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Abstract

The Role of Performance Models

in Parallel Programming and Languages

by Ton Anh Ngo

Chairperson of the Supervisory Committee: Professor Lawrence Snyder
Department of Computer Science

and Engineering

A program must be portable, easy to write and yield high performance. Unfortu-
nately, these three qualities present conflicting goals that require difficult and delicate
balancing, and for parallel programs, the parallelism adds yet another level of complex-
ity. The difficulty has proved to be a persistent obstacle to parallel systems, even for the
data parallel class of applications where the parallelism is abundant and the computation
is highly regular. This thesis is an effort to find this delicate balance between scalability,
portability and convenience in parallel programming. To establish the framework for
analyzing the many disparate and conflicting issues, I develop the concept of modeling
and apply it throughout the study. In addition, the empirical nature of the problem calls
for experimental comparisons across current parallel machines, languages and compilers.

The nonshared memory model is first shown to be more portable and scalable be-
cause it exhibits better locality, then two data parallel languages, HPF and ZPL, are
studied in detail. HPF offers many advantages and enjoys wide attention in industry and

academia, but HPF suffers from a significant gap in its performance model that forces



the user to rely completely on the optimization capability of the compiler, which in turn
is nonportable.

On the other hand, ZPL’s foundation in a programming model leads to predictable
language behavior, allowing the user to reliably choose the best algorithm and implemen-
tation. In this respect, a new language abstraction is proposed that promotes scalability
and convenient programming: mighty scan generalizes the parallel prefix operation to

apply to conceptually sequential computation that is difficult to parallelize.
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Chapter 1

Introduction

model 1(n) (Webster 7th dictionary)
DEFINITIONS:

[1 (obs)] a set of plans for a building

[2 (dial Brit)] COPY, IMAGE

[3] structural design

[4] a miniature representation of something;
also : a pattern of something to be made

[5] an example for imitation or emulation

[6] a person or thing that serves as a pattern for an
artist; esp : one who poses for an artist

[7] ARCHETYPE

[8] one who is employed to display clothes or other merchandise:
MANNEQUIN

[9a] a type or design of clothing

[9b] a type or design of product (as a car or airplane)

[10] a description or analogy used to help visualize something
(as an atom) that cannot be directly observed

[11] a system of postulates, data, and inferences presented as a
mathematical description of an entity or state of affairs

1.1 Modeling

This thesis is based on the concept of modeling. Although the term model is heavily
used in many fields and our focus in this study will be quite narrow in contrast to this

general term, it is helpful to remember that it forms the underlying basis for this work.



In the simplest terms, a model reflects our understanding of how a certain system
operates; it captures the information that is necessary and sufficient for our expected use
of the system. For instance, when we operate an automobile, we have in mind a certain
model of the machinery: we expect features such as a steering wheel, an accelerator
pedal, a brake pedal, etc. We expect these features to function in a certain manner: the
accelerator should move the car and the brake should stop it. We operate these features
and indeed they function as expected. We are also conscious of the size of the car, i.e.,
how far ahead and behind are the front and back bumpers, so that we can avoid colliding
with other cars. This conformity to a consistent model allows a person to step into a car

of any make or model and drive with no difficulty.

A model may capture different levels of detail depending on the needs of the user.
For instance, an auto mechanic may look at an automobile and think in terms of the
engine, transmission, carburetor, electrical wiring, while a car salesman may think in

terms of front-wheel drive, antilock brakes, and service contract.

Furthermore, the model must be accurate for the system to be operated effectively.
Consider a race car driver whose goal is to drive as fast as possible without wrecking the
car. Among other things, he must learn precisely how the car steering responds at high
speeds, or more formally, he must acquire in his mind an accurate model of the car’s
steering behavior. A number of scenarios can occur that prevent such a mental model:
(1) the steering is soft because of the car’s poor design, (2) some last minute repair work
had altered the steering and the instruction given to the driver concerning the change
turns out to be inaccurate, or (3) the car is new and he has not gained enough experience
with its behavior. Clearly, if the driver is not sure how the car will steer at high speeds,

he will have to be conservative and drive at a lower speed.

Modeling is also pervasive in computer science. An example of a successful model
can be found in the design of the memory for a sequential machine. Computer architects
effectively model a program as a stream of references that exhibit some temporal and

spatial locality. Designers then optimize to this model, and the result is the cache, a



ubiquitous and very successful feature.

Interestingly, this example can be carried further to illustrate an instance when the
model fails. A cache under the expected operating conditions will yield an average
memory access time that is much better than that of the main memory, thereby creating
an illusion (i.e., model) of a uniformly fast memory. A user then can program according to
this model by largely ignoring the memory access time. However, unfavorable behaviors
can occur, such as a long sequence of consecutive addresses or a stride in the references
which makes use of only one word per cache line. In these cases, the original model of
temporal and spatial locality fails, resulting in the failure of the cache and consequently
of the user perception of a uniformly fast memory. The user then encounters surprisingly
poor performance. Fortunately in this particular case, cache blocking by the compiler
has been successful in identifying these reference patterns and breaking the long sequence
or adjusting the memory stride. In other words, the compiler is able to transform the
program so that it fits the original model on which the cache design is based.

In this thesis, I will focus on the topics of programming for parallel machines, and

the modeling concept is used to study the issues and problems.

1.2 Parallel programming and modeling

Parallel systems are among the few disciplines in computer science in which very sub-
stantial benefits appear feasible but have remained elusive despite extensive research.
Consequently, it is not surprising that the interest in parallel systems has waxed and
waned over the years. The late 80’s and the early 90’s saw a surge in the development
of parallel machines and software, driven by the availability of cheap microprocessors.
In the last few years however the number of vendors as well as the variety of parallel
machines has been dwindling. The level of interest in parallel systems at the current
time seems low, yet the relentless quest for more computing power has not eased and
it is conceptually clear that parallel machines can lead to faster execution times than

a sequential machine. This motivates the question, “What are the major obstacles in



realizing the potential of parallel systems?” In seeking an answer, it is helpful to consider
a more elementary question, “What does a user expect from a parallel machine?” The

following expectations are identified.

Foremost is performance, or more precisely scalable performance, the principal benefit
from a parallel machine. It is clear that a user who considers a parallel machine does so
out of necessity. Without scalable performance, there is little motivation for the user to
depart from the familiar sequential machine. Scalable performance has two components:
(1) competitive scalar performance against a state of the art sequential machine, and (2)

good speedup.

The second expectation from users is the durability of their software. Program de-
velopment is costly without the added difficulty of parallel programming; therefore, the
users expect their programs to be portable not only across different parallel platforms
but also across generations of parallel machines. It should be stressed that portability
must include both correctness and performance; otherwise, a correct but slow program

is no more useful than a fast program that produces incorrect results.

The third expectation is ease of use. This may seem to have lower priority than the
first two, but it is clear that parallel machines will not gain a critical mass of users until
they can be made readily accessible. We next consider how various aspects of parallel

systems are meeting these requirements.

A contract between the user and the system

Figure 1.1(a) shows a user’s perspective in developing a parallel program. From the
problem specification, a user typically chooses an algorithm, implements it in a particular
language, compiles the program with a particular compiler, then runs the program on a
parallel machine. On a closer look (Figure 1.1(b)), we can see that the portability issue
mainly involves the compilers and the parallel machines since the goal in portability is
to be able to run the same program without modifications on different platforms. The
language is only involved in the sense that one standard language is used. The ease of

use issue falls entirely within the language since it depends on the type of abstractions



algorithm - language ] - compiler - machine
—  — —

(a) Developing a parallel program

Portability

scalability - Easeofuse -
algorithm -‘ : language S compiler - machine

(b) Satisfying the three user expectations

Figure 1.1: A user perspective of parallel system

for parallelism that the language provides.

Scalability ultimately rests with the user in the choice of the algorithm. Since the
language is the only interface accessible to the user, he/she would learn the abstractions
and functionality provided by the language and, in the process, form a mental picture
of how the parallel execution is to proceed. This mental picture, or more formally
the programming model, is then used to select the best algorithm for the problem and to
implement the algorithm in the most efficient manner. The responsibility of the compiler
and the machine is to accurately implement the programming model that that language
presents. The programming model thus serves as the contract between the user and the
parallel system. It follows that if either of the parties of the contract fails, e.g. the
user fails to find a scalable solution or the system fails to meet the expectation, then
scalability is not achieved.

As an example, consider the case of KAP, a parallelizing compiler for Fortran pro-

grams. A KAP user would program in the standard Fortran syntax with the understand-



ing that when a loop is encountered, a number of processors will wake up and execute
the loop in parallel. Under this programming model, the user will choose and implement
an algorithm based on a number of assumptions: (1) the loop that is expected to execute
in parallel will indeed execute in parallel, (2) the overhead for entering the parallel exe-
cution is negligible, and (3) the data can be accessed with an average low latency. Then,
the task for the user is to ensure that the DO loop dominates the program execution,
while the task for the parallelizing compiler is to deliver the expected performance. If
the compiler meets the expectation, then the program scales; otherwise, the program
does not scale. In the latter case, the failure is not due to the algorithm since it is indeed
scalable according the programming model; rather, the failure rests with the compiler in

implementing the model.

The glue for the components of a system

Thus far we have only discussed modeling as an interface between the user and the
language, yet modeling exists between other components as well. Consider the models
in a native system as illustrated in Figure 1.2(a). In the development of many parallel
systems, the effort has tended to focus on the hardware, leaving the software often
under-developed and primitive. In addition, machine vendors are often motivated toward
proprietary software that closely mirrors the functionality of the hardware. The result
is a tight coupling between the machine, the compiler, and the associated language.
In other words, the machine is designed for a particular architecture, the language is
designed to match the machine capability, and the compiler translates directly from
the language syntax to the machine function. The models that exist between these
components contain specific details that help make the system efficient. However a
disadvantage is that programs tuned to the system may not be portable. An example is
the Connection Machine CM-2 and its C* language: the where construct is an excellent
match for the SIMD control mechanism in the hardware, but implementing this language

abstraction on an MIMD may involve more overhead.

Figure 1.2(b) shows a more loosely coupled scheme in which a language, preferrably



a standard one, is targeted by many compilers. The compiler in turn can target a num-
ber of parallel machines. In this approach, a language designer must make a number
of assumptions about the capability of the compilers, i.e. a compiler model. Likewise,
a compiler developer who intends to port the compiler implementation to multiple ma-
chines must have a certain model common to all the machines. A compiler for distributed
memory machines could expect the machine to provide common communication func-
tions such as asynchronous send/receive or even a standard communication interface
such as MPI.

The decoupling of the components renders the modeling aspect more critical because
a mismatch in the chain of models has the potential of degrading the scalability of
the entire system. Accurate modeling thus becomes the “glue” that ties together the
components of a fully portable parallel system. Clearly, any reasonable model can be
used between any two components. The only requirement is that the model can be
implemented faithfully, or conversely, the model accurately captures the performance of
the components being modeled.

Having established the high level picture, we can summarize the overall approach for
scalable, portable and easy to use systems: (1) the parallel language must be designed
carefully for ease of use; (2) for portability, the language must be supported on multiple
compilers and machines; (3) for scalability, the modeling must be kept accurate across all
components of the parallel system. We now briefly survey the state of the art in parallel

machines, compilers and languages to understand the types of model that are in use.

1.2.1 Model for machines

The model at the machine level can typically be derived from a description of the machine
architecture and organization. Parallel architectures proposed over the years cover a
wide spectrum ranging from shared memory and distributed memory to data flow and
multithreading. Since the processing elements are not different from the uniprocessors,

the models for parallel machines are generally distinguished by the memory system:



agorithm language| | compiler | | machine
Model

— \

(a) Native models: tight coupling between the machine,

the compiler and the language leads to poor portability

algorithm language compiler machine

“Model “Model “Model

r— ! ! |

(b) More portable models: each phase is decoupled

Figure 1.2: Realizing a parallel programming model

shared memory and nonshared memory. Note that we use the term nonshared instead
of the more conventional term distributed to avoid confusion since a shared memory
machine may have a distributed memory organization.

Shared memory architecture is characterized by a single address space for all proces-
sors, while in the nonshared memory architecture each processor explicitly manages its
address space and shares data only through explicit messages that involve both the sender
and the receiver. The shared memory model can be further qualified by the knowledge of
the physical location of an address. In other words, a processor is able to directly access
any memory address, but it may or may not be able to determine whether the address
is local or nonlocal. This knowledge imparts on the shared memory model some char-
acteristics of the nonshared memory model; therefore for our purpose, this specialized
model is called a hybrid model.

Shared memory machines

An early memory model for shared memory parallel machines is the Parallel Random

Access Memory model (PRAM), which extends the sequential Random Access Memory



model (RAM) by assuming that each processor can access any memory location in unit
time. The simplification allows a programmer to reason about the complexity of different
algorithms so that an efficient algorithm can be chosen. For the shared memory archi-
tectures, a number of machines present a pure shared memory model by implementing
a memory with a uniform memory access time (UMA). These include symmetric multi-
processors based on a bus or crossbar (SMP, currently marketed by numerous vendors
such as Sequent, SGI), as well as earlier machines that use a multistage interconnect net-
work (MIN) to connect the processors to a global memory. In the actual implementation,
the memory access time is not strictly uniform, but, as with the cache in a sequential
machine, there is no direct method for the user to control the access time. Other ar-
chitectures fall into the category of pure shared memory as well. Cache Only Memory
Architecture (COMA) implemented in the Kendall Square Research machine does not
allow the general user to differentiate among memory locations since the machine’s re-
sponsibility is to dynamically relocate the memory sections in use to the local processor.
Data flow machines such as the Monsoon machine[Papadopoulos & Culler 90| closely
match the data flow programming model, which has no explicit notion of data location.
Finally, the Tera machine relies on the program parallelism to mask the high latency of
the global shared memory, so that if sufficient parallelism exists, the global memory will

appear to be uniformly fast.
Hybrid machines

Large scale shared memory machines by necessity must distribute its physical mem-
ory. To take advantage of the processor locality, many machines provide some mecha-
nisms for the user to distinguish different levels in the memory hierarchy, resulting in
a model of nonuniform memory access time (NUMA). The IBM RP3 and BBN Butter-
fly distinguished local and remote addresses while the Stanford DASH could recognize
node, cluster and remote memory addresses. Recent advances in network technology in
reducing the latency and improving the bandwidth are also shifting the focus to clusters

of SMP’s. These clusters (Distributed Shared Memory, or DSM) are generally connected
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through a high performance switch and have a hardware coherent cache. Thus departing
from pure shared memory, these machines present a hybrid model that has both shared
and nonshared memory characteristics: hardware for shared memory is provided, but the
underlying communication mechanism is also exposed to varying degrees, which could be
as simple as fetching a fixed size cache line, or more full-fledged with put/get of variable
size messages (Cray T3D, T3E).

Nonshared memory machines

At the other end of the spectrum are the message passing machines with the pure
nonshared memory model. Early machines such as the Caltech Hypercube support little
more than the basic send and receive, but more recent machines (SP2, Paragon, CM-5)
enrich the communication functionality to include asynchronous and collective commu-
nication. The level of communication tends to be coarse in most machines, thereby
encouraging coarse grained parallelism, but fine grained communication at the level of

program variables is also possible in machines such as the Transputer.

1.2.2 Model for compilers

A language designer must be aware of the capability of the compiler technology to ensure
a viable implementation of the language. Within the framework in Figure 1.2(b), this
awareness constitutes the compiler model. In general however, the model that compilers
present is not commonly recognized as a separate entity. It is not always clear whether
a language design is based on an existing compiler model or assumes a future compiler
model with the expectation that new compiler optimizations will be developed. In the
latter case, the language designer has in effect created and used a new model that some
future compiler must satisfy. We briefly survey some current approaches in parallel
compilers to understand the models in use.

When a parallel language is extended from a sequential language through libraries,
no additional effort is required from the compiler. The compiler treats a parallel program

no differently than a sequential program; therefore no compiler model exists with respect
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to parallelism. Examples include C/Fortran compilers for shared memory programs that
use the conventional thread abstractions (lock, spawn, etc.) as well as message passing

programs that use the standard communication libraries (PVM, MPI, etc.).

Compilers for sequential languages typically optimize for locality in the spatial and
temporal dimensions of the reference pattern. Compilers for shared memory parallel
languages must deal with the additional processor dimension in the reference pattern.
On a cache-coherent shared memory machine, a compiler may manipulate the data
sharing pattern, for instance by reorganizing the memory layout to minimize the false
sharing effect[Jeremiassen & Eggers 95]. In this case, the compiler model would include
the capability to identify the shared data, analyze the access patterns and perform the

necessary transformations.

For parallelizing compilers, the model requires extensive capabilities. The compiler
must be able to analyze and disambiguate dependences in the DO loops and perform the
necessary transformations so that the loops can be executed in parallel. If the memory
hierarchy is not uniform, the compiler must partition the data to maximize locality. The
compiler must also minimize any overhead involved in creating the parallelism such as

data copying, synchronization, managing worker threads, etc.

HPF and directive-based parallel Fortran variants assume a compiler able to exploit
the data distribution directives. Since these languages mainly target distributed memory
machines, the compiler must (1) analyze the index expression to determine whether each
memory reference is local or remote, (2) generate the communication required, and
most importantly, (3) optimize the communication so that the program performance is

scalable. In addition, the standard Fortran semantics must be observed.

For ZPL[Lin & Snyder 93], the design of the language follows the philosophy that
an efficient compiler implementation must exist for the abstractions. Although it seems
contradictory to be proposing new powerful language abstractions that only require
existing compiler optimization techniques, being designed from first principles and being

developed incrementally allows the language to evolve with new compiler technology. In
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this case, the compiler model is simply one that efficiently implements the language.

1.2.3 Model for languages

Models at the language level are also called programming models. They are interesting
for several reasons. First, they are the direct interface between a user and the machine;
therefore they must focus on the user’s needs, e.g., ease of use. Second, it is easy to
create and implement a new programming model because it can be easily interpreted
in software. This has lead to a rich diversity of models, which allow for many ways to
categorize them; however to be consistent with the machine model, we will classify them
as shared-memory and nonshared-memory and discuss the variations within each class.

In the shared memory class, the most elementary model is one that directly reflects
the functionality of the hardware. Control for hardware features such as lock, barrier
synchronization, cache prefetch, etc. are coded in libraries which are then used to extend
a sequential language. The model is the most efficient since it accurately captures the
capabilities of the machine, but tends to be rigid. Differences in syntax and functionali-
ties between machines also hamper program portability, although standard macros such
as those from Argonne National Laboratory have been developed to ease this problem.

For languages targeted by parallelizing compilers such as KAP or PTRAN), the orig-
inal sequential programming model is only extended with the awareness that parallelism
will arise from the loops. A user would only need to ensure that loops constitute a major
part of the dynamic execution of the otherwise sequential program.

Elementary nonshared memory languages are also extended from sequential lan-
guages with communication libraries. These libraries control the low level hardware
and may add functionality such as message buffering, error recovery, and collective com-
munication; therefore the programming model is usually richer than the actual machine.
Differences in syntax and functionality lead to some portability problems, although they

are alleviated to some degree by standard communication interface such as PVM and

MPI.



13

Data parallel languages present an interesting model that has some characteristics of
nonshared memory but allows on a global view of the program computation. Examples
include C*, High Performance Fortran and similar variations, and ZPL. The nonshared
memory quality can exist as data partitioning directives as with HPF, or can be implicit
in the language abstractions as in ZPL. Under this model, the user programs with the
knowledge that the data will be distributed, but is spared the tedium of coding low level

communication to manage the distributed data.

1.2.4 The larger picture

Our discussion thus far has identified the following points:
1. Parallel programs must be scalable, portable and easy to write
2. Scalability originates in the choice of the algorithm
3. Ease of use is provided by the language
4. Portability requires the support of multiple compilers and machines

5. The appropriate models bind together the algorithm, the language, the compiler

and the machine to form an effective system.

In this framework, a system as a whole is only as effective as the least effective
link. This observation thus lays the basis for the methodology throughout the thesis:
to evaluate a system, it suffices to evaluate the models that bind together the compo-
nents. Evaluating the model in turn will involve formulating some questions that can be

answered by experimental data.

1.3 Thesis outline

Having laid out the framework, the point of departure for this thesis can be stated as

follows. Our goal is to understand the best approach for achieving scalability, portability
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and ease of use in parallel programming. The scope is limited to the class of data
parallel problems. The studies involve experimental comparison across parallel machines,
compilers and languages. The concept of modeling serves as the basis for analyzing the
observed behavior.

This thesis asserts that an accurate performance model is a fundamental requirement

for a parallel system. It makes the following contributions:

e An experimental comparison and analysis of two general programming models: the

shared and nonshared memory models.

e An experimental comparison and analysis of two data parallel languages: HPF and

ZPL.

e A new high level data parallel abstraction that promotes scalability, portability

and ease of use: Mighty scan.

Chapter 2 begins with the issues of scalability and portability, omitting for the time
the question of ease of use. Given the shared and nonshared memory programming mod-
els on different machines (Figure 1.3(a)), the question is which model is more portable
across the machines. The data provides experimental evidence to support the choice of
a nonshared memory programming model.

Having established a candidate programming model, we next consider the issue of
ease of use. In the last few years, considerable research has focused on high level parallel
languages that are based on the nonshared memory programming model and that target
both scalability and portability. Although the data parallel model is not adequate to ad-
dress general parallel programming, the prevalence of data parallel problems in scientific
applications has motivated the development of many data parallel languages, all with the
goal of enabling easier programming while achieving scalable and portable performance.

In this thesis we will consider HPF and ZPL (Figure 1.3(b)). Compilers for both HPF
and ZPL are now widely available on many platforms. HPF vendors include APR (Ap-
plied Parallel Research), PGI (Portland Group Inc.), IBM, and DEC, and the supported
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platforms include the IBM SP2, Cray T3D, Intel Paragon, DEC SMP AlphaServer, and
SGI PowerChallenge. The ZPL compiler from the University of Washington supports
the Intel Paragon, Cray T3D, IBM SP2, KSR2 and network of DEC Alpha workstations.
Such a wide availability allows for detailed comparisons and analysis between HPF and
ZPL as well as among HPF compilers.

The reader may question at this point the practical purpose of comparing HPF and
ZPL since it appears that HPF, being based on Fortran, is more likely to be accepted
as the standard parallel language. My contention, to be borne out by the results of this
thesis, is that HPF lacks a robust programming model to assure the programmers that an
algorithm implemented in HPF will be scalable and portable. In this respect, the choice
of ZPL for a comparison with HPF is appropriate since ZPL has a strong foundation
in a programming model. One can argue that because of the high visibility of HPF, a
failure of the language due to performance problems will not only disappoint the user
community but will also have an adverse effect on continuing research in parallel systems
as a whole. Therefore, if HPF is failing to meet user expectations, it is imperative that
we understand the source of the problem.

Chapter 3 will focus on key features of both languages that are critical to scalabil-
ity and portability. While it is difficult to measure the syntactic appeal of a language
abstraction, the ease of use ultimately depends on whether the performance of the ab-
straction meets the user expectation. In Chapter 4 this will be quantified through an
experimental characterization of a number of basic language abstractions in both lan-
guages.

Chapter 5 will carry the comparison to the NAS benchmarks. This chapter will also
briefly consider the interesting issue of native and nonnative compilation.

Chapter 6 will consider the problem of a computation with a recurring dependence.
A number of solutions are studied and a new language abstraction is proposed that
generalizes the parallel prefix operation.

Finally Chapter 7 will summarize the findings of this thesis and outline future work.



Chapter 2

Programming Models for Data
Parallel Problems

2.1 Introduction

In Chapter 1 portability and scalability have been identified as critical requirements
for software development, particularly for parallel applications. Portability for parallel
programs, however, is hampered by the rich diversity in parallel architectures. Parallel
machines in general present one of two memory models: shared memory and nonshared
memory. If the programmer is to adhere to the memory model of the machine, then
different versions of the program must be written, contradicting the goal of portability.
At the same time, choosing one model may preclude executing the program on machines
that do not support the model.

To remedy this problem, a straightforward solution is to emulate the program’s pro-
gramming model if such a model is not directly supported by the machine. Since a
programming model is an abstraction, it can be readily constructed in software, albeit
at a certain cost. For instance, on a nonshared memory machine, a software layer can
provide the view of a single address space. Conversely, a nonshared memory program-

ming model can be created trivially on a shared memory machine by emulating the send
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and receive. The focus then shifts to the cost of such an emulation because this cost di-
rectly affects the scalability. If it is negligible, then the portability problem with respect

to the shared and nonshared memory models can be considered solved.

Shared memory programs can be executed on nonshared memory machines by using
the Shared Virtual Memory system proposed by Li and Hudak[Li & Hudak 89]. In this
approach, the operating system maintains a consistent cache of memory pages to create
the view of shared memory in a nonshared memory machine. Priol and Lahjomri [Andre
& Priol 92] measured the performance of a number of shared memory programs running
on a Shared Virtual Memory system for the iPSC/2 and compared against the native
nonshared memory programs on the same machine. They found that the shared memory

programs tend to have difficulty with the granularity of sharing.

In this chapter, we examine the case of executing nonshared memory programs on
shared memory machines. Real world instances of this approach can readily be found.
Large scale nonshared memory machines (e.g., Intel Paragon, IBM SP2) are targeted
by data parallel languages such as HPF[Forum 93] and ZPL[Lin & Snyder 93]. At the
same time, as a testimony to the low cost and effectiveness of the class of small scale
bus-based shared-memory machines, many computer vendors presently offer symmetric
multiprocessors (SMP). It is logical then to add the proper software emulation on these
SMPs to execute the nonshared memory programs generated by HPF and ZPL. In fact,
ZPL programs can be run on both shared memory machines such as the KSR and
nonshared memory machines such as the Paragon. Similarly, the DEC HPF compiler

supports both a network of workstations and the DEC SMP server [Harris et al. 95].

One motivation for choosing the nonshared memory model is that this model offers
accurate performance prediction. Anderson and Snyder [Anderson & Snyder 91] ana-
lyzed several algorithms developed with the shared and nonshared memory models and
found that the shared memory model produces overly optimistic performance prediction
that leads to suboptimal algorithms. To achieve portability for the nonshared memory

model requires emulation that may affect the scalability and this tradeoff needs to be
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quantified. In this chapter, this question is formulated as a comparison of shared memory
and nonshared memory versions of two applications, LU Decomposition and Molecular

Dynamics simulation. The comparisons are made in two ways:

1. The data reference pattern of each application is used to construct a simple ana-

lytical model of the parallel execution to predict the behavior.

2. The performance of the programs is measured on five shared memory machines

with widely differing memory organizations.

In related work, Lin and Snyder [Lin & Snyder 90] have examined the performance
of shared and nonshared memory programs on several shared-memory machines. They
found that the nonshared memory program can outperform the shared memory version
in many cases. However, the study included only two simple programs, matrix multi-
plication and Jacobi iteration, and only two machines, the Sequent Symmetry and the
BBN Butterfly GP1000. Although the results were interesting, the data set was deemed
insufficient for making generalizations.

Leblanc [LeBlanc 86] also made a similar comparison using Gaussian Elimination on
the BBN Butterfly. He observed that the model should be chosen based on the nature
of the application, and that the shared model may encourage too much communication.
However, since the version of Gaussian Elimination used did not include the difficult
partial pivoting step, the computation is not very different from matrix multiplication.
In addition, the measurements were collected from only one older class of machine that
uses relatively slow processors.

The study in this chapter contributes to the results from previous work by including
many contemporary large scale shared memory machines and by considering an analytical
model for the benchmarks that corroborates the observed performance. The second point
is particularly significant because measured performance may include unknown system
effects that may bias the results. An analytical model that is validated by real data
will confirm that the hypothesized effect, i.e., the memory model, is indeed the primary

effect.
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Figure 2.1: Machine memory hierarchy

The remainder of the chapter is organized as follows. Section 2.2 defines the scope
of the problem and describes the methodology of the experiments, including the ma-
chines and the implementation. Sections 2.3 and 2.4 describe in detail each of the two

applications and the results. Conclusions are found in Section 2.5.

2.2 Methodology

To facilitate the discussion in this chapter, we use the subscripts s and ns: P, is a shared

memory program while P,,; is a nonshared memory program.

2.2.1 The Machines

The shared-memory machines used in the experiment are the Sequent Symmetry,
the BBN Butterfly, the Cedar at CSRD, Illinois, the Kendall Square Research KSR-1,
and the DASH at Stanford. They represent a wide range of memory hierarchies from

relatively uniform access (Sequent) to non-uniform access (Cedar, Butterfly, KSR-1, and
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Table 2.1: Characteristics of the shared memory machines
(Note: (1) access ratio is normalized to the access time of the memory closest to the processor, (2) * is
sum of all local memories )

Machine Sequent CSRD Cedar Butterfly Kendall Square DASH
Model Symmetry A Cedar TC2000 KSR-1 DASH
Site U. Washington U. Illinois LLNL U. Washington Stanford
nodes 20 32 128 32 48
Processors Intel 80286 MC 68020 MC 88100 custom MIPS R3000
I cache combined 16 Kb/node 32 Kb/node 256 Kb/node 64Kb/node
D cache 64 Kb/node 128 Kb/cluster | 16 Kb/node 256 Kb/node 64Kb/L1
256Kb/L2
128 Kb/cluster
local mem 0 32 Mb/cluster | 16 Mb/node 32 Mb/node 14 Mb/node
global mem 32 Mb 256 Mb 2 Gb* 1 Gb* 168 Mb*
network bus-based omega butterfly ring mesh
access ratio 1 1:4.5 1:3.7:12.7 1:10:75:285 1:4.5:8:26

DASH). The Sequent, KSR-1 and DASH employ hardware coherent caches while the
Cedar and the Butterfly do not. Figure 2.1 and Table 2.1 show the general organization
and some relevant characteristics of each machine. Note that the access ratio is the
access time of each memory level normalized to the access time of the level closest to the
processor. This parameter is intended to give an indication of the depth of the memory

hierarchy.

One important point worth noting is that although several machines are being stud-
ied, the focus of the comparisons is between two programs on each machine. Therefore,
while the speed of the processor relative to the memory performance plays a central role
in determining the performance of a program, it can be factored out in a comparison
between programs on the same machine. The same argument applies to the differences
in the memory performance between the machines due to the memory architecture, e.g.,

memory bandwidth, cache line size, etc.
Following is a brief description for each parallel machine used in this study.

The Sequent Symmetry is a small scale bus-based machine. Because of the low speed
of the processors, the bus is able to support 20 nodes. Cache coherency is maintained

by bus-snooping using a modified Illinois protocol|[Gifford 87]. Since the main memory
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resides on the bus, the access time is the same from any processor cache, and since there
is no control over the cache, each processor will only see a certain average access time.
Because of these characteristics, the Sequent bears the closest resemblance to the PRAM
model! when compared to the other machines. For this reason, the access ratio of the
Sequent in Table 2.1 is approximated as 1.

The Cedar has a cluster architecture: each bus-based cluster contains 8 processors
sharing a local memory and the clusters are connected to the global memories through a
switch. Therefore there are two levels of memory hierarchy. Note that the intra-cluster
communication can be done at the cluster memory level, but inter-cluster communication
must use the global memory.

In the Butterfly TC2000, each processor node contains a cache and a local memory.
Each node is connected to the local memories of all other nodes through a multistage
interconnection network (MIN); the global memory thus consists of the aggregate of all
local memories. There are three levels of memory hierarchy: the cache, the local memory,
and the remote memory. Although memory locations can be assigned a variety of cache
attributes, the most commonly used attributes are cacheable local and non-cacheable
global, which represent only two levels of memory hierarchy. Since there is no hard-
ware coherency mechanism, the machine provides various cache invalidation functions to
support software caching. Finally, to avoid hot spots in this memory organization, the
global address space is interleaved across all nodes.

The KSR-1 employs an AllCache architecture [Kendall Square Research 92]: instead
of a main memory, each node possesses a large cache that is kept coherent with all other
caches through a snoopy mechanism at the ring level and a directory-based scheme within
the ring hierarchy. In addition to the main cache, there are also instruction and data
subcaches on each node. The nodes are connected in a hierarchy of rings; therefore, there
are multiple levels of memory hierarchy, beginning with the subcache, to the local cache,

the caches within the same ring, the caches within the next ring level, and so on. Because

'Parallel Random Access Memory model: each processor can access any memory location in unit
time.
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the unit of communication on the ring is a 128 byte cache line, the granularity of shared
data is an important issue. While the architecture provides a combining mechanism by
servicing a cache miss at the lowest level of the ring hierarchy, the machine used in the
experiment only contains one ring; therefore this combining effect is not visible.

The Stanford DASH also uses a directory scheme for cache coherency [Lenoski et al.
93]; however, it is organized as a collection of bus-based clusters connected in a mesh
topology. Each cluster contains 4 processor nodes, a cluster memory and a cluster cache.
Each node in turn contains a level 1 and a level 2 cache, with coherency maintained
at the level 2 cache through bus snooping. Consequently, there are at least 5 levels of
memory hierarchy: level 1 cache, level 2 cache, cluster memory, remote cluster memory,
and remote dirty cluster memory. The cluster cache that resides in the interface between
a cluster and the other clusters combines requests to the same address. Since there is
a home node for each memory location, the system also provides functions for data

placement.

2.2.2 The applications and the implementations

In this study, we focus on the class of data parallel applications by using the LU decompo-
sition problem and the WATER benchmark from the Stanford SPLASH suite. Although
there are other important classes of parallel applications, the data parallel class covers
a large number of scientific problems and this class stands to benefit immediately and
significantly from parallelization.

Efficient algorithms exist for both problems in both shared and nonshared memory
models, and the algorithms employ static data partitioning and load balancing. The
following sections will analyze these algorithms in detail. Note that because our focus
is on the portability issue of parallel programs, we are not considering applications with
an irregular structure for which an efficient nonshared memory solution may not be
obvious. While an algorithm for such irregular applications may perform reasonably

well on a shared memory machine, the same algorithm is unlikely to perform well on
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a nonshared memory machine with emulated shared memory because of the significant
difference in the memory latency. In other words, with respect to portability, we consider

that portable solutions for such problems have not yet been developed.

In implementing the algorithms, all programs are written in the SPMD style. The
performance is measured only for the useful computation; the initialization costs are not

included.

In P,, data resides in the global memory and the standard lock and barrier mecha-
nisms are used for synchronization. In instances where an architecture provides a major
feature to support the shared memory, simple machine specific optimizations for data
placement are used, and they are described in the following sections. In general, however,

aggressive optimizations that are not portable are excluded.

In P,,, data is placed in the level of memory closest to the processor. On machines
with coherent caches, this effect is achieved automatically through the data reference
pattern: since a processor only accesses its data partition, data is allowed to migrate
to the highest level of the cache. Note that although data in P, also migrates to the
level closest to a processor, the data may be written by other processors and as a result
be forced out of this level. In general, data locality (in the processor dimension) is an

inherent advantage of P,;.

The sends and receives are emulated with straightforward block copy, and simple
one-reader/one-writer ports implement some connection topology (binary tree, mesh,
etc.). The buffers used for communication are placed in the global memory. Data
communication is more expensive in P,, than in P, because it must be emulated through
software, incurring costs in code to manage the buffers as well as additional loads and
stores to read and write the buffers. In contrast, P, communicates data simply by writing
to the shared address space. Although the software emulation can be further optimized

by passing pointers, such optimizations are excluded in this study.

Given the advantages and disadvantages described above, the performance tradeoff

for P,, will be between the communication overhead and better processor locality.
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An important issue in implementing the shared and nonshared memory versions is
the relative ease of the implementations. Given the current state of the art in parallel
languages, a shared memory program is generally easier to write than a nonshared mem-
ory program and this holds true in our implementations. However, since our focus is
portability, there are several points worth noting. First, it is easier to arrive at a working
shared memory program from scratch because the model allows the programmer to ig-
nore data placement. In many cases, the pattern of reference allows the data to migrate
naturally to the processors that use them, yielding good performance with little effort
by the user. However, it is generally recognized that the program must be optimized
for data locality to obtain scalable performance. This optimization step is difficult since
machine specific techniques are not portable and portable techniques will likely require
significant restructuring of the program or the algorithm. Second, the difficulty in writ-
ing a nonshared memory program reflects the lack of appropriate language support for
the nonshared memory model rather than a fundamental limit in the model. Current
developments in parallel languages for nonshared memory machines such as HPF and
ZPL may provide a solution to this problem. As a result, we believe the issue of ease
of programming should be excluded for the focus of this chapter. This issue will be

revisited in the following chapters.

2.3 LU Decomposition

The following two sections describe the two sets of experiments. The problem and the
algorithm are first described, followed by an analysis of the data locality in the P, and

P,, versions. Results and discussion follow.
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2.3.1 The problem

Typical of matrix problems, LU decomposition is a numerical method for solving large

systems of linear equations. Given the system of equations:
Az =b

where A is the coefficient matrix and b is the constant vector, A is decomposed into a

lower and upper triangular matrices L and U:
LUz =05
Letting Ux = y, we can solve directly for y by forward-elimination
Ly=15%
and then for x by backward-substitution.
Ur=y

The sequential algorithm consists of iterating over the diagonal of the matrix, each

iteration consisting of two steps: partial pivoting (line 2) and row update (lines 3:6).

LU,.,

(1)  for (k=0; k<row; k++)

(2) partial pivot

(3) for (i=k+1; i<row; i++)
(4) Ay, = Ain/Axr;

(5) for (j=k+1; j<col; j++)
(6) Ay = Ay - A ¥ A

The partial pivoting step is necessary for numerical stability in the division step due
to the limited precision in digital computers: it involves searching the pivot column k for

the largest element and then swapping that row with the pivot row k. With a complexity
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of O(n?) compared to the O(n®) of the row update step, this step only constitutes a
minor part of the computation; however, it introduces additional serialization into the

algorithm.

2.3.2 The parallel algorithms

Since LU decomposition is a well-studied problem, optimized parallel algorithms are
widely available in the literature [Ashcraft 91, Karp 87, Robert 90].

The computations in the row update step for each iteration are independent and can
be parallelized easily. The partial pivoting step is more difficult to parallelize effectively
because the parallelism available is small compared to the communication/synchronization
required for parallelization. Therefore, the optimized algorithm employs pipelining. Dur-
ing the current iteration, a processor performs the complete LU decomposition on a set
of t columns and saves the transformation, while the remaining processors update the
submatrix using the saved transformation from the previous iteration. The value of
t controls the granularity of the task partitioning and is chosen to best balance the

workload and the communication/synchronization overhead.
The pseudo-code for the optimized parallel LU decomposition algorithm is shown

below.

LU,
PO factors col[0:r]
for (k=r; k<row; k+=t)
switch transformation buffer
if (own_column(k))
updates col[k:k+t] using transformation (k-t)
factors col[k:k+t] saving transformation k
else

updates col[k+t:col-1] using transformation (k-t)

LU,
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(1) PO factors col[0:t]

(2) and broadcasts the transformation

(3) for (k=r; k<row; k+=t)

(4) if (own_column(k))

(5) updates col[k:k+t] using transformation (k-t)
(6) factors col[k:k+t] saving transformation k

(7) broadcasts the transformation k

(8) else

(9) updates col[k+t:col-1] using transformation (k-t)

LU, and LU,, thus implement the same algorithm. The differences are:

1. Any processors can update any portion of the matrix in LU,, while the matrix
is partitioned statically by columns in LU,,. Because the iteration traverses the
diagonal of the matrix, partitioning the columns by blocks will result in a poor load
balance in LU,,. Some processors will be idle once k has passed their sections.
To alleviate this problem, sets of r columns are assigned to the processor in an

interleaved fashion (cyclic).

2. LU, requires barrier synchronizations before and after switching the transformation
buffer in line 3. LU,, requires broadcasting the newly computed transformation

buffer to all processors in lines 2 and 7.

On the Cedar and the Butterfly where there exists a local memory but no coher-
ent cache, we improve the data locality of LU, by performing software caching in the
innermost loop. On Cedar where there is a cluster level memory, we also optimize the
communication in LU, by using the cluster memory for intra-cluster messages and the
global memory for inter-cluster messages. Other techniques for improving LU by using

primitives at the user level have been proposed by Qin[Qin & Baer 97].
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2.3.3 Volume of data references

Since LU decomposition is a static algorithm, the amount of scalar computation and the
volume of references to the matrix should be nearly identical for the sequential, shared

2, The total number of processor cycles to

memory, and nonshared-memory versions.
compute and perform this volume of references represents a lower bound on the execution
time of the program. Since the data placement is static in the memory hierarchy and
the ratio of access times to each level of memory is known, we can derive an indicator
of the relative performance of P, and P,,. We assume the synchronization cost is small
and the load balance is perfect. For the following analysis, we only assume a local and
global level of memory and that read and write have the same latency. The matrix is
also assumed to be square, i.e., n=column=row.

Referring to the LU,., algorithm above, in each outermost iteration k the partial

pivot step consists of scanning a column (1 read) and swapping two rows (2 reads + 2

writes) beginning from the diagonal element. The number of references is:
(3r 4+ 2w) * (n — k)

The row update step consists of dividing the column by the pivot element (2 reads + 1

write) and adjusting the rows (3 reads + 1 write). The number of references is:
(2r+1w)+ Br+1lw)x(n—k—-1))x(n—k—1)

Summing up over the diagonal iterations, we obtain the volume of references to the

matrix:

row—1

Z Br+2w)x(n—k)+(2r+1lw)+Br+1lw)x(n—k—-1))x(n—k—1)

k=0
Simplifying and substituting the summations with the equivalent polynomials, we

obtain the expression:

1 2
n*(r + gw) + 2 (r +w) +n(r+ gw)

?Discounting small variations due to variable reuse and the references of global parameters.
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In addition to accessing the matrix data, the transformation data in P,, needs to be
broadcast to the worker processors. This is done through a binary tree: the buffer is
sent to the root processor and is propagated down the tree. Each message requires a pair
of sends and receives; each send and receive operation in turn involves a local read and
a global write, or a global read and a local write, respectively. A message transmission
then requires ((2 global + 2 local) * size) references. The elapsed time for propagating
through the binary tree requires the equivalence of (logp 4 1) transmissions. The size
of the transformation buffer in each k iteration is (n-k)*t, where t is the parameter

controlling the task granularity. The total time for all tree broadcasts is then:

n—1

(logp+ 1) x (2global + 2local) x Z (n—Fk)xt

k=0,k=k+t

Substituting the summation and simplifying yields:

(logp+ 1) % (global 4 local) x n* (n + t)

We can compute an estimate of the relative performance of P, and P,, with the

assumptions:

1. The matrix references for P, will be to the global memory and for P, to the local

mermory.

2. The computation and thus the matrix references are perfectly distributed among

the processors.
3. P,, requires the additional tree broadcast operations.
4. The references are free of contention.

Table 2.2 summarizes the expressions for the reference counts and the floating point
operation counts (FLOPS) in part (a); part (b) shows the reference counts that represent
the elapsed time for the tree broadcast; and part (c) tabulates the reference counts to the

local and global memory based on the assumption that data is placed in global memory
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Table 2.2: Volume of data references for LU

Phases FLOPS read write
partial pivot 2(n* —n) $(n®* +n) n®+n
column update | £(4n® — 3n? —n) | 2(2n® —n® — n) 3(n® —n)
Total %(n3 - n) n®4+n?4+n %(n3 + 3n? 4+ 2n)

(a) Flops and reference count for LU computation phases: n = size of nxn matrix

Phases read write

Total | Zn(n+ r)(logp + 1)(loc 4 glob) | 2n(n + 7)(log p + 1)(loc + glol)

(b) Elapsed time for LU,, communication in terms of reference count:
n = size of nxn matrix, p = processor number in powers of 2

Program local read+write global read+write

LU, 0 %(4n3 + 6n2 + 5n)

LU,, s(4n®*+6n’+5n) | n(n+r)(logp+1)
+n(n+ 7)(logp+ 1)

(¢) LU, and LU, references to memory hierarchy

in LU, and in local memory in LU,,. From this information, we can derive a simple

model for the parallel execution of LU, and LU,;:

total_cycles = communication_cost + parallel _task
1
P
Figure 2.2 plots the speedup based on the number of cycles required by P, and P, for

parallel task = —(FLOPS x FLOPS cycle + global x global_cycle + local * local cycle)

ratios of memory hierarchy of 1:1, 1:2 and 1:4, with n=512, t=4, and FLOPS cycle=1.

Our simple model predicts that P,, easily outperforms P, when there is any gap
between the local and global memory. Naturally, many factors are ignored, such as the
load balancing, the synchronization, the network contention, the actual higher cost for
emulating the communication, etc. However, if the data locality controls the first order
effects and these factors are secondary, then the estimate can be qualitatively correct.

In the next subsection we will look at the results measured on the five machines.
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2.3.4 Performance results

Figures 2.3 through 2.8 show the performance and the speedup of the two versions of LU
decomposition on the five machines for three different problem sizes. The speedups are
based on the performance of a straightforward sequential version of LU decomposition.

Referring to the predicted speedup curves in Figure 2.2 and the local:global access
ratio for each machine in Table 2.1, we find that the results match the model prediction
well.

We first consider the results from the Sequent, the Cedar and the Butterfly since
the ratios of these machines are more precise. The ratio of 1:1 on the Sequent gives
LU, a slightly better performance than LU, for all problem sizes. On the Cedar where
the ratio is 1:4.5, LU, , offers the better performance. Although the Butterfly has three
levels of memory hierarchy, the program only uses two levels (the default cacheable local
and noncacheable global attributes); therefore the effective ratio is 1:12.7. This large

gap in access latency translates directly into a large gap in the performance between
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LU, and LU,,. The steep hierarchy on the Butterfly gives LU, an advantage that far
outweighs the nonshared memory simulation overhead. We note a number of program

optimizations on the Cedar and the Butterfly:

1. For LU, on Cedar and Butterfly, software caching is performed in the innermost
loop by copying a column into local memory for performing the column update; this
prevents repeated access of the same column from global memory while updating

using the saved transformation.

2. For LU,, on Cedar, intra-cluster communication uses the cluster memory, while

inter-cluster communication uses the global memory.

Since the Butterfly cache is controlled by software, more advanced caching techniques
may improve the performance of LU,, but it seems difficult to recapture the large per-
formance gap. It thus appears that a nonshared memory program matches well a large
scale shared memory machine with private per processor cache. Since the Sequent has
a coherent cache while the Butterfly does not, a natural question is whether the behav-
ior found on the Sequent would be observed on the Butterfly if a coherent cache were
implemented. A coherent cache improves the performance of both P, and P,,: it will
reduce the global data references in P, and effectively eliminate the spin-lock traffic in
P,. communication.

To search for an answer, we consider the results from the KSR-1 and the DASH, two
machines that employ large scale coherent caches. Given the very large ratios for these
machines, our simple model predicts that the shared-memory version would not yield
any speedup. On the other hand, if we extrapolate from the performance on the Sequent,
the coherent cache would be able to hide the memory hierarchy and to present a more
uniform access to memory, thus giving LU, a slight advantage over LU,,. The results
show that LU, achieves a reasonable speedup on both machines, but that it trails LU,
by a significant amount in both actual performance and speedup. Clearly, the actual

behavior lies in the middle ground between our two extreme predictions: by reducing
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the number of remote accesses, the coherent cache is very effective in reducing the gap in
the memory hierarchy, but not to the degree where data locality is rendered unnecessary.
The difference in fetching from local and remote memory by the cache is visible in the
program performance.

With respect to scaling with problem size, the relative difference in performance
between LU, and LU, is maintained in every case, and the speedup improves as the
problem size increases. Not surprisingly, this behavior reflects the dominant computation
cost relative to the cost of communication or memory references, O(n®) versus O(n?) for
LU.

With respect to scaling with the number of processors, we observe that while the
speedup and performance appear reasonable for up to 32 processors on Cedar, KSR-1
and DASH, neither LU, nor LU,, achieves any speedup beyond 32 processors on the
Butterfly when the number of processors approaches 100. A partial explanation for the
poor scaling in LU,, can be found in our simple implementation of the communication:
(1) all messages are point to point, and (2) a processor spin-locks on a global variable
while waiting for an empty write port or a full read port. Each of these factors consti-
tutes a component in the overall communication cost that increases with the number of

processors.

2.4 Molecular Dynamics Simulation

2.4.1 The problem

The WATER benchmark from the Stanford SPLASH suite is a simulation of several
hundred water molecules in a cubical box in the liquid state at room temperature [Singh
et al. 92]. The program is representative of the n-body problem, in which each body
interacts in certain ways with all other bodies in the system. In this case, the simulation
computes the forces and potentials among the water molecules to predict various static

and dynamic properties of water. To compute all pair wise interactions, a processor
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in any partitioning scheme will have to access the data in all sections, giving an initial
appearance of poor data locality in the problem. However, the version in this study
achieves a good speedup thanks to a favorable ratio of computation to communication,

as will be described in the following subsections.

2.4.2 The algorithm

The program was manually parallelized from a sequential version, the MDG benchmark
in the Perfect Club suite. After initializing the displacements and velocities, the algo-
rithm consists of iterating over a large number of time steps until the system converges
to a steady state. Each time step consists of seven computation phases separated by

barrier synchronizations:

1. Predict new values for displacement and the derivatives.

2. Compute the intramolecular forces between the atoms of each molecule.
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3. Compute the intermolecular forces between the atoms of each pair of molecules.
4. Correct the predicted values for forces.

5. Handle the boundary conditions by moving the molecules back into the box if they

are out of the box.
6. Compute the kinetic energy in each of the three spatial dimensions.

7. Compute the potential energy as the sum of the intermolecular and intramolecular

potentials.

The computation complexity is O(n?), but the actual number of pair wise interactions
to be computed is reduced by defining a cutoff radius of half the box dimension.

The WATER, version was ported to the various machines strictly by substituting
the parallel macros for lock and barrier synchronization.

WATER,, is derived from WATER, by replacing the shared data structures with

distributed structures and performing a global update at each point where (1) each
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partition has to access all other partitions to compute the pair wise interactions, or
(2) a global sum has to be computed and broadcasted to all partitions. Communicating
through a ring topology, each process computes the interactions within its partition, then
sends a copy on a complete trip around the ring; as a partition is received, the process
updates both its partition and the traveling partition. When the modified partition
returns to its source, it is merged into the original partition. Computing the global sum
is done similarly by sending the partial sum around the complete ring.

In both versions, the processor workload is statically assigned and load balancing is
not considered a problem due to the uniform distribution of the input data. WATER,
and WATER,,, thus perform the identical computation; the only differences are in the
placement of the data and the resulting communication.

The algorithm has a computation complexity of O(n?) and a communication com-

plexity of O(n), which will be described in more detail in the next subsection.

2.4.3 Volume of data references

As with the LU experiment, we create a simple model of the parallel execution of WATER
based on the FLOPS and data reference counts.

The computation phases are listed in order in Table 2.3 part (a) together with the
count of floating point ops, reads and writes for each time step; the counts are obtained
manually from the program. To account for the cutoff range of half the box length, the
molecule distribution is assumed to be uniform and those counts that are dependent
on the range are divided in half. Part (b) shows the elapsed time of the ring commu-
nication in WATER,, in terms of reference counts; note that only 4 phases actually
require communication. In part (c), the reference counts to local and global memory are
tabulated based on the assumption that data is placed in global memory for WATER,
and in local memory for WATFER,,,. The counts include those references for emulating

the communication in WATER,,,.

As with the LU experiment, a simple model can be derived as:
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Table 2.3: Volume of data references for WATER

Phases FLOPS read write
predict val 432n 243n 54n
intra force 42n+223 24n 3n+3
inter force 163n2 4+ 9n 46n% + 9n 4n? 4+ 9n
correct val 135n 81n 63n
boundary 9n 9n 9n
kinetic 24n+3 18n + 3 3
potential 122n% +128n+3 | 42n? +33n+3 3n+3
Total 285m% + 779n 4 229 | 8802 +417Tn 46 | 4n? + 141n+ 9

(a) WATER computation phases: n = number of molecules

Phases

read

write

intra force
inter force

3 (loc+glob)
(84n+3) (loc+glob)

3 (loc+glob)
(84n+3) (loc+glob)

kinetic 3 (loc+glob) 3 (loc+glob)
potential (84n+3) (loc+glob) (84n+3) (loc+glob)
Total (168n+12) (loc+glob) | (168n+12) (loctglob)

(b) Elapsed time for WAT ER,,, ring communication:
n = number of molecules; loc, glob = local, global access

Program local read+write | global read+write
WATFER, 0 9212 + 558n + 15
WATER,, | 92n% + 894n + 39 336n+24

(c) WATER, and WATER,, reference to memory hierarchy
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total_cycle = communication_cost + parallel task

parallel task = l(FLOPS x FLOPS cycle + global x global_cycle + local * local cycle)
P

Figure 2.9 shows the speedup for WATER, and WATER,, based on the number of
cycles required; several ratios of local to global are shown, while the cycle per FLOPS
is set to 1. The model predicts that for a local:global ratio of 1:1, WATER, has the
better speedup, but as the ratio increases, WATER,’s speedup degrades quickly and
falls below WATER,,,. Note also that in general the speedups for both versions are
better than those for LU. The reason is evident in the large FLOPS count relative to

the reference count, indicating a more abundant amount of parallelism.
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2.4.4 Performance results

Figures 2.10 through 2.15 show the performance of the two versions of WATER on
the five machines for three different problem sizes. The speedup is based on the better
uniprocessor performances of the two versions.

As evident in Table 2.3, WATER differs from LU in that the computation dominates
the memory accesses and the memory reads dominate the memory writes, although all
have the same asymptotic complexity.

On the Sequent where the local:global ratio is 1:1, WATFER, has a near linear
speedup while WATER,, is only slightly behind. On Cedar, both versions give vir-
tually the same performance and speedup, although the model predicts that WATER,,,
would be faster. It is possible that there are some other factors involved that are not
included in the model.

On the Butterfly, neither version achieves a speedup beyond 20. Indeed, WATFER,,,’s
performance degrades below W AT E R, when the number of processors approaches 100.
This behavior is consistent with our model although a graph for this configuration was not
shown. As the number of processors increases, the parallel computation decreases while
the communication remains constant. Therefore, the communication cost in WATER,,,
will eventually dominate the benefit of the local memory.

On the KSR-1, the performance and speedup of both versions are high and nearly
identical. On the DASH, the results of WATER actually differ from that of LU. Although
both shared and nonshared-memory versions have the same performance for small num-
ber of processors, WAT ER,,, has the worst performance when the number of processors
is large.

Model prediction for the DASH and KSR-1 is uncertain because of the combination
of the cache and the steep memory hierarchy behind the cache. The effectiveness of the
cache depends on the characteristics of the application and the overhead for maintaining
consistency. In this case, the high ratio of read to write access implies that the degree

of data sharing is relatively small and that the cache hit rate is high. This would
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decrease the significance of the memory hierarchy, allowing the cache to present a more
effective model of uniform shared-memory. In other words, given the memory access
characteristics of the WATER program, the DASH achieves an effective local:global

ratio of 1:1 while the KSR-1 gives a ratio that is only slightly worse.

2.5 Conclusion

In this chapter we consider the tradeoff between portability and scalability. The situation
arises because two memory models exist at the machine level. Portability limits the choice
to one model; therefore on machines that do not directly support this model, it must be
emulated by some runtime software. Since scalability may be degraded by the emulation,
it is necessary to quantify this cost. Examples for this emulation exist for both choices of
model, but we are particularly interested in the nonshared memory model since it more
accurately reflects the physical characteristics of a large class of parallel machines.

The question is formulated as a comparison of the shared and nonshared memory

implementations of two applications on five widely differing shared memory machines.

P
P, -’

The performance difference is expressed as a simple factor Figure 2.16 shows a
scatter plot of this factor for each application. Note that the nonshared memory program
has the better performance for the points below 1. The solid line is a least mean square
curve fit of the data points.

The results show a marked trend that supports our hypothesis. For shared memory
machines with a non-uniform memory access time, programs written using the nonshared
memory model benefit from being able to better exploit the local memory. As a result,
a nonshared memory program tends to be more scalable than a shared memory program
on shared memory machines despite the emulation cost. The advantage of the nonshared
program is proportional to the effective gap between the global and local memory that
results from the combined characteristics of the program and the machine architecture.

In this study, LU proves to be more demanding in its data reference pattern (lower

read /write ratio); therefore its performance accentuates the effects of the machine archi-
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tecture. We found that the effective gap is significant when the ratio between the global
and local memory latency is large, e.g., the Butterfly, but it is otherwise small if the
ratio is small or nonexistent, e.g., the Sequent. Although the KSR and DASH have a
deep memory hierarchy with large differences in latency between the memory levels, the
hardware coherent cache plays a significant role in reducing the number of long latency
accesses and thus the effective gap in the memory hierarchy. The benefit of the coher-
ent cache is clear in WATER, which has a data reference pattern favorable for caching
(higher read/write ratio). However, when we compare LU and WATER, it is evident
that the effectiveness of the coherent cache is contingent on the characteristics of the
application. Cast in the modeling framework described in Chapter 1, WATER’s behavior

fits the model that the cache is designed for, while LU’s behavior is less cooperative.

Chapter 1 identified three requirements: portability, scalability, and ease of use. In
this chapter, we have largely ignored the last component. The shared memory model is

generally considered convenient to the users while the nonshared model is not. On the
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other hand, the experimental and analytical results suggest that the nonshared mem-
ory model is more portable and scalable. At this point, one can envision two possible

approaches to meet all three requirements.

1. Choose the shared memory model and develop hardware or compiler optimization

techniques to achieve consistent scalability in the user program[Qin & Baer 97].

2. Choose the nonshared memory model and develop new language abstractions that
are convenient to program. In addition, the compiler must be able to compile these

abstractions efficiently so that the advantage of an accurate model is not affected.

The next chapter will examine the latter approach.
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Chapter 3

Two Data Parallel Languages,
HPF and ZPL

3.1 Introduction

Chapter 2 has shown evidence that a programming language based on the nonshared
memory programming model achieves scalability and portability. A language realizes an
instance of a programming model by providing a number of abstractions; therefore, the
remaining task for the language designer is to achieve ease of use in the design of the
language abstraction. A number of current languages and language extensions implement
the nonshared memory programming model and in this chapter we will consider two such
languages, HPF and ZPL. Although HPF and ZPL share many similarities, their selection
in this study is based primarily on their differences. They represent two classes of parallel
languages built from fundamentally different philosophies: HPF is an extension to a
sequential language while ZPL is designed from first principles.

It is helpful to begin by recognizing that HPF and ZPL are both universal in the
sense that any computation can be expressed in either language; therefore the issue is
not whether a certain computation can be expressed in a language but whether it can

be done conveniently. In this respect, a language may be described as being ezpressive,
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which generally means that given an algorithm, a programmer can quickly arrive at
several possible implementations that are conceptually efficient and that require only a

reasonable coding effort from the programmer.

Expressiveness can be achieved in several ways. Designing a language abstraction as a
first class object contributes to expressiveness since the abstraction can then be combined
and used in many flexible combinations. Abstractions that naturally capture frequently
used operations also help to make the language more expressive. Unfortunately, quan-
tifying the expressiveness of a language is problematic because it is a subjective quality
that depends on the programmer’s style and experience. A programmer who is well
versed in a particular language and who is partial to the language is likely to find the
language expressive. Some metrics can help to measure expressiveness, for instance the
number of lines of code to implement an algorithm, the programmer’s productivity, the

number of bugs, etc.

In this thesis, we take the modeling viewpoint to adopt the following argument: the
convenience factor in a language is only meaningful if the language abstractions can be
implemented efficiently and consistently. In other words, this issue must be considered
in conjunction with, not in isolation from, the scalability and portability issues (recall
Figure 1.1). From this argument, the ease of use can be evaluated by characterizing
the performance of the basic abstractions of the language. Clearly, consistent high
performance is the ideal case. Even in the case of low performance, if the abstractions
are identifiable and behave consistently, a user can attempt to learn the behavior and
supplement the programming model. However, if the performance is unpredictable, then

one must conclude that the language is not easy to use.

This chapter begins with a general review of HPF and ZPL in Sections 3.2 and 3.3.
The reader who is unfamiliar with either language is referred to the appropriate language
reference and user guide for further detail [Snyder 94, Forum 93]. A discussion follows
in Section 3.4 and 3.5 that compares in detail the language features that HPF and ZPL

provide for parallel programming. Since we are primarily interested in the parallel case,



55

we will assume that the non-parallel aspects are equally adequate in both languages.
Table 3.1 summarizes the main points to guide the discussion, namely how parallelism

is expressed (computation and array reference) and distributed (data and computation).

Table 3.1: High level comparison of HPF and ZPL

Expressing ZPL HPF
Parallel computation region do loop + directives
array operation forall, where
F90 array

F90 intrinsic

Sequential computation | for do loop

Local array index index

Nonlocal array direction, at index

Distributing ZPL HPF

Data block (block,cyclic,blockeyclic)

subroutine boundary | no communication | redistribute

Computation owner-computes implementation dependent

Figure 1.3(b) depicts portability as multiple compiler implementations for a language.
Then to evaluate the portability of the language requires multiple compilers on multiple
machines since the goal is to establish whether consistent performance can be achieved
on different platforms. HPF satisfies this requirement since multiple compilers exist on
several machines. For ZPL, the existence of only one compiler implementation appears
to limit an evaluation on portability, even though the compiler supports many platforms.
However, portability is strongly coupled with scalability and ease of use. In this respect,
ZPL is based on a clear performance model that requires any compiler implementation

to adhere to (Chapter 4); therefore, portability is an inherent quality of ZPL.
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3.2 A review of HPF

In the last decade, trends in VLSI technology have been driving parallel machines toward
physically distributed memory with nonuniform access time. As a result, data locality
becomes critical to high performance in this class of machines. In optimizing for locality,
automatic data partitioning proved to be a very difficult problem. As a result, a number
of computer vendors and university projects began introducing various forms of user-
specified directives to aid the compilers in partitioning the data. For instance, MASPAR
Fortran provides CMPF MAP[Joi 95]; CM Fortran uses CMF$ LAYOUT; Cray’s CRAFT
Fortran uses CDIR$ [Thi 94]. Others include Fortran D[Hiranandani et al. 94], and
Vienna Fortran[Benkner et al. 92].

Recognizing this trend, the High Performance Fortran Forum was formed to develop
a standard that was finalized in 1994 as the High Performance Fortran Language specifi-
cation [Forum 93]. HPF quickly became a far reaching effort involving a wide consortium
of companies and universities[Forum 93]. In this respect, one major contribution of HPF
is that it is the first recognized standard in parallel language. HPF’s strategy is to ex-
tend from the Fortran 77 and Fortran 90 base with directives and several new language
constructs. The directives specify the data distribution as well as other aspects of the
base Fortran language that are affected by parallelization. To maintain compatibility
with the standard Fortran, the directives are specified as comments.

The attraction of HPF is manifold. First, using Fortran as the base language promises
quick user acceptance since the language is well established in the targeted community.
Second, the use of directives to parallelize the program implies ease of programming since
conceptually the directives can be added incrementally without affecting the correctness
of the program. In fact, it is conceivable that a compiler can parallelize the program
without any help from the user although this appears to contradict the need for the
directives in the first place. On the other hand, there are potential disadvantages. First, a
parallel language that is an extension of a sequential language will likely inherit language

features that are either incompatible with parallelization or difficult for a compiler to
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analyze[Snyder 86]. Second, the optional nature of the directives, while convenient, may
present an unpredictable programming model to the users since it may not be clear to
what degree the program needs to be annotated with the directives. A program that
scales well with a particular HPF compiler may not scale with a different compiler. Thus
the latter may present a challenge to the users while the former presents a challenge as
well as an opportunity for the compiler developers. Yet, the opportunity to develop new
optimization techniques is attractive to both academic researchers who can find direct
application of their work and to software vendors who can differentiate their products

by their optimization capability.

An HPF programmer would proceed normally with the Fortran programming, then
insert the directives as hints for the compiler to parallelize the program. Parallelism in
an HPF program comes from the DO loop, the Fortran 90 array operations, and the

WHERE and Forall constructs.

The directives for data distribution support a two-phase process in which an array
is aligned relative to a template or another array that has already been distributed,
then the template is distributed over a processor grid. An array distribution can be
changed at any point by REDISTRIBUTE and REALIGN. The data distribution can
also change implicitly across subroutine boundary since the caller and the callee may
specify different distributions for the array. In this case, the transcriptive, descriptive,
prescriptive directives provide a number of options for redistributing the subroutine

arguments.

Some directives provide hints for the data dependence analysis. For instance, PURE
asserts that the subroutine has no side effects so that its presence in a loop does not
inhibit the loop parallelism, and INDEPENDENT asserts that the loop has no loop
carried dependence, allowing the compiler to parallelize the loop without any further
analysis. Other directives resolve conflicts between the original Fortran sequential se-
mantics and parallelization; for instance SEQUENCFE dictates that the array has to be

stored in contiguous memory locations according to the standard Fortran model.
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The HPF language committee recognized that compilers supporting the full language
specification may require a significant development time; therefore a subset of the lan-
guage was defined to facilitate earlier compiler implementation.

Current HPF compiler vendors include APR (Applied Parallel Research), PGI (Port-
land Group Inc.), IBM, and DEC, and the supported platforms include the IBM SP2,
Cray T3D, Intel Paragon, DEC SMP AlphaServer, and SGI PowerChallenge. The ven-
dors, however, do not support the same set of HPF features. The PGI and DEC compiler
support the full HPF specifications with some exceptions; the APR compiler supports
the HPF subset; the IBM compiler supports the subset and several extensions from
the full specification. All compilers employ extensive optimizations for communication
and parallelization, although a vendor may choose to focus the optimization on certain
aspects of HPF. HPF prototypes have also been built in numerous university projects.

The HPF Forum is currently working on the HPF 2.0 specification to correct some
shortcomings of HPF 1.1, to standardize some common practices among the HPF com-
pilers, and to broaden the applicability of HPF [Forum 96]. Some notable features

include:

e Data distribution: shadow region allocates a region surrounding the local partition
that overlaps the adjacent partition; gen_block allows irregular block distribution;

indirect allows per-element mapping of array elements to processors.

e Computation distribution: on home specifies the owner-computes rule; reduction

asserts that a loop is a reduction.

3.3 A review of ZPL

Recognizing the limitation of the PRAM as a model for writing parallel programs, Sny-
der proposed the Candidate Type Architecture (CTA) [Snyder 86]. The CTA model
attempts to capture the essential qualities of parallel machines at a level that is neither

too low so that it is limited to a small class of machines nor too high so that important
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characteristics are lost. The proposed CTA simply consists of a number of processors
connected by a sparse network and controlled by a controller; therefore it matches most

if not all current parallel architectures.

To program a CTA machine, the concept of Phase Abstractions and the associated
language XYZ were developed [Alverson et al. 93]. The language encapsulates the data
distribution in Data Ensembles and the communication in Port Ensembles. The three
levels X, Y and Z make up a structured and hierarchical approach to programming: level
7Z is concerned with solving the problem with algorithms, level Y configures the data and
port ensembles to support each algorithm, and level X contains the local computation to
implement the algorithm. To make the implementation feasible within the resources of
academia, the array language ZPL was proposed in 1993 as a subset of the language XYZ
[Lin & Snyder 93], and after several years of development and refinement, a compiler

was completed in 1995 [Lin 94, Chamberlain et al. 95].

The distinction of ZPL is that the language is designed from first principles: the
freedom from inheriting a sequential language allows new concepts and language con-
structs to be invented to create a concrete delineation between parallel and sequential
execution. Consequently, the programming model presented to the user is clear and the
compiler does not have to manage complex interactions between language features or
artificial dependencies. One may expect that it is both easier to develop a ZPL compiler
and to write a ZPL program that scales well. In return, the tradeoff in designing a new

language without any legacy is the challenge of gaining user acceptance.

ZPL introduces several important new abstractions for expressing parallelism, the
most fundamental of which is a concept called region. A region is simply a rectilinear
set of indices. A region is used both to declare the shape of a parallel array as well as to
specify the index set for a block of statements to operate over (the parallel array is also
called an ensemble). As an example, consider the following example in which an 8 x 8
region is declared. Then R is used both to declare an ensemble A and to initialize A to

1:
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region R =[1..8,1..8];
var A: [R] integer;
[R] A:=1,

Each program statement must fall within the scope of a region. The use of a region
thus disallows random indexing of the parallel array. This is an important departure from
sequential languages since the lack of indexing is a powerful reminder to the programmer
that no order exists during the parallel execution. Without indexing, references to other
elements in the parallel array are made through direction’s, which are literally directional
vectors, and the @ operator. Additional operators such as “of” and “in” allow a direction
to be combined with a region to define a new region relative the current region. The
index range of a region can be a constant (static) or a variable (dynamic); the index set
can be continuous or can have a stride factor.

Conceptually, parallelism is achieved by overlaying the ensembles over a processor
grid, the rank and size of which are set at runtime through command line options *. If
regions of different sizes exist in the program, a bounding box is computed for all regions
and the box is then overlaid over the processor grid.

In addition to the parallel array, ZPL also supports indezed arrays which are refer-
enced through explicit indexing. Because a sequential array is replicated, an operation
on a sequential array is repeated on all processors, yielding no parallelism. A parallel
array on the other hand is distributed; therefore an operation on the array is executed
in parallel with each processor performing the operation on the array section it owns
(owner-computes).

Being an array language, ZPL operates on the array as one entity. Scalars are pro-
moted as needed to conform to the target array. Scalar procedures and functions are
similarly promoted to operate on single array elements but return a full array. Many
array operations are supported directly in the language, including parallel prefiz, reduc-

tion, flood. Since these intrinsic functions operate on the entire parallel array, they are

'The current implementation supports a 1-D or 2-D processor grid.
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optimized to be highly parallel and efficient.

The remainder of the language is largely conventional. ZPL supports the standard
data types (integer, real, double,...), arithmetic and logical operators, and control con-
struct (if, for, while,...). “config var™s are program constant but can be set at runtime.

A compiler has been implemented at the University of Washington and currently
supports the Intel Paragon, Cray T3D, IBM SP2, KSR2 and network of DEC Alpha
workstations. The compiler implements advanced optimizations such as loop fusion,
array contraction, redundant message elimination. The runtime system supports MPI,
PVM, and shared memory, employing a novel method called Ironman to exploit the best

advantages of the particular communication interface.

3.4 Expressing parallelism

3.4.1 Parallel computation

Parallelism in HPF can be derived from the existing constructs in F77 and F90 as well
as new language constructs and directives. Users accustomed to F77 can continue to use
the conventional DO loop with the expectation that parallelism will be extracted by the
compiler. This offers several advantages: (1) the language is directly usable since the
user does not need to learn any new language features, and (2) existing F77 programs
can be parallelized with little or no change. Parallelizing general DO loops however is
difficult because the loop semantics may enforce considerably more dependency than the
computation requires?. Research in parallelizing compilers dates back to the late 80’s,
yet has yielded only limited success[Eigenmann et al. 91, Kuck et al. 93]; therefore this
raises questions about the feasibility of the approach.

Programs written in F90 can express parallelism through (1) the array semantics, (2)

the WHERE construct, and (3) the intrinsic functions. Consider the array statement:

A(1:100) = B(200 : 400 : 2) + A(50 : 150)

2 . . . . .
To guarantee the correctness of a computation, an implementation can impose a stricter but never
a weaker ordering.
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The semantics call for the RHS to be computed completely before the result is assigned
to the LHS. The implication is that there is no dependence between the assignment in
the LHS and any references in the RHS. The WHERE construct essentially extends the
array semantics to include a conditional statement: each element of an array is tested
independently and some statements are executed depending on the TRUE or FALSE
value of the test. Conceptually, because the array semantics call for the computation of
each array element to be performed independently, the parallelism is clear. The intrinsic
functions are functions that operate on an array such as SUM(), SPREAD(). While they
are not necessarily parallel in concept, the implementations by the compilers or in the

libaries can be parallelized and optimized.

The Forall construct is a new feature provided by HPF which has a semantics analo-
gous to arrays, but allows much more flexible indexing of the array. However, the Forall
has restrictions and must be used with care since the flexible indexing may be in conflict
with the array semantics and yield undefined results. For instance the syntax allows

several values to be assigned to the same array element, but the result will be undefined.

Finally, the SINDEPENDENT directive asserts that the iterations in the immediately
following DO or Forall loop can be performed independently, freeing the compiler from

any further dependence analysis.

The many ways to express parallelism help make HPF highly expressive in the sense
that given a problem, a programmer can quickly implement a solution in one or several
possible ways. This expressiveness arises from HPF’s compatibility with F77 and F90,
as well as new language features. However, implementing each of these features requires
a significant effort. This wide range of choices may force a compiler, out of practical con-
siderations, to focus on a particular expression of parallelism. The compromise will in
turn lead to nonportable differences between platforms. For instance, the APR compiler
targets the market of existing F77 codes by investing its effort in analysis and optimiza-
tions for DO loops and performance tuning tools to help the user in restructuring the

program. The PGI compiler on the other hand targets new codes written in F90[Bozkus
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et al. 95|, therefore its ability to analyze DO loops is quite limited.

One method to manage the different HPF constructs is to convert them to a com-
mon form, but this can lead to a suboptimal solution. For instance, a compiler may
scalarize the array statements in an F90 program and convert it to the same internal
representation as an F77 program so that the same analysis applies; however, doing so
may introduce artificial dependencies that render the analysis more difficult. Another
example is idiom recognition[Gupta et al. 95|, where the compiler scans the internal
representation to detect patterns of DO loops that implement common global array op-
erations (e.g., summation, reduction). Once detected, they can be substituted with the

standard intrinsic functions.

Compared to HPF, ZPL achieves parallelism by employing the region concept singu-
larly and pervasively throughout the language. A region is by definition an unordered
index set. A region is used to define the scope for both data and computation; there-
fore computation over a region proceeds in an unordered manner. In addition, built-in
operators such as parallel prefix and reduction operate over a region and have a parallel
implementation although they may be conceptually sequential. The region and the ar-
ray operators in ZPL are somewhat analogous to the F90 array statements, the Forall
construct and the intrinsic functions in HPF, except ZPL’s region is applied uniformly

throughout the language.

The single mode for expressing parallelism in ZPL does require a user to reason in
a new paradigm that is different from the conventional sequential programming. In this
paradigm, the user thinks in terms of “do this to all elements at once”; in fact with this
array perception, ZPL programming has been likened to programming in Matlab®. It
may appear that having a single mode for expressing parallelism limits the expressiveness
of the language. However, the popularity of Matlab has demonstrated that programming
by array is a convenient and expressive tool. It follows that a Matlab user would find

ZPL an expressive language, or conversely, once a user has become familiar with array

3Matlab however does not offer the notion of distributed computing
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programming, implementing a solution in ZPL would be quick and convenient.

Finally, it has been mentioned that unlike HPF, the availability of only one ZPL
compiler may limit an evaluation of the portability of ZPL. In this respect, the single
mode for expressing parallelism helps minimize any possible differences between multiple
implementations of ZPL. This does not mean that all ZPL compilers will offer similar
performance, rather it ensures that a ZPL program that is parallelized by one compiler

will be parallelized by any compiler.

3.4.2 Array reference

The message passing programming model is inconvenient for at least two reasons: (1)
nonlocal data requires communication to be brought to the processor that performs the
computation, and (2) the local section of the distributed array requires local indices,
which in turn requires frequent conversions from the global indices. Data parallel lan-
guages solve these two problems by allowing the user to program with a global view, in
which the distributed array is accessed using global indices and the communication is
hidden or encapsulated in some abstractions. In this approach, the task for the compiler
is to compute the local indices and generate the necessary communication.

Note that a global view is not synonymous with shared memory: we define the latter
to be a subset of the former. Global view refers to the ability to manage a distributed
array in the same manner as an array on a uniprocessor. Shared memory allows random
access to array elements with no distinction whether they are local or nonlocal. Thus
shared memory implements a global view, but a global view can be implemented by
other abstractions beside shared memory. This distinction is important because the
communication is a major component of the overall performance.

Both HPF and ZPL offer to the user a global view of the data and both generate the
necessary communication to fetch the nonlocal data to maintain this global view. HPF
and ZPL differ however in whether the communication is visible to the programmer.

ZPL has the following unique characteristics. Consider the two ZPL assignment
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Figure 3.1: Reference to a distributed array in ZPL.
Note: (a) only local data is used in the assignment, and (b) nonlocal data requires

communication.

statements in Figure 3.1. By the language semantics, the first statement is guaranteed
to involve no communication since all data are local. The second statement requires
communication (unless the region is not distributed) because the @ operator accesses
data that may not be local.

ZPL semantics dictate this behavior by (1) requiring that all interacting regions be
aligned by their indices, e.g., A[1,3] must be aligned with B[1,3], and by (2) replacing
absolute indexing with relative indexing, i.e., the @ operator. The first restriction insures
that all elements with the same indices will reside on the same processor so that an

element wise operation will only involve local data. Communication occurs when the
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source and destination indices differ, and the second restriction forces the user to use
the special operator when the indices differ. The @ operator thus becomes a visual cue
that aids the user in programming an algorithm.

HPF on the other hand provides no visual cue in the language for the occurrence of
communication. If the compiler is known to implement the owner-computes rule, it is
possible to carefully align the data layout so that the required communication is more
visible. However, this requires a conscious effort by the programmer and in the general
case, the manual bookkeeping can be quite difficult. For compilers such as APR that
can choose to distribute data and computation independently, it is virtually impossible
to deduce the communication pattern from the source program.

In a parallel machine, the communication is a major component of the program per-
formance. Given an algorithm, if the compiler can guarantee the optimal communication
for this algorithm regardless of how the algorithm is expressed in the source program,
then it is an advantage to abstract away the communication from the language and re-
duce the need to make the communication visible to the programmer. However if such
a case is not likely, then the user can only optimize the program if the communication is
visible. This criterion is part of the performance model which will be explored in more

detail in Chapter 4.

3.5 Distributing parallelism

3.5.1 Distributing the data

Data distribution involves the mapping of a section of an array onto a processor in a
processor grid. The existence of some distribution methods in a language is clear evidence
of the nonshared programming model.

Type of distribution

HPF allows extensive flexibility in distributing the array through the DISTRIBUTE,
ALIGN and TEMPLATE directives. The mapping is a two-phase process. First, ALIGN



67

aligns an array relative to another array or a template using an affine function that maps
each index from any dimension of the source array to an index in any dimension of the
target array. A TEMPLATFis a dummy index set that is used solely for computing the
distribution. Second, DISTRIBUTE specifies how the template is to be distributed over
the processor grid. Alternatively, an array can be distributed onto the processor grid
directly without the alignment step.

If there are more array dimensions than processor grid dimensions, the remaining
array dimensions will be collapsed; if there are fewer array dimensions than processor
grid dimensions, the array can be either replicated over the remaining processor grid
dimensions or anchored to a specific processor grid dimension. The binding for the data
distribution thus occurs at the source level, although at the runtime it is possible to query
for the number of processors and make some limited adjustment to the configuration.
As an example, Figure 3.2 shows array A(20,20) being distributed by block onto a 2x2
processor grid, and array B(4,4) being aligned relative to array A. Note that B(4,4) maps
to a transposed grid because of the swapped index, but within each processor the array
section is stored in its normal column major order.

Three types of data distribution are available in HPF': block, cyclic and block cyclic.
Block distribution is the most commonly used and the most straightforward to imple-
ment. Cyclic distribution is not difficult but can result in significant overhead due to
complex index expressions generated by the compiler, particularly when cyclic is mixed
with other modes of distribution. Block cyclic distribution is more difficult to analyze
and can lead to high overhead as well. This fact is evident in the level of support from
the current compilers: the APR and IBM compilers do not support block cyclic.

ZPL’s data distribution is more restrictive: only block distribution is supported.
Conceptually, all arrays are aligned to one single global index space which is then mapped
onto the processor grid. In practice, this global index space is computed as the bounding

box for all regions in the program that interact*. Distribution is done by pairing the

*Two regions interact if there exists an assignment statement in which one region is on the RHS and
the other region is on the LHS
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integer A(20,20), B(4,4)
'HPF$ PROCESSOR P(2,2)
'HPF$ DISTRIBUTE A(BLOCK ,BLOCK) ONTO P
IHPF$ ALIGN B(j,i) WITH A(2*i+3, 5+j+23)

(a) HPF program segment
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(c) physical mapping

Figure 3.2: Example of HPF data layout.
Note: (1) A(20,20) is distributed by block and B(4,4) is aligned to A; (2) the index is
transposed in the mapping function but the array is stored in the normal column major

order.
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array and processor grid dimensions starting from the rightmost dimension. Given an
array rank Ar and a processor rank Pr, if Ar > Pr, the remaining array dimensions are
collapsed; if Ar < Pr, the array is distributed over Ar dimensions on the processor grid
and is anchored on the first order of the remaining processor dimensions. The current

compiler implementation supports a 2-dimensional processor grid.

An array can be aligned with another by selecting the proper index range and stride
of its region. For instance, Figure 3.3 shows array B[9..15,5..11] with a stride of 2 being
overlaid over array A[1..20,1..20]. It is possible to reproduce the HPF layout in Figure 3.2,

but in general HPF distribution is richer.

Compared to HPF, ZPL does not map an arbitrary array dimension to a processor
grid dimension. This precludes mapping the array to a transposed processor grid as
in Figure 3.2. ZPL also does not separate the offset from the index range when two
arrays must be laid out relative to each other. For instance, array B in the example has
4 x 4 elements, but it cannot be indexed as [1..4,1..4]. On the other hand, the processor
grid is specified at runtime, delaying the binding and thus allowing different processor

configurations to be invoked without recompiling the program.
Redistribution

HPF allows an array distribution to be changed in two ways. It can be changed at
any point in the program via REDISTRIBUTE and REALIGN to be tailored to each
phase of the computation. In addition, since a subroutine can specify a different data
distribution within its scope, an array that is passed as a formal argument may have to
be redistributed on the subroutine entry to match the local distribution and then again
on the exit to return to the caller’s distribution. This presents a potential inefficiency if
an array is repeatedly redistributed across the subroutine boundary. This can be avoided
if the caller and the callee reside in the same program by ensuring that both specify the
same distribution. However for separately compiled subroutines, the caller’s distribution
is unknown. In addition, the distribution inherited from the caller may be a poor match

for the subroutine and result in excessive communication.
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region bigR[1..20,1..20]
smallR[9..15,5..11] by [2,2];
var A: [bigR] integer;
B: [smallR] integer;

(a) ZPL code segment
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111

(c) Physical mapping

Figure 3.3: Example of ZPL data layout.

Note: the bounding box for A and B is used to compute the partitioning.
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HPF does not solve this problem but rather provides the user the options to specify
the appropriate action. The normal DISTRIBUTE directive is called prescriptive since
the array must be redistributed as specified. The INHERIT directive is transcriptive:
the array distribution is to be inherited from the caller without any redistribution. The
DISTRIBUTE * directive is descriptive: the programmer asserts that redistribution
can be omitted because the distribution in the caller and in the subroutine will be
identical, thereby relieving the compiler and the runtime system of the task of checking
the distribution. Thus with careful use of these directives, the user can balance between

the redistribution cost and the computation in the subroutine.

Procedures in ZPL are distinguished as sequential or parallel. A procedure is sequen-
tial if it does not contain any reference to a parallel variable (a region); otherwise it is a
parallel procedure. An example of a sequential procedure is one that accepts an integer
and returns its square. This distinction requires the two types of procedure to be treated
differently; specifically, the concept of promoting a procedure only applies to a sequential

procedure that has no side effects.

Calling a procedure does not involve communication in ZPL for the following rea-
son. Calling a sequential procedure requires no communication since by definition, the
procedure only operates on data local to the processor. Calling a parallel procedure
without passing any parallel array also results in no communication since parallel arrays
declared within the procedure scope are not visible to the caller. If a parallel array is
passed, the compiler will analyze references to the parallel array in the interprocedural
analysis step to compute the appropriate bounding box for partitioning. The result is
that the parallel array will remain perfectly aligned across the procedure boundary, thus

requiring no communication.
Discussion

HPF clearly provides a wide range of complex data distributions. In addition, the
actual distribution of an array is completely decoupled from the reference to array ele-

ments since HPF must adhere to the Fortran syntax; in other words, an array element
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is accessed in the same manner regardless of how it is distributed. These features cul-
minate in a high level of convenience and expressiveness for HPF programs. In terms
of the modeling framework, they capture the nonshared memory characteristics of the
programming model by requiring the user to consciously distribute the data. At the
same time they allow the problem to be solved from a global point of view, sparing
the user the tedious low level programming typical of message passing programs. Since
HPF’s abstractions to implement the nonshared memory programming model appear
to be reasonable, we proceed to consider whether they can be implemented efficiently
and consistently. The challenge to the compiler lies in two areas: optimizing the data
redistribution and the nonlocal array references. The latter has been discussed in detail

in Section 3.4.2.

Redistribution is clearly a heavy weight process due to the complex mapping and
the communication involved. The compiler can generate some code for redistribution,
but the runtime system must handle most cases because many variables are unknown.
Redistribution requires computing the distribution map of the source and destination
arrays, intersecting the maps to determine all the senders and receivers, generate the
communication and marshalling the data to and from the communication buffers. The
cost thus includes the computation, the buffer allocation and copying, the communication
and the degradation in cache performance. For this reason, the APR compiler provides
the option of allocating the full storage for a distributed array at each node, of which
only the local array section is used. This reduces the overhead for buffer allocation and

the data marshalling, but the memory requirement is not scalable.

Recalling our modeling framework, the significant redistribution cost should be visible
in the programming model. The explicit REDISTRIBUTE and REALIGN directives
meet this requirement, however the implicit redistribution that occurs across subroutine
boundaries does not. Since the default action by the compiler is to enforce redistribution
to ensure correctness, a programmer may be surprised by unexpected redistribution calls

inserted by the compiler. The presence of REDISTRIBUTE or REALIGN in the source
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program also adds complexity to the compiler since it interferes with many standard
optimizations for the sequential code; for this reason, the IBM HPF compiler currently

does not support REDISTRIBUTE and REALIGN.

3.5.2 Distributing the computation

Section 3.4.1 describes how the user can express the parallel computation. The next step
is to distribute the parallel computation among the processors and ultimately, the degree
of parallelism achieved depends on how this distribution is actually implemented. In the
ideal case, the computation will somehow be evenly distributed among the processors
with no overhead. In reality however, the distribution strategy not only affects the
workload balance but also the necessary communication since nonlocal data needed for
the computation must be fetched to the site that performs the computation and the
result must be stored to the appropriate site.

Since parallelism in both languages is derived from some form of looping, the common
method for distributing the loop is to adjust the loop bounds and stride to reflect the
local workload. If the loop cannot be distributed, the bounds will not be adjusted and
all processors would execute all iterations, resulting in no parallelism.

Can the loop be distributed?

Before a loop can be distributed, an HPF compiler must first analyze the depen-
dencies to determine whether correctness can be preserved. Clearly the distribution
is inhibited if the analysis fails and in this respect, HPF provides several directives to
help the compiler. A loop with no cross iteration dependency can be annotated with
INDEPENDENT. A subroutine call within the loop may have side effects which would
constitute a loop dependency; the subroutine with no side effects can be annotated with
PUREFE to assert this fact. Whether a user needs to insert these directives depends on
the analysis capability of the compiler.

How to distribute?

In contrast to its extensive data layout capability, HPF does not specify how the
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computation is to be distributed, leaving this decision to the compiler implementation®.
One motivation for this choice is to leave open optimization opportunities for the com-
piler. A common convention adopted by several compilers (IBM, PGI, DEC) is the
owner-computes rule: the processor that owns the LHS of an assignment statement is
to execute the statement. In this scheme, the compiler will generate the communication
necessary for the owner of the LHS to gather the data referenced in the RHS before
the computation takes place. The advantage of this scheme is twofold: it is simple to
implement and the assignment is made locally.

There are situations where the owner-computes rule is suboptimal. For instance, if
many array elements referenced in the RHS reside on the same processor, the communi-
cation volume can be reduced by allowing this processor to perform the computation and
to send only the result to the owner of the LHS. Various proposals have been made to
optimize the communication by selecting the best site to perform the computation [Ama-
rasinghe & Lam 93], but this proved to be a difficult problem. Other schemes are also
possible, for instance the APR compiler simply selects (automatically using some set of
rules or with the user’s assistance) a favorable loop to distribute[App 95].

From the modeling point of view, the absence of a definite scheme to distribute
the computation leaves a gap in the programming model. This gap is both necessary
to preserve the Fortran syntax and intentional to make the programming convenient.
Yet it forces a programmer either to (1) rely completely on the compiler to parallelize
the program or (2) close the gap by tuning the program to the specific compiler and
sacrificing portability in the process. In other words, it may be difficult to balance the
workload in a portable manner since the parallelization strategy varies with the platform.
A case study of the NAS EP benchmark in Chapter 5 will illustrate this problem.

ZPL distributes its computation according to a number of rigid rules, leaving little
opportunity for deviation or in fact optimization. First, the global region representing

the whole program will be partitioned by block onto the processor grid, thereby distrib-

®HPF 2.0 addresses this issue by adding the ON HOME directive that enforces the owner-computes
rule[Forum 96]
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uting any arrays and statements defined over the region. Second, the computation is
aligned with the LHS, thereby ensuring that any ZPL implementation will follow the
owner-computes rule. Distribution in ZPL thus strictly implements the semantics of the
language: a ZPL compiler only has to compute the local loop bounds for the array on
the LHS; it does not need to perform any analysis to arrive at the decision to parallelize
the loop.

The difference between HPF and ZPL can be summarized as follows. An HPF com-
piler begins with an undistributed loop and attempts to distribute it by analyzing the
dependencies and/or by relying on user directives; if the analysis fails, the loop is not
distributed and all processors execute the full iteration. ZPL on the other hand strictly
implements the language semantics; in other words, a statement within a region scope
is a parallel statement and is guaranteed to execute in parallel.

In terms of modeling, the HPF model of parallelization is weaker since it includes two
variables: whether the loop can be parallelized and how the workload will be distributed.
ZPL model is stronger since the language semantics clearly define the behavior of these
two variables.

For HPF compilers that use the owner-computes rule, the computation distribution
shadows the data distribution. The wide range of choice for data distribution thus leads
to more flexibility in implementing an algorithm. For instance, the LU decomposition
would benefit from a block cyclic distribution since the workload is more evenly distrib-
uted, while an SOR solution would prefer a block decomposition to exploit the neighbor
locality. ZPL’s choice for distribution is more limited in this respect since only block

distribution is supported.

3.6 Conclusion

The issue is not whether one can achieve performance in a particular language but
whether this can be done conveniently. Given time and resources, an ardent enthusiast

of a language can tune a program in the language to achieve good scalar and parallel
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performance, but it may not be convenient to arrive at the result and the result may
not be portable. An example of this can be found in the benchmarks used by some HPF
vendors: the APR benchmarks for HPF have been carefully tuned to match the APR
compiler; as a result they perform well with the APR compiler but not with other HPF

compilers. PGI versions of the benchmarks also exhibit this characteristic.

An optimization technique is most successful when it can cover the majority of the
cases. When it only covers specific cases, several problems arise: the case must first
occur in the program and then the compiler must be able to recognize the case to apply
the optimization. The latter problem can be particularly difficult, but both problems
reduce the effectiveness of the optimization. Optimizations for array references in HPF
seem to suffer from this phenomenon: the ability to make global array references leads
to many possible patterns of reference, with no particular prevalent pattern that can be

easily recognized.

Given that parallel language is still a developing area, one can safely presume that
the designers of neither HPF nor ZPL assert that their current language is the final
solution for parallel programming. The discussion in this chapter clearly shows the
benefits and liabilities of two fundamentally different parallel languages. By capitalizing
on the Fortran base, HPF succeeds in establishing a standard in parallel languages where
none existed before and this should be recognized as a very significant achievement.
However, building from an inherently sequential language carries many implications that
are now becoming more apparent as experience is gained from implementing and using
the language. One general observation is that the flow of information in an HPF program
is largely from the user to the compiler. In other words, the user provides information
about the program to aid the compiler, but the compiler guarantees to the user little

more than correctness.

ZPL is based on a model of parallel machines. Being designed from first princi-
ples, ZPL can freely incorporate new concepts and language constructs that work well.

Because these concepts and constructs are intrinsic to the language, the language speci-
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fication serves as a secure contract to the user that the program will behave as expected.
Information thus flows both ways, from the language to the user and vice versa. Being
new also carries the burden of having to prove ZPL’s merit and to gain acceptance from
users and software developers.

In the following chapters, we will further compare HPF and ZPL, first with respect
to the concept of performance model (Chapter 4), then experimentally using the current

HPF and ZPL compilers (Chapter 5).



Chapter 4

The Performance Model in HPF
and ZPL

“HPF must be used carefully, because efficient and inefficient codes look very
similar. An HPF translator generates code to implicitly perform whatever
communication and overhead required to correctly execute the HPF pro-
gram statements. On the other hand, with a program parallelized by explicit
insertion of message passing communication calls it is very apparent where
overhead is introduced. The ability of a translator to generate whatever com-
munication and overhead is required, is in a way a defect, in that it obscures

what really happens at the runtime.”

APR Fortran Parallelization Handbook [Friedman et al. 95]

4.1 Introduction

In Chapter 1 we discussed the pervasive use of modeling. Having examined qualitatively
in Chapter 3 the facilities in HPF and ZPL for parallel programming, we find that a clear
distinction between HPF and ZPL is in the modeling aspect of the languages. In this

chapter, we begin by identifying this modeling aspect, namely the performance model.
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One may question whether this difference ultimately leads to any tangible difference in
the program performance. In other words, what is the benefit of a performance model?
We will seek a quantitative answer to this question by first formulating a methodology

and then by considering two in-depth case studies.

4.1.1 The performance model

Recall that a model reflects our understanding of how a certain system operates; it
captures the information that is necessary and sufficient for us to use the system. It
follows that if the model is inaccurate or insufficient, it will be difficult to use the system
effectively. Conversely, too much complexity makes the model difficult to use and defeats
its very purpose. A model must capture the right level of information. In particular,
when performance is an objective, the model must capture some information about
performance.

For a concrete example, consider sequential languages such as C or Fortran. Profi-
cient programmers in these languages have an approximate understanding of how each
language abstraction correlates with its low level implementation, and they use this in-
formation routinely without any special consideration. For instance, procedure calls are
convenient and helpful in structuring a large program, however, they do incur cost in
pushing the stack and passing arguments, and this cost is befittingly associated with
the text required to set up and call a procedure. As a result, a programmer would not
create procedures unnecessarily, nor would he/she create procedures thinking that doing
so would make the program run faster.

In the context of program development, this approximate understanding helps form a
coarse but reliable classification of language abstractions in terms of their cost (execution
time). We call this relative ranking the performance model. The performance model is
coarse because it is not possible to use it to determine the actual execution time of
the program independent of the targeted machine. In this respect, it is different from

parameterized, analytical models such as the formula that is commonly used to predict
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the communication cost:
msgsize

bandwidth

time = startup +

The performance model is reliable because a language abstraction classified as expensive
will always take more time than one classified as inexpensive. For this reason, a more
suggestive name for the model may be “WYSIWYG”. For the terminology, Snyder in
previous work [Snyder 95] defines a machine model as a set of common facilities for a
large class of parallel machines; the set contains sufficient detail to allow the program-
mer to choose between programming alternatives. A programming model then extends
the machine model by adding new abstractions with “known” costs. For the focus of
this chapter, the term performance model refers to the performance aspect of Snyder’s
programming model. In other words, given the programming model, the performance
model defines the relative cost of the abstractions.

Revisiting C and Fortran from above, their performance model arises naturally from
the close affiliation between the language and the hardware. The abstract von Neumann
machine, by encompassing most sequential machines, thus emerges as the machine model
for these languages.

How is the performance model used?

The performance model indicates the relative performance; therefore it helps the pro-
grammer in two important tasks: (1) given several alternative algorithms for a problem,
how to choose the appropriate algorithm, and (2) given several alternatives to implement
an algorithm, how to choose the appropriate implementation. These two tasks are criti-
cal because ultimately, the most effective optimization rests with the user. No compiler
optimization can transform a poor algorithm into an optimal algorithm.

How does a language incorporate a performance model?

Because no explicit formula or equation is involved, a performance model is typically
derived from several sources. For a frequently used programming technique that has
been encapsulated in a high level abstraction, its implementation and therefore its cost

is well understood. An example is the DO loop. The language semantics, if well defined
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and concise, can provide valuable information. For instance, the register directive in
C suggests that the attributed variable can be accessed faster than normal variables.
Visual cues in the language syntax help to associate a relative cost with a particular
language construct. For instance, the quantity of text can serve as the cue: a construct
that is fast (e.g., an arithmetic operation) should be expressed with little text while a
slower construct (e.g., a library function call) should require more text.

Such a loose association leads to the coarse quality of the model, while the reliability
of the model depends on the accurate association between the construct and the actual
cost. The only requirement is that the part of the language that needs to have a cost
associated must be visually identifiable.

Is the performance model a standard component of all languages?

Many languages exist that do not contain a performance model. For example, Prolog was
designed for expressing predicate calculus. Because there is no performance information
in the language construct, it is difficult to infer whether a Prolog statement will execute
quickly or take an exponential amount of time. Similarly, dataflow and functional lan-
guages are built from mathematical abstractions with little consideration for the physical
implementation. As a result, no performance model exists to guide the users in writ-
ing dataflow or functional programs that can be emulated efficiently on conventional

machines.

4.1.2 ZPL’s performance model

Through extended research in programming models, ZPL designers recognized the ex-
istence and the importance of the performance model as a distinct entity. ZPL was
designed with the performance model as a clear objective; as a result, one of ZPL’s sig-
nificant contribution is the careful integration of a performance model into the language.

ZPL’s machine model (the CTA) and programming model have been described earlier.
For the performance model, ZPL abstractions exhibit the following behavior, listed in

the order of highest to lowest performance [Snyder 94].
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. Element-wise array operations execute fully in parallel with no communication and
achieve the highest performance. These operations are clearly distinguished since

they involve only arrays declared as parallel arrays.

. @ operation is likely to involve communication: the cost can be approximated as

one message per Q.

. Flood operation requires one or more messages to replicate an array section; it is

identified by the flood operator >>.

. Reduction and scan operation require collective communication that involves mul-

tiple messages; they are identified by the operators << and ||.
. Scalar computation is replicated on all processors and achieves no speedup.

. The permute operator ## and I/O are the most expensive operations; the former
typically involves all to all communication, while the latter involves physical devices

that are several orders of magnitude slower than the processor.

4.1.3 HPF’s performance model

Although Fortran has an effective performance model for sequential machines, the re-

quirement to remain compatible with Fortran limits the parallel performance model to

the set of directives for distributing the arrays and controlling some communication and

data dependences. Beyond this, the parallel performance depends entirely on the op-

timization capability of the compiler. The nature of the directives themselves weakens

the performance model: because a compiler is not obligated to implement a directive,

the user is not guaranteed of its benefit. The major components of HPF’s performance

model include (not listed in any order):

o DISTRIBUTE, ALIGN are used to distribute the arrays.

e INDEPENDENT, Forall and F90 array syntax allow the computation to proceed

fully in parallel; however the communication cost is not visible.
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e Redistribution requires expensive mapping and communication. It can be identified
with REDISTRIBUTUE. Redistribution for subroutines can be controlled with

some directives, but is otherwise not visible.

e Scalar computation is replicated on all processors and achieves no speedup.

An issue worth addressing is the effect of compiler differences on the performance
model. We must distinguish between the performance model established by the language
specification and a performance model that has been supplemented with knowledge about
a specific compiler. The former is portable while the latter is not. Clearly, optimization
strategies vary and differences will always exist between compilers. However, a concise
performance model in the language will maintain a consistent language behavior in the
face of compiler differences. Otherwise, the users may be forced to drastically change
the programming style to accommodate a compiler.

Consider the Fortran storage model which specifies that for physically consecutive
array elements in memory, the leftmost index changes the fastest. This model restricts
the compiler from using a different storage layout and may prevent some types of op-
timization, but it guarantees the users a certain behavior. As a result, a programmer
can structure the code to take advantage of the spatial locality in the array references.
Furthermore, the programmer can expect that the code optimized in this manner will

never perform worse than an unoptimized code, regardless of the compilers.

4.1.4 A methodology to evaluate the performance model

We now formulate a way to quantify the benefit of the performance model. The notation
r and f are used to denote a relation where r, f € {>, <,~}.

Consider two alternative programs P, and P, written in a language L to solve a
problem. A compiler for the language generates an implementation for each program,
resulting in an execution time of T, and T} for P, and P,, respectively, with a relation
of:

T,rT,
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Similarly, another compiler for the same language yields:
T 7}

Define the performance model as the component of the language L that enables the
programmer to differentiate between P, and P, in terms of their performance. In other

words, the model is a function:

F(P,P)=f

F is undefined if the performance model does not exist.
Note that at this point, we are still considering f, 7 and 7’ as independent of each

other. Examine the relations r and 7’

1. If r,7’ € {~}, then the compiler has in effect neutralized any differences between
P, and P,, regardless of whether the difference arises from the algorithm or the
language construct. In this case, the programmer is relieved of the difficult task
of choosing between P, and P, and the performance model F is irrelevant. The

reverse must also hold: if F is undefined, then the compilers must ensure:
r,r’ € {~} (4.1)

since otherwise the programmer has no means to differentiate and choose between

P, and P,.

2. If r,7' € {>, <}, then the program with the best performance should be chosen. In
this case, the selection process requires the performance model F. It follows that
the benefit of F is equivalent to the performance difference A(7,,T}). Furthermore,

for 7 to be meaningful, the language and the compilers must ensure:

f=r=1 (42)

An interesting corollary follows from equation 4.2: if r # 7/, then a contradiction

occurs, therefore F must be undefined.
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The formulation above allows us to devise a simple methodology to evaluate the

performance model.

1. For a given problem, we consider several alternative solutions in a language.

2. The performance for each solution is measured using several compilers to determine
the set of relations {r,7’,...}. The implementations should also be analyzed to

confirm the relations.

3. If equation 4.1 is satisfied from {r,7’,...}, then F is irrelevant and no further

consideration is necessary.

4. Otherwise, we proceed to verify equation 4.2. The performance model F provides

f if it is defined.

5. If equation 4.2 holds, then F has ensured a performance improvement of A(T,,T}).
Even if F is undefined, the fact that the remainder of the equation holds will be

valuable since it implies that it may be possible to determine F experimentally.

6. If equation 4.2 does not hold, then the potential performance loss is A(T,,T})

We mentioned earlier that the performance model helps the programmer in two tasks:
(1) choosing the best algorithm, and (2) choosing the best implementation. For the
remainder of this chapter, we apply the methodology above in two in-depth case studies
that represent these two tasks. Section 4.2 addresses the implementation choice and
Section 4.3 the algorithm choice. ZPL is not involved in the analysis in Section 4.2, but its
performance data is provided as a convenient point of reference. Then we discuss current
methods to supplement the HPF performance model in Section 4.4, and Section 4.5 gives
the conclusions. It should be noted that while the analysis in this chapter involves three
HPF compilers, the intention is not to compare the compilers. Rather, the compilers

provide the different platforms to evaluate the portability of the language.
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4.2 Selecting an implementation: array assignment

For a case study, the simple assignment statement when applied to a distributed array is
a good candidate for several reasons. First, the assignment statement is the most elemen-
tary component of any language; in a data parallel language particularly, its behavior
can be magnified when operating on an entire array. Second, a principal component in
the performance model for a parallel language is the communication. In an assignment

statement we can minimize the computation to focus on the effect of the communication.

4.2.1 Quantifying the performance model

Following our methodology, the given problem is the array assignment statement. The
index expression used in the assignment can be further broken down into 11 types [Bozkus
et al. 94|, thus dividing the main problem into 11 sub-problems.

For HPF, the alternatives to express array assignments include the conventional DO
loop, the F90 array syntax or the Forall construct (refer to Section 3.4.1). Among the
choices, the DO loop specifies the most dependencies, while the F90 array and the Forall
loop have the least. For the latter two, Forall is more expressive than F90; therefore
a reasonable expectation is that the Forall loop is the best general choice. If compiler
analysis were perfect, one could expect that a compiler would determine that there is
no true dependence in these assignments. In this case, the compiler would yield the
same performance for all three implementations and equation 4.1 would be satisfied
automatically.

For ZPL, the semantics allow only one way to express the assignment statement.
Table 4.1 lists the types of index expressions along with their program alternatives in
HPF and ZPL. A brief description for each type follows.

The case of no communication is the simplest case since the RHS and LHS are aligned
exactly. The compiler is expected to be able to determine that the statement involves
only local data motion and avoid unnecessary communication.

For the static shift case, the RHS and LHS are offset by a constant. To move the RHS
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to the LHS requires communication between neighboring processors, but fortunately the
optimization is straightforward and easily recognized [Choi & Snyder 97]. The user
may expect communication for multiple array elements to be combined (message vec-
torization). Since the shift amount is known at compile time, an overlap area can be
preallocated in memory that is contiguous to the local section of the array. When the
statement is encountered, data from the neighboring processor can be copied directly
into the preallocated area without a runtime buffer allocation. A variation of the sta-
tic shift case has a coeflicient with the RHS index, which requires a gather before the

communication.

The dynamic shift case is similar to static shift except that the shift amount must
be computed at runtime; therefore it is more difficult to preallocate the overlap area at
compile time, but message vectorization is still possible. When the RHS index has a

coefficient, the communication will require a gather operation.

Multicast requires selective communication; it involves replicating the data among a
set of processors (usually row or column of the processor grid). The compiler can generate
code for a tree broadcast scheme or simply take advantage of the communication library

if it provides this function.

The point to point case is simply random communication for which optimization is

less likely.

The dynamic indez case involves complex data movement in which the index for one
array is a complex but computable function of the other array index. In the precompu-
tation read case, the complex index is in the RHS; therefore the index must be computed
before the RHS is fetched. For the postcomputation write case, the complex index is in
the LHS; consequently, it must be computed to store the result. The DO loop is well
suited for expressing the index expression because it is not always possible to derive an
equivalent F90 and Forall implementation, although in our experiments we chose a func-
tion that allows all three implementations. Message vectorization for this case is more

difficult because the array index must be computed from a complex function. There are
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several implementation approaches: the processors can perform an all-to-all broadcast,
each element can be fetched individually, or each processor can precompute the index
set for the full loop and then perform a scatter or gather using the index set.

The indirect index case differs from dynamic index in that the index set is data
dependent. Assuming that the index set is also distributed, the processors will have to
first broadcast to obtain the index set, then the actual data can be obtained in a second
communication phase, which like the dynamic index can be another all-to-all broadcast,
individual messages, or a library scatter/gather call.

In the performance measurement, the assignment involves two linear arrays of N
elements that are distributed by block onto a 1-D processor grid and that are perfectly
aligned with each other. Since the statements contain no computation, the principal
cost is in the data movement and the runtime overhead. The task for the compiler is to
generate the communication to fetch the RHS from and store the LHS to the respective
owners. Note that more complex scenarios are possible such as higher dimensional arrays
and processor grids, cyclic and block cyclic distribution, complex alignment between the
arrays. However, these demand more difficult analysis and optimization and are not
likely to show a more consistent performance model than the simpler configuration.

The set of assignments is measured on the IBM SP2. The compilers used in the ex-
periments include the HPF compilers from APR, IBM and PGI, and the ZPL compilers
from the University of Washington. For each compiler the default optimization option is
used — in every case it includes the most aggressive option. A barrier synchronization is
used at the beginning of each assignment operation to synchronize the processors. The
tracing facility UTE is used to collect a trace per processor, which includes communi-
cation calls, timestamps and markers for each program section. The traces are then

processed to compute the desired statistics.

4.2.2 Results

Performance model
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Table 4.1: Array assignment in HPF and ZPL

1. See dynamic index, RHS; can also be implemented with strided region by renaming the index
space.

2. Parameters: T=3, =2, N=100

3. ¢, d are variables. A B,V are N-elements arrays. F is a floodable array [*].
4. All arrays are distributed.

5. For ZPL: region R=[1..NJ; direction east = [+85]; eastl = [+1];

Index Do loop F90 ForAll ZPL
no do i=1,N A(1:N) = forall (i=1:N) [R] A :=B;
comm. A(l) = B(1) B(1:N) A(l) = B(1)
enddo
static do i=1,N-S A(1:N-S) = forall (i=1:(N-S)) [R] A := BQeast;
shift A(i) = B(i+9) B(S+1:N) A(i) = B(i+9)
enddo
static do i=1,(N-8)/T A(1:(N-8)/T) = | forall (i=1:(N-S)/T) | (1)
shift + A(i) = BG*T+S) | B((T+S):N:T) | A(i) = BG*T + S)
stride enddo
dynamic | doi=1,N-c A(1:N-c) = forall (i=1:N-c) for I:=1 to c do
shift A(i) = B(i+¢) B(1+4c:N) A(i) = B(i+¢) [R] A := AQeastl;
enddo end;
dynamic | do i=1,(N-c)/d A(1:(N-c)/d) = | forall (i=1:(N-c)/d) (1)
shift + A(i) = B(i*d+c) B((d+c):N:d) A(l) = B(i*d + ¢)
stride enddo
multicast | do i=1,N A(1:N) = forall (i=1:N) [F] A :=>>[S] B;
A(i) = B(S) spread(B(S), A(i) = B(S)
enddo 1,N)
point A(1) = B(N) A(1) = B(N) A(1) = B(N) [F] Af := >> [N] B;
to point [1..1] A := Af;
dynamic | doi=1, N forall (i=1:N/2) if (Index1l <= N/2)
index, if (i1e.N/2) then A(1:N/2) = A(i) = B(2%-1) then
RHS j=2%-1 B(1:N:2) forall (i=N/2+41:N) V := 2*Index1-1;
else A(N/241:N) = A(l) = B((i-N/2)*2 | else
J = (i-N/2)*2 B(2:N:2) V := (Index1-N/2)*2;
endif end;
AG) = B() A= <##V]B;
enddo
dynamic | doi=1, N forall (i=1:N, if (Index1%2 = 1)
index, if (mod(i,2).eq.1) cannot mod(i,2).eq.1) then
LHS then be expressed A((i41)/2) = B(i) V := (Index1+41)/2;
Jj=(141)/2 forall (i=1:N, else
else mod(i,2).ne.1) V := (Index1+N)/2;
j=(+N)/2 A((i+N)/2) = B(i) | end;
endif A = >##[V] B;
AG) = BE)
enddo
indirect doi=1, N A(1:N) = forall (i=1:N) A = <##[V]B;
index, A(i) = B(V(1)) B(V(1:N)) A(i) = B(V(1))
RHS enddo
indirect doi=1, N A(V(I:N)) = forall (i=1:N) A = >##[V] B;
index, A(V()) = B(i) B(1:N) A(V(@) =B(@)
LHS enddo
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Figure 4.1: Cross compiler performance for HPF array assignment.

Note: 8 processors with different index expressions.
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In Figure 4.1, the execution time for the three HPF alternatives (DO loop, F90 array
and Forall) is plotted for each subproblem for p=8 (note that the time axis is a log scale
due to the wide spread). A quick inspection reveals that the performance data does
not support equation 4.1 except for some isolated subsets. In other words, significant

performance difference exists between the alternatives.

Proceeding to equation 4.2, we find that the indices in an HPF array reference yield
no visual indication of the communication required because they are random and global.
The absence of a performance model leaves the relation f in equation 4.2 undefined.
However, we are still interested in determining whether the remainder of the equation
holds since it would be an indication of a possible performance model. The test for
r = 7’ is shown graphically by connecting the performance for each alternative along the
compiler dimension. Equation 4.2 would hold if the performance lines do not intersect,
thereby maintaining the same relative order. This would indicate that the best choice is

the same for all compilers.

Dynamic index LHS is an example that clearly satisfies equation 4.2 (Figure 4.1(f)):
a user would choose the DO implementation since it gives the best performance on all
compilers. The Forall construct surprisingly is not the best choice in this case although
its semantics specify fewer dependences. Note that this particular index expression does

not allow an F90 implementation.

For the other subproblems, the answer is less clear. Table 4.2 tabulated the ordering
for each type of index expression. Several other cases also show a consistent performance
behavior: two cases clearly favor the F90 implementation, two cases favor the Forall, and
four cases show F90 and Forall as equally likely choice. One case favors the DO loop
consistently over the Forall despite the dependences. In two cases, the lines intersect

and no choice is apparent.

The data does not suggest any single construct as the best choice for all types of
array assignment. When considered as individual cases, the F90 and Forall alternatives

are better in many cases: clearly the more restrictive semantics in terms of dependences
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Table 4.2: Choices of array assignment in HPF.

Note: (1) Intersecting lines indicate no clear choice.

(2) dynamic index LHS cannot be expressed in F90.

Assignment First Second Third
no communication Forall or F90 DO
multicast Forall DO Fo0
point to point Forall or F90 DO
static shift Fo0 Forall, DO intersect

static shift + stride Fa0 Forall DO
dynamic shift Forall F90 DO
dynamic shift 4+ stride | Forall or F90 DO
dynamic index,RHS Forall, F90 intersect DO
dynamic index,LHS DO Forall

indirect index,RHS Forall, F90, DO intersect

indirect index,LHS Forall or F90 DO

allow the compilers to generate an efficient implementation more easily. However, the
richer functionality of Forall leads to a higher overhead than the F90 construct in some

cases; as a result, it is not clear when each construct should be used.

Since each construct offers a different level of expressiveness, the situation may arise
where it is not possible to express the computation using the construct with the best
performance. In the cases where Forall and F90 are equal alternatives, making the second
choice is straightforward. For other cases, the second choice is less clear: Static shift’s

Forall and DO lines intersect because of APR’s implementation.

Communication

When an algorithm is analyzed, a coarse but convenient performance metric is the

count of messages and collective communication calls since the message startup time
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Figure 4.2: Communication for array assignment using different index expressions: p=8.
Note: the dotted line represents the maximum number of sends/receives invoked if the

communication is programmed manually.
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typically dominates the communication time for small messages. This holds especially
true for our experiment since no computation is involved, although some optimizations
that overlap the communication with computation may not be effective. Although the
HPF global array indexing yields no visual cue to the underlying communication, in
some situations such as when the data distribution and index expression are simple,
it appears possible to estimate the communication involved. It is then interesting to
correlate between the user’s expectation and the actual communication generated by the

HPF compilers.

Since the actual count can be different on each processor, the highest count among the
processors is typically used as a conservative estimate for the communication. To reflect
this coarse metric, in Figure 4.2, the maximum count of communication call per processor
is plotted in several dimensions: for each type of assignment, for each loop alternative,
and for each compiler implementation. The dotted line represents the maximum number
of sends/receives invoked per processor if the communication is programmed manually.
Note that some implementations use the MPI collective communications which are com-
posed of multiple sends/receives. For the affine index expressions, (a, b and c), the
compilers generate very efficient communication. The only exception is PGI, which con-
sistently generates excessive communication for the DO loop. For the complex index
expressions, the communication schemes vary significantly both between compilers and

between implementations of the same compiler.

Data dependence analysis

Figure 4.3 shows the elapsed time for each type of assignment, for each compiler, and
for p=8. The time is broken down into the communication and computation components.
We expect the runtime overhead to make up most of computation component since the

statement itself contains no computation.

We can evaluate the quality of the data dependence analysis of the compilers by
inspecting the level of performance variation across the DO, F90, and Forall imple-

mentations for each compiler. Although the loop constructs have different semantics, a
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perfect analysis will be able to determine the true loop-carried dependences and opti-
mize accordingly. Since there are no true data dependences in any of the assignments,
it is possible that a compiler may yield the same performance regardless of how the
assignment is expressed. In terms of the performance model, if this quality proves to be
reasonably uniform across the compilers, then a user would not have to be concerned

about the choice of the implementation.

Inspecting each group of DO/F90/Forall in Figure 4.3, we find that in some cases
the compiler is indeed successful in its analysis, notable the IBM and APR compilers.
In other cases however, variations up to 2 orders of magnitude exist between implemen-
tations of the same assignment, suggesting that data dependence analysis is not yet a

common and reliable technology.

The IBM compiler shows the least performance variation, an indication of its uniform
approach to loop analysis. The APR compiler shows more variation, particularly for
static shift, dynamic index RHS, LHS and multicast, but in many cases it also shows a
fairly uniform performance. The PGI compiler in general performs poorly with the DO
loop, except for dynamic index LHS for which the DO implementation is better with all

compilers, and for the point to point which does not involve a loop.

Note that the DO loop assignments are not annotated with the HPF INDEPENDENT
directive. This would allow the compiler to completely bypass the dependence analysis.
The omission is intended to evaluate the options of parallelizing existing F77 programs
and continuing to write programs in the F77 style without change. The cross-compiler
variation suggests that this approach is problematic since it relies on a capability of the
compiler which is not portable. The implication is thus twofold. First, parallelizing
an existing sequential program will require substantially more modification than merely
adding the data distribution directives: each DO loop must be analyzed for its depen-
dences to determine whether the $INDEPENDENT directive can be used; incorrect
directives will result in incorrect programs. Second, users accustomed to the sequential

Fortran programming model will need to learn new semantics to write effective HPF
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programs.

Runtime overhead

The runtime overhead is shown as the lighter shade in the bar graphs of Figure 4.3.
This overhead typically includes the global to local index conversion, buffer allocation,
data copying and any computation to determine the data distribution. The overhead
is an accepted cost for a high level language, but since it is hidden from the program,
a uniform overhead would greatly aid the performance model. For the IBM compiler,
the overhead appears to be a fairly uniform component of the three implementations.
APR’s overhead is larger, but is also uniform. PGI’s overhead on the other hand tends

to be larger for DO loops than for F90 and Forall.

One point worth noting is that while the experiment setup has minimized most
sources of variation, some differences inevitably remain in the compilers, in particular
for the scalar code. Specifically, ZPL uses C as the intermediate language, APR’s and
PGI's HPF use Fortran as the intermediate language, while IBM’s HPF is integrated
with the native IBM Fortran compiler. One may expect some degradation in the scalar

performance from Fortran to C, and from native to nonnative compilers.

Summarizing the case studies, we recall that HPF does not specifically provide a
performance model for the array assignment. However, by making some assumptions
based on the expected difficulty for the compiler in analyzing the DO loop, F90 and
Forall contructs, we estimated that the Forall implementation should be the best choice
in general. We find that some cases meet our expectation, but other cases do not. No
single choice is consistently the best choice for all index expressions. Even when we focus
on a single type of index, in some cases it is not possible to choose one implementation
that is consistently the best across the compilers. For the users, this is a clear shortcoming
of the performance model that will hinder the scalability, portability and ease of use of

the language.
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4.3 Selecting an algorithm: matrix multiplication

Earlier discussion has stated that the selection of the best algorithm for the system
contributes the most to the scalability of a program. The selection in turn depends on
the performance model presented by the language. In this case study, the problem to be
considered is matrix multiplication. Four alternatives are considered for HPF and two
for ZPL; they are described in the following subsections. The set of compilers and the

parallel platform remain the same as in the preceding case study.

4.3.1 HPF versions

The four alternatives for HPF are intended to illustrate the reasoning based on the
performance model to select the best solution for the problem. The code segments are
shown in Table 4.3.

The most straightforward algorithm is the triply nested DO loop (Table 4.3(a)). This
case shows the simplest mode of usage for HPF: a conventional sequential algorithm
is annotated with HPF directives to partition the array, and the compiler parallelizes
the program by distributing the data and computation. This case also shows that no
communication is evident in the program; it depends entirely on the compiler to generate
the necessary communication.

To improve on this algorithm, an experienced Fortran programmer may notice that
the 2-D block distribution may not be a good match for the Fortran storage model
which favors traversing with the leftmost index. Because the matrix traversal will be
interrupted in a 2-D distribution, a 1-D distribution for CY and CA along the second
dimension may allow each processor to traverse its first dimension continuously. The
loops are also reordered to favor spatial and temporal locality. In addition, the INDE-
PENDENT directives are inserted in case the compiler has difficulty determining that
no data dependences exist?®.

As the third alternative, a user may recognize that the targeted machine has a dis-

' This version was made available by David Torres, University of New Mexico.
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Table 4.3: Matrix multiplication algorithms expressed in HPF.

(b) Triply-nested loop optimized for HPF:

(a) Conventional triply nested loop:

'HPF$
'HPF$
'HPF$
'HPF$

real CA(M,N), CX(N,P), CY(M,P)
processors, dimension(2,2) :: PG
distribute CY(block,block) onto PG
distribute CA(block,block) onto PG
distribute CX(block,block) onto PG
doT=1M
doJ=1,P
doK=1N
CY(LI) = CY(LI) +
CA(LK) * CX(K,J)
enddo
enddo
end do

'HPF$
'HPF$
'HPF$
'HPF$
'HPF$

'HPF$

real CA(M,N), CX(N,P), CY(M,P)
processors, dimension(4) :: PG
distribute CY(*,block) onto PG
distribute CA(*,block) onto PG
distribute CX(block,*) onto PG
INDEPENDENT
doT=1P
doJ=1,N
INDEPENDENT
doK=1M
CY(K,I) = CY(K,I) +
CA(K,J) * CX(J,I)
enddo
enddo
enddo

(c) Cannon’s algorithm:

'HPF$
'HPF$
'HPF$
'HPF$
'HPF$
'HPF$

real CA(M,N+1), CX(N+1,P), CY(M,P)
processors, dimension(2,2) :: PG
template T(M+1,N+1)

distribute T(block,block) onto PG

align CA(1,j) with T(i,j)

align CX(1,j) with T(i,})

align CY(3,j) with T(i,})

! Multiply CY = CA * CX

! First skew CA and CX

do I=2,M
CA(I:M,N+1) = CA(I:M,1)
CA(I:M,1:N) = CA(I:M,2:N+1)

enddo

do J=2,P
CX(N+1,J:P) = CX(1,]:P)
CX(1:N,J:P) = CX(2:N+1,J:P)

enddo

!then dot product and shift

do I=1,N
CY(1:M,1:P) = CY(1:M,1:P) +

CA(1:M,1:N) * CX(1:N,1:P)

CA(1:M,N+1) = CA(1:M,1)
CA(1:M,1:N) = CA(1:M,2:N+1)
CX(N+1,1:P) = CX(1,1:P)
CX(1:N,1:P) = CX(2:N+1,1:P)

enddo

(d) SUMMA algorithm:

'HPF$
'HPF$
'HPF$
'HPF$
'HPF$
'HPF$

real CA(M,N), CX(N,P), CY(M,P)
processors, dimension(2,2) :: PG
template T(M,N)
distribute T(block,block) onto PG
align CA(i,j) with T(ij)
align CX(i,j) with T(ij)
align CY(i,j) with T(ij)
! Multiply CY = CA * CX
! spread and dot product and shift
do I=1,N

CY(1:M,1:P) = CY(1:M,1:P) +

+ spread(CA(1:M,I),2,N) *
spread(CX(I,1:P),1,N)

enddo
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tributed memory; therefore an algorithm specifically designed for a distributed memory
machine may be more appropriate. In this respect, Cannon’s algorithm is a good candi-
date since it contains regular data motions and requires mostly array operations which
can be expressed with the F90 syntax to avoid the DO loop dependences. As shown
in Table 4.3(c) however, Cannon’s algorithm is not an obvious choice since it requires
careful data alignment and the program is more cumbersome than the triply nested
loops.

Finally, the SUMMA algorithm [van de Geijn & Watts 95] has been shown to be
effective on distributed memory machines. The algorithm presents a counter-intuitive
advantage: although more messages are generated and their sizes are smaller, the regu-
lar pattern of communication and computation allows the implementation to be better
optimized in many aspects, leading to an overall better performance. The HPF imple-
mentation in Table 4.3(d) is surprisingly simple and similar to the ZPL implementation
shown in the next section. The use of the intrinsic spread suggests that it may be possible
to predict the communication involved. If we assume that spread is implemented as a
multicast, the actual implementation of the HPF program may accurately reproduce the

intended algorithm.

4.3.2 ZPL versions

The ZPL programming model immediately throws the conventional triply nested DO
loop into question. While the DO loop can be transcribed directly into ZPL using
ndezed arrays, the result is a sequential implementation. The performance model thus
indicates clearly that the implementation will achieve no speedup and will have the
lowest performance. To express the computation using parallel arrays, some data motion
must be arranged to align the index since arithmetic operators only apply to array
elements with the same index. This requirement again manifests the performance model
of ZPL: the communication cost is clearly visible in the program. Given this requirement,

the user begins to devise a data motion scheme to enable the element-wise arithmetic
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Table 4.4: Matrix multiplication algorithms expressed in ZPL.

(a) Cannon algorithm:
region RA = [1.M,1..N];
RB = [1..N,1..P]; (b) SUMMA algorithm:
RC = [1.M,1..P];
direction east = [0,1]; region
south = [1,0]; RA = [1.M,1..N];
var A: [RA] float; RB = [1..N,1..P];
B: [RB] float; RC = [1..M,1..P];
C: [RC] float; FCol = [1..M,*];
FRow = [*,1..P];
fori:=2toMdo
[east of RA] wrap A; var A : [RA] float;
[i.M, 1.N] A := A@east; B : [RB] float;
end; C : [RC] float;
fori:=2to P do Aflood : [FCol] float;
[south of RB] wrap B; Bflood : [FRow] float;
[1..N, i..P] B := B@south;
end; fori:=1to N do
fori:=1to N do [FCol] Aflood := >>[1. M/i] A;
C:=C + A*B; [FRow] Bflood := >>[i,1..P] B;
[east of RA] wrap A; C += (Aflood * Bflood);
[RA] A = AQeast; end;
[south of RB] wrap B;
[RB] B := B@south;
end;

operations, and the Cannon and Summa algorithm quickly become favorable candidates.
The ZPL implementations are shown Table 4.3.2. Assuming that the processor grid is
P, x P., we can inspect the code to determine that Cannon will require approximately
M(P, + P.) + N(P, + P.) messages, while SUMMA will require about N(P. + P.). In
addition, Cannon has more potential synchronization. Thus the performance model

indicates that SUMMA will yield better performance.

4.3.3 Results

Figure 4.4 shows the performance of each alternative algorithm in HPF and ZPL on the
SP2 for a 2000 x 2000 matrix multiplication on 16 processors. For HPF, the performance

is plotted across a compiler dimension that includes the IBM, APR and PGI compilers.
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Figure 4.4: Matrix Multiplications by ZPL and 3 HPF compilers: 2000x2000, p=16

Returning to the methodology outlined in section 4.1.4, we inspect the performance for
the alternatives and quickly find that equation 4.1 does not hold: they show performance
differences of at least an order of magnitude. For equation 4.2, the requirement r» = 7’
would be indicated by performance lines that maintain the same relative order and that
do not intersect each other. Again, a quick inspection of Figure 4.4 reveals that the
line for the triply nested DO loop intersects all other lines. Interestingly for HPF, the
relation f in equation 4.2 is not completely undefined in this case: the description of the
algorithm in the previous section indicates that some ordering can be expected based
on a number of assumptions. We now consider each case in more detail by examining
the performance and the implementation. Table 4.5 shows the pseudo-code for the
implementations generated by the HPF and ZPL compilers. Recall that the basic effect

of parallelization is the adjustment of the loop index to span the local partition and the



Table 4.5: Pseudo-code for the matrix multiplication algorithms by three HPF compilers.
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Note: (1) For the loops, full means all iterations while part means local partition only
(2) Cannon is not shown because all implementations are virtually identical.

version IBM APR PGI ZPL

3-nested | comm(ca) n/a

DO loop | comm(cx) comm()
do i=part do i=full do i=full

do j=part do j=part do j=full
do k=full do k=full do k=full
comm(ca)
comm(cx)
cy=cy+ca¥*cx cy=cy+ca¥*cx cy=cy+ca¥*cx
enddo enddo enddo
enddo enddo enddo
enddo enddo enddo
comm()

HPF-opt comm(cy) n/a
comm(ca) comm(cx)
comm(cx) comm() comm(ca)
do i=part do i=part do i=part

do j=full do j=full do j=full
do k=full do k=full do k=part
cy=cy+ca¥*cx cy=cy+ca¥*cx cy=cy+ca¥*cx
enddo enddo enddo
enddo enddo enddo
enddo enddo enddo
comm() comm(cy)

SUMMA | comm(ca) do i=full do i=full
comm(cx) comm() comm(ca) comm(ca)
do i=full do i=part comm(cx) comm(cx)

do j=part do j=full do j=part do j=part
do k=part do k=full do k=part do k=part

cy=cy+ca¥*cx
enddo
enddo
enddo

cy=cy+ca¥*cx
enddo
enddo
enddo

comm()

cy=cy+ca¥*cx
enddo
enddo
enddo

cy=cy+ca¥*cx
enddo
enddo
enddo
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insertion of communication at the appropriate point. The loops in Table 4.5 that are
parallelized are identified as part, while those not parallelized are full. Communication

placed outside of the loops results in fewer messages and less overhead.
DO loops

Clearly, no expectation is possible for the triply nested DO loop regarding the im-
plementation or the performance, and this is evident in the data. The implementations
vary widely between the HPF compilers in the placement of communication and com-
putation. This wide variation can be expected given that by design the compilers are
free to generate any implementation; therefore the issue is not how the compilers arrive
at their implementation, but whether it is possible for the performance behavior to be

consistent.

The triply nested DO loop does not yield portable performance: the performance
ranges from very high for IBM to very low for PGI. The IBM implementation places all
communication at the beginning, followed by the loops. This enables the standard IBM
Fortran compiler to perform very effective loop transformations to optimize the code for
the superscalar CPU (instruction scheduling, pipelining); as a result, the IBM version
enjoys very high scalar performance. The PGI implementation on the other hand uses
a guard to determine if a processor is to perform the computation; therefore although
the actual computation is distributed, the scheme requires each processor to scan all N3
iterations. In addition, the communication remains in the inner most loop, resulting in

excessive communication.

HPF-optimized DO loops

The optimization for this version has been made based on a number of assumptions.
If they prove to be correct, then we can establish the relation f in equation 4.2 between
the optimized and the standard DO loop versions. Our interest in the implementation
is whether the tuning of the program has the desired effect. However, no expectation is

guaranteed by HPF.

The PGI compiler elects to depart from the owner-computes rule and redistributes
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the computation into 2-D instead of the specified 1-D, apparently because it detects
that two INDEPENDENT loops exist in the program. This requires additional com-
munication before the loops to move the LHS to the site of computation and after the
loops to return the LHS to the original distribution. Recall that the user optimization
strategy for this program assumes the owner-computes rule; otherwise it is not possible
to reason about the access patterns. Yet, because the compiler is free to distribute the
computation, we find that there is little correlation between the actual implementation

and the expectation.

With respect to performance, APR and PGI improve by a factor of 2 or more, while
IBM’s performance degrades by a factor of 2 to 4. The results thus contradict all aspects

of equation 4.2.

Cannon’s algorithm

All implementations for Cannon are similar and they are consistent with the al-
gorithm. For this reason and because they are more verbose, they are omitted from
Table 4.5. Examining the implementations, the consistency stems from the treatment
of the array statement and the use of a particular index expression in HPF. The array
semantics call for the RHS to be read completely before the assignment is made to the
LHS; all compilers adhere to this semantics by fetching the RHS before and storing to
the LHS after the statement. In addition, the HPF version only requires an index ex-
pression of the type static shift, which by its simplicity has been shown to exhibit good
performance behavior (Section 4.2). With respect to the implementation, Cannon thus

represents an instance where the requirement of the algorithm matches the semantics

and the performance model of both HPF and ZPL.

However, the performance for Cannon does not meet the expectation for an algo-
rithm designed for distributed memory machines. All Cannon implementations suffer
from the high overhead of repeated buffer allocation and deallocation for each message,
data copying and conservative synchronization for each communication phase. APR in

particular performs quite poorly. Given that the performance model for HPF and ZPL
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is successful in this case, further compiler optimization is needed to reduce the runtime

overhead and to deliver the expected performance.

The ZPL performance is slightly lower than the HPF performance. On examining
the assembly code, we find that the C compiler for ZPL intermediate code is not as

effective as the Fortran compiler in instruction scheduling and pipelining.
SUMMA

For each outer loop iteration, the SUMMA algorithm calls for a row and a column
to be replicated across all processors in the first and second dimension of the processor
grid, respectively. The intrinsic spread offers this functionality; therefore its use suggests

that the program as expressed will implement the SUMMA algorithm faithfully.

We find that the IBM compiler chooses to first scalarize spread into two inner DO
loops, then optimize all three DO loops together. This yields an interesting result: the
IBM implementation for SUMMA is very similar to the triply nested DO loop implemen-
tation in which all communication occurs at the beginning, outside the outermost loop
(Table 4.5). Although IBM’s optimization strategy appears to be sound for the general
case, in this case it has in effect unintentionally transformed one algorithm into another

algorithm that is potentially less optimal in the larger parameter space not explored

here[van de Geijn & Watts 95].

The APR implementation also does not reflect the SUMMA algorithm. APR con-
sistently partitions along one dimension regardless of the specified distribution. Conse-
quently, APR’s implementations of all algorithms follow a similar scheme: RHS values
are fetched before the loop and LHS values are sent to the owner after the loop. In this
case, the communication occurs outside of the outermost loop. IBM and APR thus prove
our assumption regarding spread to be incorrect. HPF does not specify how the intrin-
sic is to be implemented, and again the implementation does not match the intended

algorithm.

The implementation by PGI and ZPL accurately reproduces the SUMMA algorithm.
Based on the different approaches taken by IBM and APR, PGI’s successful correlation
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Table 4.6: Speedup ratio from 16 to 64 processors, 2000 x 2000 matrix multiplication.

Note: (1) execution timed out or memory exhausted.

speedup | normal | HPF-optimized | cannon | summa
IBM 3.44 1.46 2.98 2.72
APR 0.94 1.34 (1) 2.60
PGI (1) 5.58 2.94 3.03
ZPL n/a n/a 3.08 3.49

in this case is incidental rather than by design. The communication in the ZPL imple-
mentation on the other hand correlates directly with the >> operator in the program

as specified by the performance model.

Interestingly, the SUMMA performance by all compilers is consistently the best com-
pared to the other algorithms. IBM and APR in particular achieve good performance
although their implementations do not reflect SUMMA. SUMMA has been shown to be
superior in many aspects such as memory usage, generality and flexibility for non-square
matrices [van de Geijn & Watts 95]. Our limited experiment in this case does not cover
the parameter space sufficiently to illustrate the advantage of SUMMA. Therefore, the
good performance belies the fact that the actual implementations do not reflect the same
algorithm. The ZPL performance SUMMA is lower than the HPF’s performance because
of the scalar component. An inspection of the assembly codes generated by the Fortran
and C compilers shows that the Fortran compiler can generate a much better instruction

schedule for pipelining the superscalar processor in the SP2.

Finally, we consider the self-relative speedup from 16 to 64 processors (Table 4.6).
Compared to the ideal speedup of 4, we find that APR and PGI fail to achieve any
speedup for the DO loop version; APR’s Cannon also fails because of high memory
allocation. IBM and APR only achieve a modest speedup when the DO loop version is

optimized, while PGI achieves superlinear speedup. This unpredictable variation in the
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speedup is another indication of the weakness of HPF’s performance model. In contrast,
both ZPL implementations scale well.

In summary, we find that little correlation exists between the algorithm expressed
in the HPF programs and the actual implementations. By HPF’s design, the compiler
has significant freedom in transforming the program to arrive at an implementation.
This characteristic in effect constitutes a gap in the performance model that essentially
prevents the users from making any performance prediction for an algorithm. In contrast,
ZPL correctly predicts that SUMMA is a better choice than Cannon, which in turn is
better than the triply nested DO loop (not implemented). ZPL thus satisfies equation 4.2
in each case by matching the relative performance predicted by the performance model

with the relative performance of the actual implementations.

4.4 Current HPF solutions

A consequence of the weak performance model in HPF is the general difficulty in pre-
dicting the behavior of an HPF program. This is evident in the solutions offered by
software vendors or features that programmers rely on for tuning HPF programs.

A part of the HPF compiler from APR is an extensive set of compiler options and
tools for profiling and analyzing the program performance. The program can be auto-
matically instrumented to gather statistics at each DO loop level and the statistics can
serve as a database to the compiler for further recompilation and optimization. The
listing generated by the compiler also provides performance details not available in the
source program such as which loop level is being parallelized, which statement may
incur communication, where communication is inserted and which array is being com-
municated. In addition, the FORGE Explorer Distributed Memory Parallelizer allows
a user to interactively choose the arrays to partition and the loops to distribute. The
user can also insert additional APR directives to aid the compiler in parallelizing loops
or reducing communication.

The capability of the APR system may sufficiently supplement the HPF performance



109

model so that a user can achieve good performance with the system. Indeed, users pro-
ficient with the FORGE system may have learned a fairly complete model for producing
good parallel programs. The success of this approach is evident in the benchmarks that
APR made publicly available in conjunction with their published HPF performance; the
benchmarks are highly tuned to the APR compiler, containing liberal APR specific di-
rectives to aid the compiler. Unfortunately, such a model is a superset rather than a
part of the HPF language specification. It is not portable to other HPF compilers, and
there is no evidence that it should be formalized as HPF’s model.

Another program tuning technique that is more generally accessible is the interme-
diate SPMD code generated by the compilers. This option is available in all three HPF
compilers being studied, even though the IBM compiler is a native compiler and does
not need to generate the intermediate output. The intermediate code can be difficult to
decipher, but has proven indispensable in providing important clues such as the commu-

nication generated for a particular statement.

4.5 Conclusions

In this chapter, we identify the performance model as a crucial component of the language
that programmers rely on for selecting the best implementation or algorithm. Because
HPF and ZPL are data parallel languages for distributed memory parallel machines, the
relevant aspects of the performance model are the communication and the overhead for
managing the data distribution. To quantify the benefit of the performance model, we
formulate a framework which leads to two requirements.

For a language with no performance model, equation 4.1 requires the compiler to
neutralize any performance difference between two alternative programs because the
programmer has no means to make a selection.

For a language to have a performance model, equation 4.2 requires that the relative
performance predicted by the model matches the implementation.

Two case studies are performed using the array assignment and the matrix multi-
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plication. In each case, HPF fails to satisfy both of the requirements above, while ZPL
consistently meets the requirements. Since the performance model is needed to select
between alternatives, the potential cost or benefit of the model is equivalent to the per-
formance difference between the alternatives. The data from both studies shows that
this performance difference is at least one order of magnitude. This result indicates that
HPF users will face difficulties in achieving consistent and portable performance in their
programes.

In practice, a performance model can be extended beyond the language specification.
A user accustomed to a particular HPF compiler will over time learn the behavior of the
compiler and supplement any missing information in the HPF performance model with
compiler specific information. For instance, the user may assume that F90 array assign-
ment will be the most efficient. The supplemented model may enable the user to write
high performance programs using the particular compiler, but since this model is not
portable across compilers and consequently across platforms, the program performance
will not be portable.

It appears that part of HPF problem lies in the multiple alternatives for expressing
the parallel computation. One may conjecture whether HPF can limit the number of
alternatives to present a more consistent model. However, our discussion shows that a
performance model requires a more careful effort than simply limiting the alternatives.
Furthermore, this conflicts with the goal of compatibility with Fortran since the DO loop
is an integral part of Fortran 77 as the array syntax is an integral part of Fortran 90.
At the same time, the new Forall construct is desirable since the DO loop is difficult to
analyze while the F90 syntax is too restrictive.

In summary, this chapter demonstrates the importance of the performance model.
The detailed study of the implementations shows that to create a robust performance
model, the language specification must be sufficiently concise for the programmer to rely

on and for the compiler to implement with consistency.



Chapter 5

Benchmark Comparison

5.1 Introduction

Recently, several commercial HPF compilers have become available, enabling users to
learn HPF, program in it, and directly evaluate the language. The Cornell Supercom-
puter Center has made available to the scientific community a comprehensive set of HPF
compilers and tools for production use. A ZPL compiler developed at the University of
Washington is also publicly available for several parallel platforms, including the KSR,
Intel Paragon, IBM SP2, and Cray T3D. Since no broad evaluation of the language and
the compilers is yet available, this chapter is focused on the effectiveness of HPF and
ZPL in achieving portable and scalable performance for data parallel applications.

We will study in-depth the performance of three NAS benchmarks compiled with
three commercial HPF compilers on the IBM SP2. The benchmarks are: Embarrassingly
Parallel (EP), Multigrid (MG), and Fourier Transform (FT). The HPF compilers include
Applied Parallel Research, Portland Group, and IBM. To evaluate the effect of data
dependences on compiler analysis, we consider two versions of each benchmark: one
programmed using DO loops, and the second using F90 constructs and/or HPF’s Forall
statement. The ZPL compiler is a version ported to the IBM SP2. For comparison, we

also consider the performance of each benchmark written in Fortran with MPI.



112

The MPI results represent a level of performance that the HPF program should
target to be considered a viable alternative. The ZPL version gives an indication of
the performance achievable when the compiler is not hampered by language features

unrelated to parallel computation.

The results show some successes with the F90/Forall programs but the results are
not uniform. For the other programs, the results suggest that Fortran’s sequential na-
ture causes considerable difficulty for the compiler’s analysis and optimization of the
communication. The varying degrees of success among the compilers in parallelizing the
programs, coupled with the absence of a clear model to guide the insertion of directives,
results in an uncertain programming model for users as well as portability problems for

HPF programs.

In related work, APR published the performance of its HPF compiler for a suite of
HPF programs, along with detailed descriptions of their program restructuring process
using the APR FORGE tool to improve the codes [App 95, Friedman et al. 95]. The
programs are well tuned to the APR compiler and in many cases rely on the use of APR-
specific directives rather than standard HPF directives. Although the approach that
APR advocates (program development followed by profiler-based program restructuring)
is successful for these instances, the resulting programs may not be portable with respect
to performance, particularly in cases that employ APR directives. Therefore, we believe
that the suite of APR benchmarks is not well suited for evaluating HPF compilers in

general.

Similarly, papers by vendors describing their individual HPF compilers typically show
some performance numbers, but the benchmarks tend to be selected to highlight the
specific compiler’s strengths. Consequently, it is difficult to perform comparisons across

compilers [Harris et al. 95, Bozkus et al. 95, Gupta et al. 95].

Lin et al. used the APR benchmark suite to compare the performance of ZPL ver-
sions of the programs against the corresponding HPF performance published by APR

and found that ZPL generally outperforms HPF. However, the lack of access to the
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APR compiler did not allow detailed analysis, limiting the comparison to the aggregate
timings [Lin et al. 95].

The goals in this chapter are:

1. An in-depth comparison and analysis of the performance of HPF programs with

three current HPF compilers and alternative languages (MPI, ZPL).
2. A comparison of the DO loop with the F90 array syntax and the Forall construct.
3. A comparison of machine-specific and portable HPF compilers.
4. An assessment of the parallel programming model presented by HPF.

The chapter is organized as follows: Section 5.2 describes the methodology for the
study, including a description of the algorithms and the benchmark implementations.
In Section 5.3, we examine and analyze the benchmarks’ performance, detailing the
communication generated in each implementation and quantifying the effects of data
dependences in the HPF programs. Section 5.4 provides our observations and our con-

clusions.

5.2 Methodology

5.2.1 Overall approach

We study the NAS benchmarks EP, MG and FT [Bailey et al. 91]. MG and FT are
derived from the NAS benchmark version 2.1 (NPB2.1), published by the Numerical
Aerodynamic Simulation group at NASA Ames [Bailey et al. 95]. Previous versions
of the NAS benchmarks were implemented by computer vendors and were intended to
measure the best performance possible on a parallel machine without regard to porta-
bility. NPB2.1 is an MPI implementation by NAS and is intended to measure the best
portable performance for an application. Because NPB2.1 programs are portable and
are originally parallel, they constitute an ideal base for our study. Specifically, NPB2.1

serves two purposes:
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1. The actual NPB2.1 performance serves as the reference point for the HPF imple-

mentations or for any high level language [Saphir et al. 95].

2. The HPF implementations are derived by reverse engineering the MPI programs:
communication calls are removed and the local loop bounds are replaced with
global loop bounds. HPF directives are then added to parallelize the programs.
Conceptually, the task for the HPF compilers is to repartition the problem as

specified by the HPF directives and to regenerate the communication.

Since EP is not available in NPB2.1, we use the version from the benchmark suite
published by APR.

An important issue in an HPF program is how the computation is expressed. It was
recognized that the conventional Fortran DO loop may over-specify the data dependences
in data parallel computations; therefore the Fortran 90 array syntax and the Forall
construct were proposed as better alternatives for expressing parallelism [Forum 93].
Since the NPB2.1 programs (and the derived HPF programs) are written in Fortran
77 with DO loops, we also consider a version in which the DO loops for whole-array
operations are replaced with Fortran 90 syntax or the HPF Forall construct.

To focus on the portability issue, the HPF directives are used according to the HPF
specification within the functionality limit of the compilers; in other words, the programs
are not tuned to any specific compiler. This may put the APR compiler at a disadvantage
since it relies on the APR-provided profiling and program restructuring tools. The
chosen benchmarks use only the basic HPF intrinsics and require only the basic BLOCK
distribution that is supported by all three compilers. Therefore they can stress the
compilers without exceeding their capability.

The implementations in the ZPL language are derived from the same source as the
HPF implementations, but in the following manner: the sequential computation is trans-
lated directly from Fortran to the corresponding ZPL syntax, while the parallel execution

is expressed using ZPL’s parallel constructs.
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5.2.2 Benchmark selection

NPB2.1 contains 7 benchmarks', all of which should ideally be included in the study.
Unfortunately, a portable HPF version of these benchmarks is not available, severely
limiting an independent comparison. While APR and other HPF vendors publish the
benchmarks used to acquire their performance measurements, these benchmarks are
generally tuned to the specific compiler and are not portable. This limitation forces us
to carefully derive HPF versions from existing benchmarks with the focus on portability
while avoiding external effects such as algorithmic differences. The following criteria are

used:

1. The benchmarks should be derived from an independent source to insure objectiv-
ity.
2. A message passing version should be included in the study since the comparison

is not only between HPF and ZPL but also against the target that HPF and ZPL

are to achieve.

3. For HPF, there should be separate versions that employ F77 DO loop and F90/Forall

because there is a significant difference between the two types of construct.

4. There should be no algorithmic differences between versions of the same bench-

mark.

5. Tuning must adhere to the language specification rather than any specific compiler

capability.

6. Because support for HPF features is not uniform, the benchmarks should not

require any feature that is not supported by all HPF compilers.

Considering the benchmark availability in Table 5.1, the sources for NPB1 are gen-
erally sequential implementations. Although they could be valid HPF programs, the

'!One was added recently after this writing
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sequential nature of the algorithms may be too difficult for the compilers to parallelize
and may not reflect a natural approach to parallel programming. In other words, an
HPF programmer may have chosen a specific parallel algorithm and simply wants to im-
plement it in HPF. APR’s sources, as mentioned above, are tuned to the APR compiler;
therefore they are not appropriate as a portable implementation. The NPB2.1 sources
are the best choice since they implement inherently parallel algorithms and they use the
same MPI interface as all compilers being studied.

Among the benchmarks, CG is eliminated simply because it is not available in
NPB2.1. SP, BT and LU cannot be included because they require a block cyclic and 3-D
data distribution that is not supported by all HPF compilers and ZPL. The limitations in
themselves do not prevent these benchmarks to be implemented in HPF and ZPL (indeed
they are); however the implementations will have an algorithmic difference that cannot
be factored from the performance. This leaves only FT and MG as potential candidates.
Fortunately, EP is by definition highly parallel; therefore its sequential implementation

can be trivially parallelized.

5.2.3 Platform

The targeted parallel platform is the IBM SP2 at the Cornell Theory Center. The system
is a distributed memory machine with 512 processors, 48 of which are wide nodes®. The

compilers used in the study include:
e Portland Group pghpf version 2.1
e IBM xlhpf version 1.0
e Applied Parallel Research xhpf version 2.0
e ZPL compiler (SP2 port) from the University of Washington

One potential source of difference between ZPL and HPF performance is that the

ZPL compiler produces C as the intermediate code. In general, Fortran compilers have

2Wide SP2 nodes have wider data path and larger caches.
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Table 5.1: Sources of NAS benchmarks for HPF and ZPL
The left 3 columns show the availability of the sources; the right 3 columns show the

versions needed for the study and the source used.

Available Needed for study

NPB1 | tuned APR | NPB2.1 HPF DO | HPF F90 ZPL
EP yes yes N/A tuned APR | NPBI1 NPB1
FT yes yes yes NPB2.1 NPB2.1 | NPB2.1
CG yes N/A N/A N/A N/A N/A
MG | yes yes yes NPB2.1 NPB2.1 | NPB2.1
SP yes yes yes N/A N/A NPB1
BT yes yes yes N/A N/A N/A
LU yes N/A yes N/A N/A N/A

more opportunities for scalar optimization than a C compiler. To obtain a coarse ap-
proximation of this difference, we converted the FT benchmark from Fortran to C and
compared the performance. For 1 to 8 processors, the Fortran version is 32% to 42%
faster than the C version. This suggests that the observed scalar performance for ZPL

will tend to be conservative.

Processors | Fortran C % A over C
1 4.70 secs | 7.55 secs 38%
4 1.49 secs | 2.20 secs 32%
8 .83 secs | 1.43 secs 42%

All compilers generate MPI calls for the communication and use the same MPIlibrary,
ensuring that the communication fabric is identical for all measurements. Besides the
aggregate timings, the program execution is also traced using the UTE facility [IBM 95]

to measure the major phases of the program and the communication.
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All measurements use the same compiler options and system environment that NAS
and APR specified in their publications, and spot checks confirmed that the published
NAS and APR performances are reproduced in this computing environment. The fol-
lowing sections will briefly describe the benchmarks and give further details on how the

HPF (DO loop and F90/Forall) and ZPL implementations were created.

5.2.4 Embarrassingly Parallel

The benchmark EP generates N pairs of pseudo-random floating point values (z;,y;) in
the interval (0,1) according to the specified algorithm, then redistributes each value z;
and y; onto the range (-1,1) by scaling them as 2z; — 1 and 2y; — 1. Each pair is tested
for the condition:

t; <1 wheret; = azf + yf
If true, the independent Gaussian deviates are computed:
X = z;y/(—2logt;)/t;

Y = y;4/(—2logt;)/t;

Then the new pair (X,Y) is tested to see if it falls within one of the 10 square annuli

and a total count is tabulated for each annulus.
I <maz(|X|,|Y]) <4+ 1 where0 <I1<9

The pseudo-random numbers are generated according to the following linear congru-

ential recursion:
Ty = azy_1 mod 2* where a = 5%, z, = 271828183

The values in a pair (z;,y;) are consecutive values of the recursion. To scale to the (0,1)
range, the value z; is divided by 2%.
Figure 5.1 illustrates the data structure, the general flow of the computation and the

pseudo-codes. Clearly, the computation for each pair of Gaussian deviates can proceed
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independently. Each processor would maintain its own counts of the Gaussian deviates
and communicate at the end to obtain the global sum. The random number generation,

however, presents a challenge. There are two ways to compute a random value zy:

1. z; can be computed quickly from the preceding value x;_; using only one multi-
plication and one mod operation, leading to a complexity of O(n). However, the

major drawback is the true data dependence on the value z;_;.

2. z can be computed independently using k and the defined values of a and z,.
This will result in an overall complexity of O(n?). Fortunately, the property of
the mod operation allows z; to be computed in O(logk) steps by using a binary

exponentiation algorithm [Bailey et al. 91].

The goal then is to balance between method (1) and (2) to achieve parallelism while
maintaining the O(n) cost. Because EP is not available in the NPB2.1 suite, we use the
implementation provided by APR as the DO loop version. This version is structured to
achieve the balance between (1) and (2) by batching (see Figure 5.1(b)): the random
values are generated in one sequential batch at a time and saved; the seed of the batch is
computed using the more expensive method (2), and the remaining values are computed
using the less expensive method (1). A DO loop then iterates to compute the number
of batches required, and this constitutes the opportunity for parallel execution.

The F90/Forall version is derived from the DO loop version with the following mod-
ifications (Figure 5.1(c)):

e All variables in the main DO loop that cause an output dependence are expanded
into arrays of the size of the loop iteration. In other words, the output dependence
is eliminated by essentially renaming the variables so that the computation can
be expressed in a fully data parallel manner. Since the iteration count is just the

number of sequential batches, the expansion is not excessive.

e Directives are added to partition the arrays onto a 1-D processor grid.
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e The DO loop for the final summation is also recoded using the HPF reduction

intrinsic.

A complication arises involving the subroutine call within the Forall loop, which
must be free of side effects in order for the loop to be distributed. Some slight code
rearrangement was done to remove a side effect in the original subroutine, then the
PURE directives were added to assert freedom from side effects. Unfortunately, support
for PURE varies among the compilers. For instance, APR does not support the PURE
and INTENT directives apparently because it performs interprocedural analysis to detect
the side effects. APR and PGI do not allow a function to return an array, thus precluding
an implementation similar to the ZPL implementation.

The ZPL version is translated in a straightforward manner from the DO loop ver-
sion. The only notable difference is the use of the ZPL region construct to express the

independent batch computation (Figure 5.1(d)).

5.2.5 Multigrid

Multigrid is interesting for several reasons.

First, it illustrates the need for data parallel languages such as HPF or ZPL. The
NPB2.1 implementation contains over 700 lines of code for the communication — about
30% of the program — which are eliminated when the program is written in a data parallel
language.

Second, since the main computation is a 27-points stencil, the reference pattern that
requires communication is simply a shift by a constant, which results in a simple neighbor
exchange in the processor grid. All compilers (ZPL and HPF) recognize this pattern well
and employ optimizations such as message vectorization and storage preallocation for
the nonlocal data [App 95, Gupta et al. 95, Chamberlain et al. 95, Bozkus et al. 95].
Therefore, although the benchmark is rather complex, the initial indication is that both
HPF and ZPL should be able to produce efficient parallel programs.

The benchmark is a V-cycle multigrid algorithm for computing an approximate so-
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Figure 5.1: Illustrations of EP as implemented in HPF and ZPL.

Note: the pseudo-codes and the data structures distributed onto two processors.
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lution to the discrete Poisson problem:
Viu=v

2 ; 2, — (82 & &
where V? is the Laplacian operator VZu = (5, 57 7)

The algorithm consists of 4 iterations of the following three steps:
r=v—A-u (1) evaluate residual
z= M*r (2) compute correction

U=1u+2z (3) apply correction

where A is the trilinear finite element discretization of the Laplace operator V2, M* is
the V-cycle multigrid operator as defined in the NPB1 benchmark specification (section
2.2.2). Figure 5.2 illustrates these three steps together with the data structures: the
down cycle and up cycle constitute step (2), compute correction. The interpolation and
projection of the hierarchical grids during the down and up cycle are also illustrated
for the 2-D case; note that the actual arrays are 3-D. For further details, the reader is
referred to the NPB1 specification [Bailey et al. 91] as well as other publications on the
vendor implementations [Agarwal et al. 95].

The algorithm implemented in the NPB2.1 version consists of three phases: the first
phase computes the residual, the second phase is a set of steps that applies the M*
operator to compute the correction while the last phase applies the correction.

The HPF DO loop version is derived from the NPB2.1 implementation as follows:

e The MPI calls are removed.
e The local loop bounds are replaced with the global bounds.

e The use of a COMMON block of storage to hold a set of arrays of different sizes is

incompatible with HPF; therefore the arrays are renamed and declared explicitly.

o HPF directives are added to partition the arrays onto a 3-D processor grid. The
array distribution is maintained across subroutine calls by using the transcriptive

directives to prevent unnecessary redistribution.
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Figure 5.2: lllustrations for the Multigrid algorithm.
Note: (a) The arrays U, V, Ry, Z;, are full sized 3-d arrays; R;, Z; for k—1 <7 <1
are hierarchically scaled arrays. (b) This is a 2-D example of the multigrid interpolation

and projection; the actual computation is 3-D.
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The HPF F90/Forall version requires the additional step of rewriting all data parallel
loops in F90 syntax.

The ZPL version has a similar structure to the HPF F90/Forall version, the notable
difference being the use of strided region to express the hierarchy of 3-D grids. A strided
region is a sparse index set over which data can be declared and computation can be

specified.

5.2.6 Fourier Transform

Consider the partial differential equation for a point z in 3-D space:

du(z,t)
ot

The FT benchmark solves the PDE by (1) computing the forward 3-D Fourier Transform

= aVu(z,t)

of u(z,0), (2) multiplying the result by a set of exponential values, and (3) computing the
inverse 3-D Fourier Transform. The problem statement requires 6 solutions, therefore
the benchmark consists of 1 forward FFT and 6 pairs of dot products and inverse FFTs.

The NPB2.1 implementation follows a standard parallelization scheme, illustrated in
Figure 5.3 [Bailey et al. 95, Agarwal et al. 94a]. The 3-D FFT computation consists of
traversing and applying the 1-D FFT along each dimension. The 3-D array is partitioned
along the third dimension to allow each processor to independently carry out the 1-D FFT
along the first and second dimension. Then the array is transposed to enable the traversal
of the third dimension. The transpose operation constitutes most of the communication
in the program. Note that the program requires moving the third dimension to the first
dimension in the transpose so that the memory stride is favorable for the 1-D FFT;
therefore the HPF REDISTRIBUTE function alone is not sufficient®.

The HPF DO loop implementation is derived with the following modifications:

1. HPF directives are added to distribute the arrays along the appropriate dimension.
Transcriptive directives are used at subroutine boundaries to prevent unnecessary

redistribution.

SHPF data distribution specifies the partition to processor mapping, not the memory layout.
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Figure 5.3: lllustrations of FT implementation.

Note: (1) The 3-D arrays X0, X2 and X3 are partitioned along dimension 2; X1 is
partitioned along dimension 3; (2) The arrows in the arrays show the direction of the

1-D FFT.
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2. The communication for the transpose step is replaced with a global assignment

statement.

3. A scratch array that is recast into arrays of different ranks and sizes between
subroutines is replaced with multiple arrays of constant rank and size. Although
passing an array section in a formal argument is legitimate in HPF, some HPF

compilers have difficulty managing array sections.

The HPF F90/Forall version requires the additional step of rewriting all data parallel
loops in F90 syntax.
The ZPL implementation allocates the 3-D arrays as regions of 2-D arrays; the trans-

pose operation is realized with the ZPL permute operator.

5.3 Parallel Performance

In this section we examine the performance of the programs. Because the execution time
may be excessive depending on the success of the compilers, we first examine the small
problem size (class S), then the programs with a reasonable performance and speedup
with the large problem size (class A). Figure 5.4, 5.5 and 5.6 show the aggregate timing
for all versions (MPI, HPF, ZPL) and for the small and large problem size (class S,
class A). The following discussion will focus on (1) the scalability and (2) the scalar

performance, and examine the causes for any problems with (1) and (2).

5.3.1 NAS EP benchmark

In Figure 5.4(a), the first surprising observation is that the IBM and PGI compilers
achieve no speedup with the HPF DO loop version although the APR compiler produces
a program that scales well (recall that the EP DO loop version is from the APR suite).
Inspecting the code reveals that no distribution directives were specified for the arrays,
resulting in a default data distribution. Although the default distribution is implemen-

tation dependent, the conventional choice is to replicate the array. The IBM and PGI
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compilers distribute the computation by the owner-computes rule*; therefore, in order
for the program to be parallelized, some data structures must be distributed. Since
the arrays in EP are replicated by default, no computation is partitioned among the

processors: each processor executes the full program and achieves no speedup.

By contrast, the APR parallelization strategy does not strictly adhere to the owner-
computes rule. This allows the main loop to be partitioned despite the fact that none
of the arrays within the loop are distributed. Note that the HPF language specification
does not specify the default distribution for the data nor the partitioning scheme for
the computation. The omission was likely intended to maximize the opportunity for the
compiler to optimize; however the observation for EP suggests that the different schemes

adopted by the compilers may result in a portability problem with HPF programs.

When directives were inserted to distribute the arrays, it was found that the main
array in EP is intended to hold pseudo-random values generated sequentially, therefore
there exists a true dependence in the loop computing the values. If the array is distrib-
uted, the compiler will adjust the loop bounds to the local partition, but the computation

will be serialized.

The HPF F90/Forall version corrects this problem by explicitly distributing the ar-
rays and the IBM and PGI compilers were able to parallelize. The class A performance in
Figure 5.4(b) shows that all compilers achieve the expected linear speedup. However, ex-
panding the arrays to express the computation into a more data parallel form introduces
overhead and degrades the scalar performance. It is possible for advanced compiler op-
timizations such as loop fusion and array contraction to remove this overhead, but these

optimizations were either not available or not successful in this case.

The ZPL version scales linearly as expected and the scalar performance is slightly

better than the APR version despite the C/Fortran difference described earlier.

*PGI can also deviate from the owner-computes rule in some case.
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5.3.2 NAS MG benchmark

Compared to EP, MG allows a more complete and rigorous test of the languages and
compilers. We first discuss the performance for the class S in Figure 5.5(a).

The p=1 column shows considerable variation in the scalar performance with all ver-
sions showing overhead of 1 to 2 orders of magnitude over the Fortran/MPI performance.

For the base cases, both the original MPI program and the ZPL version scale well.
The ZPL compiler partitions the problem in a straightforward manner according to the
region and strided region semantics, and the communication is vectorized with little
effort. The scalar performance does however show over a 6x overhead compared to the
MPI version.

The HPF DO loop version clearly does not scale with any HPF compiler.

The PGI compiler performs poorly in vectorizing the communication when the com-
putation is expressed with DO loops: the communication call tends to remain in the
inner most loop, resulting in a very large number of small messages being generated. In
addition, the program uses guards within the loop instead of adjusting the loop bound.

The APR compiler only supports a 1-D processor grid, therefore the 3-D distribution
specified in the HPF directives is collapsed by default to a 1-D distribution. This limi-
tation affects the asymptotic speedup but does not necessarily limit the parallelization
of the 27-point stencil computation. For one subroutine, the compiler detects through
interprocedural analysis an alias between two formal arguments, which constitutes an
inhibitor for the loop parallelization within the subroutine. However, the analysis did
not go further to detect from the index expressions of the array references that no de-
pendence actually exists. For most of the major loops in the program, the APR compiler
correctly partitions the computation along the distributed array dimension, but gener-
ates very conservative communication before the loop to obtain the latest value for the
RHS and after the loop to update the LHS. As a result, the performance degrades with
the number of processors.

The IBM compiler does not parallelize because it detects an output dependence on a
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number of variables although the arrays are replicated. In this case, the compiler appears
to be overly conservative in maintaining the consistency of the replicated variables. Other

loops do not parallelize because they contain an IF statement.

The INDEPENDENT directive is treated differently by the compilers. The PGI
compiler interprets the directive literally and parallelizes the loop as directed, while the
IBM compiler nevertheless performs a more rigorous dependence check and elects not to

parallelize the loop because of detected dependences.

For the HPF F90/Forall version, the IBM and PGI compilers are more successful.
The IBM compiler performance and scalability approach ZPL’s, while the PGI compiler
now experiences little problem in vectorizing the communication. Indeed, PGI’s scalar
performance now exceeds IBM’s. The APR compiler does not result in slowdown but does
not achieve any speedup either. It partitions the computation in the F90/Forall version
similarly to the DO loop version, but is able to reduce the amount of communication.
It continues to be limited by its 1-D distribution as well as an alias problem with one
subroutine. Note that the version of MG from the APR suite employs APR’s directives
to suppress unnecessary communication. These directives are not used in our study
because they are not a part of HPF, but it is worth noting that it is possible to use
APR’s tools to analyze the program and manually insert APR’s directives to improve

the speedup with the APR compiler.

Given that the DO loop version fails to scale with any compiler, one may conjecture
whether the program may be written differently to aid the compilers. The specific causes
for the failure of each compiler described above suggest that the APR compiler would
be more successful if APR’s directives are used, that the PGI compiler may benefit from
the HPF INDEPENDENT directive, and that the IBM compiler would require actual
removal of some data dependences. Therefore, it does not appear that any single solution

is portable across the compilers.

Since the HPF DO version does not scale, the class A data only includes MPI, ZPL
and HPF F90/Forall (Figure 5.5(b)). MPI and ZPL again exhibit good speedup but the
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ZPL overhead persists. IBM and PGI also achieve speedup but PGI appears to level off
quickly while IBM shows yet higher overhead than ZPL. APR on the other hand does
not achieve any speedup as predicted with the small problem size; the APR plot is not
shown because the execution runs timed out. Note that the MG performance published
by APR is competitive with ZPL’s performance. However, the MG benchmark made
available by APR not only relies on APR’s directives but can be compiled by neither
IBM nor PGI because of the use of SEQUENCE, an incompatible memory layout feature.

MG thus illustrates that (1) HPF programs can achieve some speedup, and (2) when
tuned to a specific compiler such as APR, the programs can achieve the same level of
performance as ZPL. However, it is difficult to guarantee scalability and portability in

HPF programs.

5.3.3 NAS FT benchmark

FT presents a different challenge to the HPF compilers. In terms of the reference pattern,
FT consists of a dot product and the FFT butterfly pattern. The former requires no
communication and is readily parallelized by all compilers. For the latter, the index
expression is far too complex for a compiler to optimize the communication. Fortunately,
the index variable is limited to one dimension at a time; therefore the task for the compiler
is to partition the computation along the appropriate dimensions. The intended data
distribution is 1-D and is thus within the capability of the APR compiler.

Figure 5.6(a) shows the full set of performance results for the small problem size. As
with MG, the MPI and ZPL versions scale well and the scalar performance of all HPF
and ZPL implementations shows an overhead of 1 to 2 orders of magnitude over the MPI
implementation.

For the HPF DO loop version, the APR compiler exhibits the same problem as
with MG: it generates very conservative communication before and after many loops.
In addition, the APR compiler does not choose the correct loop to parallelize. The

discrepancy arises because APR’s strategy is to choose the partitioning based on the
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array references within the loop. In the program, the main computation and thus the
array references are packaged in a subroutine called from the loop so that when the loop
is parallelized, the subroutine will operate on the local data. When the APR compiler
proceeds to analyze the loops in this subroutine (1-D FFT), it finds that the loops are
not parallelizable.

The PGI compiler also generates poor communication, although its principal limita-
tion is in vectorizing the messages. The IBM compiler does not parallelize because of
assignments to replicated variables.

The HPF F90/Forall version requires considerable experimentation and code restruc-
turing to arrive at a version that is accepted by all compilers, partly because of differences
in supported features among the compilers and partly because of the nested subroutines
structure of the original program. All HPF compilers achieve speedup to varying de-
grees. APR is particularly successful since the principal parallel loop has been moved
to the innermost subroutine. Its scalar performance approaches the MPI’s performance,
although communication overhead limits the speedup. PGI shows good speedup while
IBM’s speedup is more limited.

For the class A problem size, the memory requirement proves to be considerable
since several programs fail the p=8 configuration. Unfortunately, the Cornell system
only has 48 wide nodes out of its 512 nodes; this limits the set of the data points. The
memory requirement also manifests itself in some superlinear speedup for all HPF and
ZPL programs. Nevertheless, the overall observation is that the programs achieve the
expected speedup. ZPL scalar performance is lower than the HPF performance; however,
when we take into account the 40% slowdown from C to Fortran measured earlier for

FT, ZPL parallel performance is comparable to HPF.

5.3.4 Communication

Table 5.2 shows the total number of MPI message passing calls generated and the dif-

ferences in the communication schemes employed by each compiler. The APR and PGI
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Table 5.2: Communication statistics for EP class A, MG class S and FT class S: p=8

Benchmark version point-to-point | collective | type of MPI calls

EP (class A) | ZPL 0 120 | Allreduce, Barrier
APR DO loop 31 0 | Send, Recv
IBM F90 70 120 | Send, Recv, Bcast
PGI F90 240 0 | Send, Recv

MG (class S) | MPI 2736 40 | Send, Trecv, Allreduce, Barrier
ZPL 9504 56 | Isend, Recv, Barrier
APR F90 126775 8 | Send, Recv, Barrier
IBM F90 9636 32 | Send, Recv, Irecv, Bcast
PGI F90 22191 0 | Send, Recv

FT (class S) | MPI 0 104 | Alltoall, Reduce
ZPL 1064 32 | Isend, Recv, Barrier
APR F90 58877 8 | Send, Recv, Barrier
IBM F90 728 258048 | Send, Irecv, Bcast
PGI F90 64603 0 | Send, Recv

compilers only use the generic send and receive while the IBM compiler also uses the

nonblocking calls and the collective communication; this may have ramifications in the

portability of the IBM compiler to other platforms. The ZPL compiler uses nonblock-

ing MPI calls to overlap computation with communication as well as MPI collective

communication.

5.3.5 Data Dependences

HPF compilers derive parallelism from the data distribution and the loops that operate

on the data. Loops with no dependences are readily parallelized by adjusting the loop
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bounds to the local bounds. Loops with dependences may still be parallelizable but will
require analysis; for instance, the IBM compiler can detect some dependence patterns of
loops that perform a reduction and generate the appropriate HPF reduction intrinsic.
In other instances, loop distribution may isolate the portion containing the dependence
to allow the remainder of the original loop to be parallelized. To approximately quantify
the degree of difficulty that a program presents to the parallelizing compiler in terms of

dependence analysis, we use the following simple metric:

count of all loops with dependences

count of all loops

A value of 0 would indicate that all loops can be trivially parallelized, while a value
of 1 would indicate that whether any loop is parallelizable depends on the analysis
capability of the compiler. Using the KAPF tool, we collect the loop statistics from
the benchmarks for the major subroutines; they are listed in Table 5.3. This metric
is not complete since it does not account for the data distribution; for instance, for 3
nested loops and a 1-D distribution, only 1 loop needs to be partitioned to parallelize the
program and 2 loops may contain dependences with no ill effect. However, the metric
gives a coarse indication for the demands on the compiler.

The loop dependence statistics show clear trends that correlate directly with the
performance data. We observe the expected reduction in dependences from the DO
loop version to the F90/Forall version. The reduction greatly aids the compilers in
parallelizing the F90/Forall programs, but also highlights the difficulty with parallelizing
programs with DO loops.

For MG, the difference is significant; the array syntax eliminates the dependences in
most cases. Some HPF compilers implement optimizations for array references that are
affine functions of the DO loop indices, particularly for functions with constants. These
optimizations should have been sufficient for the MG DO loop version, however it does
not appear that they were successful. Note that the loops in the subroutine norm2u3
are replaced altogether with the HPF reduction intrinsics.

For FT, the low number of dependences in fftpde comes from the dot-products which
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Table 5.3: Dependence ratio Z* for EP, MG and FT.
Note: m is the count of loops with data dependences or subroutine calls, and n is the

total loop count.

subroutine DO | F90/Forall subroutine DO | F90/Forall

EP | embar 3/5 1/31 MG | hmg 1/2 1/27
vrandle 1/1 - mg3P _up 1/1 1/22
get_start_seed - 1/1 mg3P _down | 1/1 1/1

FT | fitpde 2/16 2/16 psinv 4/4 0/6
cfft3 0/6 0/6 resid 4/4 0/6
ciftsl 2/6 1/7 rprj3 4/4 0/6
cffts2 2/6 1/7 interp 7/21 0/30
ciftz 3/5 1/4 norm2u3 3/3 0/0
{ftz2 3/3 3/4 comm3 0/6 0/18

are easily parallelized. The top-down order of the subroutines listed also represents the
nesting level of the subroutines. The increasing dependences in the inner subroutine
reflect the need to achieve parallelism at the higher level. As explained earlier, this
proves to be a challenge to the APR compiler which focuses on analyzing individual

loops to partition the work.

5.4 Conclusion

Our objective in this chapter has been to subject the current state of the art compilers
for data parallel languages to more substantive applications. Three NAS benchmarks
were studied across three current HPF compilers and a ZPL compiler. We examined
different styles of expressing the computation in HPF and we also consider the same

benchmarks written in MPI to understand the limits of the performance.
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The three HPF compilers show a general difficulty in detecting parallelism from DO
loops. They are more successful with the F90 array syntax and the Forall construct,
although even in this case the success in parallelization is not uniform. Significant

variation in the scalar performance also exists between the compilers.

The ZPL compiler shows consistent speedup and performance competitive with the

HPF compilers.

While differences between compilers will always be present, the differences must pre-
serve a certain performance model in order for program portability to be maintained in
the language. In other words, the user must be able to use any compiler to develop a
program that scales, then have the option of migrating to a particular machine or com-
piler for better scalar performance. This requires a tight coupling between the language
specification and the compiler in the sense that the compiler must reliably implement
the abstraction provided in the language. To this end, the language specification must
serve as a consistent contract with the programmer, or more formally, the language must

provide a concise performance model.
In the case of HPF, the results point to two difficulties.

First, while the HPF directives and constructs provide information on the data and
computation partitioning, the sequential semantics of Fortran leave many potential de-
pendences in the program. An HPF compiler must analyze these dependences, and when
unable to do so, it must make a conservative assumption. Although this analysis capa-
bility differentiates different vendor implementations, the difficulty for the compilers to
parallelize reliably leads to a difficulty for the user in predicting the parallel behavior
and thus the speedup of the program. A direct result is that the user needs to con-
tinually experiment with the compilers to learn their actual behavior. In doing so, the
user is effectively supplementing the performance model provided by the language with
empirical information. Yet, such an enhanced model tends to be platform specific and

not portable.

Second, the optional nature of the directives, while fostering compatibility and a
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smoother transition from a current language, leads to an uncertain performance model
for the user. In other words, it is not clear how much effort from the user is necessary
or sufficient; for instance, the INDEPENDENT directive may or may not parallelize a
loop depending on the compiler implementation.

In this respect, the ZPL language addresses some of these problems by providing a
clear demarcation between parallel and sequential execution. The results demonstrate
that ZPL offers a consistent performance model and scalable performance.

The results also show that significant overhead remains in all implementations com-
pared to the MPI programs. One source for the overhead is the large number of tem-
porary arrays generated by the compiler across subroutine calls and parallelized loops.
They require dynamic allocation/deallocation and copying, and generally degrade the
cache performance. It is clear that to become a viable alternative to explicit message

passing, compilers for data parallel language must achieve a much lower overhead.



Chapter 6

Mighty Scan, parallelizing

sequential computation

6.1 Introduction

The general objective for a parallelizing compiler is to analyze and detect the dependences
in the program so that when there are none the computation can be scheduled to proceed
in parallel. However, when a true dependence exists, serialization occurs and a different
approach must be employed to achieve parallelism. In this discussion, we focus on the
case where the dependence occurs along one dimension of one or several arrays. Such a
computation typically involves traversing the array(s) and updating each element using
the values of the preceding elements. Because a true dependence exists, the computation
is conceptually sequential. A simple example is the parallel prefix operation (scan) on an
array. A more complex example involving multiple arrays and arithmetic operations is
the forward elimination and backward substitution steps in a solver for linear equations.

The solution for this problem exists in many forms depending on the particular
case. When the operator is commutative and associative and only one array is involved,
the computation is known as the parallel prefix operation. Because it is frequently

used and an efficient parallel algorithm exists, parallel prefix is often supported directly
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in communication interfaces such as MPI (MPI Prefix) and in high level data parallel
languages such as HPF and ZPL. Since these implementations are well optimized, we

can consider the parallel prefix problem to be solved.

However, when the operator is not commutative or associative and multiple arrays are
involved, no direct support currently exists in either the libraries or the languages. For
message passing programs, this does not present a serious obstacle since the relatively low
programming level allows considerable freedom in implementing any algorithm. In this
case, pipelining has proven to be very effective when additional coarse grain parallelism
exists in addition to the sequential computation. When the program is written in a data
parallel language, the solution is also straightforward if the programmer has freedom
in choosing the array partitioning scheme. For instance, if the sequential computation
proceeds along the first dimension of a 2-D array (as illustrated in Figure 6.1(a)), the
array can simply be partitioned along the second dimension onto a 1-D processor grid
so that there is no interprocessor dependence. This allows each processor to proceed
independently. However, it is often the case that the best partitioning scheme for the
overall problem requires the first dimension to be partitioned also, for instance a 2-D
array onto a 2-D processor grid as shown in Figure 6.1(b). In this case, all processors in

the first dimension will be serialized during the sequential computation.

The problem described above thus sets the stage for our discussion. Assume: (1) a
program written in a data parallel language (HPF or ZPL), (2) a computation that is
semantically sequential along dimension ¢ of some array(s) and, (3) a partitioning scheme
that requires dimension ¢ to be distributed onto a processor grid. The goal is to avoid

the serialization of the processor set onto which the sequential computation is mapped.

In the remainder of this chapter, Section 6.2 will describe a number of solutions,
their implementations in HPF and ZPL and their shortcomings. Then Section 6.4 will

propose the specifications for a new language construct that offers the best solution.
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Figure 6.1: Two methods for array partitioning.

Note: (a) no dependence across processors, fully parallel; (b) dependence exists, some

processors serialized.

6.2 A case study

For the case study, we will use the widely studied tomcatv benchmark since it embodies
the essential characteristics while remaining sufficiently simple to facilitate our analysis.
A much more complex and realistic case is the NAS SP and BT benchmarks, which are
large scale partial differential equation (PDE) solvers, typically used in computational
fluid dynamics (CFD). The version of tomcatv under study is from the suite of HPF
benchmarks published by APR, which has been restructured and annotated with direc-

tives for HPF. The computation consists of a 2-phase iteration over several 2-D arrays:
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Phase 1is a 9-point stencil computation and Phase 2 is a solver for a tridiagonal system
of linear equations. Phase 2 exhibits a true dependence along the first dimension; there-
fore it motivates distributing the array along the second dimension. However, Phase 1
favors a 2-D partition for better scalability.

The forward elimination step of Phase 2 consists of the following (the backward

substitution step is similar):

DOi=2,n
DOj=2,m
r(1,i) = aa(j,i) * d(j - 1,i)
d050) = 1. / (dd(3) - aa - 1) * 1(1,D)
rx(j,1) = rx(§,i) - rx(§-1,i) * r(1,i)
y(d) = 1y(3) - 1y(-1Li) * x(1)
ENDDO
ENDDO

The characteristics of this computation can be summarized as:

1. Sequential dependence in the j dimension: no parallelism.
2. No dependence in the ¢ dimension: available parallelism.

3. Multiple arrays and arithmetic operations are involved.

Since tomcatv is a small program, the difference in the partitioning choice may not be
significant'. However for larger problem sizes or larger programs such as the NAS SP and
BT benchmark, the asymptotic difference becomes clear. Specifically, Naik showed that
for SP on the IBM SP/1, a 3-D partitioning can be 66% faster than a 1-D partitioning

on 16 processors [Naik 94].

6.2.1 Idealized execution

Figure 6.2 shows three possible parallel executions of the loops, assuming that the mxn =

4 x 4 array is distributed onto a P, X P, = 2x 2 processor grid. The solid time line for each

! This proves to be a mitigating circumstance for the APR compiler which only accepts 1-D processor

grid.
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Figure 6.2: Three possible parallel executions.

processor represents the computation required for the 2 X 2 array section that it owns.
In all cases, loop ¢ is fully parallel; the only difference is in how loop j is parallelized.
In case (a), loop j remains serialized: the P, processors fail to execute in parallel
and the speedup is limited to P.. In case (b), loop 7 still executes sequentially, but
by employing pipelining, partial results are forwarded to allow the waiting processors to
initiate their execution earlier. The overhead to start and finish the pipeline will degrade
the overall speedup to bP.P., where b < 1. In case (c), loop j proceeds effectively

in parallel. This is possible if an efficient parallel algorithm exists for the ;7 loop: if

PP,

the parallelization overhead can be limited to O(log P.), a speedup of O(logP,

) can be

achieved.

6.2.2 An algorithmic approach

We now consider an algorithmic approach for parallelizing in the 7 dimension. It is

algorithmic since it relies on unique properties of the intended computation instead of
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the language construct. This approach parallelizes the scan operation itself, resulting in
an execution similar to Figure 6.2(c). One important advantage is that no other source
of parallelism is required (e.g., parallelism in the ¢ dimension).

Parallel prefix is an example of a sequential computation that can be parallelized
effectively with an overhead of O(log P). The parallel algorithm in this case requires
that the operator be associative so that the partial results can be combined arbitrarily.
This requirement is too restrictive for the general scan operation that we are considering.
However, with careful manipulation, it may be possible to factor out from the sequential
computation certain components that can be computed in parallel. Then we can examine
if the remaining components can be computed with a reasonable overhead. These two
steps would constitute the two phases of a parallel implementation of scan: (1) compute
locally and (2) communicate and update.

Consider a scan computation that is slightly more complex than a simple summation
and that is similar (but not identical) to that found in tomcatv. For array (1 : 16) and

b(1:16):

DO i=2,16
x() = x(i) + x(i-1) * b(i-1)
ENDDO

Although the code has the structure of a scan operation, we cannot use the parallel prefix
algorithm because the combination of + and * is not associative. However, if the terms

are expanded completely, the computation can be expressed as follows:
z, = I
T, = zib 4z,
T3 = Z1b1by + 230y + 25
Ty = T1b1babs + 22bobs + z3bs + T4
-1

L
Ty = Z(% H b;) + zx
ji=1 i

=J
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Let processor P own a section (m : n) of the arrays. Then in computing each new
element in its array section, the summation expression can be split into two components.

For element x,, specifically:

m—1 n—1 n—1 n—1
2o o= (e [T o)+ D (e T 0) + 2
izt igj j=m  izj

Note that the second term involves only local elements in the array section (m : n);
therefore processor P can proceed to compute this component independently. Note also
that for the first term, the upper limit for the summation is m — 1 and for the product
is » — 1. This allows us to factor the common b, thus further splitting the first term into

three factors:

n—1 m—1 n—1 n—1 n—1
Ty = Hbj*bm—l*(2($j b)) + Tm-1) + Z(%’Hbi)‘l'%L
j=m j=1 1=j] j=m 1=j]

Clearly for the first term, the first factor H;L:_;L b; can be computed locally. The third
factor is simply the value for z,,_; computed by its owner processor, which incidentally
also owns the second factor b,,_;.

A parallel algorithm can finally be described:

1. Compute locally: zj = Zf;;(:c] Hf:_jl b)+zr,m<k<n
. Compute locally: H;L:_;L b;
. Receive from preceding processor: @,,_1 * b,,_1

2
3
4. Update z,, first using the results from 1, 2 and 3
5. Send to next processor: z, * b,

6

. Update remaining elements ,,.,_1

Considering the complexity, the local computation in steps 1, 2 and 6 requires
O(N/P) where N is the array size and P is the number of processors. Although the
communication is sequential, it occurs after the main parallel computation and only one

operation is interposed between each message; therefore the serialization effect is limited
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to O(P). A compiler that implements this algorithm may generate the following SPMD

program.

/* local computation */

for (i=mylo+1; i<=myhi; i++) {
x(i) = x(i) + x(i-1) * B(i-1);
myB = myB * B(i);

¥

/* update and forward */

recv_val = receive(ProcID-1);

send_val = (myB * recv_val + x(myhi)) * B(myhi);

send(ProcID+1, send_val);

/* local update */

for (i=mylo; i<=myhi; i++) {
x(i) = x(i) + recv_val,

recv_val = recv_val * b(i);

The exercise above shows that it is possible to parallelize a scan operation that is
not associative. However it also demonstrates that the parallelization for a general scan
requires significant analysis that is not easily automated by a compiler nor conveniently

performed by the user. This motivates us to consider simpler alternatives.

6.2.3 Pipelining

Pipelining is a ubiquitous and very effective technique for parallelism. One of its ad-
vantages is simplicity: the concept is easily understood and the technique can be easily
applied. The regular nature of pipelining also lends itself well to performance tuning
to balance the trade-off between platform specific parameters. Pipelining can occur at
virtually any level of granularity. Microprocessors employ pipelining effectively at the
instruction level to increase the throughput. We are interested in pipelining at a coarser
level where an algorithm is implemented. In this case, a prerequisite for pipelining is
the availability of additional parallelism outside the computation having the true depen-

dence.
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Figure 6.2(b) illustrates the execution for tomcatv if the loop is pipelined in the j
dimension. The goal is to make available as early as possible any result for which a
dependence exists. Thus instead of completing all j iterations before performing any
communication, processor PO and P2 would send the new values at the end of each j

iteration to processor P1 and P3 so that they can initiate their execution immediately.

Currently, pipelined execution is not provided as a programming construct in any
data parallel language. Since a compiler is free to perform the analysis and generate
any execution schedule, one may question whether a compiler can generate the pipelined
code from the existing data parallel constructs? Although no fundamental barrier exists,

there are several difficulties.

First, the compiler must be able to detect the opportunity for pipelining. The con-
ventional DO loop has been shown to be difficult to analyze in general. At the same
time, the F90 and Forall semantics in HPF and the region semantics in ZPL call for a
synchronization after each array statement, while pipelining typically spans across mul-
tiple statements. In each case, the dependences are over-specified and the compiler must

perform analysis to detect the opportunity.

Second, the optimization objective in pipelining may be in conflict with other opti-
mization techniques[Choi & Snyder 97]. For instance, message vectorization attempts to
combine multiple messages into one to amortize the message startup cost[Choi & Snyder
97]. When applied to the j loop in tomcatv, this optimization will favor moving the
communication outside the 7 loop so that all individual messages in the loop will be
combined into one message. This transformation is productive in many cases, but in
this case it serializes the execution (see Figure 6.2). At the same time, applying pipelin-
ing aggressively may not be beneficial since attempting to make newly computed values
available to waiting processors as early as possible may easily increase the number of
messages while decreasing the message size. In this case, the high message startup cost

may dominate the benefit of pipelining.

Third, the pipelining is not a part of the language semantics; therefore, a user who
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wishes to implement a pipelined algorithm has no means to directly express it. Rather,

the user must rely on the optimization features of the compiler.

6.3 Implementations by HPF and ZPL

Having presented the desired solutions, we now examine how the sequential computation
is expressed and implemented in HPF and ZPL. We can expect that the compilers will
have little problem generating parallel codes for the ¢ dimension in tomcatv. Although
parallelizing the j dimension is difficult, no fundamental barrier prevents the compiler
from parallelizing the loop[Cytron 86]. In particular, we are interested in finding if the
compilers can detect and implement pipelining as described in the previous section.
Table 6.1 shows the tomcatv forward elimination step expressed in HPF using DO
loops and F90 array statements, and in ZPL using dynamic regions. Table 6.2 shows the
pseudo-code for the implementations by HPF and ZPL. We will consider the PGI and
IBM HPF compiler and the ZPL compiler; APR is not included because it is limited to

partitioning one array dimension.

6.3.1 DO loop implementation

For programs using DO loops, HPF provides the INDEPENDENT directive to customize
the dependences (Figure 6.1(a)). In our case, this approach provides the compiler with
the most precise information about the true dependences since an HPF compiler can
easily assume that the ¢ loop has no loop dependences while the j loop does. With this
information, the IBM and PGI compilers generate the implementations described by the
SPMD pseudo-codes in Table 6.2. The principal distinction between the implementations
is the placement of the communication and computation, and whether the loops are
parallelized.

The DO loop version is observed in two variations to test the compiler analysis: the
INDEPENDENT 4 loop is placed as the outer loop in DO(1) and as the inner loop

in DO(2). Examining the placement of the communication among the computation in
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Table 6.1: The forward elimination step from tomcatv.
Note: The arrays are distributed onto a 2-D processor grid.

(a) HPF DO loop version:
(b) HPF F90 version:
'HPF$ INDEPENDENT
DOi=2,n DOj=2,m
Dro(lji):—2 ;:?. i) * 4 - 1,0) r(1,2:n) = aa(j,2:n) * d(j - 1,2:n)

o) = Bl B - . d(j,2:n) = 1. / (dd(j,2:n) - aa(j-1,2:n) * £(1,2:n))
d(‘]’.l) =1 /.(.dd(‘]’l)._ a.a(‘]*_ 1’1) r(1.)) rx(j,2:n) = rx(j,2:n) - rx(j-1,2:n) * r(1,2:n)
IX(‘!’}) - IX(‘!’}) ) IX(‘!_I’}) N r(l,}) ry(j,2:n) = ry(j,2:n) - ry(j-1,2:n) * r(1,2:n)
ry(3,i) = ry(3,i) - ry(-1,1) * =(L,i) ENDDO

ENDDO
ENDDO

(c¢) ZPL version:

for j:= 2 to m do

[[7,2..n]] begin
R:=AA*D@north;
D:=1.0/(DD-AA@north*R);
Rx:=Rx-Rx@north*R:
Ry:=Ry-Ry@north*R;

end;
end

Table 6.2, we find that for DO(1), the IBM compiler follows a straightforward approach
by serializing the processors along the 7 dimension. PGI avoids the serialization by
redistributing the 4 arrays involved in the computation from 2-D to 1-D so that they are
only partitioned along the ¢+ dimension. Then each processor can proceed independently
along the j loop, and upon exiting the loops, the arrays are redistributed to return to
their original distribution. The array redistribution overhead is significant; therefore
PGI’s approach is not likely to be scalable?.

The DO(2) variation is functionally equivalent to DO(1). The IBM compiler is able
to determine this fact and generate the same code as DO(1), but the PGI compiler
generates a different implementation. Instead of redistributing as before, communication

is inserted to fetch all RHS before and to update all LHS after the ¢ loop. This scheme

2PGI’s approach also deviates from the owner-computes rule, illustrating that owner-computes is not
uniformly enforced.
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Table 6.2: Pseudo-code for the tomcatv segment by HPF and ZPL compilers.
Note: The INDEPENDENT loop is the outer loop in DO(1) and the inner loop in DO(2).

version | IBM PGI ZPL
DO (1) | sendrev(aa) sendrecv(aa) N/A
recv(d) sendrecv(d)
recv(rx) sendrecv(rx)
recv(ry) sendrecv(ry)
do j=part do i=part
do i=part do j=full
r,d, rx, ry = ... r,d, rx, ry = ...
enddo enddo
enddo enddo
send(d) sendrecv(rx)
send(rx) sendrecv(ry)
send(ry) sendrecv(d)
DO (2) do j=full N/A
sendrev(aa) sendrecv(aa)
recv(d) sendrecv(d)
recv(rx) sendrecv(dd)
recv(ry) sendrecv(rx)
do j=part sendrecv(ry)
do i=part do i=part
r,d, rx, ry = ... r,d, rx, ry = ...
enddo enddo
enddo sendrecv(rx)
send(d) sendrecv(ry)
send(rx) sendrecv(d)
send(ry) enddo
array replicate(aa)
do j=full do j=full do j=full
sendrecv(aa) sendrecv(aa)
sendrecv(d) sendrecv(d) sendrecv(d)
do i=full do i=full do i=full
I=... I=... I=...
enddo enddo enddo
sendrecv(aa) sendrecv(aa)
do i=part do i=part do i=part
d=... d=... d=...
enddo enddo enddo
sendrecv(rx) sendrecv(rx) sendrecv(rx)
do i=part do i=part do i=part
IX=... IX=... IX=...
enddo enddo enddo
sendrecv(ry) sendrecv(ry) sendrecv(ry)
do i=part do i=part do i=part
Iy=... Iy=... Iy=...
enddo enddo enddo
enddo enddo enddo
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not only serializes the 7 dimension but also results in more communication.

6.3.2 An array oriented approach: F90 and ZPL

Array semantics allow independent array operations to proceed in parallel. In this case,
the available parallelism is in the ¢ dimension. Therefore an array oriented implementa-
tion would apply each statement in the loop across the array section that spans the entire
¢ dimension. Table 6.1(b) and (c) show the HPF version using the F90 array syntax and
the ZPL version. The SPMD implementation by the compilers are shown in Table 6.2.

Note that although these two versions are similar in the information provided to the
compiler, there are subtle differences originating from the language designs. Specifically,
the 2-D array in ZPL is declared as a 2-D region to allow a 2-D partitioning, but because
a region imposes no execution order, the sequential dependence in the 5 dimension must
be enforced through a dynamic region, which may incur more runtime overhead than an

HPF implementation.

The implementations are remarkably similar across compilers and languages thanks to
the implied synchronization after each array statement. The communication required for
each statement is generated separately and the loops that implement each statement are
placed in the same order as the program statement. The only slight variation is that the
IBM compiler elects to vectorize the messages for array ea and move its communication
out of the 7 loop. This consistency contributes to the programming model in making
it more predictable. However, for the sequential computation being expressed, we find

that the array approach strongly enforces a serialization of the 7 dimension.

In summary, neither HPF nor ZPL provides direct support for pipelining sequential
computation. When we attempt to express the computation in a form that may lead
to pipelined execution, we found that the array semantics are too restrictive, while the
DO loop annotated with INDEPENDENT results in either a serialized execution or an

implementation that involves too much communication.
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6.4 A new construct for ZPL

Our investigation thus far has shown no satisfactory solution for the problem being con-
sidered. While data parallel applications typically contain an abundance of parallelism,
some data dependences will always exist that require special consideration. In this re-
spect, we have shown that an algorithmic approach, while possible, does not yield a
general solution. On the other hand, the pipelining approach is regularly employed in
message passing programs to manage sequential computations. The available parallelism
in the data parallel applications easily satisfies the prerequisite for pipelining.

Throughout this thesis we have also demonstrated that correct modeling is critical
to the portability, the scalability and the ease of use of a language. With respect to
the ease of use, pipelining is a high level abstraction that captures a highly effective
programming technique. With respect to scalability, pipelining reduces the serial section
of the computation, which otherwise will limit the overall scalability (Ahmdal’s Law).
To ensure portability, the language behavior must be consistent and predictable, yet the
previous sections have shown that relying on the compiler to detect the opportunity to
pipeline is unreliable. This motivates direct language support for pipelining that will
serve as a contract between the programmer and the compiler.

Following these arguments, we propose the following construct called Mighty Scan.
The construct is presented within the context of ZPL since the language is relatively free

of legacy that may otherwise introduce unnecessary complications.

SCANi:=1I, to I, DO
[[..es2,...]] Dbegin
statement;
statement;

end;

The construct has the following semantics: the block of statements serves as a com-

putational template that is applied along the specified dimension, for the specified index
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Table 6.3: tomcatv expressed using SCAN and the resulting SPMD code.

(b) SPMD code:
sendrecv(aa)
(a) tomcatv using SCAN: do j=full/chunk
recv(aa,d,rx,ry)
SCAN j:= 2 to m DO do chunk
[[7,2..n]] begin do i=part
R:=AA*D@north; =...
D:=1.0/(DD-AA@north*R); d=...
Rx:=Rx-Rx@north*R: TX=...
Ry:=Ry-Ry@north*R; Iy=...
end; enddo
enddo
send(d,rx,ry)
enddo

set and in the specified order. Let R, be the rank of the region, R; the scanned di-
mension, and P; be the dimension of the processor grid onto which R; is distributed. If
R, = 1, no additional parallelism is available and the SCAN operates as a sequential DO
loop and yields no benefit. If R, > 1, the compiler is to set up a pipeline by ensuring
that each processor in P; forwards its partial results in computing an iteration of R; as
early as possible to the next processor. The compiler can optimize further by balancing
the tradeoff between the computation granularity and the message frequency.

Note that unlike applying a region to a block of statements, the SCAN semantics do
not have the implied synchronization at the end of each statement. The synchronization
is replaced instead by the ordering of the scan index.

For the scan operation to be well defined, the construct has the following restrictions:

e For all arrays that are assigned new values in the scan (i.e., they appear on the
LHS), their values can be referenced using @ (i.e., they can also appear on the
RHS), but only directions in the scan dimension are allowed. This restricts the

data dependence to the dimension for which an order will be enforced.

e Scanning multiple dimensions is done by nesting the SCAN, with the inner most
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SCAN loop being completed first.

Table 6.3 shows the tomcatv example expressed using SCAN and the expected SPMD

code.

6.5 Conclusions

In this chapter we consider a pattern of computation that occurs frequently, yet for which
the current data parallel languages do not provide the facility to parallelize effectively.
The computation involves a recurring data dependence; therefore it is conceptually se-
quential. Although the simple case (parallel prefix) has an effective parallel algorithm
that is widely implemented, the general case does not have a general algorithmic solution.

On the other hand, pipelining is regularly and effectively employed in message pass-
ing programs to parallelize sequential computation. It is therefore intuitive to apply the
same technique for this type of computation in the data parallel program. Although it
is possible for the compiler to infer from the existing syntax and implement a pipelined
computation, several problems arise, the most important of which is that the functional-
ity is not a part of the performance model. In other words, a user who wishes to express
a pipelined algorithm for performance cannot be guaranteed that it will be implemented.
Indeed, a case study using the current HPF and ZPL compilers reveals that no compiler
recognizes and implements the program tomcatv as a pipeline.

A new construct called Mighty Scan is thus proposed for ZPL that satisfies all the

necessary requirements.

1. Ease of use: it implements pipelining as a high level abstraction, hiding the low

level detail from the user.

2. Scalability: the technique is well proven in its effectiveness; the user has full control

over the computation granularity.

3. Portability: the demand on the compiler is modest. No sophisticated analysis is

required and performance tuning can be done in a straightforward manner using a
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cost model for the relevant parameters. This allows any compiler to generate a well
behaved and predictable implementation so that a program using the construct will

behave consistently across platforms.

Although an implementation is not yet available in ZPL, these qualities leave little

doubt that Mighty Scan will be a very useful language feature.



Chapter 7

Conclusions

“Mental Models ... For computers and brains to be aware of something
they must have an internal model of it — a representation, either digital or
neurological. In the recent match, Mr. Kasparov kept honing his mental

model of Deep Blue, developing a theory of how the machine worked....” !

“It’s very difficult to analyze the results of the match,” Kasparov said. “I
know what I did wrong. But I don’t know what the computer did wrong or
right. It’s a mystery.” 2

(World chess champion Gary Kasparov lost to IBM’s Deep Blue machine in
a six-game chess match, May 3-11, 1997.)

7.1 Contributions

In this thesis, my interest is in finding a solution to the problem of developing efficient
parallel programs for data parallel applications. The solution must meet three require-
ments: scalability, portability and ease of use. I show that an appropriate performance

model is the key component of a language that will precipitate these three qualities.

In Machine vs. Machine: Deep, Deeper, Deepest Blue by George Johnson, New York Times, May
18, 1997.
?In What Deep Blue Learned From Grandmasters by Bruce Weber, New York Times, May 18, 1997.
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The thesis makes the following contributions:

1. An experimental comparison and analysis of two general programming models.

2. An experimental comparison and analysis of two data parallel languages, HPF and

ZPL, based on:

e The performance model

e A subset of the NAS benchmarks

3. A new high level data parallel abstraction that promotes scalability, portability,

and ease of use: Mighty Scan.

7.2 Summary

We began in Chapter 1 with a discussion which introduces the concept of modeling in
programming languages and outlines the three criteria for an effective parallel language.
Chapter 2 presents experimental evidence to support the choice of a nonshared memory
programming model as the base for a parallel language. Shared memory and nonshared
memory versions of LU and WATER are compared through an analytical model and
actual performance on 5 shared memory machines. In Chapter 3, we studied two data
parallel languages that are based on a nonshared memory model, contrasting the lan-
guage features and their implications. The performance model, the foundation of ZPL’s
design, emerges as the major difference between HPF and ZPL; therefore in Chapter 4
we formulate a methodology to quantify the benefit of the performance model. Two case
studies using the array assignment and matrix multiplication clearly show that without
a concise performance model, HPF cannot guarantee the users consistent and portable
performance. In Chapter 5, we studied the performance of HPF and ZPL in three NAS
benchmarks: EP, FT and MG. In addition to confirming the critical need for a perfor-
mance model, the results indicate that converting legacy Fortran 77 programs to HPF

will be very difficult. On the other hand, ZPL in each case studies shows consistent and
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predictable performance. Finally in Chapter 6, we studied a number of parallel solutions
to a common pattern of sequential computation. The analysis leads to a proposal for
Mighty Scan, a new language abstraction that promises to be scalable, portable and easy

to use.

Many factors influence the success of a parallel language, some of which may be
unrelated to the actual merit of the language. In this thesis, the analysis has lead us
to the performance model, but clearly there are other pragmatic issues that are no less
important. While the results show serious weakness in HPF, it is important that we
maintain the larger perspective and recognize the independent contributions of HPF

and ZPL.

From a situation of incompatible parallel platforms and nonportable programs five
years ago, HPF was able to gain the attention of major software vendors and be accepted
as a standard. This is a difficult feat since the software industry is only willing to invest in
conservative approaches and is not likely to consider any new unproven language. HPF’s
conservative approach includes preserving the original Fortran sequential programming
model in the parallel environment. The resulting programming model, as we see, is
muddled and does not preserve the sequential model nor capture enough information for

the parallel model.

It is unfortunate that the first standard for data parallel language is handicapped by
serious limitations, yet these compromises may be the necessary sacrifice to gain wide

acceptance in the industry and support from the users.

In contrast, ZPL is insulated from legacy and other requirements unrelated to paral-
lelism; this has enabled ZPL researchers to gain valuable insights into abstract concepts
that have a major impact on the effectiveness of the language, among which is the

performance model.

The current situation in parallel systems finds many parties with a high stake in
HPF. Compiler vendors have staked their future in HPF, while some national labs and

supercomputing centers have actively promoted the use of HPF. This thesis has been
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critical of HPF; therefore it is quite likely to evoke defenses for HPF. A frequent argument
is, “The current compilers are immature, new compilers with new optimizations will give
better performance”. In the ideal case, given infinite resources and infinite time, perhaps
a compiler can be developed that requires no programming effort and provides optimal
performance. In the present case however, the data shows that other factors are involved
beside the performance. In fact, if the performance is the only goal, each HPF compiler

we considered has shown to be able to achieve good performance in specific instances.

The implementations of HPF have allowed us to learn many lessons, and these are
probably the most valuable contributions from HPF. It is therefore imperative that we
recognize and understand the lessons so that we can build from the current state of the
art. In this respect, it would be counter-productive to insist on the conformance to a
standard that has serious limitations, but it would be equally grievous to hold HPF as

the exemplary failure of parallel programming in general.

This thesis has identified the performance model as one important lesson, but other

lessons should also be recognized.

The ready acceptance of HPF despite its limitations underscores the endurance of
Fortran as a programming language. Computer scientists tend to deplore Fortran as
obsolete in light of new programming concepts, models, compiler optimizations, etc.
However, to a user in the scientific community, the computer and the language are no
more than useful tools. The user will invest no more effort than necessary to obtain a
satisfactory result. If Fortran has become a familiar fixture, perhaps retaining at least
some of the syntax and semantics of Fortran in a new parallel language is beneficial.
This is especially complementary considering that a new parallel language will likely
devote a large part of the syntax and semantics to the conventional constructs such as
assignment, if, sequential loops. A familiar sight as the first impression of a new language

will contribute significantly toward gaining user acceptance.

As a case in point, consider Java: although it is a new language, it has some of the

look and feel of C. This enables a new user to command a large part of the language
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syntax immediately, leaving only the new constructs to be learned.

In the final analysis, perhaps the naming scheme is the most pragmatic factor. The
ideal parallel language of the future may have “Fortran” as a part of its name - much
to the dismay of computer scientists, yet it may bear little resemblance to the original
Fortran language. Several lessons may have to be learned before this goal is reached,
but this is the normal progress of technology. It is my hope that the work in this thesis

will contribute to this progress.

7.3 Future works

The syntax and semantics for Mighty Scan have been proposed. An implementation in
ZPL remains to be completed. The NAS benchmarks SP, BT, LU and FT are likely to
benefit significantly from this new construct since each contains the type of sequential
computation that is awkward to parallelize. Therefore, they are good candidates for
testing and tuning the Mighty Scan construct.

The arrival of Java also introduces new, interesting opportunities for parallel pro-
gramming. Despite the exaggerated level of publicity surrounding Java, there are some
advantages that are worth considering. The object-oriented model can help to encapsu-
late some of the high level abstractions for a nonshared memory machine. The support
for threads in the language allows parallel programming at an intrinsic level. The se-
cure nature of Java proves to be attractive for financial applications, which incidentally
are similar to scientific applications and can benefit from parallelism (e.g., PDE). More
pragmatically, the momentum that Java is generating promises good performance and
widespread availability in the future. In this case, Java may serve as a modern replace-
ment for Fortran. One challenge for using Java is the shared memory model that the
language adopts: we must find a way to incorporate a performance model if a parallel

Java program is to run on a nonshared memory machine.
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Appendix A

Performance data

A.1 LU on shared-memory machines

The following tables show the execution times in seconds for LU on 5 shared-memory

machines. This is the data for chapter 2.

Table A.1: Performance (seconds) of LU Decomposition on 5 shared memory machines.

LU on Sequent (seconds)
200x200 300x300 512x512

processor sm nsm sm nsm sm nsm
1| 45.370148 | 45.619545 | 151.671639 | 152.84721 | 749.710614 | 757.425652
2 | 22.764425 | 23.165471 | 76.047993 | 77.736939 | 374.954634 | 379.982583
4| 11.463419 | 12.061735 | 38.075155 | 39.535023 | 187.550758 | 192.953820
6 | 7.812354 | 8.319552 26.950458 133.463661
8 | 5.931265 | 6.458318 | 19.382059 | 20.741765 | 94.532781 | 98.694475
10 | 4.880708 | 5.255464 16.906972 79.909908
12 | 4.171789 | 4.628903 14.475015 67.285550
14 | 3.718850 | 4.111252 12.757039 58.894898
16 | 3.386981 | 3.789275 | 10.242270 | 11.301436 | 48.279209 | 51.695656
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LU on KSR (seconds)

200x200 300x300 512x512
processor sm nsm sm nsm sm nsm
1| 4.963139 | 4.128038 | 16.674863 | 13.771776 | 81.422266 | 67.440069
2| 2.917240 | 2.098688 | 9.495537 | 6.945457 | 45.288623 | 33.975297
4 | 1.531988 | 1.113727 | 4.875464 | 3.540075 | 23.306514 | 17.281725
8 | 0.890201 | 0.668275 | 2.666797 | 1.980642 | 12.259547 | 8.845870
16 | 0.643920 | 0.562256 | 1.690843 | 1.288997 6.928109 | 4.907069
24 | 0.659858 | 0.579727 | 1.471892 | 1.292831 5.335590 | 4.044066
32 | 0.895496 | 0.598683 | 1.786207 5.170310 | 3.863252

LU on Cedar (seconds)

200x200 300x300 512x512
processor sm nsm sm nsm sm nsm
1| 64.64052 | 44.43229 | 216.85811 | 150.38560 | 1074.41066 | 757.65471
2 | 32.44478 | 23.20331 | 108.53429 | 76.26080 | 539.33373 | 378.21246
4 | 16.29816 | 12.05089 | 55.92126 | 39.14370 | 269.30365 | 192.06901
8 8.53105 | 6.85880 | 27.66585 | 21.52057 | 137.76543 | 100.01388
12 5.16418 15.46952 92.03920 68.81427
16 4.93295 4.44266 14.83814 12.22920 72.05867 54.51414
20 4.28967 10.93311 49.77601
24 4.4094 4.26784 11.24298 10.21729 51.33575 40.55990
28 4.25487 10.06788 36.90922
32 4.6288 | 4.37602 | 10.68505 | 10.32745 40.15609 | 35.13364

LU on Butterfly T2000 (seconds)

200x200 300x300 512x512

processor sm nsm sm nsm sm nsm
1| 21.456812 71.462568
2 | 10.892948 | 4.053568 | 35.883065 | 13.540942 | 182.903653 | 67.573137
4 | 5.647862 | 2.165374 | 18.496054 | 6.936486 | 94.217712 | 34.356636
8 | 3.498626 | 1.251953 | 11.105882 | 3.883010 | b55.118757 | 17.783904
16 | 3.317192 | .881832 | 9.992702 | 2.307044 | 45.819111 | 9.684133
24 3.598184 .937469 | 10.151217 2.122591 45.111404 7.777608
32 | 3.948025 | .994012 | 10.779631 | 2.240521 | 45.755199 | 6.689305
48 | 4.436488 | 1.101099 | 11.699838 | 6.487641 | 50.215238 | 7.035376
LU on DASH (seconds)

200x200 300x300 512x512
processor sm nsm sm nsm sm nsm
1 3.209 3.179 10.919 10.727 67.014 54.832
2 1.635 1.674 5.786 5.418 32.372 27.428
4 .857 .873 2.877 2.768 15.863 13.813
8 .559 .499 1.695 1.555 8.088 7.150
16 .369 .350 1.083 .973 4.729 4.015
32 418 .390 .942 .953 3.709 2.914
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WATER on shared-memory machines

The following tables show the execution times in seconds for WATER on 5 shared-

memory machines. This is the data for chapter 2.

Table A.2: Performance (seconds) of WATER on 5 shared memory machines.
WATER on Sequent (seconds)
96 mols 288 mols 512 mols
processor sm nsm sm nsm sm nsm
1| 56.230536 | 56.302039 | 455.615188 | 456.720134 | 1405.776632 | 1410.271537
2 | 28.796820 | 29.019462 | 230.486377 | 231.114972 | 715.609000 | 717.309184
4 | 14.695737 | 14.982332 | 117.139749 | 117.536687 | 367.452312 | 368.393325
6 | 9.879172 | 10.256695 | 77.890070 | 78.778194
8 | 7.428865 | 7.829909 | 59.098132 | 59.773076 | 186.251235 | 205.417192
12 | 4.951295 | 5.277917 | 40.699293 | 41.231677
16 | 3.744649 | 4.063647 | 31.140790 | 31.444728 96.469742 97.108076
18 28.161897 | 28.425073
WATER on KSR (seconds)
96 mols 288 mols 512 mols
processor sm nsm sm nsm sm nsm
1 6.28 6.12 48.68 47.16 148.50 143.20
2 3.36 3.22 25.14 24.36 74.80 72.46
4 1.78 1.66 13.26 12.40 39.64 36.58
8 .92 .90 6.90 6.44 20.36 18.62
16 .50 .50 3.68 3.46 10.84 9.98
24 42 42 2.62 2.46 8.78 6.54
32 42 .36 2.08 1.92 5.70 5.32
WATER on CEDAR (seconds)
96 mols 288 mols 512 mols
processor sm nsm sm nsm sm nsm
1| 74.933640 | 76.402960 | 599.506110 | 575.788210
2 | 38.552850 | 38.195740 | 304.091360 | 289.909760
4 | 19.530560 | 19.900750 | 152.750320 | 148.831810
8 | 9.870800 | 10.748890 | 77.355800 | 84.695670 | 238.718480 | 233.007470
12 | 6.689800 | 7.733460 | 52.907180 | 77.367830
16 | 5.169280 | 6.128690 | 40.013000 | 42.731850 | 122.587380 | 126.089350
24 | 3.500040 | 4.561320 | 30.283210 | 29.494360 | 107.214710 83.444320
32 | 3.174200 | 4.653100 | 21.239410 | 24.572020 67.686400 68.995810
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WATER on Butterfly T2000 (seconds)

96 mols 288 mols 512 mols
processor sm nsm sm nsm sm nsm
1| 24.378128 | 16.910681 | 191.955684 | 129.875652 | 1754.425691 | 1437.595238
2 98.024568 | 70.422117

4| 6.465225 | 4.749529 | 50.213944 | 34.703714 | 150.397842 | 102.121784
8 | 3.312763 | 2.647135 | 25.525649 | 18.376480 76.523083 52.861218

12 17.925968 | 13.200817
16 | 1.749591 | 1.639289 | 13.759438 | 10.408390 40.780034 29.573802
24 9.936112 8.186353

32 | 1.163515 | 1.350450 8.249899 7.406816 24.293119 20.896717
48 | 1.126044 | 1.301894 7.413884 6.868895
64 20.218286 19.550439
72 7.508387 7.251650
96 | 1.516591 | 2.306298 7.996893 8.414836 16.569527 19.502120

WATER on DASH (seconds)

96 mols 288 mols 512 mols

processor sm nsm sm nsm sm nsm
1 3.597 3.606 28.977 29.310 90.809 90.780
2 1.860 1.902 14.604 14.750 46.014 45.630
4 .960 1.001 7.511 7.620 24.075 23.630
8 531 .601 3.935 4.140 12.569 12.420
16 .270 .381 2.091 2.330 6.441 6.883

24 .220 .280 1.501 1.880 5.527
32 .150 .260 1.140 1.550 3.482 5.243

A.3 HPF and ZPL programs on nonshared-memory ma-

chine

The following tables show statistics on the SP2 parallel platforms and the execution time

in seconds for the HPF and ZPL programs. This data is used in Chapter 4 and 5.
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Table A.3: Characteristics of the IBM SP2 used for the cross-compiler comparison
SP2

Site Cornell Theory Center

Operating System AIX 4.1.4

IBM HPF compiler | Version 1, Release 1

APR HPF compiler | Version 2.0

PGI HPF compiler | Version 2.0.2

ZPL compiler Version 1.0

Communication lib | MPI (IBM)

Nodes 512
FLOPS/node 266 MFLOPS
Memory /node 128-2048 MB
Topology MIN
Bandwidth 48MB /sec
Latency 40 usec

Table A.4: Performance (seconds) of Matrix Multiplication on the IBM SP2: 2000x2000

processor | compiler | DO loop | HPF opt | Cannon | SUMMA
16 ZPL n/a n/a | 138.06 35.16
IBM 10.62 21.00 111.38 11.51

APR 56.14 24.56 | nomem 20.69

PGI | timeout 72.11 109.99 25.55

64 ZPL n/a n/a 44.87 10.08
IBM 3.09 14.38 37.39 4.23

APR 59.95 18.30 326.12 7.96

PGI | timeout 12.92 37.43 8.44
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Table A.5: Performance (seconds) of NAS 2.1 benchmarks on the IBM SP2: EP, FT,
MG.

Embarrassingly Parallel

compiler p=1 4 8 16 32
class S ZPL n/a 1.06 0.52 0.32 n/a
APR do 1.40 0.81 0.44
IBM do 4.94 4.92 4.95
PGI do 4.98 5.00 4.97
class A ZPL n/a n/a | 136.49 68.48 35.26
APR do 159.33 79.93 47.83
IBM F90 417.12 208.86 105.39
PGI F90 419.40 210.16 107.10
MultiGrid
compiler p=1 4 8 16 32
class S MPI 0.15 0.09 0.06 n/a n/a
ZPL 1.47 0.60 0.42

APR do 28.58 181.76 250.59
IBM do 4.10 17.79 23.39
PGI do 48.08 274.14 385.12
APR F90 | 42.07 46.70 53.67

IBM F90 1.30 0.76 0.76
PGI F90 1.82 1.07 1.89
class A MPI n/a n/a 7.40 4.10 2.30
ZPL 40.50 22.82 11.25
APR F90 timeout | timeout | timeout
IBM F90 140.09 79.99 46.52
PGI F90 43.19 32.70 23.17
Fourier Transform
compiler p=1 4 8 16 32
class S MPI 4.70 1.49 0.83 n/a n/a
ZPL 26.96 7.11 3.78

APR do | 100.63 205.16 | timeout
IBM do 32.31 84.41 101.47
PGI do 175.26 | timeout | timeout
APR F90 6.42 3.80 5.22
PGI F90 11.78 4.97 2.91
IBM F90 12.66 17.23 18.37
13.21 10.43 10.18

class A MPI n/a n/a 26.00 13.50 8.57
ZPL segfault 129.38 47.32

APR F90 1607.16 37.26 29.96

IBM F90 timeout 353.31 | timeout

PGI F90 321.28 61.30 32.56
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