
Aim 3. Inference of NPK regulatory networks: Time-series omics and biomass states.
Rationale. The goal of this aim is to generate a predictive regulatory network model to identifies the transcription factors (TFs) that function as master regulators to control early genetic predictors of biomass (Aim 2A), as well as the TFs associated with the metabolic pathways that correlate with biomass (Aims 2B). Whereas it is possible to create models and draw association networks based on correlation and other data-driven relationships, in this aim, we will pursue the creation of a causal network to determine which upstream transcription factors will have the greatest influence on gene markers for biomass. We will test this model by its the ability to predict the values of assays (e.g. expression levels) on conditions that were not used in training. Constructing the model in the form of a causal network, will aid the experimental design by indicating the gene modifications that may optimize the performance of a species to some useful end, such as increasing biomass production. Because causality moves forward in time, time-series experiments are a particularly promising source of network structure, and we propose to examine NPK regulatory networks from a dynamic point of view at very early stages of the NPK signaling cascade(s). Below, we describe our methodology in some detail, explain prior predictive modeling results (REF), and illustrate how we will integrate the methodology based on expression data with other existing information (e.g. validated transcription factor binding sites and structurally based contact-binding sites). (Gloria notes: IS this last senetce really part of the aim?  I did not see evidence for this type of analysis written below.  I think an oblique reference is to this at the very end, but it does not include how you will do this….e,g using transfac????? Dennis responds: sure I will mention transfac) 
Approach. We will generate high-resolution time-course transcriptomic datasets from plants transiently treated with the NPK combinations selected in Aim 2: 1) High N:High Biomass, 2) LowN:Low Biomass, 3) Low N:High Biomass. To define the scale of the time-series, we will first use Q-PCR to monitor the expression of the early gene markers of biomass identified in Aim 2 on a fine-grain time scale, to pinpoint the smallest time intervals in which the expression of these genes varies significantly. This profiling will indicate which time points to choose for the genome-wide expression experiments that will be analyzed using a state space machine learning algorithm (REF). We will then construct a causal model based on the transcriptome data and will test it using “leave-out-last” validation. That is, we will create a model with all but the last time point and then predict expression changes from the penultimate to the last time point. Such a test will allow us to estimate the predictive accuracy of our final model. We will use the resulting causal network to identify the genes that have the most influence over the early markers of biomass and metabolic pathways associated with biomass. The identified early, upstream master regulators of these genes and pathways will be prioritized for functional testing in Aim 4.

Aim 3A. Generation of High Resolution Dynamic Transcriptome (HRDT) data.

Arabidopsis seedlings grown on complete for 12 days, will be transferred to NPK free medium for 24 hours and then treated with the 3 selected NPK combinations that result in the three N-Biomass states 1. High N:High Biomass, 2. Low N:low Biomass, 3. Low N: High biomass (as determined in Aim 2). RNA will be collected at 0, 3, 6, 9, 12, 15, 20, 25, 40, 45, and 60 min following transfer to NPK media. The “T0” (harvest time zero, before treatment) will be used as control. To select a subset of time-points for transcriptome analysis, the early molecular markers for biomass from Aim 2, will be monitored by QPCR (Fig. X). Based on these results, selected RNA samples (in biological duplicates) will be analyzed using Affymetrix ATH1 Chips or Deep-sequencing. We determine which genes vary significantly (by at least a factor of 2) of the course of the time series for at least one of the three NPK combinations chosen in Aim 2. The genes that will be found to be NPK responsive in this time-series transcriptome data will make up the nodes in the causal network generated in Aim 3B.

Aim 3B. Predicting NPK regulatory networks using time-series data and “State Space” analysis: A machine learning approach.

State space method. We will use the NPK time-series transcriptome data generated in Aim 3A, to support the creation of a predictive regulatory network that controls sentinel genes and pathways associated with biomass. The experimental approach using high-resolution time-series was previously exploited in our laboratory, to monitor transcriptome responses to nitrate treatment {Krouk, 2010 #45}. In order to build a regulatory network that could predict TF-target interactions, we used a machine learning method, “State-Space” modeling to generate predictions for regulatory networks {Mirowski, 2009 #47}. The State-Space model synthesizes Bayesian and Markovian approaches in which each gene’s expression value at a time t is assumed to depend directly only on the state of potentially all the genes at the previous time point and indirectly on values from previous time points {Mirowski, 2009 #47;Murphy, 1999 #65}. 
In the “State Space” model depicted in Fig. X, each node represents the values of all gene expression at a particular time point. Typical values of all gene expression are depicted as a heat map in Fig. X. The goal of this approach is to learn the function that determines the change in expression of a target gene as a linear (or if needed non-linear) combination of the expression of a relatively small number of transcription factors (typically up to three or four) (Fig. X). As applied to our problem, the set of all genes at time t is modeled by a “latent” (i.e. hidden) variable (denoted Z(t)) from which noisy and sometimes missing observations Y(t) are made. Latent variables are represented by large red circles, and observed variables by large black circles in Fig. X. The relationship between latent and observed variables is the identity function h with added Gaussian noise (represented by a black square in Fig. X). An unknown function f (represented by a red square in Fig. X) relates the values of latent variables Z(t) and Z(t+1) (for all t) corresponding to consecutive time measurements as a Markov chain. The dynamical function f factors in both transcription factors and their target genes (e.g. other TFs or target genes), as shown in Fig. X. Learning the function f corresponds to finding parameters of f that minimize the prediction error while penalizing functions that are excessively complex (i.e. require many transcription factors to determine the change in expression of a target). The state-space method uses an iterative procedure that attempt to learn the dynamical relationship between latent gene expression variables z(t) while maintaining the latent variables z(t) as close as possible to the observed Affymetrix measures y(t). The algorithm consists in a) minimizing the sum of quadratic errors of the dynamical and the observation models with respect to the latent variables Z by using gradient descent on the latent variables {Mirowski, 2009 #47} (this is the inference step); and in b) minimizing the sum of quadratic errors of the dynamical model using conjugate gradient, LARS {Efron, 2004 #67} or Elastic Nets {Zou, 2005 #88} optimization on the parameters of F (this is the learning step). During the learning step, sparse gene regulation networks are obtained by penalizing dense solutions using L1-norm regularization, which amounts to adding a λ-weighted penalty to the dynamical error term, as in the LASSO initially described by {Tibshirani, 1996 #117}. 

State-space validation. In our previous work, to test the ability of the “State Space” approach to generate a predictive regulatory network, we built a regulatory network using Arabidopsis time-series data up to 15 minutes (training set: 0, 3, 6, 9, 12, 15 min) and used the resulting network to predict the direction of gene change (up regulation or down regulation) from 15 min to 20 min (Fig. X) (REF). Our State Space predictions of gene regulation were correct for 74% of the genes in a small network of 76 genes (Fig. XB). As a basis for comparison, the "naive trend forecast" that predicted the direction of change from 15 to 20 min to be in the same direction as the movement from 12 to 15 min, was correct for only 52% of the genes, just slightly better than random (Fig. X), p-value < 0.006. This “State Space” model can also be used to predict the “most influential TFs” in the network (e.g. the one that is predicted to influence the most genes in the network), and to generate a time-dependent regulatory network model for the control of N-assimilatory pathway genes (KROUK REF). 
When compared with other network inference approaches {Bonneau, 2007 #118;Bonneau, 2006 #119;Shimamura, 2009 #121;Wang, 2006 #176} our state-space method showed an improvement in accuracy and had a better signal to noise ratio when compared on the same data. Further, the method reduces the importance of initial parameters by using random starting points and bootstrapping, thus offering a principled way to deal with uncertainty and avoid over-fitting in microarray measurements. Further, our method easily allows the addition of “hints” in the form of known transcription factor-binding relationships. Finally, the state space method combined with biclustering generalizes to larger networks. In a network of 550 genes including the original 76, we ran the biclustering algorithm CMonkey {Reiss, 2006 #268} using default settings on the non-TF genes (the biclustering algorithm makes use of metabolic interactions, the Arabidopsis Prolinks file, as well as gene expression.) This resulted in a reduced network consisting of 67 TF genes and 63 biclusters among the 483 non-TF genes. On this network of 67 + 63 = 130 supernodes, the state space method predicted the direction (expression up or down) accurately for 67.7% of all supernodes in the 15-20 minute time point compared with 51.9% for the trend forecast prediction (KROUK REF).

Aim 3C. Applying state-space method to a combined analysis of three NPK states.

We will use the time-series on the three different NPK states from Aim 2 (1. High-N:High Biomass, 2. LowN-Low Biomass, 3. Low N-High biomass) synergistically in our state space modeling. This means that we will infer the causal function f, using the experiments and replicates from all three NPK states combined. This is possible, because the state space model seeks gene-to-gene causality. If, for example, a transcription factor (tf1) induces the target g2, then we should observe this relationship even if tf1 (and therefore g2) are repressed in one NPK condition, and induced in another. Given the large amount of data that we will gather per time-point, we expect our networks to have better predictive power than those that were generated by {Krouk, 2010 #45} which used only one N-treatment condition. In the current study, our analysis will focus on genes that change significantly over the time-course of at least one of the three NPK conditions. Initially higher values will be assigned to validated TF-target pairs from Transfac so that a known TF-target pair will not be eliminated in the course of regularization. (Regularization is a step in machine learning algorithms that simplifies the causal models by eliminating relationships with low values.) Later in Aim 4, if we find that changing the expression of a selected TF does not result in a change in the expression of a putative target gene, we will remove the predicted TF-target edge from the network, and rerun the state space analysis without that edge. Thus, each over-expression or knockout experiment will improve (by validating or correcting) the causal network.
(Dennis-  This ending seems a little lame, to say that if our validation does not work, we will try another one….wouldnt it be better to say that we will feed the positive data for interactions back into the predictive network program and rerun it to enhance the predictions using validated interactions)???? Done.
