported to the various machines strictly by substitutingthe parallel macros for lock and barrier synchronization.WATERns is derived from WATERs by replacing the shared data structures withdistributed structures and performing a global update at each point where (1) each

41partition has to access all other partitions to compute the pair wise interactions, or(2) a global sum has to be computed and broadcasted to all partitions. Communicatingthrough a ring topology, each process computes the interactions within its partition, thensends a copy on a complete trip around the ring; as a partition is received, the processupdates both its partition and the traveling partition. When the modi�ed partitionreturns to its source, it is merged into the original partition. Computing the global sumis done similarly by sending the partial sum around the complete ring.In both versions, the processor workload is statically assigned and load balancing isnot considered a problem due to the uniform distribution of the input data. WATERsand WATERns thus perform the identical computation; the only di�erences are in theplacement of the data and the resulting communication.The algorithm has a computation complexity of O(n2) and a communication com-plexity of O(n), which will be described in more detail in the next subsection.2.4.3 Volume of data referencesAs with the LU experiment, we create a simple model of the parallel execution of WATERbased on the FLOPS and data reference counts.The computation phases are listed in order in Table 2.3 part (a) together with thecount of oating point ops, reads and writes for each time step; the counts are obtainedmanually from the program. To account for the cuto� range of half the box length, themolecule distribution is assumed to be uniform and those counts that are dependenton the range are divided in half. Part (b) shows the elapsed time of the ring commu-nication in WATERns in terms of reference counts; note that only 4 phases actuallyrequire communication. In part (c), the reference counts to local and global memory aretabulated based on the assumption that data is placed in global memory for WATERsand in local memory for WATERns. The counts include those references for emulatingthe communication in WATERns.As with the LU experiment, a simple model can be derived as:

42
Table 2.3: Volume of data references for WATERPhases FLOPS read writepredict val 432n 243n 54nintra force 42n+223 24n 3n+3inter force 163n2 + 9n 46n2 + 9n 4n2 + 9ncorrect val 135n 81n 63nboundary 9n 9n 9nkinetic 24n+3 18n + 3 3potential 122n2 + 128n+ 3 42n2 + 33n+ 3 3n+3Total 285n2 + 779n+ 229 88n2 + 417n+ 6 4n2 + 141n+ 9(a) WATER computation phases: n = number of moleculesPhases read writeintra force 3 (loc+glob) 3 (loc+glob)inter force (84n+3) (loc+glob) (84n+3) (loc+glob)kinetic 3 (loc+glob) 3 (loc+glob)potential (84n+3) (loc+glob) (84n+3) (loc+glob)Total (168n+12) (loc+glob) (168n+12) (loc+glob)(b) Elapsed time for WATERns ring communication:n = number of molecules; loc, glob = local, global accessProgram local read+write global read+writeWATERs 0 92n2 + 558n+ 15WATERns 92n2 + 894n+ 39 336n+24(c) WATERs and WATERns reference to memory hierarchy

43
Figure 2.9: WATER speedup based on modeltotal cycle = communication cost+ parallel taskparallel task = 1p(FLOPS � FLOPS cycle+ global � global cycle+ local � local cycle)Figure 2.9 shows the speedup for WATERs and WATERns based on the number ofcycles required; several ratios of local to global are shown, while the cycle per FLOPSis set to 1. The model predicts that for a local:global ratio of 1:1, WATERs has thebetter speedup, but as the ratio increases, WATERs's speedup degrades quickly andfalls below WATERns. Note also that in general the speedups for both versions arebetter than those for LU. The reason is evident in the large FLOPS count relative tothe reference count, indicating a more abundant amount of parallelism.

442.4.4 Performance resultsFigures 2.10 through 2.15 show the performance of the two versions of WATER onthe �ve machines for three di�erent problem sizes. The speedup is based on the betteruniprocessor performances of the two versions.As evident in Table 2.3, WATER di�ers from LU in that the computation dominatesthe memory accesses and the memory reads dominate the memory writes, although allhave the same asymptotic complexity.On the Sequent where the local:global ratio is 1:1, WATERs has a near linearspeedup while WATERns is only slightly behind. On Cedar, both versions give vir-tually the same performance and speedup, although the model predicts that WATERnswould be faster. It is possible that there are some other factors involved that are notincluded in the model.On the Buttery, neither version achieves a speedup beyond 20. Indeed, WATERns'sperformance degrades below WATERs when the number of processors approaches 100.This behavior is consistent with our model although a graph for this con�guration was notshown. As the number of processors increases, the parallel computation decreases whilethe communication remains constant. Therefore, the communication cost in WATERnswill eventually dominate the bene�t of the local memory.On the KSR-1, the performance and speedup of both versions are high and nearlyidentical. On the DASH, the results of WATER actually di�er from that of LU. Althoughboth shared and nonshared-memory versions have the same performance for small num-ber of processors, WATERns has the worst performance when the number of processorsis large.Model prediction for the DASH and KSR-1 is uncertain because of the combinationof the cache and the steep memory hierarchy behind the cache. The e�ectiveness of thecache depends on the characteristics of the application and the overhead for maintainingconsistency. In this case, the high ratio of read to write access implies that the degreeof data sharing is relatively small and that the cache hit rate is high. This would

45decrease the signi�cance of the memory hierarchy, allowing the cache to present a moree�ective model of uniform shared-memory. In other words, given the memory accesscharacteristics of the WATER program, the DASH achieves an e�ective local:globalratio of 1:1 while the KSR-1 gives a ratio that is only slightly worse.2.5 ConclusionIn this chapter we consider the tradeo� between portability and scalability. The situationarises because twomemory models exist at the machine level. Portability limits the choiceto one model; therefore on machines that do not directly support this model, it must beemulated by some runtime software. Since scalability may be degraded by the emulation,it is necessary to quantify this cost. Examples for this emulation exist for both choices ofmodel, but we are particularly interested in the nonshared memory model since it moreaccurately reects the physical characteristics of a large class of parallel machines.The question is formulated as a comparison of the shared and nonshared memoryimplementations of two applications on �ve widely di�ering shared memory machines.The performance di�erence is expressed as a simple factor PnsPs . Figure 2.16 shows ascatter plot of this factor for each application. Note that the nonshared memory programhas the better performance for the points below 1. The solid line is a least mean squarecurve �t of the data points.The results show a marked trend that supports our hypothesis. For shared memorymachines with a non-uniform memory access time, programs written using the nonsharedmemory model bene�t from being able to better exploit the local memory. As a result,a nonshared memory program tends to be more scalable than a shared memory programon shared memory machines despite the emulation cost. The advantage of the nonsharedprogram is proportional to the e�ective gap between the global and local memory thatresults from the combined characteristics of the program and the machine architecture.In this study, LU proves to be more demanding in its data reference pattern (lowerread/write ratio); therefore its performance accentuates the e�ects of the machine archi-

46

Figure 2.10: WATER execution time: Sequent and Cedar

47

Figure 2.11: WATER execution time: Buttery and KSR

48
Figure 2.12: WATER execution time: DASHtecture. We found that the e�ective gap is signi�cant when the ratio between the globaland local memory latency is large, e.g., the Buttery, but it is otherwise small if theratio is small or nonexistent, e.g., the Sequent. Although the KSR and DASH have adeep memory hierarchy with large di�erences in latency between the memory levels, thehardware coherent cache plays a signi�cant role in reducing the number of long latencyaccesses and thus the e�ective gap in the memory hierarchy. The bene�t of the coher-ent cache is clear in WATER, which has a data reference pattern favorable for caching(higher read/write ratio). However, when we compare LU and WATER, it is evidentthat the e�ectiveness of the coherent cache is contingent on the characteristics of theapplication. Cast in the modeling framework described in Chapter 1, WATER's behavior�ts the model that the cache is designed for, while LU's behavior is less cooperative.Chapter 1 identi�ed three requirements: portability, scalability, and ease of use. Inthis chapter, we have largely ignored the last component. The shared memory model isgenerally considered convenient to the users while the nonshared model is not. On the

49

Figure 2.13: WATER speedup: Sequent and Cedar

50

Figure 2.14: WATER speedup: Buttery and KSR

51
Figure 2.15: WATER speedup: DASHother hand, the experimental and analytical results suggest that the nonshared mem-ory model is more portable and scalable. At this point, one can envision two possibleapproaches to meet all three requirements.1. Choose the shared memory model and develop hardware or compiler optimizationtechniques to achieve consistent scalability in the user program[Qin & Baer 97].2. Choose the nonshared memory model and develop new language abstractions thatare convenient to program. In addition, the compiler must be able to compile theseabstractions e�ciently so that the advantage of an accurate model is not a�ected.The next chapter will examine the latter approach.

52
0 10 20 30 40 50

Processors (n=200)

0.0

0.5

1.0

1.5

2.0

ra
ti

o

0 20 40 60 80 100
Processors (n=96)

0.0

0.5

1.0

1.5

2.0

ra
ti

o

0 10 20 30 40 50
Processors (n=300)

0.0

0.5

1.0

1.5

2.0

ra
ti

o

0 20 40 60 80 100
Processors (n=288)

0.0

0.5

1.0

1.5

2.0

ra
ti

o

0 10 20 30 40 50
Processors (n=512)

0.0

0.5

1.0

1.5

2.0

ra
ti

o

 LU

0 20 40 60 80 100
Processors (n=512)

0.0

0.5

1.0

1.5

2.0

ra
ti

o

WATERFigure 2.16: PnsPs factor for all machinesThe solid line is a curve �t of the data points; below the dotted line Pns is better.

Chapter 3Two Data Parallel Languages,HPF and ZPL3.1 IntroductionChapter 2 has shown evidence that a programming language based on the nonsharedmemory programming model achieves scalability and portability. A language realizes aninstance of a programming model by providing a number of abstractions; therefore, theremaining task for the language designer is to achieve ease of use in the design of thelanguage abstraction. A number of current languages and language extensions implementthe nonshared memory programming model and in this chapter we will consider two suchlanguages, HPF and ZPL. Although HPF and ZPL share many similarities, their selectionin this study is based primarily on their di�erences. They represent two classes of parallellanguages built from fundamentally di�erent philosophies: HPF is an extension to asequential language while ZPL is designed from �rst principles.It is helpful to begin by recognizing that HPF and ZPL are both universal in thesense that any computation can be expressed in either language; therefore the issue isnot whether a certain computation can be expressed in a language but whether it canbe done conveniently. In this respect, a language may be described as being expressive,

54which generally means that given an algorithm, a programmer can quickly arrive atseveral possible implementations that are conceptually e�cient and that require only areasonable coding e�ort from the programmer.Expressiveness can be achieved in several ways. Designing a language abstraction as a�rst class object contributes to expressiveness since the abstraction can then be combinedand used in many exible combinations. Abstractions that naturally capture frequentlyused operations also help to make the language more expressive. Unfortunately, quan-tifying the expressiveness of a language is problematic because it is a subjective qualitythat depends on the programmer's style and experience. A programmer who is wellversed in a particular language and who is partial to the language is likely to �nd thelanguage expressive. Some metrics can help to measure expressiveness, for instance thenumber of lines of code to implement an algorithm, the programmer's productivity, thenumber of bugs, etc.In this thesis, we take the modeling viewpoint to adopt the following argument: theconvenience factor in a language is only meaningful if the language abstractions can beimplemented e�ciently and consistently. In other words, this issue must be consideredin conjunction with, not in isolation from, the scalability and portability issues (recallFigure 1.1). From this argument, the ease of use can be evaluated by characterizingthe performance of the basic abstractions of the language. Clearly, consistent highperformance is the ideal case. Even in the case of low performance, if the abstractionsare identi�able and behave consistently, a user can attempt to learn the behavior andsupplement the programming model. However, if the performance is unpredictable, thenone must conclude that the language is not easy to use.This chapter begins with a general review of HPF and ZPL in Sections 3.2 and 3.3.The reader who is unfamiliar with either language is referred to the appropriate languagereference and user guide for further detail [Snyder 94, Forum 93]. A discussion followsin Section 3.4 and 3.5 that compares in detail the language features that HPF and ZPLprovide for parallel programming. Since we are primarily interested in the parallel case,

55we will assume that the non-parallel aspects are equally adequate in both languages.Table 3.1 summarizes the main points to guide the discussion, namely how parallelismis expressed (computation and array reference) and distributed (data and computation).Table 3.1: High level comparison of HPF and ZPLExpressing ZPL HPFParallel computation region do loop + directivesarray operation forall, whereF90 arrayF90 intrinsicSequential computation for do loopLocal array index indexNonlocal array direction, at indexDistributing ZPL HPFData block (block,cyclic,blockcyclic)subroutine boundary no communication redistributeComputation owner-computes implementation dependentFigure 1.3(b) depicts portability as multiple compiler implementations for a language.Then to evaluate the portability of the language requires multiple compilers on multiplemachines since the goal is to establish whether consistent performance can be achievedon di�erent platforms. HPF satis�es this requirement since multiple compilers exist onseveral machines. For ZPL, the existence of only one compiler implementation appearsto limit an evaluation on portability, even though the compiler supports many platforms.However, portability is strongly coupled with scalability and ease of use. In this respect,ZPL is based on a clear performance model that requires any compiler implementationto adhere to (Chapter 4); therefore, portability is an inherent quality of ZPL.

563.2 A review of HPFIn the last decade, trends in VLSI technology have been driving parallel machines towardphysically distributed memory with nonuniform access time. As a result, data localitybecomes critical to high performance in this class of machines. In optimizing for locality,automatic data partitioning proved to be a very di�cult problem. As a result, a numberof computer vendors and university projects began introducing various forms of user-speci�ed directives to aid the compilers in partitioning the data. For instance, MASPARFortran provides CMPFMAP[Joi 95]; CM Fortran uses CMF$ LAYOUT; Cray's CRAFTFortran uses CDIR$ [Thi 94]. Others include Fortran D[Hiranandani et al. 94], andVienna Fortran[Benkner et al. 92].Recognizing this trend, the High Performance Fortran Forum was formed to developa standard that was �nalized in 1994 as the High Performance Fortran Language speci�-cation [Forum 93]. HPF quickly became a far reaching e�ort involving a wide consortiumof companies and universities[Forum 93]. In this respect, one major contribution of HPFis that it is the �rst recognized standard in parallel language. HPF's strategy is to ex-tend from the Fortran 77 and Fortran 90 base with directives and several new languageconstructs. The directives specify the data distribution as well as other aspects of thebase Fortran language that are a�ected by parallelization. To maintain compatibilitywith the standard Fortran, the directives are speci�ed as comments.The attraction of HPF is manifold. First, using Fortran as the base language promisesquick user acceptance since the language is well established in the targeted community.Second, the use of directives to parallelize the program implies ease of programming sinceconceptually the directives can be added incrementally without a�ecting the correctnessof the program. In fact, it is conceivable that a compiler can parallelize the programwithout any help from the user although this appears to contradict the need for thedirectives in the �rst place. On the other hand, there are potential disadvantages. First, aparallel language that is an extension of a sequential language will likely inherit languagefeatures that are either incompatible with parallelization or di�cult for a compiler to

57analyze[Snyder 86]. Second, the optional nature of the directives, while convenient, maypresent an unpredictable programming model to the users since it may not be clear towhat degree the program needs to be annotated with the directives. A program thatscales well with a particular HPF compiler may not scale with a di�erent compiler. Thusthe latter may present a challenge to the users while the former presents a challenge aswell as an opportunity for the compiler developers. Yet, the opportunity to develop newoptimization techniques is attractive to both academic researchers who can �nd directapplication of their work and to software vendors who can di�erentiate their productsby their optimization capability.An HPF programmer would proceed normally with the Fortran programming, theninsert the directives as hints for the compiler to parallelize the program. Parallelism inan HPF program comes from the DO loop, the Fortran 90 array operations, and theWHERE and Forall constructs.The directives for data distribution support a two-phase process in which an arrayis aligned relative to a template or another array that has already been distributed,then the template is distributed over a processor grid. An array distribution can bechanged at any point by REDISTRIBUTE and REALIGN. The data distribution canalso change implicitly across subroutine boundary since the caller and the callee mayspecify di�erent distributions for the array. In this case, the transcriptive, descriptive,prescriptive directives provide a number of options for redistributing the subroutinearguments.Some directives provide hints for the data dependence analysis. For instance, PUREasserts that the subroutine has no side e�ects so that its presence in a loop does notinhibit the loop parallelism, and INDEPENDENT asserts that the loop has no loopcarried dependence, allowing the compiler to parallelize the loop without any furtheranalysis. Other directives resolve conicts between the original Fortran sequential se-mantics and parallelization; for instance SEQUENCE dictates that the array has to bestored in contiguous memory locations according to the standard Fortran model.

58The HPF language committee recognized that compilers supporting the full languagespeci�cation may require a signi�cant development time; therefore a subset of the lan-guage was de�ned to facilitate earlier compiler implementation.Current HPF compiler vendors include APR (Applied Parallel Research), PGI (Port-land Group Inc.), IBM, and DEC, and the supported platforms include the IBM SP2,Cray T3D, Intel Paragon, DEC SMP AlphaServer, and SGI PowerChallenge. The ven-dors, however, do not support the same set of HPF features. The PGI and DEC compilersupport the full HPF speci�cations with some exceptions; the APR compiler supportsthe HPF subset; the IBM compiler supports the subset and several extensions fromthe full speci�cation. All compilers employ extensive optimizations for communicationand parallelization, although a vendor may choose to focus the optimization on certainaspects of HPF. HPF prototypes have also been built in numerous university projects.The HPF Forum is currently working on the HPF 2.0 speci�cation to correct someshortcomings of HPF 1.1, to standardize some common practices among the HPF com-pilers, and to broaden the applicability of HPF [Forum 96]. Some notable featuresinclude:� Data distribution: shadow region allocates a region surrounding the local partitionthat overlaps the adjacent partition; gen block allows irregular block distribution;indirect allows per-element mapping of array elements to processors.� Computation distribution: on home speci�es the owner-computes rule; reductionasserts that a loop is a reduction.3.3 A review of ZPLRecognizing the limitation of the PRAM as a model for writing parallel programs, Sny-der proposed the Candidate Type Architecture (CTA) [Snyder 86]. The CTA modelattempts to capture the essential qualities of parallel machines at a level that is neithertoo low so that it is limited to a small class of machines nor too high so that important

59characteristics are lost. The proposed CTA simply consists of a number of processorsconnected by a sparse network and controlled by a controller; therefore it matches mostif not all current parallel architectures.To program a CTA machine, the concept of Phase Abstractions and the associatedlanguage XYZ were developed [Alverson et al. 93]. The language encapsulates the datadistribution in Data Ensembles and the communication in Port Ensembles. The threelevels X, Y and Z make up a structured and hierarchical approach to programming: levelZ is concerned with solving the problem with algorithms, level Y con�gures the data andport ensembles to support each algorithm, and level X contains the local computation toimplement the algorithm. To make the implementation feasible within the resources ofacademia, the array language ZPL was proposed in 1993 as a subset of the language XYZ[Lin & Snyder 93], and after several years of development and re�nement, a compilerwas completed in 1995 [Lin 94, Chamberlain et al. 95].The distinction of ZPL is that the language is designed from �rst principles: thefreedom from inheriting a sequential language allows new concepts and language con-structs to be invented to create a concrete delineation between parallel and sequentialexecution. Consequently, the programming model presented to the user is clear and thecompiler does not have to manage complex interactions between language features orarti�cial dependencies. One may expect that it is both easier to develop a ZPL compilerand to write a ZPL program that scales well. In return, the tradeo� in designing a newlanguage without any legacy is the challenge of gaining user acceptance.ZPL introduces several important new abstractions for expressing parallelism, themost fundamental of which is a concept called region. A region is simply a rectilinearset of indices. A region is used both to declare the shape of a parallel array as well as tospecify the index set for a block of statements to operate over (the parallel array is alsocalled an ensemble). As an example, consider the following example in which an 8 � 8region is declared. Then R is used both to declare an ensemble A and to initialize A to1:

60region R = [1..8,1..8];var A: [R] integer;[R] A := 1;Each program statement must fall within the scope of a region. The use of a regionthus disallows random indexing of the parallel array. This is an important departure fromsequential languages since the lack of indexing is a powerful reminder to the programmerthat no order exists during the parallel execution. Without indexing, references to otherelements in the parallel array are made through direction's, which are literally directionalvectors, and the @ operator. Additional operators such as \of" and \in" allow a directionto be combined with a region to de�ne a new region relative the current region. Theindex range of a region can be a constant (static) or a variable (dynamic); the index setcan be continuous or can have a stride factor.Conceptually, parallelism is achieved by overlaying the ensembles over a processorgrid, the rank and size of which are set at runtime through command line options 1. Ifregions of di�erent sizes exist in the program, a bounding box is computed for all regionsand the box is then overlaid over the processor grid.In addition to the parallel array, ZPL also supports indexed arrays which are refer-enced through explicit indexing. Because a sequential array is replicated, an operationon a sequential array is repeated on all processors, yielding no parallelism. A parallelarray on the other hand is distributed; therefore an operation on the array is executedin parallel with each processor performing the operation on the array section it owns(owner-computes).Being an array language, ZPL operates on the array as one entity. Scalars are pro-moted as needed to conform to the target array. Scalar procedures and functions aresimilarly promoted to operate on single array elements but return a full array. Manyarray operations are supported directly in the language, including parallel pre�x, reduc-tion, ood. Since these intrinsic functions operate on the entire parallel array, they are1The current implementation supports a 1-D or 2-D processor grid.

61optimized to be highly parallel and e�cient.The remainder of the language is largely conventional. ZPL supports the standarddata types (integer, real, double,...), arithmetic and logical operators, and control con-struct (if, for, while,...). \con�g var"'s are program constant but can be set at runtime.A compiler has been implemented at the University of Washington and currentlysupports the Intel Paragon, Cray T3D, IBM SP2, KSR2 and network of DEC Alphaworkstations. The compiler implements advanced optimizations such as loop fusion,array contraction, redundant message elimination. The runtime system supports MPI,PVM, and shared memory, employing a novel method called Ironman to exploit the bestadvantages of the particular communication interface.3.4 Expressing parallelism3.4.1 Parallel computationParallelism in HPF can be derived from the existing constructs in F77 and F90 as wellas new language constructs and directives. Users accustomed to F77 can continue to usethe conventional DO loop with the expectation that parallelism will be extracted by thecompiler. This o�ers several advantages: (1) the language is directly usable since theuser does not need to learn any new language features, and (2) existing F77 programscan be parallelized with little or no change. Parallelizing general DO loops however isdi�cult because the loop semantics may enforce considerably more dependency than thecomputation requires2. Research in parallelizing compilers dates back to the late 80's,yet has yielded only limited success[Eigenmann et al. 91, Kuck et al. 93]; therefore thisraises questions about the feasibility of the approach.Programs written in F90 can express parallelism through (1) the array semantics, (2)the WHERE construct, and (3) the intrinsic functions. Consider the array statement:A(1 : 100) = B(200 : 400 : 2) +A(50 : 150)2To guarantee the correctness of a computation, an implementation can impose a stricter but nevera weaker ordering.

62The semantics call for the RHS to be computed completely before the result is assignedto the LHS. The implication is that there is no dependence between the assignment inthe LHS and any references in the RHS. The WHERE construct essentially extends thearray semantics to include a conditional statement: each element of an array is testedindependently and some statements are executed depending on the TRUE or FALSEvalue of the test. Conceptually, because the array semantics call for the computation ofeach array element to be performed independently, the parallelism is clear. The intrinsicfunctions are functions that operate on an array such as SUM(), SPREAD(). While theyare not necessarily parallel in concept, the implementations by the compilers or in thelibaries can be parallelized and optimized.The Forall construct is a new feature provided by HPF which has a semantics analo-gous to arrays, but allows much more exible indexing of the array. However, the Forallhas restrictions and must be used with care since the exible indexing may be in conictwith the array semantics and yield unde�ned results. For instance the syntax allowsseveral values to be assigned to the same array element, but the result will be unde�ned.Finally, the $INDEPENDENT directive asserts that the iterations in the immediatelyfollowing DO or Forall loop can be performed independently, freeing the compiler fromany further dependence analysis.The many ways to express parallelism help make HPF highly expressive in the sensethat given a problem, a programmer can quickly implement a solution in one or severalpossible ways. This expressiveness arises from HPF's compatibility with F77 and F90,as well as new language features. However, implementing each of these features requiresa signi�cant e�ort. This wide range of choices may force a compiler, out of practical con-siderations, to focus on a particular expression of parallelism. The compromise will inturn lead to nonportable di�erences between platforms. For instance, the APR compilertargets the market of existing F77 codes by investing its e�ort in analysis and optimiza-tions for DO loops and performance tuning tools to help the user in restructuring theprogram. The PGI compiler on the other hand targets new codes written in F90[Bozkus

63et al. 95], therefore its ability to analyze DO loops is quite limited.One method to manage the di�erent HPF constructs is to convert them to a com-mon form, but this can lead to a suboptimal solution. For instance, a compiler mayscalarize the array statements in an F90 program and convert it to the same internalrepresentation as an F77 program so that the same analysis applies; however, doing somay introduce arti�cial dependencies that render the analysis more di�cult. Anotherexample is idiom recognition[Gupta et al. 95], where the compiler scans the internalrepresentation to detect patterns of DO loops that implement common global array op-erations (e.g., summation, reduction). Once detected, they can be substituted with thestandard intrinsic functions.Compared to HPF, ZPL achieves parallelism by employing the region concept singu-larly and pervasively throughout the language. A region is by de�nition an unorderedindex set. A region is used to de�ne the scope for both data and computation; there-fore computation over a region proceeds in an unordered manner. In addition, built-inoperators such as parallel pre�x and reduction operate over a region and have a parallelimplementation although they may be conceptually sequential. The region and the ar-ray operators in ZPL are somewhat analogous to the F90 array statements, the Forallconstruct and the intrinsic functions in HPF, except ZPL's region is applied uniformlythroughout the language.The single mode for expressing parallelism in ZPL does require a user to reason ina new paradigm that is di�erent from the conventional sequential programming. In thisparadigm, the user thinks in terms of \do this to all elements at once"; in fact with thisarray perception, ZPL programming has been likened to programming in Matlab3. Itmay appear that having a single mode for expressing parallelism limits the expressivenessof the language. However, the popularity of Matlab has demonstrated that programmingby array is a convenient and expressive tool. It follows that a Matlab user would �ndZPL an expressive language, or conversely, once a user has become familiar with array3Matlab however does not o�er the notion of distributed computing

64programming, implementing a solution in ZPL would be quick and convenient.Finally, it has been mentioned that unlike HPF, the availability of only one ZPLcompiler may limit an evaluation of the portability of ZPL. In this respect, the singlemode for expressing parallelism helps minimize any possible di�erences between multipleimplementations of ZPL. This does not mean that all ZPL compilers will o�er similarperformance, rather it ensures that a ZPL program that is parallelized by one compilerwill be parallelized by any compiler.3.4.2 Array referenceThe message passing programming model is inconvenient for at least two reasons: (1)nonlocal data requires communication to be brought to the processor that performs thecomputation, and (2) the local section of the distributed array requires local indices,which in turn requires frequent conversions from the global indices. Data parallel lan-guages solve these two problems by allowing the user to program with a global view, inwhich the distributed array is accessed using global indices and the communication ishidden or encapsulated in some abstractions. In this approach, the task for the compileris to compute the local indices and generate the necessary communication.Note that a global view is not synonymous with shared memory: we de�ne the latterto be a subset of the former. Global view refers to the ability to manage a distributedarray in the same manner as an array on a uniprocessor. Shared memory allows randomaccess to array elements with no distinction whether they are local or nonlocal. Thusshared memory implements a global view, but a global view can be implemented byother abstractions beside shared memory. This distinction is important because thecommunication is a major component of the overall performance.Both HPF and ZPL o�er to the user a global view of the data and both generate thenecessary communication to fetch the nonlocal data to maintain this global view. HPFand ZPL di�er however in whether the communication is visible to the programmer.ZPL has the following unique characteristics. Consider the two ZPL assignment

65
A

B

A

[R] A := B;

[R] A := B@east;

P(0)

B

A

P(1)P(0)

B

A

B

P(1)

Figure 3.1: Reference to a distributed array in ZPL.Note: (a) only local data is used in the assignment, and (b) nonlocal data requirescommunication.statements in Figure 3.1. By the language semantics, the �rst statement is guaranteedto involve no communication since all data are local. The second statement requirescommunication (unless the region is not distributed) because the @ operator accessesdata that may not be local.ZPL semantics dictate this behavior by (1) requiring that all interacting regions bealigned by their indices, e.g., A[1,3] must be aligned with B[1,3], and by (2) replacingabsolute indexing with relative indexing, i.e., the @ operator. The �rst restriction insuresthat all elements with the same indices will reside on the same processor so that anelement wise operation will only involve local data. Communication occurs when the

66source and destination indices di�er, and the second restriction forces the user to usethe special operator when the indices di�er. The @ operator thus becomes a visual cuethat aids the user in programming an algorithm.HPF on the other hand provides no visual cue in the language for the occurrence ofcommunication. If the compiler is known to implement the owner-computes rule, it ispossible to carefully align the data layout so that the required communication is morevisible. However, this requires a conscious e�ort by the programmer and in the generalcase, the manual bookkeeping can be quite di�cult. For compilers such as APR thatcan choose to distribute data and computation independently, it is virtually impossibleto deduce the communication pattern from the source program.In a parallel machine, the communication is a major component of the program per-formance. Given an algorithm, if the compiler can guarantee the optimal communicationfor this algorithm regardless of how the algorithm is expressed in the source program,then it is an advantage to abstract away the communication from the language and re-duce the need to make the communication visible to the programmer. However if sucha case is not likely, then the user can only optimize the program if the communication isvisible. This criterion is part of the performance model which will be explored in moredetail in Chapter 4.3.5 Distributing parallelism3.5.1 Distributing the dataData distribution involves the mapping of a section of an array onto a processor in aprocessor grid. The existence of some distribution methods in a language is clear evidenceof the nonshared programming model.Type of distributionHPF allows extensive exibility in distributing the array through the DISTRIBUTE,ALIGN and TEMPLATE directives. The mapping is a two-phase process. First, ALIGN

67aligns an array relative to another array or a template using an a�ne function that mapseach index from any dimension of the source array to an index in any dimension of thetarget array. A TEMPLATE is a dummy index set that is used solely for computing thedistribution. Second, DISTRIBUTE speci�es how the template is to be distributed overthe processor grid. Alternatively, an array can be distributed onto the processor griddirectly without the alignment step.If there are more array dimensions than processor grid dimensions, the remainingarray dimensions will be collapsed; if there are fewer array dimensions than processorgrid dimensions, the array can be either replicated over the remaining processor griddimensions or anchored to a speci�c processor grid dimension. The binding for the datadistribution thus occurs at the source level, although at the runtime it is possible to queryfor the number of processors and make some limited adjustment to the con�guration.As an example, Figure 3.2 shows array A(20,20) being distributed by block onto a 2x2processor grid, and array B(4,4) being aligned relative to array A. Note that B(4,4) mapsto a transposed grid because of the swapped index, but within each processor the arraysection is stored in its normal column major order.Three types of data distribution are available in HPF: block, cyclic and block cyclic.Block distribution is the most commonly used and the most straightforward to imple-ment. Cyclic distribution is not di�cult but can result in signi�cant overhead due tocomplex index expressions generated by the compiler, particularly when cyclic is mixedwith other modes of distribution. Block cyclic distribution is more di�cult to analyzeand can lead to high overhead as well. This fact is evident in the level of support fromthe current compilers: the APR and IBM compilers do not support block cyclic.ZPL's data distribution is more restrictive: only block distribution is supported.Conceptually, all arrays are aligned to one single global index space which is then mappedonto the processor grid. In practice, this global index space is computed as the boundingbox for all regions in the program that interact4. Distribution is done by pairing the4Two regions interact if there exists an assignment statement in which one region is on the RHS andthe other region is on the LHS

68
11

10

1

2011101

A(11:20,1:10)

B(4,4)

P(1,0)

20

P(0,0)

A(11:20,11:20)

B(2:4,4)

P(1,1)

A(1:10,11:20)

B(2:4,1:3)

P(0,1)

A(1:10,1:10)

B(1,1:3)

(a) HPF program segment

(4,2)

(4,3)

(4,4)

(2,1)

(2,2)

(2,3)

(2,4)

(4,1)

(3,4)

(3,3)

(3,2)

(3,1)

(1,4)

(1,3)

(1,2)

(1,1)

alignment

array A(20,20)

array B(4,4)

(b) Logical mapping

!HPF$ PROCESSOR P(2,2)

!HPF$ DISTRIBUTE A(BLOCK,BLOCK) ONTO P

!HPF$ ALIGN B(j,i) WITH A(2*i+3, 5*j+23)

(c) physical mapping

 integer A(20,20), B(4,4)

Figure 3.2: Example of HPF data layout.Note: (1) A(20,20) is distributed by block and B(4,4) is aligned to A; (2) the index istransposed in the mapping function but the array is stored in the normal column majororder.

69array and processor grid dimensions starting from the rightmost dimension. Given anarray rank Ar and a processor rank Pr, if Ar > Pr, the remaining array dimensions arecollapsed; if Ar < Pr, the array is distributed over Ar dimensions on the processor gridand is anchored on the �rst order of the remaining processor dimensions. The currentcompiler implementation supports a 2-dimensional processor grid.An array can be aligned with another by selecting the proper index range and strideof its region. For instance, Figure 3.3 shows array B[9..15,5..11] with a stride of 2 beingoverlaid over array A[1..20,1..20]. It is possible to reproduce the HPF layout in Figure 3.2,but in general HPF distribution is richer.Compared to HPF, ZPL does not map an arbitrary array dimension to a processorgrid dimension. This precludes mapping the array to a transposed processor grid asin Figure 3.2. ZPL also does not separate the o�set from the index range when twoarrays must be laid out relative to each other. For instance, array B in the example has4� 4 elements, but it cannot be indexed as [1..4,1..4]. On the other hand, the processorgrid is speci�ed at runtime, delaying the binding and thus allowing di�erent processorcon�gurations to be invoked without recompiling the program.RedistributionHPF allows an array distribution to be changed in two ways. It can be changed atany point in the program via REDISTRIBUTE and REALIGN to be tailored to eachphase of the computation. In addition, since a subroutine can specify a di�erent datadistribution within its scope, an array that is passed as a formal argument may have tobe redistributed on the subroutine entry to match the local distribution and then againon the exit to return to the caller's distribution. This presents a potential ine�ciency ifan array is repeatedly redistributed across the subroutine boundary. This can be avoidedif the caller and the callee reside in the same program by ensuring that both specify thesame distribution. However for separately compiled subroutines, the caller's distributionis unknown. In addition, the distribution inherited from the caller may be a poor matchfor the subroutine and result in excessive communication.

70
10

20

11

10

(9,5) (9,7)

(11,5) (11,7) (11,9)

(13,5) (13,7) (13,9)

(15,5) (15,7) (15,9) (15,11)

(13,11)

(11,11)

(9,11)(9,9)

1

A[11..20,11..20]

B[11..15,11..11] by 2

P(1,1)

20

B[9..9,11..11] by 2

11

A[1..10,11..20]

P(0,1)

array B[9..15,5..11] by 2

P(0,0)

B[9..9,5..9] by 2

A[1..10,1..10]

P(1,0)

B[11..15,5..9] by 2

A[11..20,1..10]

array A[1..20,1..20]

region bigR[1..20,1..20]
smallR[9..15,5..11] by [2,2];

var A: [bigR] integer;
B: [smallR] integer;

(a) ZPL code segment

(b) Logical mapping

alignment

1

(c) Physical mappingFigure 3.3: Example of ZPL data layout.Note: the bounding box for A and B is used to compute the partitioning.

71HPF does not solve this problem but rather provides the user the options to specifythe appropriate action. The normal DISTRIBUTE directive is called prescriptive sincethe array must be redistributed as speci�ed. The INHERIT directive is transcriptive:the array distribution is to be inherited from the caller without any redistribution. TheDISTRIBUTE * directive is descriptive: the programmer asserts that redistributioncan be omitted because the distribution in the caller and in the subroutine will beidentical, thereby relieving the compiler and the runtime system of the task of checkingthe distribution. Thus with careful use of these directives, the user can balance betweenthe redistribution cost and the computation in the subroutine.Procedures in ZPL are distinguished as sequential or parallel. A procedure is sequen-tial if it does not contain any reference to a parallel variable (a region); otherwise it is aparallel procedure. An example of a sequential procedure is one that accepts an integerand returns its square. This distinction requires the two types of procedure to be treateddi�erently; speci�cally, the concept of promoting a procedure only applies to a sequentialprocedure that has no side e�ects.Calling a procedure does not involve communication in ZPL for the following rea-son. Calling a sequential procedure requires no communication since by de�nition, theprocedure only operates on data local to the processor. Calling a parallel procedurewithout passing any parallel array also results in no communication since parallel arraysdeclared within the procedure scope are not visible to the caller. If a parallel array ispassed, the compiler will analyze references to the parallel array in the interproceduralanalysis step to compute the appropriate bounding box for partitioning. The result isthat the parallel array will remain perfectly aligned across the procedure boundary, thusrequiring no communication.DiscussionHPF clearly provides a wide range of complex data distributions. In addition, theactual distribution of an array is completely decoupled from the reference to array ele-ments since HPF must adhere to the Fortran syntax; in other words, an array element

72is accessed in the same manner regardless of how it is distributed. These features cul-minate in a high level of convenience and expressiveness for HPF programs. In termsof the modeling framework, they capture the nonshared memory characteristics of theprogramming model by requiring the user to consciously distribute the data. At thesame time they allow the problem to be solved from a global point of view, sparingthe user the tedious low level programming typical of message passing programs. SinceHPF's abstractions to implement the nonshared memory programming model appearto be reasonable, we proceed to consider whether they can be implemented e�cientlyand consistently. The challenge to the compiler lies in two areas: optimizing the dataredistribution and the nonlocal array references. The latter has been discussed in detailin Section 3.4.2.Redistribution is clearly a heavy weight process due to the complex mapping andthe communication involved. The compiler can generate some code for redistribution,but the runtime system must handle most cases because many variables are unknown.Redistribution requires computing the distribution map of the source and destinationarrays, intersecting the maps to determine all the senders and receivers, generate thecommunication and marshalling the data to and from the communication bu�ers. Thecost thus includes the computation, the bu�er allocation and copying, the communicationand the degradation in cache performance. For this reason, the APR compiler providesthe option of allocating the full storage for a distributed array at each node, of whichonly the local array section is used. This reduces the overhead for bu�er allocation andthe data marshalling, but the memory requirement is not scalable.Recalling our modeling framework, the signi�cant redistribution cost should be visiblein the programming model. The explicit REDISTRIBUTE and REALIGN directivesmeet this requirement, however the implicit redistribution that occurs across subroutineboundaries does not. Since the default action by the compiler is to enforce redistributionto ensure correctness, a programmer may be surprised by unexpected redistribution callsinserted by the compiler. The presence of REDISTRIBUTE or REALIGN in the source

73program also adds complexity to the compiler since it interferes with many standardoptimizations for the sequential code; for this reason, the IBM HPF compiler currentlydoes not support REDISTRIBUTE and REALIGN.3.5.2 Distributing the computationSection 3.4.1 describes how the user can express the parallel computation. The next stepis to distribute the parallel computation among the processors and ultimately, the degreeof parallelism achieved depends on how this distribution is actually implemented. In theideal case, the computation will somehow be evenly distributed among the processorswith no overhead. In reality however, the distribution strategy not only a�ects theworkload balance but also the necessary communication since nonlocal data needed forthe computation must be fetched to the site that performs the computation and theresult must be stored to the appropriate site.Since parallelism in both languages is derived from some form of looping, the commonmethod for distributing the loop is to adjust the loop bounds and stride to reect thelocal workload. If the loop cannot be distributed, the bounds will not be adjusted andall processors would execute all iterations, resulting in no parallelism.Can the loop be distributed?Before a loop can be distributed, an HPF compiler must �rst analyze the depen-dencies to determine whether correctness can be preserved. Clearly the distributionis inhibited if the analysis fails and in this respect, HPF provides several directives tohelp the compiler. A loop with no cross iteration dependency can be annotated withINDEPENDENT. A subroutine call within the loop may have side e�ects which wouldconstitute a loop dependency; the subroutine with no side e�ects can be annotated withPURE to assert this fact. Whether a user needs to insert these directives depends onthe analysis capability of the compiler.How to distribute?In contrast to its extensive data layout capability, HPF does not specify how the

74computation is to be distributed, leaving this decision to the compiler implementation5.One motivation for this choice is to leave open optimization opportunities for the com-piler. A common convention adopted by several compilers (IBM, PGI, DEC) is theowner-computes rule: the processor that owns the LHS of an assignment statement isto execute the statement. In this scheme, the compiler will generate the communicationnecessary for the owner of the LHS to gather the data referenced in the RHS beforethe computation takes place. The advantage of this scheme is twofold: it is simple toimplement and the assignment is made locally.There are situations where the owner-computes rule is suboptimal. For instance, ifmany array elements referenced in the RHS reside on the same processor, the communi-cation volume can be reduced by allowing this processor to perform the computation andto send only the result to the owner of the LHS. Various proposals have been made tooptimize the communication by selecting the best site to perform the computation [Ama-rasinghe & Lam 93], but this proved to be a di�cult problem. Other schemes are alsopossible, for instance the APR compiler simply selects (automatically using some set ofrules or with the user's assistance) a favorable loop to distribute[App 95].From the modeling point of view, the absence of a de�nite scheme to distributethe computation leaves a gap in the programming model. This gap is both necessaryto preserve the Fortran syntax and intentional to make the programming convenient.Yet it forces a programmer either to (1) rely completely on the compiler to parallelizethe program or (2) close the gap by tuning the program to the speci�c compiler andsacri�cing portability in the process. In other words, it may be di�cult to balance theworkload in a portable manner since the parallelization strategy varies with the platform.A case study of the NAS EP benchmark in Chapter 5 will illustrate this problem.ZPL distributes its computation according to a number of rigid rules, leaving littleopportunity for deviation or in fact optimization. First, the global region representingthe whole program will be partitioned by block onto the processor grid, thereby distrib-5HPF 2.0 addresses this issue by adding the ON HOME directive that enforces the owner-computesrule[Forum 96]

75uting any arrays and statements de�ned over the region. Second, the computation isaligned with the LHS, thereby ensuring that any ZPL implementation will follow theowner-computes rule. Distribution in ZPL thus strictly implements the semantics of thelanguage: a ZPL compiler only has to compute the local loop bounds for the array onthe LHS; it does not need to perform any analysis to arrive at the decision to parallelizethe loop.The di�erence between HPF and ZPL can be summarized as follows. An HPF com-piler begins with an undistributed loop and attempts to distribute it by analyzing thedependencies and/or by relying on user directives; if the analysis fails, the loop is notdistributed and all processors execute the full iteration. ZPL on the other hand strictlyimplements the language semantics; in other words, a statement within a region scopeis a parallel statement and is guaranteed to execute in parallel.In terms of modeling, the HPF model of parallelization is weaker since it includes twovariables: whether the loop can be parallelized and how the workload will be distributed.ZPL model is stronger since the language semantics clearly de�ne the behavior of thesetwo variables.For HPF compilers that use the owner-computes rule, the computation distributionshadows the data distribution. The wide range of choice for data distribution thus leadsto more exibility in implementing an algorithm. For instance, the LU decompositionwould bene�t from a block cyclic distribution since the workload is more evenly distrib-uted, while an SOR solution would prefer a block decomposition to exploit the neighborlocality. ZPL's choice for distribution is more limited in this respect since only blockdistribution is supported.3.6 ConclusionThe issue is not whether one can achieve performance in a particular language butwhether this can be done conveniently. Given time and resources, an ardent enthusiastof a language can tune a program in the language to achieve good scalar and parallel

76performance, but it may not be convenient to arrive at the result and the result maynot be portable. An example of this can be found in the benchmarks used by some HPFvendors: the APR benchmarks for HPF have been carefully tuned to match the APRcompiler; as a result they perform well with the APR compiler but not with other HPFcompilers. PGI versions of the benchmarks also exhibit this characteristic.An optimization technique is most successful when it can cover the majority of thecases. When it only covers speci�c cases, several problems arise: the case must �rstoccur in the program and then the compiler must be able to recognize the case to applythe optimization. The latter problem can be particularly di�cult, but both problemsreduce the e�ectiveness of the optimization. Optimizations for array references in HPFseem to su�er from this phenomenon: the ability to make global array references leadsto many possible patterns of reference, with no particular prevalent pattern that can beeasily recognized.Given that parallel language is still a developing area, one can safely presume thatthe designers of neither HPF nor ZPL assert that their current language is the �nalsolution for parallel programming. The discussion in this chapter clearly shows thebene�ts and liabilities of two fundamentally di�erent parallel languages. By capitalizingon the Fortran base, HPF succeeds in establishing a standard in parallel languages wherenone existed before and this should be recognized as a very signi�cant achievement.However, building from an inherently sequential language carries many implications thatare now becoming more apparent as experience is gained from implementing and usingthe language. One general observation is that the ow of information in an HPF programis largely from the user to the compiler. In other words, the user provides informationabout the program to aid the compiler, but the compiler guarantees to the user littlemore than correctness.ZPL is based on a model of parallel machines. Being designed from �rst princi-ples, ZPL can freely incorporate new concepts and language constructs that work well.Because these concepts and constructs are intrinsic to the language, the language speci-

77�cation serves as a secure contract to the user that the program will behave as expected.Information thus ows both ways, from the language to the user and vice versa. Beingnew also carries the burden of having to prove ZPL's merit and to gain acceptance fromusers and software developers.In the following chapters, we will further compare HPF and ZPL, �rst with respectto the concept of performance model (Chapter 4), then experimentally using the currentHPF and ZPL compilers (Chapter 5).

Chapter 4The Performance Model in HPFand ZPL\HPF must be used carefully, because e�cient and ine�cient codes look verysimilar. An HPF translator generates code to implicitly perform whatevercommunication and overhead required to correctly execute the HPF pro-gram statements. On the other hand, with a program parallelized by explicitinsertion of message passing communication calls it is very apparent whereoverhead is introduced. The ability of a translator to generate whatever com-munication and overhead is required, is in a way a defect, in that it obscureswhat really happens at the runtime."APR Fortran Parallelization Handbook [Friedman et al. 95]4.1 IntroductionIn Chapter 1 we discussed the pervasive use of modeling. Having examined qualitativelyin Chapter 3 the facilities in HPF and ZPL for parallel programming, we �nd that a cleardistinction between HPF and ZPL is in the modeling aspect of the languages. In thischapter, we begin by identifying this modeling aspect, namely the performance model.

79One may question whether this di�erence ultimately leads to any tangible di�erence inthe program performance. In other words, what is the bene�t of a performance model?We will seek a quantitative answer to this question by �rst formulating a methodologyand then by considering two in-depth case studies.4.1.1 The performance modelRecall that a model reects our understanding of how a certain system operates; itcaptures the information that is necessary and su�cient for us to use the system. Itfollows that if the model is inaccurate or insu�cient, it will be di�cult to use the systeme�ectively. Conversely, too much complexity makes the model di�cult to use and defeatsits very purpose. A model must capture the right level of information. In particular,when performance is an objective, the model must capture some information aboutperformance.For a concrete example, consider sequential languages such as C or Fortran. Pro�-cient programmers in these languages have an approximate understanding of how eachlanguage abstraction correlates with its low level implementation, and they use this in-formation routinely without any special consideration. For instance, procedure calls areconvenient and helpful in structuring a large program, however, they do incur cost inpushing the stack and passing arguments, and this cost is be�ttingly associated withthe text required to set up and call a procedure. As a result, a programmer would notcreate procedures unnecessarily, nor would he/she create procedures thinking that doingso would make the program run faster.In the context of program development, this approximate understanding helps form acoarse but reliable classi�cation of language abstractions in terms of their cost (executiontime). We call this relative ranking the performance model. The performance model iscoarse because it is not possible to use it to determine the actual execution time ofthe program independent of the targeted machine. In this respect, it is di�erent fromparameterized, analytical models such as the formula that is commonly used to predict

80the communication cost: time = startup + msgsizebandwidthThe performance model is reliable because a language abstraction classi�ed as expensivewill always take more time than one classi�ed as inexpensive. For this reason, a moresuggestive name for the model may be \WYSIWYG". For the terminology, Snyder inprevious work [Snyder 95] de�nes a machine model as a set of common facilities for alarge class of parallel machines; the set contains su�cient detail to allow the program-mer to choose between programming alternatives. A programming model then extendsthe machine model by adding new abstractions with \known" costs. For the focus ofthis chapter, the term performance model refers to the performance aspect of Snyder'sprogramming model. In other words, given the programming model, the performancemodel de�nes the relative cost of the abstractions.Revisiting C and Fortran from above, their performance model arises naturally fromthe close a�liation between the language and the hardware. The abstract von Neumannmachine, by encompassing most sequential machines, thus emerges as the machine modelfor these languages.How is the performance model used?The performance model indicates the relative performance; therefore it helps the pro-grammer in two important tasks: (1) given several alternative algorithms for a problem,how to choose the appropriate algorithm, and (2) given several alternatives to implementan algorithm, how to choose the appropriate implementation. These two tasks are criti-cal because ultimately, the most e�ective optimization rests with the user. No compileroptimization can transform a poor algorithm into an optimal algorithm.How does a language incorporate a performance model?Because no explicit formula or equation is involved, a performance model is typicallyderived from several sources. For a frequently used programming technique that hasbeen encapsulated in a high level abstraction, its implementation and therefore its costis well understood. An example is the DO loop. The language semantics, if well de�ned

81and concise, can provide valuable information. For instance, the register directive inC suggests that the attributed variable can be accessed faster than normal variables.Visual cues in the language syntax help to associate a relative cost with a particularlanguage construct. For instance, the quantity of text can serve as the cue: a constructthat is fast (e.g., an arithmetic operation) should be expressed with little text while aslower construct (e.g., a library function call) should require more text.Such a loose association leads to the coarse quality of the model, while the reliabilityof the model depends on the accurate association between the construct and the actualcost. The only requirement is that the part of the language that needs to have a costassociated must be visually identi�able.Is the performance model a standard component of all languages?Many languages exist that do not contain a performance model. For example, Prolog wasdesigned for expressing predicate calculus. Because there is no performance informationin the language construct, it is di�cult to infer whether a Prolog statement will executequickly or take an exponential amount of time. Similarly, dataow and functional lan-guages are built from mathematical abstractions with little consideration for the physicalimplementation. As a result, no performance model exists to guide the users in writ-ing dataow or functional programs that can be emulated e�ciently on conventionalmachines.4.1.2 ZPL's performance modelThrough extended research in programming models, ZPL designers recognized the ex-istence and the importance of the performance model as a distinct entity. ZPL wasdesigned with the performance model as a clear objective; as a result, one of ZPL's sig-ni�cant contribution is the careful integration of a performance model into the language.ZPL's machine model (the CTA) and programmingmodel have been described earlier.For the performance model, ZPL abstractions exhibit the following behavior, listed inthe order of highest to lowest performance [Snyder 94].

821. Element-wise array operations execute fully in parallel with no communication andachieve the highest performance. These operations are clearly distinguished sincethey involve only arrays declared as parallel arrays.2. @ operation is likely to involve communication: the cost can be approximated asone message per @.3. Flood operation requires one or more messages to replicate an array section; it isidenti�ed by the ood operator >>.4. Reduction and scan operation require collective communication that involves mul-tiple messages; they are identi�ed by the operators << and jj.5. Scalar computation is replicated on all processors and achieves no speedup.6. The permute operator ## and I/O are the most expensive operations; the formertypically involves all to all communication, while the latter involves physical devicesthat are several orders of magnitude slower than the processor.4.1.3 HPF's performance modelAlthough Fortran has an e�ective performance model for sequential machines, the re-quirement to remain compatible with Fortran limits the parallel performance model tothe set of directives for distributing the arrays and controlling some communication anddata dependences. Beyond this, the parallel performance depends entirely on the op-timization capability of the compiler. The nature of the directives themselves weakensthe performance model: because a compiler is not obligated to implement a directive,the user is not guaranteed of its bene�t. The major components of HPF's performancemodel include (not listed in any order):� DISTRIBUTE, ALIGN are used to distribute the arrays.� INDEPENDENT , Forall and F90 array syntax allow the computation to proceedfully in parallel; however the communication cost is not visible.

83� Redistribution requires expensive mapping and communication. It can be identi�edwith REDISTRIBUTE. Redistribution for subroutines can be controlled withsome directives, but is otherwise not visible.� Scalar computation is replicated on all processors and achieves no speedup.An issue worth addressing is the e�ect of compiler di�erences on the performancemodel. We must distinguish between the performance model established by the languagespeci�cation and a performance model that has been supplemented with knowledge abouta speci�c compiler. The former is portable while the latter is not. Clearly, optimizationstrategies vary and di�erences will always exist between compilers. However, a conciseperformance model in the language will maintain a consistent language behavior in theface of compiler di�erences. Otherwise, the users may be forced to drastically changethe programming style to accommodate a compiler.Consider the Fortran storage model which speci�es that for physically consecutivearray elements in memory, the leftmost index changes the fastest. This model restrictsthe compiler from using a di�erent storage layout and may prevent some types of op-timization, but it guarantees the users a certain behavior. As a result, a programmercan structure the code to take advantage of the spatial locality in the array references.Furthermore, the programmer can expect that the code optimized in this manner willnever perform worse than an unoptimized code, regardless of the compilers.4.1.4 A methodology to evaluate the performance modelWe now formulate a way to quantify the bene�t of the performance model. The notationr and f are used to denote a relation where r; f 2 f>;<;�g.Consider two alternative programs Pa and Pb written in a language L to solve aproblem. A compiler for the language generates an implementation for each program,resulting in an execution time of Ta and Tb for Pa and Pb, respectively, with a relationof: Ta r Tb

84Similarly, another compiler for the same language yields:T 0a r0 T 0bDe�ne the performance model as the component of the language L that enables theprogrammer to di�erentiate between Pa and Pb in terms of their performance. In otherwords, the model is a function: F(Pa; Pb) = fF is unde�ned if the performance model does not exist.Note that at this point, we are still considering f , r and r0 as independent of eachother. Examine the relations r and r0:1. If r; r0 2 f�g, then the compiler has in e�ect neutralized any di�erences betweenPa and Pb, regardless of whether the di�erence arises from the algorithm or thelanguage construct. In this case, the programmer is relieved of the di�cult taskof choosing between Pa and Pb and the performance model F is irrelevant. Thereverse must also hold: if F is unde�ned, then the compilers must ensure:r; r0 2 f�g (4.1)since otherwise the programmer has no means to di�erentiate and choose betweenPa and Pb.2. If r; r0 2 f>;<g, then the program with the best performance should be chosen. Inthis case, the selection process requires the performance model F . It follows thatthe bene�t of F is equivalent to the performance di�erence �(Ta; Tb). Furthermore,for F to be meaningful, the language and the compilers must ensure:f = r = r0 (4.2)An interesting corollary follows from equation 4.2: if r 6= r0, then a contradictionoccurs, therefore F must be unde�ned.

85The formulation above allows us to devise a simple methodology to evaluate theperformance model.1. For a given problem, we consider several alternative solutions in a language.2. The performance for each solution is measured using several compilers to determinethe set of relations fr; r0; : : :g. The implementations should also be analyzed tocon�rm the relations.3. If equation 4.1 is satis�ed from fr; r0; : : :g, then F is irrelevant and no furtherconsideration is necessary.4. Otherwise, we proceed to verify equation 4.2. The performance model F providesf if it is de�ned.5. If equation 4.2 holds, then F has ensured a performance improvement of �(Ta; Tb).Even if F is unde�ned, the fact that the remainder of the equation holds will bevaluable since it implies that it may be possible to determine F experimentally.6. If equation 4.2 does not hold, then the potential performance loss is �(Ta; Tb)We mentioned earlier that the performance model helps the programmer in two tasks:(1) choosing the best algorithm, and (2) choosing the best implementation. For theremainder of this chapter, we apply the methodology above in two in-depth case studiesthat represent these two tasks. Section 4.2 addresses the implementation choice andSection 4.3 the algorithm choice. ZPL is not involved in the analysis in Section 4.2, but itsperformance data is provided as a convenient point of reference. Then we discuss currentmethods to supplement the HPF performance model in Section 4.4, and Section 4.5 givesthe conclusions. It should be noted that while the analysis in this chapter involves threeHPF compilers, the intention is not to compare the compilers. Rather, the compilersprovide the di�erent platforms to evaluate the portability of the language.

864.2 Selecting an implementation: array assignmentFor a case study, the simple assignment statement when applied to a distributed array isa good candidate for several reasons. First, the assignment statement is the most elemen-tary component of any language; in a data parallel language particularly, its behaviorcan be magni�ed when operating on an entire array. Second, a principal component inthe performance model for a parallel language is the communication. In an assignmentstatement we can minimize the computation to focus on the e�ect of the communication.4.2.1 Quantifying the performance modelFollowing our methodology, the given problem is the array assignment statement. Theindex expression used in the assignment can be further broken down into 11 types [Bozkuset al. 94], thus dividing the main problem into 11 sub-problems.For HPF, the alternatives to express array assignments include the conventional DOloop, the F90 array syntax or the Forall construct (refer to Section 3.4.1). Among thechoices, the DO loop speci�es the most dependencies, while the F90 array and the Forallloop have the least. For the latter two, Forall is more expressive than F90; thereforea reasonable expectation is that the Forall loop is the best general choice. If compileranalysis were perfect, one could expect that a compiler would determine that there isno true dependence in these assignments. In this case, the compiler would yield thesame performance for all three implementations and equation 4.1 would be satis�edautomatically.For ZPL, the semantics allow only one way to express the assignment statement.Table 4.1 lists the types of index expressions along with their program alternatives inHPF and ZPL. A brief description for each type follows.The case of no communication is the simplest case since the RHS and LHS are alignedexactly. The compiler is expected to be able to determine that the statement involvesonly local data motion and avoid unnecessary communication.For the static shift case, the RHS and LHS are o�set by a constant. To move the RHS

87to the LHS requires communication between neighboring processors, but fortunately theoptimization is straightforward and easily recognized [Choi & Snyder 97]. The usermay expect communication for multiple array elements to be combined (message vec-torization). Since the shift amount is known at compile time, an overlap area can bepreallocated in memory that is contiguous to the local section of the array. When thestatement is encountered, data from the neighboring processor can be copied directlyinto the preallocated area without a runtime bu�er allocation. A variation of the sta-tic shift case has a coe�cient with the RHS index, which requires a gather before thecommunication.The dynamic shift case is similar to static shift except that the shift amount mustbe computed at runtime; therefore it is more di�cult to preallocate the overlap area atcompile time, but message vectorization is still possible. When the RHS index has acoe�cient, the communication will require a gather operation.Multicast requires selective communication; it involves replicating the data among aset of processors (usually row or column of the processor grid). The compiler can generatecode for a tree broadcast scheme or simply take advantage of the communication libraryif it provides this function.The point to point case is simply random communication for which optimization isless likely.The dynamic index case involves complex data movement in which the index for onearray is a complex but computable function of the other array index. In the precompu-tation read case, the complex index is in the RHS; therefore the index must be computedbefore the RHS is fetched. For the postcomputation write case, the complex index is inthe LHS; consequently, it must be computed to store the result. The DO loop is wellsuited for expressing the index expression because it is not always possible to derive anequivalent F90 and Forall implementation, although in our experiments we chose a func-tion that allows all three implementations. Message vectorization for this case is moredi�cult because the array index must be computed from a complex function. There are

88several implementation approaches: the processors can perform an all-to-all broadcast,each element can be fetched individually, or each processor can precompute the indexset for the full loop and then perform a scatter or gather using the index set.The indirect index case di�ers from dynamic index in that the index set is datadependent. Assuming that the index set is also distributed, the processors will have to�rst broadcast to obtain the index set, then the actual data can be obtained in a secondcommunication phase, which like the dynamic index can be another all-to-all broadcast,individual messages, or a library scatter/gather call.In the performance measurement, the assignment involves two linear arrays of Nelements that are distributed by block onto a 1-D processor grid and that are perfectlyaligned with each other. Since the statements contain no computation, the principalcost is in the data movement and the runtime overhead. The task for the compiler is togenerate the communication to fetch the RHS from and store the LHS to the respectiveowners. Note that more complex scenarios are possible such as higher dimensional arraysand processor grids, cyclic and block cyclic distribution, complex alignment between thearrays. However, these demand more di�cult analysis and optimization and are notlikely to show a more consistent performance model than the simpler con�guration.The set of assignments is measured on the IBM SP2. The compilers used in the ex-periments include the HPF compilers from APR, IBM and PGI, and the ZPL compilersfrom the University of Washington. For each compiler the default optimization option isused { in every case it includes the most aggressive option. A barrier synchronization isused at the beginning of each assignment operation to synchronize the processors. Thetracing facility UTE is used to collect a trace per processor, which includes communi-cation calls, timestamps and markers for each program section. The traces are thenprocessed to compute the desired statistics.4.2.2 ResultsPerformance model

89Table 4.1: Array assignment in HPF and ZPL1. See dynamic index, RHS; can also be implemented with strided region by renaming the indexspace.2. Parameters: T=3, S=2, N=1003. c, d are variables. A,B,V are N-elements arrays. F is a oodable array [*].4. All arrays are distributed.5. For ZPL: region R=[1..N]; direction east = [+S]; east1 = [+1];Index Do loop F90 ForAll ZPLno do i=1,N A(1:N) = forall (i=1:N) [R] A := B;comm. A(i) = B(i) B(1:N) A(i) = B(i)enddostatic do i=1,N-S A(1:N-S) = forall (i=1:(N-S)) [R] A := B@east;shift A(i) = B(i+S) B(S+1:N) A(i) = B(i+S)enddostatic do i=1,(N-S)/T A(1:(N-S)/T) = forall (i=1:(N-S)/T) (1)shift + A(i) = B(i*T+S) B((T+S):N:T) A(i) = B(i*T + S)stride enddodynamic do i=1,N-c A(1:N-c) = forall (i=1:N-c) for I:=1 to c doshift A(i) = B(i+c) B(1+c:N) A(i) = B(i+c) [R] A := A@east1;enddo end;dynamic do i=1,(N-c)/d A(1:(N-c)/d) = forall (i=1:(N-c)/d) (1)shift + A(i) = B(i*d+c) B((d+c):N:d) A(i) = B(i*d + c)stride enddomulticast do i=1,N A(1:N) = forall (i=1:N) [F] A := >> [S] B;A(i) = B(S) spread(B(S), A(i) = B(S)enddo 1,N)point A(1) = B(N) A(1) = B(N) A(1) = B(N) [F] Af := >> [N] B;to point [1..1] A := Af;dynamic do i=1, N forall (i=1:N/2) if (Index1 <= N/2)index, if (i.le.N/2) then A(1:N/2) = A(i) = B(2*i-1) thenRHS j = 2*i-1 B(1:N:2) forall (i=N/2+1:N) V := 2*Index1-1;else A(N/2+1:N) = A(i) = B((i-N/2)*2 elsej = (i-N/2)*2 B(2:N:2) V := (Index1-N/2)*2;endif end;A(i) = B(j) A := <##[V] B;enddodynamic do i=1, N forall (i=1:N, if (Index1%2 = 1)index, if (mod(i,2).eq.1) cannot mod(i,2).eq.1) thenLHS then be expressed A((i+1)/2) = B(i) V := (Index1+1)/2;j = (i+1)/2 forall (i=1:N, elseelse mod(i,2).ne.1) V := (Index1+N)/2;j = (i+N)/2 A((i+N)/2) = B(i) end;endif A := >##[V] B;A(j) = B(i)enddoindirect do i=1, N A(1:N) = forall (i=1:N) A := <##[V] B;index, A(i) = B(V(i)) B(V(1:N)) A(i) = B(V(i))RHS enddoindirect do i=1, N A(V(1:N)) = forall (i=1:N) A := >##[V] B;index, A(V(i)) = B(i) B(1:N) A(V(i)) = B(i)LHS enddo

90
IB

M

A
P

R

P
G

I

(a) static shift by offset

0

1

10

100

tim
e

(m
se

c)

DO loop
F90
Forall

IB
M

A
P

R

P
G

I

(b) static shift, stride + offset

0

1

10

100

tim
e

(m
se

c)

IB
M

A
P

R

P
G

I

(a) dynamic shift by offset

0

1

10

100

tim
e

(m
se

c)

IB
M

A
P

R

P
G

I

(b) dynamic shift, stride + offset

0

1

10

100

tim
e

(m
se

c)

IB
M

A
P

R

P
G

I

(e) dynamic index RHS

0

1

10

100

tim
e

(m
se

c)

IB
M

A
P

R

P
G

I

(f) dynamic index LHS

0

1

10

100

tim
e

(m
se

c)

IB
M

A
P

R

P
G

I

(g) indirect index RHS

0

1

10

100

tim
e

(m
se

c)

IB
M

A
P

R

P
G

I

(h) indirect index LHS

0

1

10

100

tim
e

(m
se

c)

IB
M

A
P

R

P
G

I

(i) multicast

0

1

10

100

tim
e

(m
se

c)

Figure 4.1: Cross compiler performance for HPF array assignment.Note: 8 processors with di�erent index expressions.

91In Figure 4.1, the execution time for the three HPF alternatives (DO loop, F90 arrayand Forall) is plotted for each subproblem for p=8 (note that the time axis is a log scaledue to the wide spread). A quick inspection reveals that the performance data doesnot support equation 4.1 except for some isolated subsets. In other words, signi�cantperformance di�erence exists between the alternatives.Proceeding to equation 4.2, we �nd that the indices in an HPF array reference yieldno visual indication of the communication required because they are random and global.The absence of a performance model leaves the relation f in equation 4.2 unde�ned.However, we are still interested in determining whether the remainder of the equationholds since it would be an indication of a possible performance model. The test forr = r0 is shown graphically by connecting the performance for each alternative along thecompiler dimension. Equation 4.2 would hold if the performance lines do not intersect,thereby maintaining the same relative order. This would indicate that the best choice isthe same for all compilers.Dynamic index LHS is an example that clearly satis�es equation 4.2 (Figure 4.1(f)):a user would choose the DO implementation since it gives the best performance on allcompilers. The Forall construct surprisingly is not the best choice in this case althoughits semantics specify fewer dependences. Note that this particular index expression doesnot allow an F90 implementation.For the other subproblems, the answer is less clear. Table 4.2 tabulated the orderingfor each type of index expression. Several other cases also show a consistent performancebehavior: two cases clearly favor the F90 implementation, two cases favor the Forall, andfour cases show F90 and Forall as equally likely choice. One case favors the DO loopconsistently over the Forall despite the dependences. In two cases, the lines intersectand no choice is apparent.The data does not suggest any single construct as the best choice for all types ofarray assignment. When considered as individual cases, the F90 and Forall alternativesare better in many cases: clearly the more restrictive semantics in terms of dependences

92Table 4.2: Choices of array assignment in HPF.Note: (1) Intersecting lines indicate no clear choice.(2) dynamic index LHS cannot be expressed in F90.Assignment First Second Thirdno communication Forall or F90 DOmulticast Forall DO F90point to point Forall or F90 DOstatic shift F90 Forall, DO intersectstatic shift + stride F90 Forall DOdynamic shift Forall F90 DOdynamic shift + stride Forall or F90 DOdynamic index,RHS Forall, F90 intersect DOdynamic index,LHS DO Forallindirect index,RHS Forall, F90, DO intersectindirect index,LHS Forall or F90 DOallow the compilers to generate an e�cient implementation more easily. However, thericher functionality of Forall leads to a higher overhead than the F90 construct in somecases; as a result, it is not clear when each construct should be used.Since each construct o�ers a di�erent level of expressiveness, the situation may arisewhere it is not possible to express the computation using the construct with the bestperformance. In the cases where Forall and F90 are equal alternatives, making the secondchoice is straightforward. For other cases, the second choice is less clear: Static shift'sForall and DO lines intersect because of APR's implementation.CommunicationWhen an algorithm is analyzed, a coarse but convenient performance metric is thecount of messages and collective communication calls since the message startup time

93
do 90 fa do 90 fa do 90 fa

(a) static shift by offset

0

5

10

15

20

co
m

m
un

ic
at

io
n

ca
lls

collective
send/recv

IBM APR PGI ZPL

do 90 fa do 90 fa do 90 fa

(b) static shift by stride + offset

0

5

10

15

20

co
m

m
un

ic
at

io
n

ca
lls

IBM APR PGI ZPL

do 90 fa do 90 fa do 90 fa

(c) dynamic shift by offset

0

5

10

15

20

co
m

m
un

ic
at

io
n

ca
lls

IBM APR PGI ZPL

do 90 fa do 90 fa do 90 fa

(d) dynamic shift by stride + offset

0

5

10

15

20

co
m

m
un

ic
at

io
n

ca
lls

IBM APR PGI ZPL

do 90 fa do 90 fa do 90 fa

(e) dynamic index RHS

0

10

20

30

40

50

co
m

m
un

ic
at

io
n

ca
lls

IBM APR PGI ZPL

do 90 fa do 90 fa do 90 fa

(f) dynamic index LHS

0

10

20

30

40

50

co
m

m
un

ic
at

io
n

ca
lls

IBM APR PGI ZPL

do 90 fa do 90 fa do 90 fa

(g) indirect address RHS

0

50

100

150

200

co
m

m
un

ic
at

io
n

ca
lls

IBM APR PGI ZPL

do 90 fa do 90 fa do 90 fa

(h) indirect address LHS

0

50

100

150

200

co
m

m
un

ic
at

io
n

ca
lls

IBM APR PGI ZPL

do 90 fa do 90 fa do 90 fa

(i) multicast

0

5

10

15

20

25

co
m

m
un

ic
at

io
n

ca
lls

IBM APR PGI ZPL

87

Figure 4.2: Communication for array assignment using di�erent index expressions: p=8.Note: the dotted line represents the maximum number of sends/receives invoked if thecommunication is programmed manually.

94typically dominates the communication time for small messages. This holds especiallytrue for our experiment since no computation is involved, although some optimizationsthat overlap the communication with computation may not be e�ective. Although theHPF global array indexing yields no visual cue to the underlying communication, insome situations such as when the data distribution and index expression are simple,it appears possible to estimate the communication involved. It is then interesting tocorrelate between the user's expectation and the actual communication generated by theHPF compilers.Since the actual count can be di�erent on each processor, the highest count among theprocessors is typically used as a conservative estimate for the communication. To reectthis coarse metric, in Figure 4.2, the maximum count of communication call per processoris plotted in several dimensions: for each type of assignment, for each loop alternative,and for each compiler implementation. The dotted line represents the maximum numberof sends/receives invoked per processor if the communication is programmed manually.Note that some implementations use the MPI collective communications which are com-posed of multiple sends/receives. For the a�ne index expressions, (a, b and c), thecompilers generate very e�cient communication. The only exception is PGI, which con-sistently generates excessive communication for the DO loop. For the complex indexexpressions, the communication schemes vary signi�cantly both between compilers andbetween implementations of the same compiler.Data dependence analysisFigure 4.3 shows the elapsed time for each type of assignment, for each compiler, andfor p=8. The time is broken down into the communication and computation components.We expect the runtime overhead to make up most of computation component since thestatement itself contains no computation.We can evaluate the quality of the data dependence analysis of the compilers byinspecting the level of performance variation across the DO, F90, and Forall imple-mentations for each compiler. Although the loop constructs have di�erent semantics, a

95
do 90 fa do 90 fa do 90 fa

(a) static shift by offset

0

1

2

3

tim
e

(m
se

c)

runtime
comm.

IBM APR PGI ZPL
do 90 fa do 90 fa do 90 fa

(b) static shift by stride + offset

0

1

2

3

tim
e

(m
se

c)

IBM APR PGI ZPL

do 90 fa do 90 fa do 90 fa

(c) dynamic shift by offset

0

1

2

3

tim
e

(m
se

c)

IBM APR PGI ZPL

do 90 fa do 90 fa do 90 fa

(d) dynamic shift by stride + offset

0

1

2

3

tim
e

(m
se

c)

IBM APR PGI ZPL

do 90 fa do 90 fa do 90 fa

(e) dynamic index RHS

0

2

4

6

8

10

tim
e

(m
se

c)

IBM APR PGI ZPL
do 90 fa do 90 fa do 90 fa

(f) dynamic index LHS

0

2

4

6

8

10

tim
e

(m
se

c)

IBM APR PGI ZPL

16.6

do 90 fa do 90 fa do 90 fa

(g) indirect address RHS

0

5

10

15

20

tim
e

(m
se

c)

IBM APR PGI ZPL

83.0

do 90 fa do 90 fa do 90 fa

(h) indirect address LHS

0

5

10

15

20

tim
e

(m
se

c)

IBM APR PGI ZPL

31.7

do 90 fa do 90 fa do 90 fa

(i) multicast

0.0

0.5

1.0

1.5

2.0

tim
e

(m
se

c)

IBM APR PGI ZPL

11.12 53.8

Figure 4.3: Execution time for array assignment using di�erent index expressions: p=8

96perfect analysis will be able to determine the true loop-carried dependences and opti-mize accordingly. Since there are no true data dependences in any of the assignments,it is possible that a compiler may yield the same performance regardless of how theassignment is expressed. In terms of the performance model, if this quality proves to bereasonably uniform across the compilers, then a user would not have to be concernedabout the choice of the implementation.Inspecting each group of DO/F90/Forall in Figure 4.3, we �nd that in some casesthe compiler is indeed successful in its analysis, notable the IBM and APR compilers.In other cases however, variations up to 2 orders of magnitude exist between implemen-tations of the same assignment, suggesting that data dependence analysis is not yet acommon and reliable technology.The IBM compiler shows the least performance variation, an indication of its uniformapproach to loop analysis. The APR compiler shows more variation, particularly forstatic shift, dynamic index RHS, LHS and multicast, but in many cases it also shows afairly uniform performance. The PGI compiler in general performs poorly with the DOloop, except for dynamic index LHS for which the DO implementation is better with allcompilers, and for the point to point which does not involve a loop.Note that the DO loop assignments are not annotated with the HPF $INDEPENDENTdirective. This would allow the compiler to completely bypass the dependence analysis.The omission is intended to evaluate the options of parallelizing existing F77 programsand continuing to write programs in the F77 style without change. The cross-compilervariation suggests that this approach is problematic since it relies on a capability of thecompiler which is not portable. The implication is thus twofold. First, parallelizingan existing sequential program will require substantially more modi�cation than merelyadding the data distribution directives: each DO loop must be analyzed for its depen-dences to determine whether the $INDEPENDENT directive can be used; incorrectdirectives will result in incorrect programs. Second, users accustomed to the sequentialFortran programming model will need to learn new semantics to write e�ective HPF

97programs.Runtime overheadThe runtime overhead is shown as the lighter shade in the bar graphs of Figure 4.3.This overhead typically includes the global to local index conversion, bu�er allocation,data copying and any computation to determine the data distribution. The overheadis an accepted cost for a high level language, but since it is hidden from the program,a uniform overhead would greatly aid the performance model. For the IBM compiler,the overhead appears to be a fairly uniform component of the three implementations.APR's overhead is larger, but is also uniform. PGI's overhead on the other hand tendsto be larger for DO loops than for F90 and Forall.One point worth noting is that while the experiment setup has minimized mostsources of variation, some di�erences inevitably remain in the compilers, in particularfor the scalar code. Speci�cally, ZPL uses C as the intermediate language, APR's andPGI's HPF use Fortran as the intermediate language, while IBM's HPF is integratedwith the native IBM Fortran compiler. One may expect some degradation in the scalarperformance from Fortran to C, and from native to nonnative compilers.Summarizing the case studies, we recall that HPF does not speci�cally provide aperformance model for the array assignment. However, by making some assumptionsbased on the expected di�culty for the compiler in analyzing the DO loop, F90 andForall contructs, we estimated that the Forall implementation should be the best choicein general. We �nd that some cases meet our expectation, but other cases do not. Nosingle choice is consistently the best choice for all index expressions. Even when we focuson a single type of index, in some cases it is not possible to choose one implementationthat is consistently the best across the compilers. For the users, this is a clear shortcomingof the performance model that will hinder the scalability, portability and ease of use ofthe language.

984.3 Selecting an algorithm: matrix multiplicationEarlier discussion has stated that the selection of the best algorithm for the systemcontributes the most to the scalability of a program. The selection in turn depends onthe performance model presented by the language. In this case study, the problem to beconsidered is matrix multiplication. Four alternatives are considered for HPF and twofor ZPL; they are described in the following subsections. The set of compilers and theparallel platform remain the same as in the preceding case study.4.3.1 HPF versionsThe four alternatives for HPF are intended to illustrate the reasoning based on theperformance model to select the best solution for the problem. The code segments areshown in Table 4.3.The most straightforward algorithm is the triply nested DO loop (Table 4.3(a)). Thiscase shows the simplest mode of usage for HPF: a conventional sequential algorithmis annotated with HPF directives to partition the array, and the compiler parallelizesthe program by distributing the data and computation. This case also shows that nocommunication is evident in the program; it depends entirely on the compiler to generatethe necessary communication.To improve on this algorithm, an experienced Fortran programmer may notice thatthe 2-D block distribution may not be a good match for the Fortran storage modelwhich favors traversing with the leftmost index. Because the matrix traversal will beinterrupted in a 2-D distribution, a 1-D distribution for CY and CA along the seconddimension may allow each processor to traverse its �rst dimension continuously. Theloops are also reordered to favor spatial and temporal locality. In addition, the INDE-PENDENT directives are inserted in case the compiler has di�culty determining thatno data dependences exist1.As the third alternative, a user may recognize that the targeted machine has a dis-1This version was made available by David Torres, University of New Mexico.

99Table 4.3: Matrix multiplication algorithms expressed in HPF.(a) Conventional triply nested loop:real CA(M,N), CX(N,P), CY(M,P)!HPF$ processors, dimension(2,2) :: PG!HPF$ distribute CY(block,block) onto PG!HPF$ distribute CA(block,block) onto PG!HPF$ distribute CX(block,block) onto PGdo I = 1,Mdo J = 1, Pdo K = 1, NCY(I,J) = CY(I,J) +CA(I,K) * CX(K,J)enddoenddoend do
(b) Triply-nested loop optimized for HPF:real CA(M,N), CX(N,P), CY(M,P)!HPF$ processors, dimension(4) :: PG!HPF$ distribute CY(*,block) onto PG!HPF$ distribute CA(*,block) onto PG!HPF$ distribute CX(block,*) onto PG!HPF$ INDEPENDENTdo I = 1,Pdo J = 1, N!HPF$ INDEPENDENTdo K = 1, MCY(K,I) = CY(K,I) +CA(K,J) * CX(J,I)enddoenddoenddo(c) Cannon's algorithm:real CA(M,N+1), CX(N+1,P), CY(M,P)!HPF$ processors, dimension(2,2) :: PG!HPF$ template T(M+1,N+1)!HPF$ distribute T(block,block) onto PG!HPF$ align CA(i,j) with T(i,j)!HPF$ align CX(i,j) with T(i,j)!HPF$ align CY(i,j) with T(i,j)...! Multiply CY = CA * CX! First skew CA and CXdo I=2,MCA(I:M,N+1) = CA(I:M,1)CA(I:M,1:N) = CA(I:M,2:N+1)enddodo J=2,PCX(N+1,J:P) = CX(1,J:P)CX(1:N,J:P) = CX(2:N+1,J:P)enddo!then dot product and shiftdo I=1,NCY(1:M,1:P) = CY(1:M,1:P) +CA(1:M,1:N) * CX(1:N,1:P)CA(1:M,N+1) = CA(1:M,1)CA(1:M,1:N) = CA(1:M,2:N+1)CX(N+1,1:P) = CX(1,1:P)CX(1:N,1:P) = CX(2:N+1,1:P)enddo

(d) SUMMA algorithm:real CA(M,N), CX(N,P), CY(M,P)!HPF$ processors, dimension(2,2) :: PG!HPF$ template T(M,N)!HPF$ distribute T(block,block) onto PG!HPF$ align CA(i,j) with T(i,j)!HPF$ align CX(i,j) with T(i,j)!HPF$ align CY(i,j) with T(i,j)! Multiply CY = CA * CX! spread and dot product and shiftdo I=1,NCY(1:M,1:P) = CY(1:M,1:P) ++ spread(CA(1:M,I),2,N) *spread(CX(I,1:P),1,N)enddo

100tributed memory; therefore an algorithm speci�cally designed for a distributed memorymachine may be more appropriate. In this respect, Cannon's algorithm is a good candi-date since it contains regular data motions and requires mostly array operations whichcan be expressed with the F90 syntax to avoid the DO loop dependences. As shownin Table 4.3(c) however, Cannon's algorithm is not an obvious choice since it requirescareful data alignment and the program is more cumbersome than the triply nestedloops.Finally, the SUMMA algorithm [van de Geijn & Watts 95] has been shown to bee�ective on distributed memory machines. The algorithm presents a counter-intuitiveadvantage: although more messages are generated and their sizes are smaller, the regu-lar pattern of communication and computation allows the implementation to be betteroptimized in many aspects, leading to an overall better performance. The HPF imple-mentation in Table 4.3(d) is surprisingly simple and similar to the ZPL implementationshown in the next section. The use of the intrinsic spread suggests that it may be possibleto predict the communication involved. If we assume that spread is implemented as amulticast, the actual implementation of the HPF program may accurately reproduce theintended algorithm.4.3.2 ZPL versionsThe ZPL programming model immediately throws the conventional triply nested DOloop into question. While the DO loop can be transcribed directly into ZPL usingindexed arrays, the result is a sequential implementation. The performance model thusindicates clearly that the implementation will achieve no speedup and will have thelowest performance. To express the computation using parallel arrays, some data motionmust be arranged to align the index since arithmetic operators only apply to arrayelements with the same index. This requirement again manifests the performance modelof ZPL: the communication cost is clearly visible in the program. Given this requirement,the user begins to devise a data motion scheme to enable the element-wise arithmetic

101Table 4.4: Matrix multiplication algorithms expressed in ZPL.(a) Cannon algorithm:region RA = [1..M,1..N];RB = [1..N,1..P];RC = [1..M,1..P];direction east = [0,1];south = [1,0];var A: [RA] oat;B: [RB] oat;C: [RC] oat;: : :for i := 2 to M do[east of RA] wrap A;[i..M, 1..N] A := A@east;end;for i := 2 to P do[south of RB] wrap B;[1..N, i..P] B := B@south;end;for i := 1 to N doC := C + A*B;[east of RA] wrap A;[RA] A := A@east;[south of RB] wrap B;[RB] B := B@south;end;
(b) SUMMA algorithm:region RA = [1..M,1..N];RB = [1..N,1..P];RC = [1..M,1..P];FCol = [1..M,*];FRow = [*,1..P];var A : [RA] oat;B : [RB] oat;C : [RC] oat;Aood : [FCol] oat;Bood : [FRow] oat;: : :for i := 1 to N do[FCol] Aood := >>[1..M,i] A;[FRow] Bood := >>[i,1..P] B;C += (Aood * Bood);end;operations, and the Cannon and Summa algorithm quickly become favorable candidates.The ZPL implementations are shown Table 4.3.2. Assuming that the processor grid isPr � Pc, we can inspect the code to determine that Cannon will require approximatelyM(Pr + Pc) +N(Pr + Pc) messages, while SUMMA will require about N(Pr + Pc). Inaddition, Cannon has more potential synchronization. Thus the performance modelindicates that SUMMA will yield better performance.4.3.3 ResultsFigure 4.4 shows the performance of each alternative algorithm in HPF and ZPL on theSP2 for a 2000 � 2000 matrix multiplication on 16 processors. For HPF, the performanceis plotted across a compiler dimension that includes the IBM, APR and PGI compilers.

102
IB

M

A
P

R

P
G

I

Z
P

L

algorithm

0

50

100

tim
e

(s
ec

s)

normal
Independent
Cannon
SUMMA

time out

Figure 4.4: Matrix Multiplications by ZPL and 3 HPF compilers: 2000x2000, p=16Returning to the methodology outlined in section 4.1.4, we inspect the performance forthe alternatives and quickly �nd that equation 4.1 does not hold: they show performancedi�erences of at least an order of magnitude. For equation 4.2, the requirement r = r0would be indicated by performance lines that maintain the same relative order and thatdo not intersect each other. Again, a quick inspection of Figure 4.4 reveals that theline for the triply nested DO loop intersects all other lines. Interestingly for HPF, therelation f in equation 4.2 is not completely unde�ned in this case: the description of thealgorithm in the previous section indicates that some ordering can be expected basedon a number of assumptions. We now consider each case in more detail by examiningthe performance and the implementation. Table 4.5 shows the pseudo-code for theimplementations generated by the HPF and ZPL compilers. Recall that the basic e�ectof parallelization is the adjustment of the loop index to span the local partition and the

103Table 4.5: Pseudo-code for the matrix multiplication algorithms by three HPF compilers.Note: (1) For the loops, full means all iterations while part means local partition only(2) Cannon is not shown because all implementations are virtually identical.version IBM APR PGI ZPL3-nested comm(ca) n/aDO loop comm(cx) comm()do i=part do i=full do i=fulldo j=part do j=part do j=fulldo k=full do k=full do k=fullcomm(ca)comm(cx)cy=cy+ca*cx cy=cy+ca*cx cy=cy+ca*cxenddo enddo enddoenddo enddo enddoenddo enddo enddocomm()HPF-opt comm(cy) n/acomm(ca) comm(cx)comm(cx) comm() comm(ca)do i=part do i=part do i=partdo j=full do j=full do j=fulldo k=full do k=full do k=partcy=cy+ca*cx cy=cy+ca*cx cy=cy+ca*cxenddo enddo enddoenddo enddo enddoenddo enddo enddocomm() comm(cy)SUMMA comm(ca) do i=full do i=fullcomm(cx) comm() comm(ca) comm(ca)do i=full do i=part comm(cx) comm(cx)do j=part do j=full do j=part do j=partdo k=part do k=full do k=part do k=partcy=cy+ca*cx cy=cy+ca*cx cy=cy+ca*cx cy=cy+ca*cxenddo enddo enddo enddoenddo enddo enddo enddoenddo enddo enddo enddocomm()

104insertion of communication at the appropriate point. The loops in Table 4.5 that areparallelized are identi�ed as part, while those not parallelized are full. Communicationplaced outside of the loops results in fewer messages and less overhead.DO loopsClearly, no expectation is possible for the triply nested DO loop regarding the im-plementation or the performance, and this is evident in the data. The implementationsvary widely between the HPF compilers in the placement of communication and com-putation. This wide variation can be expected given that by design the compilers arefree to generate any implementation; therefore the issue is not how the compilers arriveat their implementation, but whether it is possible for the performance behavior to beconsistent.The triply nested DO loop does not yield portable performance: the performanceranges from very high for IBM to very low for PGI. The IBM implementation places allcommunication at the beginning, followed by the loops. This enables the standard IBMFortran compiler to perform very e�ective loop transformations to optimize the code forthe superscalar CPU (instruction scheduling, pipelining); as a result, the IBM versionenjoys very high scalar performance. The PGI implementation on the other hand usesa guard to determine if a processor is to perform the computation; therefore althoughthe actual computation is distributed, the scheme requires each processor to scan all N3iterations. In addition, the communication remains in the inner most loop, resulting inexcessive communication.HPF-optimized DO loopsThe optimization for this version has been made based on a number of assumptions.If they prove to be correct, then we can establish the relation f in equation 4.2 betweenthe optimized and the standard DO loop versions. Our interest in the implementationis whether the tuning of the program has the desired e�ect. However, no expectation isguaranteed by HPF.The PGI compiler elects to depart from the owner-computes rule and redistributes

105the computation into 2-D instead of the speci�ed 1-D, apparently because it detectsthat two INDEPENDENT loops exist in the program. This requires additional com-munication before the loops to move the LHS to the site of computation and after theloops to return the LHS to the original distribution. Recall that the user optimizationstrategy for this program assumes the owner-computes rule; otherwise it is not possibleto reason about the access patterns. Yet, because the compiler is free to distribute thecomputation, we �nd that there is little correlation between the actual implementationand the expectation.With respect to performance, APR and PGI improve by a factor of 2 or more, whileIBM's performance degrades by a factor of 2 to 4. The results thus contradict all aspectsof equation 4.2.Cannon's algorithmAll implementations for Cannon are similar and they are consistent with the al-gorithm. For this reason and because they are more verbose, they are omitted fromTable 4.5. Examining the implementations, the consistency stems from the treatmentof the array statement and the use of a particular index expression in HPF. The arraysemantics call for the RHS to be read completely before the assignment is made to theLHS; all compilers adhere to this semantics by fetching the RHS before and storing tothe LHS after the statement. In addition, the HPF version only requires an index ex-pression of the type static shift, which by its simplicity has been shown to exhibit goodperformance behavior (Section 4.2). With respect to the implementation, Cannon thusrepresents an instance where the requirement of the algorithm matches the semanticsand the performance model of both HPF and ZPL.However, the performance for Cannon does not meet the expectation for an algo-rithm designed for distributed memory machines. All Cannon implementations su�erfrom the high overhead of repeated bu�er allocation and deallocation for each message,data copying and conservative synchronization for each communication phase. APR inparticular performs quite poorly. Given that the performance model for HPF and ZPL

106is successful in this case, further compiler optimization is needed to reduce the runtimeoverhead and to deliver the expected performance.The ZPL performance is slightly lower than the HPF performance. On examiningthe assembly code, we �nd that the C compiler for ZPL intermediate code is not ase�ective as the Fortran compiler in instruction scheduling and pipelining.SUMMAFor each outer loop iteration, the SUMMA algorithm calls for a row and a columnto be replicated across all processors in the �rst and second dimension of the processorgrid, respectively. The intrinsic spread o�ers this functionality; therefore its use suggeststhat the program as expressed will implement the SUMMA algorithm faithfully.We �nd that the IBM compiler chooses to �rst scalarize spread into two inner DOloops, then optimize all three DO loops together. This yields an interesting result: theIBM implementation for SUMMA is very similar to the triply nested DO loop implemen-tation in which all communication occurs at the beginning, outside the outermost loop(Table 4.5). Although IBM's optimization strategy appears to be sound for the generalcase, in this case it has in e�ect unintentionally transformed one algorithm into anotheralgorithm that is potentially less optimal in the larger parameter space not exploredhere[van de Geijn & Watts 95].The APR implementation also does not reect the SUMMA algorithm. APR con-sistently partitions along one dimension regardless of the speci�ed distribution. Conse-quently, APR's implementations of all algorithms follow a similar scheme: RHS valuesare fetched before the loop and LHS values are sent to the owner after the loop. In thiscase, the communication occurs outside of the outermost loop. IBM and APR thus proveour assumption regarding spread to be incorrect. HPF does not specify how the intrin-sic is to be implemented, and again the implementation does not match the intendedalgorithm.The implementation by PGI and ZPL accurately reproduces the SUMMA algorithm.Based on the di�erent approaches taken by IBM and APR, PGI's successful correlation

107Table 4.6: Speedup ratio from 16 to 64 processors, 2000 � 2000 matrix multiplication.Note: (1) execution timed out or memory exhausted.speedup normal HPF-optimized cannon summaIBM 3.44 1.46 2.98 2.72APR 0.94 1.34 (1) 2.60PGI (1) 5.58 2.94 3.03ZPL n/a n/a 3.08 3.49in this case is incidental rather than by design. The communication in the ZPL imple-mentation on the other hand correlates directly with the >> operator in the programas speci�ed by the performance model.Interestingly, the SUMMA performance by all compilers is consistently the best com-pared to the other algorithms. IBM and APR in particular achieve good performancealthough their implementations do not reect SUMMA. SUMMA has been shown to besuperior in many aspects such as memory usage, generality and exibility for non-squarematrices [van de Geijn & Watts 95]. Our limited experiment in this case does not coverthe parameter space su�ciently to illustrate the advantage of SUMMA. Therefore, thegood performance belies the fact that the actual implementations do not reect the samealgorithm. The ZPL performance SUMMA is lower than the HPF's performance becauseof the scalar component. An inspection of the assembly codes generated by the Fortranand C compilers shows that the Fortran compiler can generate a much better instructionschedule for pipelining the superscalar processor in the SP2.Finally, we consider the self-relative speedup from 16 to 64 processors (Table 4.6).Compared to the ideal speedup of 4, we �nd that APR and PGI fail to achieve anyspeedup for the DO loop version; APR's Cannon also fails because of high memoryallocation. IBM and APR only achieve a modest speedup when the DO loop version isoptimized, while PGI achieves superlinear speedup. This unpredictable variation in the

108speedup is another indication of the weakness of HPF's performance model. In contrast,both ZPL implementations scale well.In summary, we �nd that little correlation exists between the algorithm expressedin the HPF programs and the actual implementations. By HPF's design, the compilerhas signi�cant freedom in transforming the program to arrive at an implementation.This characteristic in e�ect constitutes a gap in the performance model that essentiallyprevents the users frommaking any performance prediction for an algorithm. In contrast,ZPL correctly predicts that SUMMA is a better choice than Cannon, which in turn isbetter than the triply nested DO loop (not implemented). ZPL thus satis�es equation 4.2in each case by matching the relative performance predicted by the performance modelwith the relative performance of the actual implementations.4.4 Current HPF solutionsA consequence of the weak performance model in HPF is the general di�culty in pre-dicting the behavior of an HPF program. This is evident in the solutions o�ered bysoftware vendors or features that programmers rely on for tuning HPF programs.A part of the HPF compiler from APR is an extensive set of compiler options andtools for pro�ling and analyzing the program performance. The program can be auto-matically instrumented to gather statistics at each DO loop level and the statistics canserve as a database to the compiler for further recompilation and optimization. Thelisting generated by the compiler also provides performance details not available in thesource program such as which loop level is being parallelized, which statement mayincur communication, where communication is inserted and which array is being com-municated. In addition, the FORGE Explorer Distributed Memory Parallelizer allowsa user to interactively choose the arrays to partition and the loops to distribute. Theuser can also insert additional APR directives to aid the compiler in parallelizing loopsor reducing communication.The capability of the APR system may su�ciently supplement the HPF performance

109model so that a user can achieve good performance with the system. Indeed, users pro-�cient with the FORGE system may have learned a fairly complete model for producinggood parallel programs. The success of this approach is evident in the benchmarks thatAPR made publicly available in conjunction with their published HPF performance; thebenchmarks are highly tuned to the APR compiler, containing liberal APR speci�c di-rectives to aid the compiler. Unfortunately, such a model is a superset rather than apart of the HPF language speci�cation. It is not portable to other HPF compilers, andthere is no evidence that it should be formalized as HPF's model.Another program tuning technique that is more generally accessible is the interme-diate SPMD code generated by the compilers. This option is available in all three HPFcompilers being studied, even though the IBM compiler is a native compiler and doesnot need to generate the intermediate output. The intermediate code can be di�cult todecipher, but has proven indispensable in providing important clues such as the commu-nication generated for a particular statement.4.5 ConclusionsIn this chapter, we identify the performance model as a crucial component of the languagethat programmers rely on for selecting the best implementation or algorithm. BecauseHPF and ZPL are data parallel languages for distributed memory parallel machines, therelevant aspects of the performance model are the communication and the overhead formanaging the data distribution. To quantify the bene�t of the performance model, weformulate a framework which leads to two requirements.For a language with no performance model, equation 4.1 requires the compiler toneutralize any performance di�erence between two alternative programs because theprogrammer has no means to make a selection.For a language to have a performance model, equation 4.2 requires that the relativeperformance predicted by the model matches the implementation.Two case studies are performed using the array assignment and the matrix multi-

110plication. In each case, HPF fails to satisfy both of the requirements above, while ZPLconsistently meets the requirements. Since the performance model is needed to selectbetween alternatives, the potential cost or bene�t of the model is equivalent to the per-formance di�erence between the alternatives. The data from both studies shows thatthis performance di�erence is at least one order of magnitude. This result indicates thatHPF users will face di�culties in achieving consistent and portable performance in theirprograms.In practice, a performance model can be extended beyond the language speci�cation.A user accustomed to a particular HPF compiler will over time learn the behavior of thecompiler and supplement any missing information in the HPF performance model withcompiler speci�c information. For instance, the user may assume that F90 array assign-ment will be the most e�cient. The supplemented model may enable the user to writehigh performance programs using the particular compiler, but since this model is notportable across compilers and consequently across platforms, the program performancewill not be portable.It appears that part of HPF problem lies in the multiple alternatives for expressingthe parallel computation. One may conjecture whether HPF can limit the number ofalternatives to present a more consistent model. However, our discussion shows that aperformance model requires a more careful e�ort than simply limiting the alternatives.Furthermore, this conicts with the goal of compatibility with Fortran since the DO loopis an integral part of Fortran 77 as the array syntax is an integral part of Fortran 90.At the same time, the new Forall construct is desirable since the DO loop is di�cult toanalyze while the F90 syntax is too restrictive.In summary, this chapter demonstrates the importance of the performance model.The detailed study of the implementations shows that to create a robust performancemodel, the language speci�cation must be su�ciently concise for the programmer to relyon and for the compiler to implement with consistency.

Chapter 5Benchmark Comparison5.1 IntroductionRecently, several commercial HPF compilers have become available, enabling users tolearn HPF, program in it, and directly evaluate the language. The Cornell Supercom-puter Center has made available to the scienti�c community a comprehensive set of HPFcompilers and tools for production use. A ZPL compiler developed at the University ofWashington is also publicly available for several parallel platforms, including the KSR,Intel Paragon, IBM SP2, and Cray T3D. Since no broad evaluation of the language andthe compilers is yet available, this chapter is focused on the e�ectiveness of HPF andZPL in achieving portable and scalable performance for data parallel applications.We will study in-depth the performance of three NAS benchmarks compiled withthree commercial HPF compilers on the IBM SP2. The benchmarks are: EmbarrassinglyParallel (EP), Multigrid (MG), and Fourier Transform (FT). The HPF compilers includeApplied Parallel Research, Portland Group, and IBM. To evaluate the e�ect of datadependences on compiler analysis, we consider two versions of each benchmark: oneprogrammed using DO loops, and the second using F90 constructs and/or HPF's Forallstatement. The ZPL compiler is a version ported to the IBM SP2. For comparison, wealso consider the performance of each benchmark written in Fortran with MPI.

112The MPI results represent a level of performance that the HPF program shouldtarget to be considered a viable alternative. The ZPL version gives an indication ofthe performance achievable when the compiler is not hampered by language featuresunrelated to parallel computation.The results show some successes with the F90/Forall programs but the results arenot uniform. For the other programs, the results suggest that Fortran's sequential na-ture causes considerable di�culty for the compiler's analysis and optimization of thecommunication. The varying degrees of success among the compilers in parallelizing theprograms, coupled with the absence of a clear model to guide the insertion of directives,results in an uncertain programming model for users as well as portability problems forHPF programs.In related work, APR published the performance of its HPF compiler for a suite ofHPF programs, along with detailed descriptions of their program restructuring processusing the APR FORGE tool to improve the codes [App 95, Friedman et al. 95]. Theprograms are well tuned to the APR compiler and in many cases rely on the use of APR-speci�c directives rather than standard HPF directives. Although the approach thatAPR advocates (program development followed by pro�ler-based program restructuring)is successful for these instances, the resulting programs may not be portable with respectto performance, particularly in cases that employ APR directives. Therefore, we believethat the suite of APR benchmarks is not well suited for evaluating HPF compilers ingeneral.Similarly, papers by vendors describing their individual HPF compilers typically showsome performance numbers, but the benchmarks tend to be selected to highlight thespeci�c compiler's strengths. Consequently, it is di�cult to perform comparisons acrosscompilers [Harris et al. 95, Bozkus et al. 95, Gupta et al. 95].Lin et al. used the APR benchmark suite to compare the performance of ZPL ver-sions of the programs against the corresponding HPF performance published by APRand found that ZPL generally outperforms HPF. However, the lack of access to the

113APR compiler did not allow detailed analysis, limiting the comparison to the aggregatetimings [Lin et al. 95].The goals in this chapter are:1. An in-depth comparison and analysis of the performance of HPF programs withthree current HPF compilers and alternative languages (MPI, ZPL).2. A comparison of the DO loop with the F90 array syntax and the Forall construct.3. A comparison of machine-speci�c and portable HPF compilers.4. An assessment of the parallel programming model presented by HPF.The chapter is organized as follows: Section 5.2 describes the methodology for thestudy, including a description of the algorithms and the benchmark implementations.In Section 5.3, we examine and analyze the benchmarks' performance, detailing thecommunication generated in each implementation and quantifying the e�ects of datadependences in the HPF programs. Section 5.4 provides our observations and our con-clusions.5.2 Methodology5.2.1 Overall approachWe study the NAS benchmarks EP, MG and FT [Bailey et al. 91]. MG and FT arederived from the NAS benchmark version 2.1 (NPB2.1), published by the NumericalAerodynamic Simulation group at NASA Ames [Bailey et al. 95]. Previous versionsof the NAS benchmarks were implemented by computer vendors and were intended tomeasure the best performance possible on a parallel machine without regard to porta-bility. NPB2.1 is an MPI implementation by NAS and is intended to measure the bestportable performance for an application. Because NPB2.1 programs are portable andare originally parallel, they constitute an ideal base for our study. Speci�cally, NPB2.1serves two purposes:

1141. The actual NPB2.1 performance serves as the reference point for the HPF imple-mentations or for any high level language [Saphir et al. 95].2. The HPF implementations are derived by reverse engineering the MPI programs:communication calls are removed and the local loop bounds are replaced withglobal loop bounds. HPF directives are then added to parallelize the programs.Conceptually, the task for the HPF compilers is to repartition the problem asspeci�ed by the HPF directives and to regenerate the communication.Since EP is not available in NPB2.1, we use the version from the benchmark suitepublished by APR.An important issue in an HPF program is how the computation is expressed. It wasrecognized that the conventional Fortran DO loop may over-specify the data dependencesin data parallel computations; therefore the Fortran 90 array syntax and the Forallconstruct were proposed as better alternatives for expressing parallelism [Forum 93].Since the NPB2.1 programs (and the derived HPF programs) are written in Fortran77 with DO loops, we also consider a version in which the DO loops for whole-arrayoperations are replaced with Fortran 90 syntax or the HPF Forall construct.To focus on the portability issue, the HPF directives are used according to the HPFspeci�cation within the functionality limit of the compilers; in other words, the programsare not tuned to any speci�c compiler. This may put the APR compiler at a disadvantagesince it relies on the APR-provided pro�ling and program restructuring tools. Thechosen benchmarks use only the basic HPF intrinsics and require only the basic BLOCKdistribution that is supported by all three compilers. Therefore they can stress thecompilers without exceeding their capability.The implementations in the ZPL language are derived from the same source as theHPF implementations, but in the following manner: the sequential computation is trans-lated directly from Fortran to the corresponding ZPL syntax, while the parallel executionis expressed using ZPL's parallel constructs.

1155.2.2 Benchmark selectionNPB2.1 contains 7 benchmarks1, all of which should ideally be included in the study.Unfortunately, a portable HPF version of these benchmarks is not available, severelylimiting an independent comparison. While APR and other HPF vendors publish thebenchmarks used to acquire their performance measurements, these benchmarks aregenerally tuned to the speci�c compiler and are not portable. This limitation forces usto carefully derive HPF versions from existing benchmarks with the focus on portabilitywhile avoiding external e�ects such as algorithmic di�erences. The following criteria areused:1. The benchmarks should be derived from an independent source to insure objectiv-ity.2. A message passing version should be included in the study since the comparisonis not only between HPF and ZPL but also against the target that HPF and ZPLare to achieve.3. For HPF, there should be separate versions that employ F77 DO loop and F90/Forallbecause there is a signi�cant di�erence between the two types of construct.4. There should be no algorithmic di�erences between versions of the same bench-mark.5. Tuning must adhere to the language speci�cation rather than any speci�c compilercapability.6. Because support for HPF features is not uniform, the benchmarks should notrequire any feature that is not supported by all HPF compilers.Considering the benchmark availability in Table 5.1, the sources for NPB1 are gen-erally sequential implementations. Although they could be valid HPF programs, the1One was added recently after this writing

116sequential nature of the algorithms may be too di�cult for the compilers to parallelizeand may not reect a natural approach to parallel programming. In other words, anHPF programmer may have chosen a speci�c parallel algorithm and simply wants to im-plement it in HPF. APR's sources, as mentioned above, are tuned to the APR compiler;therefore they are not appropriate as a portable implementation. The NPB2.1 sourcesare the best choice since they implement inherently parallel algorithms and they use thesame MPI interface as all compilers being studied.Among the benchmarks, CG is eliminated simply because it is not available inNPB2.1. SP, BT and LU cannot be included because they require a block cyclic and 3-Ddata distribution that is not supported by all HPF compilers and ZPL. The limitations inthemselves do not prevent these benchmarks to be implemented in HPF and ZPL (indeedthey are); however the implementations will have an algorithmic di�erence that cannotbe factored from the performance. This leaves only FT and MG as potential candidates.Fortunately, EP is by de�nition highly parallel; therefore its sequential implementationcan be trivially parallelized.5.2.3 PlatformThe targeted parallel platform is the IBM SP2 at the Cornell Theory Center. The systemis a distributed memory machine with 512 processors, 48 of which are wide nodes2. Thecompilers used in the study include:� Portland Group pghpf version 2.1� IBM xlhpf version 1.0� Applied Parallel Research xhpf version 2.0� ZPL compiler (SP2 port) from the University of WashingtonOne potential source of di�erence between ZPL and HPF performance is that theZPL compiler produces C as the intermediate code. In general, Fortran compilers have2Wide SP2 nodes have wider data path and larger caches.

117Table 5.1: Sources of NAS benchmarks for HPF and ZPLThe left 3 columns show the availability of the sources; the right 3 columns show theversions needed for the study and the source used.Available Needed for studyNPB1 tuned APR NPB2.1 HPF DO HPF F90 ZPLEP yes yes N/A tuned APR NPB1 NPB1FT yes yes yes NPB2.1 NPB2.1 NPB2.1CG yes N/A N/A N/A N/A N/AMG yes yes yes NPB2.1 NPB2.1 NPB2.1SP yes yes yes N/A N/A NPB1BT yes yes yes N/A N/A N/ALU yes N/A yes N/A N/A N/Amore opportunities for scalar optimization than a C compiler. To obtain a coarse ap-proximation of this di�erence, we converted the FT benchmark from Fortran to C andcompared the performance. For 1 to 8 processors, the Fortran version is 32% to 42%faster than the C version. This suggests that the observed scalar performance for ZPLwill tend to be conservative.Processors Fortran C % � over C1 4.70 secs 7.55 secs 38%4 1.49 secs 2.20 secs 32%8 .83 secs 1.43 secs 42%All compilers generate MPI calls for the communication and use the sameMPI library,ensuring that the communication fabric is identical for all measurements. Besides theaggregate timings, the program execution is also traced using the UTE facility [IBM 95]to measure the major phases of the program and the communication.

118All measurements use the same compiler options and system environment that NASand APR speci�ed in their publications, and spot checks con�rmed that the publishedNAS and APR performances are reproduced in this computing environment. The fol-lowing sections will briey describe the benchmarks and give further details on how theHPF (DO loop and F90/Forall) and ZPL implementations were created.5.2.4 Embarrassingly ParallelThe benchmark EP generates N pairs of pseudo-random oating point values (xj; yj) inthe interval (0,1) according to the speci�ed algorithm, then redistributes each value xjand yj onto the range (-1,1) by scaling them as 2xj � 1 and 2yj � 1. Each pair is testedfor the condition: tj � 1 where tj = x2j + y2jIf true, the independent Gaussian deviates are computed:X = xjq(�2 log tj)=tjY = yjq(�2 log tj)=tjThen the new pair (X; Y) is tested to see if it falls within one of the 10 square annuliand a total count is tabulated for each annulus.l �max(jX j; jY j) < l+ 1 where 0 � l < 9The pseudo-random numbers are generated according to the following linear congru-ential recursion: xk = axk�1 mod 246 where a = 515; x0 = 271828183The values in a pair (xj; yj) are consecutive values of the recursion. To scale to the (0,1)range, the value xk is divided by 246.Figure 5.1 illustrates the data structure, the general ow of the computation and thepseudo-codes. Clearly, the computation for each pair of Gaussian deviates can proceed

119independently. Each processor would maintain its own counts of the Gaussian deviatesand communicate at the end to obtain the global sum. The random number generation,however, presents a challenge. There are two ways to compute a random value xk:1. xk can be computed quickly from the preceding value xk�1 using only one multi-plication and one mod operation, leading to a complexity of O(n). However, themajor drawback is the true data dependence on the value xk�1.2. xk can be computed independently using k and the de�ned values of a and x0.This will result in an overall complexity of O(n2). Fortunately, the property ofthe mod operation allows xk to be computed in O(log k) steps by using a binaryexponentiation algorithm [Bailey et al. 91].The goal then is to balance between method (1) and (2) to achieve parallelism whilemaintaining the O(n) cost. Because EP is not available in the NPB2.1 suite, we use theimplementation provided by APR as the DO loop version. This version is structured toachieve the balance between (1) and (2) by batching (see Figure 5.1(b)): the randomvalues are generated in one sequential batch at a time and saved; the seed of the batch iscomputed using the more expensive method (2), and the remaining values are computedusing the less expensive method (1). A DO loop then iterates to compute the numberof batches required, and this constitutes the opportunity for parallel execution.The F90/Forall version is derived from the DO loop version with the following mod-i�cations (Figure 5.1(c)):� All variables in the main DO loop that cause an output dependence are expandedinto arrays of the size of the loop iteration. In other words, the output dependenceis eliminated by essentially renaming the variables so that the computation canbe expressed in a fully data parallel manner. Since the iteration count is just thenumber of sequential batches, the expansion is not excessive.� Directives are added to partition the arrays onto a 1-D processor grid.

120� The DO loop for the �nal summation is also recoded using the HPF reductionintrinsic.A complication arises involving the subroutine call within the Forall loop, whichmust be free of side e�ects in order for the loop to be distributed. Some slight coderearrangement was done to remove a side e�ect in the original subroutine, then thePURE directives were added to assert freedom from side e�ects. Unfortunately, supportfor PURE varies among the compilers. For instance, APR does not support the PUREand INTENT directives apparently because it performs interprocedural analysis to detectthe side e�ects. APR and PGI do not allow a function to return an array, thus precludingan implementation similar to the ZPL implementation.The ZPL version is translated in a straightforward manner from the DO loop ver-sion. The only notable di�erence is the use of the ZPL region construct to express theindependent batch computation (Figure 5.1(d)).5.2.5 MultigridMultigrid is interesting for several reasons.First, it illustrates the need for data parallel languages such as HPF or ZPL. TheNPB2.1 implementation contains over 700 lines of code for the communication { about30% of the program { which are eliminated when the program is written in a data parallellanguage.Second, since the main computation is a 27-points stencil, the reference pattern thatrequires communication is simply a shift by a constant, which results in a simple neighborexchange in the processor grid. All compilers (ZPL and HPF) recognize this pattern welland employ optimizations such as message vectorization and storage preallocation forthe nonlocal data [App 95, Gupta et al. 95, Chamberlain et al. 95, Bozkus et al. 95].Therefore, although the benchmark is rather complex, the initial indication is that bothHPF and ZPL should be able to produce e�cient parallel programs.The benchmark is a V-cycle multigrid algorithm for computing an approximate so-

121

DO 1:BS

(8) sum(Q)

 X(1:NB) = NB Gaussian deviates

 X(1:NB) = NB next pair

END

 tally count in concentric square annuli

 compute NB starting seed

(7)

(6)

(d) ZPL version

(5)

(4)
(3)

(2)
(1) FORALL 1:NB

(c) F90/FORALL version

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

region B = [1..NB];

Gc, Q: [B] integer;

[B] begin

 Gc := RandPairs(..,Q);

 for i:=0 to 9

 gc := +\Gc;

end;

 q[i] := +\ Q[i];

distributed

local

count

Q

Gc

distributed

local

count

Q

Gc

(a) NPB1 sequential version

batch

count

count

batch seed

x1

y0

x0

Q
count

batch seed

distributed

count

distributed batch

X

x1 y1

X

replicated batch

local count

batch seed

count

pseudo code:

pseudo code:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

!HPF$ INDEPENDENT

 DO

 starting seed by binary expoentiation

 END

 compute Gaussian deviates

 tally count in concentric square annuli

 END

END

CALL vranlc() generate remaining batch

DO 1:NB

 DO 1:BS

batch seed

distributed count

y1

9

0

RandPairs

count

batch seed

local count

replicated batch

X

batch seed

x0

y0

x1

y1

distributed count

9

0

RandPairs

X

x0

y0

x1

y1

Q

P1P0

reduction
global

(b) Tuned APR version

Q

Q

global reduction

P0 P1

x0 y0

Q
count

batch seed

distributed

count

distributed batch

X

global
reduction

reduction
global

Figure 5.1: Illustrations of EP as implemented in HPF and ZPL.Note: the pseudo-codes and the data structures distributed onto two processors.

122lution to the discrete Poisson problem: r2u = vwhere r2 is the Laplacian operator r2u = (�2�x2 ; �2�y2 ; �2�z2)The algorithm consists of 4 iterations of the following three steps:r = v �A � u (1) evaluate residualz =Mkr (2) compute correctionu = u + z (3) apply correctionwhere A is the trilinear �nite element discretization of the Laplace operator r2, Mk isthe V-cycle multigrid operator as de�ned in the NPB1 benchmark speci�cation (section2.2.2). Figure 5.2 illustrates these three steps together with the data structures: thedown cycle and up cycle constitute step (2), compute correction. The interpolation andprojection of the hierarchical grids during the down and up cycle are also illustratedfor the 2-D case; note that the actual arrays are 3-D. For further details, the reader isreferred to the NPB1 speci�cation [Bailey et al. 91] as well as other publications on thevendor implementations [Agarwal et al. 95].The algorithm implemented in the NPB2.1 version consists of three phases: the �rstphase computes the residual, the second phase is a set of steps that applies the Mkoperator to compute the correction while the last phase applies the correction.The HPF DO loop version is derived from the NPB2.1 implementation as follows:� The MPI calls are removed.� The local loop bounds are replaced with the global bounds.� The use of a COMMON block of storage to hold a set of arrays of di�erent sizes isincompatible with HPF; therefore the arrays are renamed and declared explicitly.� HPF directives are added to partition the arrays onto a 3-D processor grid. Thearray distribution is maintained across subroutine calls by using the transcriptivedirectives to prevent unnecessary redistribution.

123
V

Rk-1

Rk-1

R2

R2

Z 2

R1

Z1Z k-1 Z = Q.Z2 1

R = P. R1 2

k-1Z = Q.Zk

up cycle

down cycle

Z = Z - C . R222Z = Z - C . R
k k k k kR = R - A . Zk R = R - A . Z2 2 2

R

(b) Stencil computation for hierarchical grid

k

Rk

Z k

U

U

4 iterations

k k+1R = P.R

R = V - A .U

U = U + Z
k

(a) MG algorithm

Figure 5.2: Illustrations for the Multigrid algorithm.Note: (a) The arrays U, V, Rk, Zk are full sized 3-d arrays; Ri, Zi for k � 1 � i � 1are hierarchically scaled arrays. (b) This is a 2-D example of the multigrid interpolationand projection; the actual computation is 3-D.

124The HPF F90/Forall version requires the additional step of rewriting all data parallelloops in F90 syntax.The ZPL version has a similar structure to the HPF F90/Forall version, the notabledi�erence being the use of strided region to express the hierarchy of 3-D grids. A stridedregion is a sparse index set over which data can be declared and computation can bespeci�ed.5.2.6 Fourier TransformConsider the partial di�erential equation for a point x in 3-D space:�u(x; t)�t = �r2u(x; t)The FT benchmark solves the PDE by (1) computing the forward 3-D Fourier Transformof u(x; 0), (2) multiplying the result by a set of exponential values, and (3) computing theinverse 3-D Fourier Transform. The problem statement requires 6 solutions, thereforethe benchmark consists of 1 forward FFT and 6 pairs of dot products and inverse FFTs.The NPB2.1 implementation follows a standard parallelization scheme, illustrated inFigure 5.3 [Bailey et al. 95, Agarwal et al. 94a]. The 3-D FFT computation consists oftraversing and applying the 1-D FFT along each dimension. The 3-D array is partitionedalong the third dimension to allow each processor to independently carry out the 1-D FFTalong the �rst and second dimension. Then the array is transposed to enable the traversalof the third dimension. The transpose operation constitutes most of the communicationin the program. Note that the program requires moving the third dimension to the �rstdimension in the transpose so that the memory stride is favorable for the 1-D FFT;therefore the HPF REDISTRIBUTE function alone is not su�cient3.The HPF DO loop implementation is derived with the following modi�cations:1. HPF directives are added to distribute the arrays along the appropriate dimension.Transcriptive directives are used at subroutine boundaries to prevent unnecessaryredistribution.3HPF data distribution speci�es the partition to processor mapping, not the memory layout.

125
transpose: X1 -> X0

FFT dim 3: X0

FFT dim 1: X1

exponent

FFT dim 2: X1

transpose: X2 -> X1

FFT dim 1: X1

FFT dim 2: X1

FFT dim 3: X2

X3

X1

checksum

forward FFT

inverse FFT

dot multiply

NT iterations

X0

X1

X2

random

Figure 5.3: Illustrations of FT implementation.Note: (1) The 3-D arrays X0, X2 and X3 are partitioned along dimension 2; X1 ispartitioned along dimension 3; (2) The arrows in the arrays show the direction of the1-D FFT.

1262. The communication for the transpose step is replaced with a global assignmentstatement.3. A scratch array that is recast into arrays of di�erent ranks and sizes betweensubroutines is replaced with multiple arrays of constant rank and size. Althoughpassing an array section in a formal argument is legitimate in HPF, some HPFcompilers have di�culty managing array sections.The HPF F90/Forall version requires the additional step of rewriting all data parallelloops in F90 syntax.The ZPL implementation allocates the 3-D arrays as regions of 2-D arrays; the trans-pose operation is realized with the ZPL permute operator.5.3 Parallel PerformanceIn this section we examine the performance of the programs. Because the execution timemay be excessive depending on the success of the compilers, we �rst examine the smallproblem size (class S), then the programs with a reasonable performance and speedupwith the large problem size (class A). Figure 5.4, 5.5 and 5.6 show the aggregate timingfor all versions (MPI, HPF, ZPL) and for the small and large problem size (class S,class A). The following discussion will focus on (1) the scalability and (2) the scalarperformance, and examine the causes for any problems with (1) and (2).5.3.1 NAS EP benchmarkIn Figure 5.4(a), the �rst surprising observation is that the IBM and PGI compilersachieve no speedup with the HPF DO loop version although the APR compiler producesa program that scales well (recall that the EP DO loop version is from the APR suite).Inspecting the code reveals that no distribution directives were speci�ed for the arrays,resulting in a default data distribution. Although the default distribution is implemen-tation dependent, the conventional choice is to replicate the array. The IBM and PGI

127

0 10 20 30 40
10

100

1000

Processors

tim
e(

se
cs

)

(b) EP class A

0 5 10 15 20
0.1

1

10

Processors

tim
e(

se
cs

)

(a) EP class S

0 20 40 60 80050100150
ZPL IBM_F90 PGI_F90
APR_do IBM_do PGI_doFigure 5.4: Performance for EP (log scale).

128

0 2 4 6 8 10
0.01

0.1

1

10

100

1000

Processors

tim
e(

se
cs

)

(a) MG class S

0 10 20 30 40
1

10

100

1000

Processors

tim
e(

se
cs

)

(b) MG class A

0 20 40 60 80050100150
MPI ZPL APR_F90 IBM_F90
PGI_F90 APR_do IBM_do PGI_doFigure 5.5: Performance for MG (log scale).Note: APR is not shown in (b) because the execution timed out.

129

0 2 4 6 8 10
0.1

1

10

100

1000

Processors

tim
e(

se
cs

)

(a) FT class S

0 10 20 30 40
1

10

100

1000

Processors

tim
e(

se
cs

)

(b) FT class A

0 20 40 60 80050100150
MPI ZPL APR_F90 IBM_F90
PGI_F90 APR_do IBM_do PGI_doFigure 5.6: Performance for FT(log scale).

130compilers distribute the computation by the owner-computes rule4; therefore, in orderfor the program to be parallelized, some data structures must be distributed. Sincethe arrays in EP are replicated by default, no computation is partitioned among theprocessors: each processor executes the full program and achieves no speedup.By contrast, the APR parallelization strategy does not strictly adhere to the owner-computes rule. This allows the main loop to be partitioned despite the fact that noneof the arrays within the loop are distributed. Note that the HPF language speci�cationdoes not specify the default distribution for the data nor the partitioning scheme forthe computation. The omission was likely intended to maximize the opportunity for thecompiler to optimize; however the observation for EP suggests that the di�erent schemesadopted by the compilers may result in a portability problem with HPF programs.When directives were inserted to distribute the arrays, it was found that the mainarray in EP is intended to hold pseudo-random values generated sequentially, thereforethere exists a true dependence in the loop computing the values. If the array is distrib-uted, the compiler will adjust the loop bounds to the local partition, but the computationwill be serialized.The HPF F90/Forall version corrects this problem by explicitly distributing the ar-rays and the IBM and PGI compilers were able to parallelize. The class A performance inFigure 5.4(b) shows that all compilers achieve the expected linear speedup. However, ex-panding the arrays to express the computation into a more data parallel form introducesoverhead and degrades the scalar performance. It is possible for advanced compiler op-timizations such as loop fusion and array contraction to remove this overhead, but theseoptimizations were either not available or not successful in this case.The ZPL version scales linearly as expected and the scalar performance is slightlybetter than the APR version despite the C/Fortran di�erence described earlier.4PGI can also deviate from the owner-computes rule in some case.

1315.3.2 NAS MG benchmarkCompared to EP, MG allows a more complete and rigorous test of the languages andcompilers. We �rst discuss the performance for the class S in Figure 5.5(a).The p=1 column shows considerable variation in the scalar performance with all ver-sions showing overhead of 1 to 2 orders of magnitude over the Fortran/MPI performance.For the base cases, both the original MPI program and the ZPL version scale well.The ZPL compiler partitions the problem in a straightforward manner according to theregion and strided region semantics, and the communication is vectorized with littlee�ort. The scalar performance does however show over a 6x overhead compared to theMPI version.The HPF DO loop version clearly does not scale with any HPF compiler.The PGI compiler performs poorly in vectorizing the communication when the com-putation is expressed with DO loops: the communication call tends to remain in theinner most loop, resulting in a very large number of small messages being generated. Inaddition, the program uses guards within the loop instead of adjusting the loop bound.The APR compiler only supports a 1-D processor grid, therefore the 3-D distributionspeci�ed in the HPF directives is collapsed by default to a 1-D distribution. This limi-tation a�ects the asymptotic speedup but does not necessarily limit the parallelizationof the 27-point stencil computation. For one subroutine, the compiler detects throughinterprocedural analysis an alias between two formal arguments, which constitutes aninhibitor for the loop parallelization within the subroutine. However, the analysis didnot go further to detect from the index expressions of the array references that no de-pendence actually exists. For most of the major loops in the program, the APR compilercorrectly partitions the computation along the distributed array dimension, but gener-ates very conservative communication before the loop to obtain the latest value for theRHS and after the loop to update the LHS. As a result, the performance degrades withthe number of processors.The IBM compiler does not parallelize because it detects an output dependence on a

132number of variables although the arrays are replicated. In this case, the compiler appearsto be overly conservative in maintaining the consistency of the replicated variables. Otherloops do not parallelize because they contain an IF statement.The INDEPENDENT directive is treated di�erently by the compilers. The PGIcompiler interprets the directive literally and parallelizes the loop as directed, while theIBM compiler nevertheless performs a more rigorous dependence check and elects not toparallelize the loop because of detected dependences.For the HPF F90/Forall version, the IBM and PGI compilers are more successful.The IBM compiler performance and scalability approach ZPL's, while the PGI compilernow experiences little problem in vectorizing the communication. Indeed, PGI's scalarperformance now exceeds IBM's. The APR compiler does not result in slowdown but doesnot achieve any speedup either. It partitions the computation in the F90/Forall versionsimilarly to the DO loop version, but is able to reduce the amount of communication.It continues to be limited by its 1-D distribution as well as an alias problem with onesubroutine. Note that the version of MG from the APR suite employs APR's directivesto suppress unnecessary communication. These directives are not used in our studybecause they are not a part of HPF, but it is worth noting that it is possible to useAPR's tools to analyze the program and manually insert APR's directives to improvethe speedup with the APR compiler.Given that the DO loop version fails to scale with any compiler, one may conjecturewhether the program may be written di�erently to aid the compilers. The speci�c causesfor the failure of each compiler described above suggest that the APR compiler wouldbe more successful if APR's directives are used, that the PGI compiler may bene�t fromthe HPF INDEPENDENT directive, and that the IBM compiler would require actualremoval of some data dependences. Therefore, it does not appear that any single solutionis portable across the compilers.Since the HPF DO version does not scale, the class A data only includes MPI, ZPLand HPF F90/Forall (Figure 5.5(b)). MPI and ZPL again exhibit good speedup but the

133ZPL overhead persists. IBM and PGI also achieve speedup but PGI appears to level o�quickly while IBM shows yet higher overhead than ZPL. APR on the other hand doesnot achieve any speedup as predicted with the small problem size; the APR plot is notshown because the execution runs timed out. Note that the MG performance publishedby APR is competitive with ZPL's performance. However, the MG benchmark madeavailable by APR not only relies on APR's directives but can be compiled by neitherIBM nor PGI because of the use of SEQUENCE, an incompatible memory layout feature.MG thus illustrates that (1) HPF programs can achieve some speedup, and (2) whentuned to a speci�c compiler such as APR, the programs can achieve the same level ofperformance as ZPL. However, it is di�cult to guarantee scalability and portability inHPF programs.5.3.3 NAS FT benchmarkFT presents a di�erent challenge to the HPF compilers. In terms of the reference pattern,FT consists of a dot product and the FFT buttery pattern. The former requires nocommunication and is readily parallelized by all compilers. For the latter, the indexexpression is far too complex for a compiler to optimize the communication. Fortunately,the index variable is limited to one dimension at a time; therefore the task for the compileris to partition the computation along the appropriate dimensions. The intended datadistribution is 1-D and is thus within the capability of the APR compiler.Figure 5.6(a) shows the full set of performance results for the small problem size. Aswith MG, the MPI and ZPL versions scale well and the scalar performance of all HPFand ZPL implementations shows an overhead of 1 to 2 orders of magnitude over the MPIimplementation.For the HPF DO loop version, the APR compiler exhibits the same problem aswith MG: it generates very conservative communication before and after many loops.In addition, the APR compiler does not choose the correct loop to parallelize. Thediscrepancy arises because APR's strategy is to choose the partitioning based on the

134array references within the loop. In the program, the main computation and thus thearray references are packaged in a subroutine called from the loop so that when the loopis parallelized, the subroutine will operate on the local data. When the APR compilerproceeds to analyze the loops in this subroutine (1-D FFT), it �nds that the loops arenot parallelizable.The PGI compiler also generates poor communication, although its principal limita-tion is in vectorizing the messages. The IBM compiler does not parallelize because ofassignments to replicated variables.The HPF F90/Forall version requires considerable experimentation and code restruc-turing to arrive at a version that is accepted by all compilers, partly because of di�erencesin supported features among the compilers and partly because of the nested subroutinesstructure of the original program. All HPF compilers achieve speedup to varying de-grees. APR is particularly successful since the principal parallel loop has been movedto the innermost subroutine. Its scalar performance approaches the MPI's performance,although communication overhead limits the speedup. PGI shows good speedup whileIBM's speedup is more limited.For the class A problem size, the memory requirement proves to be considerablesince several programs fail the p=8 con�guration. Unfortunately, the Cornell systemonly has 48 wide nodes out of its 512 nodes; this limits the set of the data points. Thememory requirement also manifests itself in some superlinear speedup for all HPF andZPL programs. Nevertheless, the overall observation is that the programs achieve theexpected speedup. ZPL scalar performance is lower than the HPF performance; however,when we take into account the 40% slowdown from C to Fortran measured earlier forFT, ZPL parallel performance is comparable to HPF.5.3.4 CommunicationTable 5.2 shows the total number of MPI message passing calls generated and the dif-ferences in the communication schemes employed by each compiler. The APR and PGI

135Table 5.2: Communication statistics for EP class A, MG class S and FT class S: p=8Benchmark version point-to-point collective type of MPI callsEP (class A) ZPL 0 120 Allreduce, BarrierAPR DO loop 31 0 Send, RecvIBM F90 70 120 Send, Recv, BcastPGI F90 240 0 Send, RecvMG (class S) MPI 2736 40 Send, Irecv, Allreduce, BarrierZPL 9504 56 Isend, Recv, BarrierAPR F90 126775 8 Send, Recv, BarrierIBM F90 9636 32 Send, Recv, Irecv, BcastPGI F90 22191 0 Send, RecvFT (class S) MPI 0 104 Alltoall, ReduceZPL 1064 32 Isend, Recv, BarrierAPR F90 58877 8 Send, Recv, BarrierIBM F90 728 258048 Send, Irecv, BcastPGI F90 64603 0 Send, Recvcompilers only use the generic send and receive while the IBM compiler also uses thenonblocking calls and the collective communication; this may have rami�cations in theportability of the IBM compiler to other platforms. The ZPL compiler uses nonblock-ing MPI calls to overlap computation with communication as well as MPI collectivecommunication.5.3.5 Data DependencesHPF compilers derive parallelism from the data distribution and the loops that operateon the data. Loops with no dependences are readily parallelized by adjusting the loop

136bounds to the local bounds. Loops with dependences may still be parallelizable but willrequire analysis; for instance, the IBM compiler can detect some dependence patterns ofloops that perform a reduction and generate the appropriate HPF reduction intrinsic.In other instances, loop distribution may isolate the portion containing the dependenceto allow the remainder of the original loop to be parallelized. To approximately quantifythe degree of di�culty that a program presents to the parallelizing compiler in terms ofdependence analysis, we use the following simple metric:count of all loops with dependencescount of all loopsA value of 0 would indicate that all loops can be trivially parallelized, while a valueof 1 would indicate that whether any loop is parallelizable depends on the analysiscapability of the compiler. Using the KAPF tool, we collect the loop statistics fromthe benchmarks for the major subroutines; they are listed in Table 5.3. This metricis not complete since it does not account for the data distribution; for instance, for 3nested loops and a 1-D distribution, only 1 loop needs to be partitioned to parallelize theprogram and 2 loops may contain dependences with no ill e�ect. However, the metricgives a coarse indication for the demands on the compiler.The loop dependence statistics show clear trends that correlate directly with theperformance data. We observe the expected reduction in dependences from the DOloop version to the F90/Forall version. The reduction greatly aids the compilers inparallelizing the F90/Forall programs, but also highlights the di�culty with parallelizingprograms with DO loops.For MG, the di�erence is signi�cant; the array syntax eliminates the dependences inmost cases. Some HPF compilers implement optimizations for array references that area�ne functions of the DO loop indices, particularly for functions with constants. Theseoptimizations should have been su�cient for the MG DO loop version, however it doesnot appear that they were successful. Note that the loops in the subroutine norm2u3are replaced altogether with the HPF reduction intrinsics.For FT, the low number of dependences in �tpde comes from the dot-products which

137Table 5.3: Dependence ratio mn for EP, MG and FT.Note: m is the count of loops with data dependences or subroutine calls, and n is thetotal loop count.subroutine DO F90/ForallEP embar 3/5 1/31vrandlc 1/1 -get start seed - 1/1FT �tpde 2/16 2/16c�t3 0/6 0/6c�ts1 2/6 1/7c�ts2 2/6 1/7c�tz 3/5 1/4�tz2 3/3 3/4
subroutine DO F90/ForallMG hmg 1/2 1/27mg3P up 1/1 1/22mg3P down 1/1 1/1psinv 4/4 0/6resid 4/4 0/6rprj3 4/4 0/6interp 7/21 0/30norm2u3 3/3 0/0comm3 0/6 0/18are easily parallelized. The top-down order of the subroutines listed also represents thenesting level of the subroutines. The increasing dependences in the inner subroutinereect the need to achieve parallelism at the higher level. As explained earlier, thisproves to be a challenge to the APR compiler which focuses on analyzing individualloops to partition the work.5.4 ConclusionOur objective in this chapter has been to subject the current state of the art compilersfor data parallel languages to more substantive applications. Three NAS benchmarkswere studied across three current HPF compilers and a ZPL compiler. We examineddi�erent styles of expressing the computation in HPF and we also consider the samebenchmarks written in MPI to understand the limits of the performance.

138The three HPF compilers show a general di�culty in detecting parallelism from DOloops. They are more successful with the F90 array syntax and the Forall construct,although even in this case the success in parallelization is not uniform. Signi�cantvariation in the scalar performance also exists between the compilers.The ZPL compiler shows consistent speedup and performance competitive with theHPF compilers.While di�erences between compilers will always be present, the di�erences must pre-serve a certain performance model in order for program portability to be maintained inthe language. In other words, the user must be able to use any compiler to develop aprogram that scales, then have the option of migrating to a particular machine or com-piler for better scalar performance. This requires a tight coupling between the languagespeci�cation and the compiler in the sense that the compiler must reliably implementthe abstraction provided in the language. To this end, the language speci�cation mustserve as a consistent contract with the programmer, or more formally, the language mustprovide a concise performance model.In the case of HPF, the results point to two di�culties.First, while the HPF directives and constructs provide information on the data andcomputation partitioning, the sequential semantics of Fortran leave many potential de-pendences in the program. An HPF compiler must analyze these dependences, and whenunable to do so, it must make a conservative assumption. Although this analysis capa-bility di�erentiates di�erent vendor implementations, the di�culty for the compilers toparallelize reliably leads to a di�culty for the user in predicting the parallel behaviorand thus the speedup of the program. A direct result is that the user needs to con-tinually experiment with the compilers to learn their actual behavior. In doing so, theuser is e�ectively supplementing the performance model provided by the language withempirical information. Yet, such an enhanced model tends to be platform speci�c andnot portable.Second, the optional nature of the directives, while fostering compatibility and a

139smoother transition from a current language, leads to an uncertain performance modelfor the user. In other words, it is not clear how much e�ort from the user is necessaryor su�cient; for instance, the INDEPENDENT directive may or may not parallelize aloop depending on the compiler implementation.In this respect, the ZPL language addresses some of these problems by providing aclear demarcation between parallel and sequential execution. The results demonstratethat ZPL o�ers a consistent performance model and scalable performance.The results also show that signi�cant overhead remains in all implementations com-pared to the MPI programs. One source for the overhead is the large number of tem-porary arrays generated by the compiler across subroutine calls and parallelized loops.They require dynamic allocation/deallocation and copying, and generally degrade thecache performance. It is clear that to become a viable alternative to explicit messagepassing, compilers for data parallel language must achieve a much lower overhead.

Chapter 6Mighty Scan, parallelizingsequential computation6.1 IntroductionThe general objective for a parallelizing compiler is to analyze and detect the dependencesin the program so that when there are none the computation can be scheduled to proceedin parallel. However, when a true dependence exists, serialization occurs and a di�erentapproach must be employed to achieve parallelism. In this discussion, we focus on thecase where the dependence occurs along one dimension of one or several arrays. Such acomputation typically involves traversing the array(s) and updating each element usingthe values of the preceding elements. Because a true dependence exists, the computationis conceptually sequential. A simple example is the parallel pre�x operation (scan) on anarray. A more complex example involving multiple arrays and arithmetic operations isthe forward elimination and backward substitution steps in a solver for linear equations.The solution for this problem exists in many forms depending on the particularcase. When the operator is commutative and associative and only one array is involved,the computation is known as the parallel pre�x operation. Because it is frequentlyused and an e�cient parallel algorithm exists, parallel pre�x is often supported directly

141in communication interfaces such as MPI (MPI Pre�x) and in high level data parallellanguages such as HPF and ZPL. Since these implementations are well optimized, wecan consider the parallel pre�x problem to be solved.However, when the operator is not commutative or associative and multiple arrays areinvolved, no direct support currently exists in either the libraries or the languages. Formessage passing programs, this does not present a serious obstacle since the relatively lowprogramming level allows considerable freedom in implementing any algorithm. In thiscase, pipelining has proven to be very e�ective when additional coarse grain parallelismexists in addition to the sequential computation. When the program is written in a dataparallel language, the solution is also straightforward if the programmer has freedomin choosing the array partitioning scheme. For instance, if the sequential computationproceeds along the �rst dimension of a 2-D array (as illustrated in Figure 6.1(a)), thearray can simply be partitioned along the second dimension onto a 1-D processor gridso that there is no interprocessor dependence. This allows each processor to proceedindependently. However, it is often the case that the best partitioning scheme for theoverall problem requires the �rst dimension to be partitioned also, for instance a 2-Darray onto a 2-D processor grid as shown in Figure 6.1(b). In this case, all processors inthe �rst dimension will be serialized during the sequential computation.The problem described above thus sets the stage for our discussion. Assume: (1) aprogram written in a data parallel language (HPF or ZPL), (2) a computation that issemantically sequential along dimension i of some array(s) and, (3) a partitioning schemethat requires dimension i to be distributed onto a processor grid. The goal is to avoidthe serialization of the processor set onto which the sequential computation is mapped.In the remainder of this chapter, Section 6.2 will describe a number of solutions,their implementations in HPF and ZPL and their shortcomings. Then Section 6.4 willpropose the speci�cations for a new language construct that o�ers the best solution.

142

Figure 6.1: Two methods for array partitioning.Note: (a) no dependence across processors, fully parallel; (b) dependence exists, someprocessors serialized.6.2 A case studyFor the case study, we will use the widely studied tomcatv benchmark since it embodiesthe essential characteristics while remaining su�ciently simple to facilitate our analysis.A much more complex and realistic case is the NAS SP and BT benchmarks, which arelarge scale partial di�erential equation (PDE) solvers, typically used in computationaluid dynamics (CFD). The version of tomcatv under study is from the suite of HPFbenchmarks published by APR, which has been restructured and annotated with direc-tives for HPF. The computation consists of a 2-phase iteration over several 2-D arrays:

143Phase 1 is a 9-point stencil computation and Phase 2 is a solver for a tridiagonal systemof linear equations. Phase 2 exhibits a true dependence along the �rst dimension; there-fore it motivates distributing the array along the second dimension. However, Phase 1favors a 2-D partition for better scalability.The forward elimination step of Phase 2 consists of the following (the backwardsubstitution step is similar):DO i = 2 , nDO j = 2 , mr(1,i) = aa(j,i) * d(j - 1,i)d(j,i) = 1. / (dd(j,i) - aa(j - 1,i) * r(1,i))rx(j,i) = rx(j,i) - rx(j-1,i) * r(1,i)ry(j,i) = ry(j,i) - ry(j-1,i) * r(1,i)ENDDOENDDOThe characteristics of this computation can be summarized as:1. Sequential dependence in the j dimension: no parallelism.2. No dependence in the i dimension: available parallelism.3. Multiple arrays and arithmetic operations are involved.Since tomcatv is a small program, the di�erence in the partitioning choice may not besigni�cant1. However for larger problem sizes or larger programs such as the NAS SP andBT benchmark, the asymptotic di�erence becomes clear. Speci�cally, Naik showed thatfor SP on the IBM SP/1, a 3-D partitioning can be 66% faster than a 1-D partitioningon 16 processors [Naik 94].6.2.1 Idealized executionFigure 6.2 shows three possible parallel executions of the loops, assuming that them�n =4�4 array is distributed onto a Pr�Pc = 2�2 processor grid. The solid time line for each1This proves to be a mitigating circumstance for the APR compiler which only accepts 1-D processorgrid.

144
P1 P2 P3 P0 P1 P2 P3P0 P1 P2 P3P0

(c) fully parallel

communication

(a) parallel in the i dimension (b) pipelined in the j dimension

tim
e

Figure 6.2: Three possible parallel executions.processor represents the computation required for the 2 � 2 array section that it owns.In all cases, loop i is fully parallel; the only di�erence is in how loop j is parallelized.In case (a), loop j remains serialized: the Pr processors fail to execute in paralleland the speedup is limited to Pc. In case (b), loop j still executes sequentially, butby employing pipelining, partial results are forwarded to allow the waiting processors toinitiate their execution earlier. The overhead to start and �nish the pipeline will degradethe overall speedup to bPcPr , where b < 1. In case (c), loop j proceeds e�ectivelyin parallel. This is possible if an e�cient parallel algorithm exists for the j loop: ifthe parallelization overhead can be limited to O(logPr), a speedup of O(PcPrlogPr) can beachieved.6.2.2 An algorithmic approachWe now consider an algorithmic approach for parallelizing in the j dimension. It isalgorithmic since it relies on unique properties of the intended computation instead of

145the language construct. This approach parallelizes the scan operation itself, resulting inan execution similar to Figure 6.2(c). One important advantage is that no other sourceof parallelism is required (e.g., parallelism in the i dimension).Parallel pre�x is an example of a sequential computation that can be parallelizede�ectively with an overhead of O(logP). The parallel algorithm in this case requiresthat the operator be associative so that the partial results can be combined arbitrarily.This requirement is too restrictive for the general scan operation that we are considering.However, with careful manipulation, it may be possible to factor out from the sequentialcomputation certain components that can be computed in parallel. Then we can examineif the remaining components can be computed with a reasonable overhead. These twosteps would constitute the two phases of a parallel implementation of scan: (1) computelocally and (2) communicate and update.Consider a scan computation that is slightly more complex than a simple summationand that is similar (but not identical) to that found in tomcatv. For array x(1 : 16) andb(1 : 16): DO i=2,16x(i) = x(i) + x(i-1) * b(i-1)ENDDOAlthough the code has the structure of a scan operation, we cannot use the parallel pre�xalgorithm because the combination of + and * is not associative. However, if the termsare expanded completely, the computation can be expressed as follows:x1 = x1x2 = x1b1 + x2x3 = x1b1b2 + x2b2 + x3x4 = x1b1b2b3 + x2b2b3 + x3b3 + x4: : :xk = k�1Xj=1(xj k�1Yi=j bi) + xk

146Let processor P own a section (m : n) of the arrays. Then in computing each newelement in its array section, the summation expression can be split into two components.For element xn speci�cally:xn = m�1Xj=1 (xj n�1Yi=j bi) + n�1Xj=m(xj n�1Yi=j bi) + xnNote that the second term involves only local elements in the array section (m : n);therefore processor P can proceed to compute this component independently. Note alsothat for the �rst term, the upper limit for the summation is m� 1 and for the productis n� 1. This allows us to factor the common b, thus further splitting the �rst term intothree factors:xn = n�1Yj=m bj � bm�1 � (m�1Xj=1 (xj n�1Yi=j bi) + xm�1) + n�1Xj=m(xj n�1Yi=j bi) + xnClearly for the �rst term, the �rst factor Qn�1j=m bj can be computed locally. The thirdfactor is simply the value for xm�1 computed by its owner processor, which incidentallyalso owns the second factor bm�1.A parallel algorithm can �nally be described:1. Compute locally: xk =Pk�1j=m(xjQk�1i=j bi) + xk;m � k � n2. Compute locally: Qn�1j=m bj3. Receive from preceding processor: xm�1 � bm�14. Update xn �rst using the results from 1, 2 and 35. Send to next processor: xn � bn6. Update remaining elements xm:n�1Considering the complexity, the local computation in steps 1, 2 and 6 requiresO(N=P) where N is the array size and P is the number of processors. Although thecommunication is sequential, it occurs after the main parallel computation and only oneoperation is interposed between each message; therefore the serialization e�ect is limited

147to O(P). A compiler that implements this algorithm may generate the following SPMDprogram. /* local computation */for (i=mylo+1; i<=myhi; i++) fx(i) = x(i) + x(i-1) * B(i-1);myB = myB * B(i);g/* update and forward */recv val = receive(ProcID-1);send val = (myB * recv val + x(myhi)) * B(myhi);send(ProcID+1, send val);/* local update */for (i=mylo; i<=myhi; i++) fx(i) = x(i) + recv val;recv val = recv val * b(i);gThe exercise above shows that it is possible to parallelize a scan operation that isnot associative. However it also demonstrates that the parallelization for a general scanrequires signi�cant analysis that is not easily automated by a compiler nor convenientlyperformed by the user. This motivates us to consider simpler alternatives.6.2.3 PipeliningPipelining is a ubiquitous and very e�ective technique for parallelism. One of its ad-vantages is simplicity: the concept is easily understood and the technique can be easilyapplied. The regular nature of pipelining also lends itself well to performance tuningto balance the trade-o� between platform speci�c parameters. Pipelining can occur atvirtually any level of granularity. Microprocessors employ pipelining e�ectively at theinstruction level to increase the throughput. We are interested in pipelining at a coarserlevel where an algorithm is implemented. In this case, a prerequisite for pipelining isthe availability of additional parallelism outside the computation having the true depen-dence.

148Figure 6.2(b) illustrates the execution for tomcatv if the loop is pipelined in the jdimension. The goal is to make available as early as possible any result for which adependence exists. Thus instead of completing all j iterations before performing anycommunication, processor P0 and P2 would send the new values at the end of each jiteration to processor P1 and P3 so that they can initiate their execution immediately.Currently, pipelined execution is not provided as a programming construct in anydata parallel language. Since a compiler is free to perform the analysis and generateany execution schedule, one may question whether a compiler can generate the pipelinedcode from the existing data parallel constructs? Although no fundamental barrier exists,there are several di�culties.First, the compiler must be able to detect the opportunity for pipelining. The con-ventional DO loop has been shown to be di�cult to analyze in general. At the sametime, the F90 and Forall semantics in HPF and the region semantics in ZPL call for asynchronization after each array statement, while pipelining typically spans across mul-tiple statements. In each case, the dependences are over-speci�ed and the compiler mustperform analysis to detect the opportunity.Second, the optimization objective in pipelining may be in conict with other opti-mization techniques[Choi & Snyder 97]. For instance, message vectorization attempts tocombine multiple messages into one to amortize the message startup cost[Choi & Snyder97]. When applied to the j loop in tomcatv, this optimization will favor moving thecommunication outside the j loop so that all individual messages in the loop will becombined into one message. This transformation is productive in many cases, but inthis case it serializes the execution (see Figure 6.2). At the same time, applying pipelin-ing aggressively may not be bene�cial since attempting to make newly computed valuesavailable to waiting processors as early as possible may easily increase the number ofmessages while decreasing the message size. In this case, the high message startup costmay dominate the bene�t of pipelining.Third, the pipelining is not a part of the language semantics; therefore, a user who

149wishes to implement a pipelined algorithm has no means to directly express it. Rather,the user must rely on the optimization features of the compiler.6.3 Implementations by HPF and ZPLHaving presented the desired solutions, we now examine how the sequential computationis expressed and implemented in HPF and ZPL. We can expect that the compilers willhave little problem generating parallel codes for the i dimension in tomcatv. Althoughparallelizing the j dimension is di�cult, no fundamental barrier prevents the compilerfrom parallelizing the loop[Cytron 86]. In particular, we are interested in �nding if thecompilers can detect and implement pipelining as described in the previous section.Table 6.1 shows the tomcatv forward elimination step expressed in HPF using DOloops and F90 array statements, and in ZPL using dynamic regions. Table 6.2 shows thepseudo-code for the implementations by HPF and ZPL. We will consider the PGI andIBM HPF compiler and the ZPL compiler; APR is not included because it is limited topartitioning one array dimension.6.3.1 DO loop implementationFor programs using DO loops, HPF provides the INDEPENDENT directive to customizethe dependences (Figure 6.1(a)). In our case, this approach provides the compiler withthe most precise information about the true dependences since an HPF compiler caneasily assume that the i loop has no loop dependences while the j loop does. With thisinformation, the IBM and PGI compilers generate the implementations described by theSPMD pseudo-codes in Table 6.2. The principal distinction between the implementationsis the placement of the communication and computation, and whether the loops areparallelized.The DO loop version is observed in two variations to test the compiler analysis: theINDEPENDENT i loop is placed as the outer loop in DO(1) and as the inner loopin DO(2). Examining the placement of the communication among the computation in

150Table 6.1: The forward elimination step from tomcatv.Note: The arrays are distributed onto a 2-D processor grid.(a) HPF DO loop version:!HPF$ INDEPENDENTDO i = 2 , nDO j = 2 , mr(1,i) = aa(j,i) * d(j - 1,i)d(j,i) = 1. / (dd(j,i) - aa(j - 1,i) * r(1,i))rx(j,i) = rx(j,i) - rx(j-1,i) * r(1,i)ry(j,i) = ry(j,i) - ry(j-1,i) * r(1,i)ENDDOENDDO (b) HPF F90 version:DO j = 2 , mr(1,2:n) = aa(j,2:n) * d(j - 1,2:n)d(j,2:n) = 1. / (dd(j,2:n) - aa(j-1,2:n) * r(1,2:n))rx(j,2:n) = rx(j,2:n) - rx(j-1,2:n) * r(1,2:n)ry(j,2:n) = ry(j,2:n) - ry(j-1,2:n) * r(1,2:n)ENDDO(c) ZPL version:for j:= 2 to m do[[j;2::n]] beginR:=AA*D@north;D:=1.0/(DD-AA@north*R);Rx:=Rx-Rx@north*R:Ry:=Ry-Ry@north*R;end;endTable 6.2, we �nd that for DO(1), the IBM compiler follows a straightforward approachby serializing the processors along the j dimension. PGI avoids the serialization byredistributing the 4 arrays involved in the computation from 2-D to 1-D so that they areonly partitioned along the i dimension. Then each processor can proceed independentlyalong the j loop, and upon exiting the loops, the arrays are redistributed to return totheir original distribution. The array redistribution overhead is signi�cant; thereforePGI's approach is not likely to be scalable2.The DO(2) variation is functionally equivalent to DO(1). The IBM compiler is ableto determine this fact and generate the same code as DO(1), but the PGI compilergenerates a di�erent implementation. Instead of redistributing as before, communicationis inserted to fetch all RHS before and to update all LHS after the i loop. This scheme2PGI's approach also deviates from the owner-computes rule, illustrating that owner-computes is notuniformly enforced.

151Table 6.2: Pseudo-code for the tomcatv segment by HPF and ZPL compilers.Note: The INDEPENDENT loop is the outer loop in DO(1) and the inner loop in DO(2).version IBM PGI ZPLDO (1) sendrev(aa) sendrecv(aa) N/Arecv(d) sendrecv(d)recv(rx) sendrecv(rx)recv(ry) sendrecv(ry)do j=part do i=partdo i=part do j=fullr, d, rx, ry = ... r, d, rx, ry = ...enddo enddoenddo enddosend(d) sendrecv(rx)send(rx) sendrecv(ry)send(ry) sendrecv(d)DO (2) do j=full N/Asendrev(aa) sendrecv(aa)recv(d) sendrecv(d)recv(rx) sendrecv(dd)recv(ry) sendrecv(rx)do j=part sendrecv(ry)do i=part do i=partr, d, rx, ry = ... r, d, rx, ry = ...enddo enddoenddo sendrecv(rx)send(d) sendrecv(ry)send(rx) sendrecv(d)send(ry) enddoarray replicate(aa)do j=full do j=full do j=fullsendrecv(aa) sendrecv(aa)sendrecv(d) sendrecv(d) sendrecv(d)do i=full do i=full do i=fullr=... r=... r=...enddo enddo enddosendrecv(aa) sendrecv(aa)do i=part do i=part do i=partd=... d=... d=...enddo enddo enddosendrecv(rx) sendrecv(rx) sendrecv(rx)do i=part do i=part do i=partrx=... rx=... rx=...enddo enddo enddosendrecv(ry) sendrecv(ry) sendrecv(ry)do i=part do i=part do i=partry=... ry=... ry=...enddo enddo enddoenddo enddo enddo

152not only serializes the j dimension but also results in more communication.6.3.2 An array oriented approach: F90 and ZPLArray semantics allow independent array operations to proceed in parallel. In this case,the available parallelism is in the i dimension. Therefore an array oriented implementa-tion would apply each statement in the loop across the array section that spans the entirei dimension. Table 6.1(b) and (c) show the HPF version using the F90 array syntax andthe ZPL version. The SPMD implementation by the compilers are shown in Table 6.2.Note that although these two versions are similar in the information provided to thecompiler, there are subtle di�erences originating from the language designs. Speci�cally,the 2-D array in ZPL is declared as a 2-D region to allow a 2-D partitioning, but becausea region imposes no execution order, the sequential dependence in the j dimension mustbe enforced through a dynamic region, which may incur more runtime overhead than anHPF implementation.The implementations are remarkably similar across compilers and languages thanks tothe implied synchronization after each array statement. The communication required foreach statement is generated separately and the loops that implement each statement areplaced in the same order as the program statement. The only slight variation is that theIBM compiler elects to vectorize the messages for array aa and move its communicationout of the j loop. This consistency contributes to the programming model in makingit more predictable. However, for the sequential computation being expressed, we �ndthat the array approach strongly enforces a serialization of the j dimension.In summary, neither HPF nor ZPL provides direct support for pipelining sequentialcomputation. When we attempt to express the computation in a form that may leadto pipelined execution, we found that the array semantics are too restrictive, while theDO loop annotated with INDEPENDENT results in either a serialized execution or animplementation that involves too much communication.

1536.4 A new construct for ZPLOur investigation thus far has shown no satisfactory solution for the problem being con-sidered. While data parallel applications typically contain an abundance of parallelism,some data dependences will always exist that require special consideration. In this re-spect, we have shown that an algorithmic approach, while possible, does not yield ageneral solution. On the other hand, the pipelining approach is regularly employed inmessage passing programs to manage sequential computations. The available parallelismin the data parallel applications easily satis�es the prerequisite for pipelining.Throughout this thesis we have also demonstrated that correct modeling is criticalto the portability, the scalability and the ease of use of a language. With respect tothe ease of use, pipelining is a high level abstraction that captures a highly e�ectiveprogramming technique. With respect to scalability, pipelining reduces the serial sectionof the computation, which otherwise will limit the overall scalability (Ahmdal's Law).To ensure portability, the language behavior must be consistent and predictable, yet theprevious sections have shown that relying on the compiler to detect the opportunity topipeline is unreliable. This motivates direct language support for pipelining that willserve as a contract between the programmer and the compiler.Following these arguments, we propose the following construct called Mighty Scan.The construct is presented within the context of ZPL since the language is relatively freeof legacy that may otherwise introduce unnecessary complications.SCAN i := Ib to Ie DO[[:::; i; :::]] beginstatement;statement;: : :;end;The construct has the following semantics: the block of statements serves as a com-putational template that is applied along the speci�ed dimension, for the speci�ed index

154Table 6.3: tomcatv expressed using SCAN and the resulting SPMD code.(a) tomcatv using SCAN:SCAN j:= 2 to m DO[[j;2::n]] beginR:=AA*D@north;D:=1.0/(DD-AA@north*R);Rx:=Rx-Rx@north*R:Ry:=Ry-Ry@north*R;end;
(b) SPMD code:sendrecv(aa)do j=full/chunkrecv(aa,d,rx,ry)do chunkdo i=partr=...d=...rx=...ry=...enddoenddosend(d,rx,ry)enddoset and in the speci�ed order. Let Rn be the rank of the region, Ri the scanned di-mension, and Pi be the dimension of the processor grid onto which Ri is distributed. IfRn = 1, no additional parallelism is available and the SCAN operates as a sequential DOloop and yields no bene�t. If Rn > 1, the compiler is to set up a pipeline by ensuringthat each processor in Pi forwards its partial results in computing an iteration of Ri asearly as possible to the next processor. The compiler can optimize further by balancingthe tradeo� between the computation granularity and the message frequency.Note that unlike applying a region to a block of statements, the SCAN semantics donot have the implied synchronization at the end of each statement. The synchronizationis replaced instead by the ordering of the scan index.For the scan operation to be well de�ned, the construct has the following restrictions:� For all arrays that are assigned new values in the scan (i.e., they appear on theLHS), their values can be referenced using @ (i.e., they can also appear on theRHS), but only directions in the scan dimension are allowed. This restricts thedata dependence to the dimension for which an order will be enforced.� Scanning multiple dimensions is done by nesting the SCAN, with the inner most

155SCAN loop being completed �rst.Table 6.3 shows the tomcatv example expressed using SCAN and the expected SPMDcode.6.5 ConclusionsIn this chapter we consider a pattern of computation that occurs frequently, yet for whichthe current data parallel languages do not provide the facility to parallelize e�ectively.The computation involves a recurring data dependence; therefore it is conceptually se-quential. Although the simple case (parallel pre�x) has an e�ective parallel algorithmthat is widely implemented, the general case does not have a general algorithmic solution.On the other hand, pipelining is regularly and e�ectively employed in message pass-ing programs to parallelize sequential computation. It is therefore intuitive to apply thesame technique for this type of computation in the data parallel program. Although itis possible for the compiler to infer from the existing syntax and implement a pipelinedcomputation, several problems arise, the most important of which is that the functional-ity is not a part of the performance model. In other words, a user who wishes to expressa pipelined algorithm for performance cannot be guaranteed that it will be implemented.Indeed, a case study using the current HPF and ZPL compilers reveals that no compilerrecognizes and implements the program tomcatv as a pipeline.A new construct called Mighty Scan is thus proposed for ZPL that satis�es all thenecessary requirements.1. Ease of use: it implements pipelining as a high level abstraction, hiding the lowlevel detail from the user.2. Scalability: the technique is well proven in its e�ectiveness; the user has full controlover the computation granularity.3. Portability: the demand on the compiler is modest. No sophisticated analysis isrequired and performance tuning can be done in a straightforward manner using a

156cost model for the relevant parameters. This allows any compiler to generate a wellbehaved and predictable implementation so that a program using the construct willbehave consistently across platforms.Although an implementation is not yet available in ZPL, these qualities leave littledoubt that Mighty Scan will be a very useful language feature.

Chapter 7Conclusions\Mental Models ... For computers and brains to be aware of somethingthey must have an internal model of it { a representation, either digital orneurological. In the recent match, Mr. Kasparov kept honing his mentalmodel of Deep Blue, developing a theory of how the machine worked...." 1\It's very di�cult to analyze the results of the match," Kasparov said. \Iknow what I did wrong. But I don't know what the computer did wrong orright. It's a mystery." 2(World chess champion Gary Kasparov lost to IBM's Deep Blue machine ina six-game chess match, May 3-11, 1997.)7.1 ContributionsIn this thesis, my interest is in �nding a solution to the problem of developing e�cientparallel programs for data parallel applications. The solution must meet three require-ments: scalability, portability and ease of use. I show that an appropriate performancemodel is the key component of a language that will precipitate these three qualities.1In Machine vs. Machine: Deep, Deeper, Deepest Blue by George Johnson, New York Times, May18, 1997.2In What Deep Blue Learned From Grandmasters by Bruce Weber, New York Times, May 18, 1997.

158The thesis makes the following contributions:1. An experimental comparison and analysis of two general programming models.2. An experimental comparison and analysis of two data parallel languages, HPF andZPL, based on:� The performance model� A subset of the NAS benchmarks3. A new high level data parallel abstraction that promotes scalability, portability,and ease of use: Mighty Scan.7.2 SummaryWe began in Chapter 1 with a discussion which introduces the concept of modeling inprogramming languages and outlines the three criteria for an e�ective parallel language.Chapter 2 presents experimental evidence to support the choice of a nonshared memoryprogramming model as the base for a parallel language. Shared memory and nonsharedmemory versions of LU and WATER are compared through an analytical model andactual performance on 5 shared memory machines. In Chapter 3, we studied two dataparallel languages that are based on a nonshared memory model, contrasting the lan-guage features and their implications. The performance model, the foundation of ZPL'sdesign, emerges as the major di�erence between HPF and ZPL; therefore in Chapter 4we formulate a methodology to quantify the bene�t of the performance model. Two casestudies using the array assignment and matrix multiplication clearly show that withouta concise performance model, HPF cannot guarantee the users consistent and portableperformance. In Chapter 5, we studied the performance of HPF and ZPL in three NASbenchmarks: EP, FT and MG. In addition to con�rming the critical need for a perfor-mance model, the results indicate that converting legacy Fortran 77 programs to HPFwill be very di�cult. On the other hand, ZPL in each case studies shows consistent and

159predictable performance. Finally in Chapter 6, we studied a number of parallel solutionsto a common pattern of sequential computation. The analysis leads to a proposal forMighty Scan, a new language abstraction that promises to be scalable, portable and easyto use.Many factors inuence the success of a parallel language, some of which may beunrelated to the actual merit of the language. In this thesis, the analysis has lead usto the performance model, but clearly there are other pragmatic issues that are no lessimportant. While the results show serious weakness in HPF, it is important that wemaintain the larger perspective and recognize the independent contributions of HPFand ZPL.From a situation of incompatible parallel platforms and nonportable programs �veyears ago, HPF was able to gain the attention of major software vendors and be acceptedas a standard. This is a di�cult feat since the software industry is only willing to invest inconservative approaches and is not likely to consider any new unproven language. HPF'sconservative approach includes preserving the original Fortran sequential programmingmodel in the parallel environment. The resulting programming model, as we see, ismuddled and does not preserve the sequential model nor capture enough information forthe parallel model.It is unfortunate that the �rst standard for data parallel language is handicapped byserious limitations, yet these compromises may be the necessary sacri�ce to gain wideacceptance in the industry and support from the users.In contrast, ZPL is insulated from legacy and other requirements unrelated to paral-lelism; this has enabled ZPL researchers to gain valuable insights into abstract conceptsthat have a major impact on the e�ectiveness of the language, among which is theperformance model.The current situation in parallel systems �nds many parties with a high stake inHPF. Compiler vendors have staked their future in HPF, while some national labs andsupercomputing centers have actively promoted the use of HPF. This thesis has been

160critical of HPF; therefore it is quite likely to evoke defenses for HPF. A frequent argumentis, \The current compilers are immature, new compilers with new optimizations will givebetter performance". In the ideal case, given in�nite resources and in�nite time, perhapsa compiler can be developed that requires no programming e�ort and provides optimalperformance. In the present case however, the data shows that other factors are involvedbeside the performance. In fact, if the performance is the only goal, each HPF compilerwe considered has shown to be able to achieve good performance in speci�c instances.The implementations of HPF have allowed us to learn many lessons, and these areprobably the most valuable contributions from HPF. It is therefore imperative that werecognize and understand the lessons so that we can build from the current state of theart. In this respect, it would be counter-productive to insist on the conformance to astandard that has serious limitations, but it would be equally grievous to hold HPF asthe exemplary failure of parallel programming in general.This thesis has identi�ed the performance model as one important lesson, but otherlessons should also be recognized.The ready acceptance of HPF despite its limitations underscores the endurance ofFortran as a programming language. Computer scientists tend to deplore Fortran asobsolete in light of new programming concepts, models, compiler optimizations, etc.However, to a user in the scienti�c community, the computer and the language are nomore than useful tools. The user will invest no more e�ort than necessary to obtain asatisfactory result. If Fortran has become a familiar �xture, perhaps retaining at leastsome of the syntax and semantics of Fortran in a new parallel language is bene�cial.This is especially complementary considering that a new parallel language will likelydevote a large part of the syntax and semantics to the conventional constructs such asassignment, if, sequential loops. A familiar sight as the �rst impression of a new languagewill contribute signi�cantly toward gaining user acceptance.As a case in point, consider Java: although it is a new language, it has some of thelook and feel of C. This enables a new user to command a large part of the language

161syntax immediately, leaving only the new constructs to be learned.In the �nal analysis, perhaps the naming scheme is the most pragmatic factor. Theideal parallel language of the future may have \Fortran" as a part of its name - muchto the dismay of computer scientists, yet it may bear little resemblance to the originalFortran language. Several lessons may have to be learned before this goal is reached,but this is the normal progress of technology. It is my hope that the work in this thesiswill contribute to this progress.7.3 Future worksThe syntax and semantics for Mighty Scan have been proposed. An implementation inZPL remains to be completed. The NAS benchmarks SP, BT, LU and FT are likely tobene�t signi�cantly from this new construct since each contains the type of sequentialcomputation that is awkward to parallelize. Therefore, they are good candidates fortesting and tuning the Mighty Scan construct.The arrival of Java also introduces new, interesting opportunities for parallel pro-gramming. Despite the exaggerated level of publicity surrounding Java, there are someadvantages that are worth considering. The object-oriented model can help to encapsu-late some of the high level abstractions for a nonshared memory machine. The supportfor threads in the language allows parallel programming at an intrinsic level. The se-cure nature of Java proves to be attractive for �nancial applications, which incidentallyare similar to scienti�c applications and can bene�t from parallelism (e.g., PDE). Morepragmatically, the momentum that Java is generating promises good performance andwidespread availability in the future. In this case, Java may serve as a modern replace-ment for Fortran. One challenge for using Java is the shared memory model that thelanguage adopts: we must �nd a way to incorporate a performance model if a parallelJava program is to run on a nonshared memory machine.

Bibliography[Adams et al. 92] J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener. Fortran90 Handbook. McGraw Hill, New York, NY, 1992.[Agarwal et al. 94a] R. Agarwal, F. Gustavson, and M. Zubair. An e�cient parallelalgorithm for the 3-D FFT NAS parallel benchmark. In Proceedings of SHPCC1994, pages 129{133. IBM Thomas J. Watson Research Center, 1994.[Agarwal et al. 94b] R. Agarwal, F. Gustavson, and M. Zubair. A very high perfor-mance algorithm for NAS EP benchmark. In High Performance Computing andNetworking, pages 164{169. IBM Thomas J. Watson Research Center, 1994.[Agarwal et al. 95] R. Agarwal, B. Alpern, L. Carter, F. Gustavson, D. K. R. Lawrence,and M. Zubair. High performance parallel implementation of the NAS kernelbenchmarks on the IBM SP2. IBM Systems Journal, 34(2):263{272, 1995.[Alverson et al. 93] G. Alverson, W. Griswold, C. Lin, D. Notkin, , and L. Snyder. Ab-stractions for portable, scalable parallel programming computing. TechnicalReport UW-CSE-TR 93-12-09, University of Washington, Seattle, Wa 98195,December 1993.[Amarasinghe & Lam 93] S. Amarasinghe and M. Lam. Communication optimizationand code generation for distributed memory machines. In ACM SIGPLAN '93Conference on Programming Language Design and Implementation, pages 126{38. Computer System Laboratory, Stanford University, CA, USA, June 1993.[Anderson & Snyder 91] R. Anderson and L. Snyder. A comparison of shared and non-shared memory models of parallel computation. In Proceedings of IEEE, pages480{487. Dept of Computer Science and Engineering, University of Washington,Seattle, Wa, April 1991.[Andre & Priol 92] F. Andre and T. Priol. Programming distributed memory parallelcomputers without explicit message passing. In Proceedings of the 1992 ScalableHigh Performance Computing Conference, pages 90{97, May 1992.

163[Annaratone & Ruhl 89] M. Annaratone and R. Ruhl. Performance measurements on acommercial multiprocessor running parallel code. In Proceedings of 16th AnnualInternational Symposium on Computer Architecture, pages 307{314, Los Ami-tos, CA, May 1989. Swiss Federal Institute of Technology, Zurich, Switzerland,IEEE Computer Society Press.[App 95] Applied Parallel Research. XHPF User's Guide, version 2.0 edition, January1995.[Ashcraft 91] C. Ashcraft. A taxonomy of distributed dense LU factorization methods.Technical Report ECA-TR-161, Engineering Computing and Analysis TechnicalReport, March 1991.[Bagheri et al. 94] B. Bagheri, A. Ilin, and L. R. Scott. A comparison of distributed andshared memory scalable architectures. 1. KSR shared memory. In Proceedingsof IEEE Scalable High Performance Computing Conference, pages 9{16, LosAlamitos, CA, May 1994. TCAMC, Houston Univ., TX, IEEE Computer SocietyPress.[Bailey et al. 91] D. Bailey, E. Barszcz, J. barton, D. Browning, R. Carter, L. Dagum,R. Fatoohi, S. Finebertg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,V. Venkatakrishnan, and S. Weeratunga. The NAS parallel benchmarks. Tech-nical Report RNR-94-007, NASA Ames Research Center, Mo�ett Field, CA,March 1991.[Bailey et al. 95] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, andM. Yarrow. The NAS parallel benchmark 2.0. Technical Report NAS-95-020,NASA Ames Research Center, December 1995.[Bar-Noy & Kipnis 92] A. Bar-Noy and S. Kipnis. Designing broadcasting algorithms inthe postal model for message-passing systems. In Proceedings of the 1992 ACMSymposium on Parallel Algorithms and Architectures, pages 13{22, YorktownHeights, NY, June 1992. IBM T. J. Watson Research Center.[Baylor & Rathi 89] S. J. Baylor and B. D. Rathi. A study of the memory reference be-havior of engineering/scienti�c applications in parallel processors. In 1989 Inter-national Conference on Parallel Processing, pages I78{I82, Yorktown Heights,NY, 1989. IBM T. J. Watson Research Center.[Benkner et al. 92] S. Benkner, B. Chapman, and H. Zima. Vienna Fortran 90. In Pro-ceedings of Scalable High Performance Computing Conference 1992, pages 51{59. Department for Statistics and Computer Science, Vienna University, Austria,1992.

164[Bozkus et al. 94] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M.-Y.Wu. Compiling Fortran 90D/HPF for distributed memory MIMD computers.Journal of Parallel and Distributed Computing, 21:15{26, 1994.[Bozkus et al. 95] Z. Bozkus, L. Meadows, S. Nakamoto, V. Schuster, and M. Young.Compiling High Performance Fortran. In Proceedings ofthe Seventh SIAM Con-ference on Parallel Processing for Scienti�c Computing. The Portland Group,Inc., 1995.[Breit et al. 93] S. Breit, C. Pangali, and D. Zirl. Technical applications on the KSR-1:high performance and ease of use. In COMPCON Spring 1993, pages P303{310,Los Alamitos, CA, February 1993. Kendall Square Research Corp, Waltham,MA, IEEE Computer Society Press.[Brooks et al. 91] E. Brooks, B. Gorda, K. Warren, and T. Welcome. Split-Join andmessage passing programming models on the BBN TC2000. In InternationalConference on Parallel Processing, pages II54{59. Lawrence Livermore NationalLaboratory, Livermore, CA, 1991.[Brorsson 91] M. Brorsson. Local vs. global memory in the IBM RP3: Experimentsand performance modeling. In Proceedings of the Third IEEE Symposium onParallel and Distributed Processing, pages 496{503. Department of ComputerEngineering, Lund University, Sweden, December 1991.[Burke 93] E. Burke. An overview of system software for the KSR-1. In COMPCONSpring 1993, pages P295{299, Los Alamitos, CA, February 1993. Kendall SquareResearch Corp, Waltham, MA, IEEE Computer Society Press.[Byrd & Delagi 88] G. Byrd and B. Delagi. A performance comparison of shared vari-ables versus message passing. In The Third International Conference on Super-computing, volume 1, pages 1{7, May 1988.[Chamberlain et al. 95] B. Chamberlain, S.-E. Choi, E. Lewis, C. Lin, L. Snyder, andD. Weathersby. The implementation of a machine-independent array language.University of Washington, 1995.[Choi & Snyder 97] S.-E. Choi and L. Snyder. Quantifying the e�ects of communicationoptimizations. Technical Report UW-CSE-97-04-05, University of Washington,April 1997.[Cox & Fowler 93] A. Cox and R. Fowler. Adaptive cache coherency for detecting mi-gratory shared data. Computer Architecture News, 21(2):98{108, May 1993.

165[Crowther et al. 85] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, andT. Blackadar. Performance measurements on a 128-node Buttery parallelprocessor. In International Conference on Parallel Processing, pages 531{540,1985.[Cytron 86] R. Cytron. Doacross: Beyond Vectorization for Multiprocessors. In Inter-national Conference on Parallel Processing, pages 836{844. IBM T. J. WatsonResearch Center, Yorktown Heights, NY, 1986.[Darema-Rogers et al. 87] F. Darema-Rogers, G. P�ster, and K. So. Memory accesspatterns of parallel scienti�c programs. In Proceedings of SIGMETRICS, pages46{58, 1987.[Dig 95] Digital Equipment Corporation. HPF tutorial, version 1.1 edition, July 1995.[Eggers & Katz 88] S. Eggers and R. Katz. A characterization of sharing in parallelprograms and its application to coherency protocol evaluation. In Proceedingsof 15th Annual International Symposium on Computer Architecture, pages 373{382, Los Alamitos, CA, June 1988. Dept of Electrical Engineering & ComputerScience, University of California, Berkeley, CA, IEEE Computer Society Press.[Eigenmann et al. 91] R. Eigenmann, J. Hoeinger, Z. Li, and D. Padua. Experiencein the automatic parallelization of four Perfect benchmark programs. In TheFourth Workshop on Languages and Compilers for Parallel Computing, pagesg1{g19, August 1991.[Emrath et al. 89] P. Emrath, D. Padua, and P. Yew. Cedar architecture and its soft-ware. In Proceedings of the Twenty Second Annual Hawaii International Con-ference on System Sciences. Vol.I: Architecture Track, pages 306{315. Centerfor Supercomputing Research & Development, Illinois Univisity, Urbana, IL,January 1989.[Felten 93] E. Felten. Protocol Compilation: High Performance Communication for Par-allel Program. PhD dissertation, University of Washington, Seattle, Wa, Decem-ber 1993.[Forum 93] H. P. F. Forum. HPF language speci�cation version 1.0. Technical ReportCRPC-TR92225, Rice University, May 1993.[Forum 96] H. P. F. Forum. HPF language speci�cation version 2.0. Technical report,Rice University, October 1996.[Frank et al. 93] S. Frank, H. Burkhardt, and J. Rothnie. The KSR-1: bridging thegap between shared memory and MPPs. In COMPCON Spring 1993, pages

166285{294, Los Alamitos, CA, February 1993. Kendall Square Research Corp,Waltham, MA, IEEE Computer Society Press.[Franke et al. 94] H. Franke, P. Hochschild, P. Pattnaik, and M. Snir. An e�cient im-plementation of MPI. Technical Report RC 19493, IBM T. J. Watson ResearchCenter, Yorktown Heights, NY, March 1994.[Friedman et al. 95] R. Friedman, J. Levesque, and G. Wagenbreth. Fortran paralleliza-tion handbook. Technical report, Applied Parallel Research, Sacramento, CA,April 1995.[Garber 93] M. Garber. The TC2000 system - a large scale shared memory multiproces-sor. International Journal of High Speed Computing, 5(3):475{490, 1993.[Gharachorloo et al. 92] K. Gharachorloo, A. Gupta, and J. Hennessy. Hiding memorylatency using dynamic scheduling in shared memory multiprocessors. ComputerArchitecture News, 20(2):22{33, May 1992.[Gi�ord 87] P. Gi�ord. Symmetry: a bus-based multiprocessor with copy-back caches.In Proceedings of the 1987 IEEE International Conference on Computer Design,page 62, Los Amitos, CA, October 1987. Sequent Computer System, Beaverton,OR, IEEE Computer Society Press.[Gropp 93a] W. Gropp. Early experiences with the IBM SP-1. Technical ReportANL/MCS-TM-177, Argonne National Laboratory, Argonne, IL, 1993.[Gropp 93b] W. Gropp. Early experiences with the IBM SP1 and the high-performanceswitch. Technical Report ANL-93/41, Argonne National Laboratory, Argonne,IL, November 1993.[Gupta et al. 91] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W. Weber.Comparative evaluation of latency reducing and tolerating techniques. Com-puter Architecture News, 19(3):254{263, May 1991.[Gupta et al. 94] M. Gupta, E. Schonberg, and H. Srinivasan. A uni�ed data-ow frame-work for optimizing communication. In 7th International Workshop Proceed-ings on Languages and Compilers for Parallel Computing., pages 266{282. IBMThomas J. Watson Research Center, August 1994.[Gupta et al. 95] M. Gupta, S. Midki�, E. Schonberg, V. Seshadri, D. Shields, K. Wang,W. Ching, and T. Ngo. An HPF compiler for the IBM SP2. In Supercomputing1995, San Diego, December 1995. IBM T. J. Watson Research Center, IEEE.[Hariri et al. 93] S. Hariri, J. Park, F.-K. Yu, M. Parashar, and G. C. Fox. A Mes-sage Passing Interface for parallel and distributed computing. In Proceedings of

167the 2nd International Symposium on High Performance Distributed Computing,pages 84{91, Los Alamitos, CA, July 1993. Northeast Parallel ArchitecturesCenter, IEEE Computer Society Press.[Harris et al. 95] J. Harris, J. Bircsak, R. Bolduc, J. Diewald, I. Gale, N. Johnson, S. Lee,A. Nelson, and C. O�ner. Compiling High Performance Fortran for distributed-memory systems. Digital Technical Journal, 7(3):5{38, 1995.[Heywood & Ranka 92] T. Heywood and S. Ranka. A practical hierarchical model ofparallel computation. Journal of Parallel and Distributed Computing, 16:212{232, 1992.[Hiranandani et al. 94] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Evaluating com-piler optimizations for Fortran D. Journal of Parallel and Distributed Comput-ing, 21:27{45, 1994.[Hochschild 93] P. Hochschild. EUIH: An Experimental EUI Implementation. IBM T.J. Watson Research Center, Yorktown Heights, NY, version 1.06.3 edition, Sep-tember 1993.[Hockney & Carmona 92] R. Hockney and E. Carmona. Comparison of communicationson the Intel iPSC/860 and Touchstone Delta. Parallel Computing, 18:1067{1072,1992.[Hockney 94] R. W. Hockney. The communication challenge for MPP: Intel Paragonand Meiko CS-2. Parallel Computing, 20(3):389{398, March 1994.[IBM 95] IBM Thomas J. Watson Research Center. UTE User's Guide for IBM SPSystem, version 0.92 edition, September 1995.[Int 91a] Intel Supercomputer System Division, Beaverton, Or. A Touchstone DeltaSystem Description, February 1991.[Int 91b] Intel Supercomputer System Division, Beaverton, Or. Touchstone Delta Sys-tem User's Guide, 312125-001 edition, October 1991.[Int 93] Intel Supercomputer System Division, Beaverton, Or. Paragon User's Guide,312489-002 edition, 1993.[Jeremiassen & Eggers 95] T. Jeremiassen and S. Eggers. Reducing false sharing onshared memory multiprocessors through compile time data transformations. InFifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-gramming, pages 179{88. University of Washington, Seattle, WA, 1995.

168[Joe & Hennessy 94] T. Joe and J. Hennessy. Evaluating the memory overhead requiredfor COMA architectures. In Proceedings the 21st Annual International Sym-posium on Computer Architecture, pages 82{93, Los Alamitos, CA, April 1994.Computer System Lab, Stanford University, CA, IEEE Computer Society Press.[Joi 95] Joint Institute For Computational Science. A Beginner's Guide to the MasparMP-2, February 1995.[Karp 87] A. Karp. Programming for parallelism. Computer, pages 43{56, May 1987.[Kendall Square Research 92] Kendall Square Research. KSR technical summary. Tech-nical report, 1992.[Klaiber & Levy 94] A. Klaiber and H. Levy. A comparison of message passing andshared memory architectures for data parallel programs. In Proceedings of 21stAnnual International Symposium on Computer Architecture, pages 94{105, LosAlamitos, CA, April 1994. Department of Computer Science and Engineering,University of Washington, Seattle, WA, IEEE Computer Society Press.[Konicek et al. 91] J. Konicek, T. Tilton, A. Veidenbaum, C. Zhu, E. Davidson,R. Downing, M. Haney, M. Sharma, P. Yew, P. Farmwald, D. Kuck, D. Lav-ery, R. Lindsey, D. Pointer, J. Andrews, T. Beck, T. Murphy, S. Turner, andN. Warter. The organization of the Cedar system. In International Conferenceon Parallel Processing, pages I49{56. Center for Supercomputing Research andDevelopment, University of Illinois, IL, 1991.[Kuck et al. 93] D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C. Zhu, A. Veidenbaum,J. Konicek, P. Yew, K. Gallivan, W. Jalby, H. Wijsho�, R. Bramley, U. Yang,P. Emrath, D. Padua, R. Eigenmann, J. Hoeinger, G. Jaxon, Z. Li, T. Murphy,J. Andrews, and S. Turner. The Cedar system and an initial performance study.In 20th Annual International Symposium on Computer Architecture, pages 213{223. Center for Supercomputing Research and Development, Illinois University,Urbana, IL, May 1993.[LeBlanc 86] T. LeBlanc. Shared-memory versus message-passing in a tightly-coupledmultiprocessor: A case study. In International Conference on Parallel Process-ing, pages 463{466, 1986.[Leiserson 85] C. Leiserson. Fat-Trees: Universal networks for hardware-e�cient super-computing. IEEE Transactions on Computers, 34(10):892{901, October 1985.[Lenoski et al. 92a] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta,J. Hennessy, M. Horowitz, and M. Lam. The Stanford DASH multiprocessor.Computer, 25(3):63{79, March 1992.

169[Lenoski et al. 92b] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta,and J. Hennessy. The DASH prototype: implementation and performance. Com-puter Architecture News, 20(2):92{105, May 1992.[Lenoski et al. 93] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta,and J. Hennessy. The DASH prototype: Logic overhead and performance. IEEETransactions on Parallel and Distributed Systems, 4(1):41{61, January 1993.[Leslie 90] V. Leslie. A bridging model for parallel computation. Communications of theACM, 33(8):103{111, August 1990.[Lewis et al. 94] J. Lewis, D. Payne, and R. van de Geijn. Matrix-vector multiplicationand conjugate gradient algorithms on distributed memory computers. In Pro-ceedings of the Scalable High-Performance Computing Conference, pages 542{550. University of Texas at Austin, 1994.[Li & Hudak 89] K. Li and P. Hudak. Memory coherence in shared virtual memorysystems. ACM Transactions on Computer Systems, 7(4):463{466, November1989.[Lim & Yew 91] H. Lim and P. Yew. Parallel program behavioural study on a sharedmemory multiprocessor. In 1991 International Conference on Supercomputing,pages 386{395, New York, NY, June 1991. Center for Supercomputing Research& Development, Illinois University, Urbana Champaign, IL, ACM.[Lin & Snyder 90] C. Lin and L. Snyder. A comparison of programming models forshared memory multiprocessors. In Proceedings of the International Conferenceon Parallel Processing, volume II, pages 163{170, 1990.[Lin & Snyder 93] C. Lin and L. Snyder. ZPL: An array sublanguage. In U. Banerjee,D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Compilers forParallel Computing, pages 96{114. 1993.[Lin 91] C. Lin. Portable parallel programming: Cross machine comparisons for Simple.In Proceedings of the 5th SIAM Conference on Parallel Processing, 1991.[Lin 92] C. Lin. The Portability of Parallel Programs Across MIMD Computers. PhDdissertation, University of Washington, Seattle, Wa, December 1992.[Lin 94] C. Lin. ZPL language reference manual. Technical Report UW-CSE-TR 94-10-06, University of Washington, October 1994.[Lin et al. 93] M. Lin, R. Tsang, and D. Du. Performance characteristics of the Connec-tion Machine hypertree network. Journal of Parallel and Distributed Computing,19(3):245{254, November 1993.

170[Lin et al. 95] C. Lin, L. Snyder, R. Anderson, B. Chamberlain, S.-E. Choi, G. Forman,E. Lewis, and D. Weathersby. ZPL vs. HPF: A comparison of performance andprogramming style. Technical Report UW-CSE-95-11-05, University of Wash-ington, Seattle, Wa 98195, November 1995.[Lovett & Thakkar 88] T. Lovett and S. Thakkar. The Symmetry multiprocessor sys-tem. Technical report, Sequent Computer Systems, 15450 SW Koll Parkway,Beaverton, Or, 1988.[Naik 94] V. Naik. Performance of NAS parallel application-benchmarks on IBM SP1.In Proceedings of the Scalable High Performance Computing Conference, pages121{128. IBM Thomas J. Watson Research Center, 1994.[Naik 95a] V. Naik. Performance of NAS parallel benchmark LU on IBM SP system.Technical Report RC20046, IBM Thomas J. Watson Research Center, YorktownHeights, NY, March 1995.[Naik 95b] V. Naik. A scalable implementation of the NAS parallel benchmark BT ondistributed memory systems. IBM Systems Journal, 34(2):273{291, 1995.[Naik et al. 93] N. Naik, V. Naik, and M. Nicoules. Parallelization of a class of implicit�nite di�erence schemes in computational uid dynamics. International Journalof High Speed Computing, 5(1):1{50, 1993.[Ngo & Snyder 92] T. Ngo and L. Snyder. On the inuence of programming models onshared memory computer performance. In Proceedings of the 1992 Scalable HighPerformance Computing Conference, pages 284{291. Dept of Computer Scienceand Engineering, University of Washington, Seattle, Wa, May 1992.[Papadopoulos & Culler 90] G. Papadopoulos and D. Culler. Monsoon: an ExplicitToken-Store architecture. In Proceedings of the 17th Annual International Sym-posium on Computer Architecture, pages 82{91, Los Alamitos, CA, May 1990.Laboratory for Computer Science, Masachusetts Institute of Technology, IEEEComputer Society Press.[Picano et al. 92] S. Picano, E. Brooks, and J. E. Hoag. Quantifying programmingcosts vs. scalable cache coherency on a large scale shared memory multiproces-sor. Technical report, Lawrence Livermore National Laboratory, Livermore, CA94550, August 1992.[Pinkston & Baylor 91] T. M. Pinkston and S. J. Baylor. Parallel processor memoryreference analysis: examining locality and clustering potential. In Proceedingsof the Fifth SIAM Conference on Parallel Processing for Scienti�c Computing,pages 513{518, Philadelphia, PA, March 1991. IBM T. J. Watson ResearchCenter, Yorktown Heights, NY 10598, SIAM.

171[Ponnusamy et al. 92] R. Ponnusamy, A. Choudhary, and G. Fox. Communication over-head on the CM-5: an experimental performance evaluation. In The FourthSymposium on the Frontiers of Massively Parallel Computation: Frontiers 1992,pages 108{115, Los Alamitos, CA, October 1992. Syracuse Univiversity, NY,IEEE Computer Society Press.[Ponnusamy et al. 93] R. Ponnusamy, R. Thakur, A. Choudhary, K. Velamakanni,Z. Bozkus, and G. Fox. Experimental performance evaluation of the CM-5.Journal of Parallel and Distributed Computing, 19(3):192{202, November 1993.[Presberg 96] D. Presberg. Comparison of 3 hpf compilers for the ibm sp. In NHSEReview, http://www.crpc.rice.edu/NHSEreview/HPF. Cornell Theory Center,1996.[Qin & Baer 97] X. Qin and J.-L. Baer. On the Use and Performance of Explicit Commu-nication Primitives in Cache-coherent Multiprocessor Systems. In High Perfor-mance Computer Architecture, pages 182{193. University of Washington, 1997.[Robert 90] Y. Robert. The Impact of Vector and Parallel Architectures on the GaussianElimination Algorithm. Halsted Press, 1990.[Saini & Bailey 95] S. Saini and D. Bailey. NAS parallel benchmark result 12/95. Tech-nical Report NAS-95-021, NASA Ames Research Center, Mo�ett Field, CA,December 1995.[Saini 95] S. Saini. NAS experiences of porting CM Fortran codes to HPF on IBM SP2and SGI Power Challenge. Technical Report NAS-95-010, NASA Ames ResearchCenter, Mo�ett Field, CA, April 1995.[Saphir et al. 95] W. Saphir, A. Woo, and M. Yarrow. NAS parallel benchmark 2.1results: 8/96. Technical Report NAS-96-010, NASA Ames Research Center,Mo�ett Field, CA, December 1995.[Singh & Hennessy 91] J. Singh and J. Hennessy. Data locality and memory system per-formance in the parallel simulation of ocean eddy currents. In Proceedings of theSecond Symposium on High Performance Computing, pages 43{57, Amsterdam,Netherlands, October 1991. Computer System Laboratory, Stanford University,CA, North Holland.[Singh et al. 92] J. Singh, W. Weber, and A. Gupta. SPLASH: Stanford parallel ap-plications for shared memory. Computer Architecture News, 20(1):5{44, March1992.[Singh et al. 93] J. Singh, J. Hennessy, and A. Gupta. Scaling parallel programs formultiprocessors: methodology and examples. Computer, 26(7):42{50, July 1993.

172[Singh et al. 94] J. P. Singh, E. Rothberg, and A. Gupta. Modeling communication inparallel algorithms: A fruitful interaction between theory and systems? Tech-nical report, Stanford University, 1994.[Snyder 86] L. Snyder. Type architecture, shared memory and the corollary of modestpotential. Annual Review of Computer Science, 1:289{318, 1986.[Snyder 94] L. Snyder. A ZPL programming guide. Technical Report UW-CSE-TR94-12-02, University of Washington, December 1994.[Snyder 95] L. Snyder. Experimental validation of models of parallel computation. InA. Hofmann and J. van Leeuwen, editors, Lecture Notes in Computer Science,volume Special Volume 1000, pages 78{100. Springer-Verlag, 1995.[Stark & Beris 91] S. Stark and A. Beris. LU decomposition optimized for a parallelcomputer with a hierarchical distributed memory. In The 1991 MPCI YearlyReport: The Attack of the Killer Micros, pages 127{132, March 1991.[Stunkel et al. 94a] C. Stunkel, M. Denneau, B. Nathanson, D. Shea, P. Hochschild,M. Tsao, B. Abali, D. Joseph, and P. Varker. Architecture and implementationof Vulcan. In Proceedings of Eighth International Parallel Processing Sympo-sium, pages 268{274. IBM T. J. Watson Research Center, Yorktown Heights,NY, April 1994.[Stunkel et al. 94b] C. Stunkel, D. Shea, D. Grice, P. Hochschild, and M. Tsao. The SP1high-performance switch. In Proceedings of the 1994 Scalable High PerformanceComputing Conference, pages 150{157. IBM T. J. Watson Research Center,Yorktown Heights, NY, May 1994.[Tadjbakhsh 93] S. Tadjbakhsh. IBM AIX Parallel Environment Parallel ProgrammingReference. IBM Information Development, Kingston, NY, sh26-7228-00 edition,August 1993.[Thakkar 87] S. Thakkar. A performance analysis of a shared memory multiprocessor. InProceedings of the 1987 IEEE International Conference on Computer Design,Los Amitos, CA, October 1987. Sequent Computer System, Beaverton, OR,IEEE Computer Society Press.[Thakkar et al. 88] S. Thakkar, P. Gi�ord, and G. Fielland. The Balance multiprocessorsystem. IEEE Micro, pages 57{69, February 1988.[Thekkath & Eggers 94] R. Thekkath and S. Eggers. Impact of sharing-based threadplacement on multithreaded architectures. In Proceedings of 21st Annual Inter-national Symposium on Computer Architecture, pages 176{186, Los Alamitos,

173CA, April 1994. Department of Computer Science and Engineering, Universityof Washington, Seattle, WA, IEEE Computer Society Press.[Thi 93a] Thinking Machine Corporation, Cambridge, MA. CMMD Reference Manual,version 3.0 edition, May 1993.[Thi 93b] Thinking Machine Corporation, Cambridge, MA. CMMD User's Guide, ver-sion 3.0 edition, May 1993.[Thi 93c] Thinking Machine Corporation, Cambridge, MA. Connection Machine CM-5Technical Summary, November 1993.[Thi 94] Thinking Machines Corporation. CM Fortran Programming Guide, version 2.2edition, October 1994.[van de Geijn & Watts 95] R. van de Geijn and J. Watts. SUMMA: Scalable univer-sal matrix multiplication algorithm. Technical Report TR-95-13, University ofTexas, Austin, Texas, April 1995.[Windheiser et al. 93] D. Windheiser, E. Boyd, E. Hao, S. Abraham, and E. Davidson.KSR-1 multiprocessor: Analysis of latency hiding techniques in a sparse solver.In Proceedings of Seventh International Parallel Processing Symposium, pages454{461, Los Alamitos, CA, April 1993. Dept of Electrical Engineering & Com-puter Science, Michigan University, Ann Arbor, MI, IEEE Computer SocietyPress.[Wu & Benveniste 94] E. Wu and C. Benveniste. A Uni�ed Trace Environment for SPxSystems. IBM T. J. Watson Research Center, Yorktown Heights, NY, version0.4 edition, March 1994.[Zhang 91] X. Zhang. System e�ects of interprocessor communication latency in multi-computers. IEEE Micro, 11(2):12{15, 52{55, April 1991.[Zhang et al. 94a] X. Zhang, Y. Yan, and K. He. Evaluation and measurement of mul-tiprocessor latency patterns. In Proceedings of Eighth International ParallelProcessing Symposium, pages 845{852, Los Alamitos, CA, April 1994. HighPerformance Computing & Software Lab, Texas Univ., San Antonio, TX, IEEEComputer Society Press.[Zhang et al. 94b] X. Zhang, Y. Yan, and K. He. Latency metric: An experimentalmethod for measuring and evaluating parallel program and architecture scala-bility. Journal of Parallel and Distributed Computing, 1994.

Appendix APerformance dataA.1 LU on shared-memory machinesThe following tables show the execution times in seconds for LU on 5 shared-memorymachines. This is the data for chapter 2.Table A.1: Performance (seconds) of LU Decomposition on 5 shared memory machines.LU on Sequent (seconds)200�200 300�300 512�512processor sm nsm sm nsm sm nsm1 45.370148 45.619545 151.671639 152.84721 749.710614 757.4256522 22.764425 23.165471 76.047993 77.736939 374.954634 379.9825834 11.463419 12.061735 38.075155 39.535023 187.550758 192.9538206 7.812354 8.319552 26.950458 133.4636618 5.931265 6.458318 19.382059 20.741765 94.532781 98.69447510 4.880708 5.255464 16.906972 79.90990812 4.171789 4.628903 14.475015 67.28555014 3.718850 4.111252 12.757039 58.89489816 3.386981 3.789275 10.242270 11.301436 48.279209 51.695656

175LU on KSR (seconds)200�200 300�300 512�512processor sm nsm sm nsm sm nsm1 4.963139 4.128038 16.674863 13.771776 81.422266 67.4400692 2.917240 2.098688 9.495537 6.945457 45.288623 33.9752974 1.531988 1.113727 4.875464 3.540075 23.306514 17.2817258 0.890201 0.668275 2.666797 1.980642 12.259547 8.84587016 0.643920 0.562256 1.690843 1.288997 6.928109 4.90706924 0.659858 0.579727 1.471892 1.292831 5.335590 4.04406632 0.895496 0.598683 1.786207 5.170310 3.863252LU on Cedar (seconds)200�200 300�300 512�512processor sm nsm sm nsm sm nsm1 64.64052 44.43229 216.85811 150.38560 1074.41066 757.654712 32.44478 23.20331 108.53429 76.26080 539.33373 378.212464 16.29816 12.05089 55.92126 39.14370 269.30365 192.069018 8.53105 6.85880 27.66585 21.52057 137.76543 100.0138812 5.16418 15.46952 92.03920 68.8142716 4.93295 4.44266 14.83814 12.22920 72.05867 54.5141420 4.28967 10.93311 49.7760124 4.4094 4.26784 11.24298 10.21729 51.33575 40.5599028 4.25487 10.06788 36.9092232 4.6288 4.37602 10.68505 10.32745 40.15609 35.13364LU on Buttery T2000 (seconds)200�200 300�300 512�512processor sm nsm sm nsm sm nsm1 21.456812 71.4625682 10.892948 4.053568 35.883065 13.540942 182.903653 67.5731374 5.647862 2.165374 18.496054 6.936486 94.217712 34.3566368 3.498626 1.251953 11.105882 3.883010 55.118757 17.78390416 3.317192 .881832 9.992702 2.307044 45.819111 9.68413324 3.598184 .937469 10.151217 2.122591 45.111404 7.77760832 3.948025 .994012 10.779631 2.240521 45.755199 6.68930548 4.436488 1.101099 11.699838 6.487641 50.215238 7.035376LU on DASH (seconds)200�200 300�300 512�512processor sm nsm sm nsm sm nsm1 3.209 3.179 10.919 10.727 67.014 54.8322 1.635 1.674 5.786 5.418 32.372 27.4284 .857 .873 2.877 2.768 15.863 13.8138 .559 .499 1.695 1.555 8.088 7.15016 .369 .350 1.083 .973 4.729 4.01532 .418 .390 .942 .953 3.709 2.914

176A.2 WATER on shared-memory machinesThe following tables show the execution times in seconds for WATER on 5 shared-memory machines. This is the data for chapter 2.Table A.2: Performance (seconds) of WATER on 5 shared memory machines.WATER on Sequent (seconds)96 mols 288 mols 512 molsprocessor sm nsm sm nsm sm nsm1 56.230536 56.302039 455.615188 456.720134 1405.776632 1410.2715372 28.796820 29.019462 230.486377 231.114972 715.609000 717.3091844 14.695737 14.982332 117.139749 117.536687 367.452312 368.3933256 9.879172 10.256695 77.890070 78.7781948 7.428865 7.829909 59.098132 59.773076 186.251235 205.41719212 4.951295 5.277917 40.699293 41.23167716 3.744649 4.063647 31.140790 31.444728 96.469742 97.10807618 28.161897 28.425073WATER on KSR (seconds)96 mols 288 mols 512 molsprocessor sm nsm sm nsm sm nsm1 6.28 6.12 48.68 47.16 148.50 143.202 3.36 3.22 25.14 24.36 74.80 72.464 1.78 1.66 13.26 12.40 39.64 36.588 .92 .90 6.90 6.44 20.36 18.6216 .50 .50 3.68 3.46 10.84 9.9824 .42 .42 2.62 2.46 8.78 6.5432 .42 .36 2.08 1.92 5.70 5.32WATER on CEDAR (seconds)96 mols 288 mols 512 molsprocessor sm nsm sm nsm sm nsm1 74.933640 76.402960 599.506110 575.7882102 38.552850 38.195740 304.091360 289.9097604 19.530560 19.900750 152.750320 148.8318108 9.870800 10.748890 77.355800 84.695670 238.718480 233.00747012 6.689800 7.733460 52.907180 77.36783016 5.169280 6.128690 40.013000 42.731850 122.587380 126.08935024 3.500040 4.561320 30.283210 29.494360 107.214710 83.44432032 3.174200 4.653100 21.239410 24.572020 67.686400 68.995810

177WATER on Buttery T2000 (seconds)96 mols 288 mols 512 molsprocessor sm nsm sm nsm sm nsm1 24.378128 16.910681 191.955684 129.875652 1754.425691 1437.5952382 98.024568 70.4221174 6.465225 4.749529 50.213944 34.703714 150.397842 102.1217848 3.312763 2.647135 25.525649 18.376480 76.523083 52.86121812 17.925968 13.20081716 1.749591 1.639289 13.759438 10.408390 40.780034 29.57380224 9.936112 8.18635332 1.163515 1.350450 8.249899 7.406816 24.293119 20.89671748 1.126044 1.301894 7.413884 6.86889564 20.218286 19.55043972 7.508387 7.25165096 1.516591 2.306298 7.996893 8.414836 16.569527 19.502120WATER on DASH (seconds)96 mols 288 mols 512 molsprocessor sm nsm sm nsm sm nsm1 3.597 3.606 28.977 29.310 90.809 90.7802 1.860 1.902 14.604 14.750 46.014 45.6304 .960 1.001 7.511 7.620 24.075 23.6308 .531 .601 3.935 4.140 12.569 12.42016 .270 .381 2.091 2.330 6.441 6.88324 .220 .280 1.501 1.880 5.52732 .150 .260 1.140 1.550 3.482 5.243A.3 HPF and ZPL programs on nonshared-memory ma-chineThe following tables show statistics on the SP2 parallel platforms and the execution timein seconds for the HPF and ZPL programs. This data is used in Chapter 4 and 5.

178Table A.3: Characteristics of the IBM SP2 used for the cross-compiler comparisonSP2Site Cornell Theory CenterOperating System AIX 4.1.4IBM HPF compiler Version 1, Release 1APR HPF compiler Version 2.0PGI HPF compiler Version 2.0.2ZPL compiler Version 1.0Communication lib MPI (IBM)Nodes 512FLOPS/node 266 MFLOPSMemory/node 128-2048 MBTopology MINBandwidth 48MB/secLatency 40 usecTable A.4: Performance (seconds) of Matrix Multiplication on the IBM SP2: 2000�2000processor compiler DO loop HPF opt Cannon SUMMA16 ZPL n/a n/a 138.06 35.16IBM 10.62 21.00 111.38 11.51APR 56.14 24.56 nomem 20.69PGI timeout 72.11 109.99 25.5564 ZPL n/a n/a 44.87 10.08IBM 3.09 14.38 37.39 4.23APR 59.95 18.30 326.12 7.96PGI timeout 12.92 37.43 8.44

179Table A.5: Performance (seconds) of NAS 2.1 benchmarks on the IBM SP2: EP, FT,MG. Embarrassingly Parallelcompiler p=1 4 8 16 32class S ZPL n/a 1.06 0.52 0.32 n/aAPR do 1.40 0.81 0.44IBM do 4.94 4.92 4.95PGI do 4.98 5.00 4.97class A ZPL n/a n/a 136.49 68.48 35.26APR do 159.33 79.93 47.83IBM F90 417.12 208.86 105.39PGI F90 419.40 210.16 107.10MultiGridcompiler p=1 4 8 16 32class S MPI 0.15 0.09 0.06 n/a n/aZPL 1.47 0.60 0.42APR do 28.58 181.76 250.59IBM do 4.10 17.79 23.39PGI do 48.08 274.14 385.12APR F90 42.07 46.70 53.67IBM F90 1.30 0.76 0.76PGI F90 1.82 1.07 1.89class A MPI n/a n/a 7.40 4.10 2.30ZPL 40.50 22.82 11.25APR F90 timeout timeout timeoutIBM F90 140.09 79.99 46.52PGI F90 43.19 32.70 23.17Fourier Transformcompiler p=1 4 8 16 32class S MPI 4.70 1.49 0.83 n/a n/aZPL 26.96 7.11 3.78APR do 100.63 205.16 timeoutIBM do 32.31 84.41 101.47PGI do 175.26 timeout timeoutAPR F90 6.42 3.80 5.22PGI F90 11.78 4.97 2.91IBM F90 12.66 17.23 18.3713.21 10.43 10.18class A MPI n/a n/a 26.00 13.50 8.57ZPL segfault 129.38 47.32APR F90 1607.16 37.26 29.96IBM F90 timeout 353.31 timeoutPGI F90 321.28 61.30 32.56

VitaeTon Anh NgoDept. of Computer Science & Engineering IBM Thomas J. Watson Research CenterBox 352350 H1-J20University of Washington P.O. Box 704Seattle, WA 98195 Yorktown Heights, NY 10598914-784-7935 914-784-7935tango@cs.washington.edu tango@watson.ibm.comSummaryCurrent Status: Ph.D. Candidate, University of WashingtonEngineer, IBM T. J. Watson Research CenterResearch Interest: Parallel architecture, Parallel programming model,Latency hiding techniquesGraduate: Ph.D., Computer Science, University of Washington, expected 1997M.S., Computer Science, 1992, University of WashingtonM.S., Electrical Engineering, 1986, Florida Institute of TechnologyUndergraduate: B.S., Electrical Engineering, 1982, Georgia Institute of Technology,Highest HonorWork experiences1987-current IBM T. J. Watson Research Center, Yorktown Heights, NY:1996-current Java multithread debugger, Java parallel programming on the SP21995-1996 Implementation of an HPF compiler for the SP2 parallel computer1989-1990 Development of PV, parallel program visualization1987-1989 Hardware designs for the RP3 parallel computer:cache, performance monitor and oating point interface1982-1987 IBM System Product Division, Boca Raton, FL:Simulation, validation of Series/1 16-bits microprocessor

181Publications1. Portable Performance of Data Parallel Languages, with Lawrence Snyder, BradfordChamberlain (to appear in Supercomputing 1997).2. SPMD Programming in Java, with Susan Flynn Hummel, Harini Srinivasan. Con-currency Practice and Experience, Vol. 9(6), pp 621-631, June 1997.3. An HPF Compiler for the IBM SP2, with M. Gupta, S. Midki�, E. Schonberg,V. Seshadri, D. Shields, K.Y. Wang, W. Ching. Supercomputing 1995, San Diego,December 1995.4. Data Locality On Shared Memory Computers Under Two Programming Models,with Lawrence Snyder. UW TR number: 93-06-08, IBM Research Report: RC19082, June 1993.5. On the Inuence of Programming Models on Shared Memory Computer Perfor-mance with Lawrence Snyder. Scalable High Performance Computing Conference,April 1992.6. The RP3 Program Visualization Environment, with Douglas Kimelman. IBMJournal of Research and Development, Vol 35, No 5/6, pp 635-651, September- November 1991.7. Initial Experience with RP3 Performance Monitoring, withW. Brantley, L Brochard,A. Bolmarcich, H. Chang, K. McAuli�e. Journal of High Speed Computing, Vol 1,No 4, 1989.8. RP3 Performance Monitoring Hardware, with William Brantley, Kevin McAuli�e.Instrumentation for Future Parallel Computing System, Addison-Wesley, 1989.

182Personal BiographyBirthdate: March 14, 1960 Sex: MaleHome address: 115 Mitchell Road Marital status: marriedSomers, NY 10589 Spouse: Hue Nguyen Ngo, D.O.914-277-1082 Children: 2 (ages 12 and 5)Foreign language: Vietnamese, FrenchInterests: camping, skiing, family activitiesHonors: 1978, High School Valedictorian1978-1990, Dean's list, Georgia Institute of Technology1982, BS degree with highest honor1982, Member of Eta Kappa Nu, Tau Beta Sigma1990, IBM Resident Study program1989, 1996, IBM Research Division AwardsReferencesProfessor Lawrence Snyder Fran Allen, Ph.D.Department of Computer Science & Engineering IBM FellowBox 352350 H1-D14University of Washington PO Box 704Seattle, WA 98195 Yorktown Heights, NY 10598snyder@cs.washington.edu allen@watson.ibm.com206-543-9265 914-784-7518

