
Querying Ordered Databases with AQuery

Alberto Lerner

June 22, 2003

Contents

1 Introduction 5
1.1 Order-Dependent Queries . 5
1.2 Principles and Goals . 6
1.3 Thesis Overview . 7

2 State of the Art 9
2.1 Introduction . 9
2.2 Standard SQL with Late Order 12
2.3 SQL Dialects over Ordered Structures 14

2.3.1 SEQUIN . 14
2.3.2 SRQL . 16

2.4 Array-Based Querying Systems 17
2.4.1 AQL . 17
2.4.2 KSQL . 18

2.5 Discussion . 19

3 AQuery Syntax and Semantics 22
3.1 An Array-Based Data Model . 22
3.2 Column-Oriented Semantics . 24
3.3 Relational Manipulation of Arrables 26

3.3.1 Projection . 26
3.3.2 Selection . 27
3.3.3 Group By . 27
3.3.4 Flatten . 30
3.3.5 Cross Product and Join 31

3.4 Positional Manipulation of Arrables 32
3.4.1 Querying with Arrable Indexing 32
3.4.2 Querying with Row Direct Addressing 33

3.5 Comparing AQuery to Other Order-Aware Languages 34
3.6 Conclusion . 35

1

4 AQuery Optimization 37
4.1 Introduction . 37
4.2 Optimization of Edge Selections 40

4.2.1 Implicit Selections and Sort-Edge 40
4.2.2 Sort Splitting . 42
4.2.3 Early Edge Selection and Edgeby 44
4.2.4 Sort Embedding . 46

4.3 Related Work . 48

5 System Design and Implementation 50
5.1 A Column-Oriented Execution Model 50
5.2 Implementing the Execution Model 54
5.3 From Text to Execution: the entire flow 55

5.3.1 Parsing . 56
5.3.2 Semantics Step . 56
5.3.3 Relational Optimization Support 57
5.3.4 ‘K’-Code Generation . 59

5.4 Conclusion . 59

6 Performance Analysis 61
6.1 Introduction . 61
6.2 The Best Profit Query . 63
6.3 Network Management Query . 65
6.4 Conclusion . 68

7 Conclusion 69
7.1 Summary . 69
7.2 Ongoing Work . 69
7.3 Future Work . 70

2

List of Figures

2.1 A Sales table instance and the result of the delta sales query . . . 10
2.2 A stock’s price curve and its running minimum 11

3.1 Example of two well-formed arrables 22
3.2 Intermediate arrables in the Newtork Management Query 29

4.1 An initial QEP and the application of a sort elimination transfor-
mation . 38

4.2 An initial QEP and the application of a selection push-down trans-
formation . 40

4.3 Implicit selection and sort-edge optimization 41
4.4 Efficiency of sort-edge technique 42
4.5 Sort-splitting optimization . 43
4.6 Efficiency of sort-splitting technique 43
4.7 Early edgeby optimization . 45
4.8 Efficiency of the early edgeby technique 46
4.9 Sort-embedding optimization . 47
4.10 Efficiency of the sort embedding technique 47

5.1 Two example arrables and their rows indexes 52
5.2 Effective index array during a query execution 52
5.3 Example of a K plan . 56
5.4 Two possible MEMO configurations for a given query 58

6.1 A table to be used on a window definition 61
6.2 A running minimum window . 62
6.3 A previous row window . 63
6.4 Plans for the best-profit query . 64
6.5 Best profit query relative improvement 65
6.6 Plans for the network management query 67
6.7 Network management query relative improvement 68

3

List of Tables

2.1 Comparative table of languages with order constructs 21

4.1 Equivalences between sort and remaining algebra operators 39

5.1 Cardinality of the addition operation 57

4

Chapter 1

Introduction

1.1 Order-Dependent Queries

An order-independent query is one for which the results (interpreted as a mul-
tiset) do not change if the order of the input records change. In a stock-quotes
database, for instance, calculating the maximum price of a stock in a given day is
order-independent. Regardless of the order in which records are examined, their
maximum is the same. Relational databases support order-independent queries
extremely well.

By contrast, finding the price changes of a stock over many days depends on
order. Such a query is therefore order-dependent. Order-dependent queries arise
naturally in many application domains. In finance, an analyst often looks at n-
moving averages over price time series, which is the average of a price and its n
predecessors, calculated for each price in the series [18]. The analyst may also be
interested in correlations among time series, which requires prices to be in time
order [39]. In network management, an administrator may want to analyze packet
logs for statistics or security purposes. Statistics may involve breaking sessions
between any pairs of hosts down into “flows” (sub-sessions), a flow-separator oc-
curring whenever a packet and its predecessor are more than a given time interval
apart [8]. A security check of the log may look for a port scanning attempt, in
which a same client sends a succession of packets to different ports on a given host
[9]. Again, packet ordering is relevant. In the relational storage of XML, the or-
der of XML elements and attributes need to be encoded [36]. In Biology, frequent
nucleic acid motifs are of interest. In Linguistics, texts are scanned linearly. In
epidemiology, unusual spikes in emergency room visits may suggest the start of
an epidemic. The reader may imagine many other applications.

Many queries whose natural formulation requires order can be expressed using
query languages based on multisets. For instance, suppose a stock’s quotes and
their timestamps are stored in a table Quotes and that one wants to obtain each
quote’s predecessor. Joining Quotes with itself (using as a predicate the maximum

5

timestamp that is less or equal to the current quote’s timestamp) would give
the desired result. If done often enough, a reasonably skilled SQL writer would
recognize the predecessor idiom at once. As a practical matter however, the more
structurally complex a query’s rendition is (joins or nested sub-queries), the more
difficult it is to optimize (join elimination or query un-nesting).

On the other hand, multiset query languages have a long and illustrious history.
Order should therefore be inserted in a language through careful design. This
thesis is the result of our studies into building such a language. We present here
not only the language itself, but also the underlying data model that makes it
coherent, the optimization techniques that make it efficient, and the system that
implements it all. We call this framework AQuery.

1.2 Principles and Goals

AQuery is a language in which order-dependent queries can be expressed naturally.
AQuery’s design began with these principles:

- Declarative Order – A query is able to define the order it requires records
to be processed, regardless of the way the records are stored. One implication is
that a query’s results can be made independent of the underlying storage strate-
gies. For instance, stocks’ quotes are naturally generated in time order and could
conceivably be stored so. But queries may require quotes to be in stock ID and
time order; queries may simply declare so.

- Ubiquitous Order – The assumption that data is in a declared order is valid
everywhere in a query, be it in a calculation involved in the result, a filter that
depends on order, or still a grouping or aggregation operation. Order in AQuery
can simply be counted upon everywhere.

- Conciseness and Lucidity – The most common order idioms are easily ex-
pressed – without auxiliary language constructs – in AQuery. The order idioms
are not buried under or masked by a query’s structure. For instance, if a filter
is dependent on the order declared in its query and order is needed in no other
context, then this is evident from the query structure alone. The rationale here is
that if a query looks simple, then it should be easy to understand and optimize.

- SQL Compatibility – SQL practitioners should be able to familiarize them-
selves with AQuery with very little effort.

These principles provide a natural basis for optimization. By declaring the
order it requires, a query allows the optimizer to determine whether data is already
organized in a convenient order. If it is, sorting may be eliminated altogether.

If data is not in an appropriate order, then the AQuery optimizer may still have
some space to maneuver. For instance, if a join followed by an aggregation are

6

involved in a query, but only the latter is order-dependent, then the optimizer may
pick among several alternatives. It may perform the join in an “order-cavalier”
fashion and then sort immediately before the aggregation. Or it may sort the
relations in an appropriate way, perform an order-preserving join, and then finally
aggregate. Or it may take advantage of the underlying order the relations are
stored in and propagate that order until the aggregation. This choice is a cost-
based one.

In many ways, we integrate the results from previous work: some focussed on
linguistic aspects alone without considering optimization [29]; others did consider
optimization but would not allow order handling in a declarative fashion [31, 21];
still others focused on order management in query optimization but for non-order-
aware languages [33] or for languages with simple order extensions [35].

To the best of our knowledge, AQuery is the first comprehensive effort at ad-
dressing order-dependent queries’ needs from the data model to the query language
to the optimization process. As a result, AQuery expresses most order-dependent
queries evaluated in a more concise way than other languages, and has delivered
orders of magnitude performance gains for order-dependent queries as compared
to robust commercial SQL:1999 query optimizers.

1.3 Thesis Overview

The first chapter of this thesis investigates the difficulties that arise in writing
order-dependent queries in SQL. It then brings a comparative study of new lan-
guages that address that difficulty. From the study, we draw a powerful set of
order-manipulation mechanisms but we conclude that such a set is not entirely
available in any given language. We also observe that the most successful attempts
at supporting order were those that replaced multisets in the data model by some
form of array.

Chapter 3 defines a data model built around arrays that not only supports
all the relational operators, but also order-preserving variations of them. The
model provides several other features that are essential for expressing order-
manipulations of realistic queries. The chapter also describes the AQuery language
syntax and semantics, the latter by mapping queries into the algebra defined. The
languages studied previously are then compared against AQuery on the basis of
simplicity and conciseness.

The optimization of order-dependent queries is presented in Chapter 4. The
chapter starts by reviewing the techniques applied to order (sort) management
and shows that they also apply to AQuery. However, order optimization is usu-
ally done in a pre- or post-plan enumeration step. We advocate considering sort
as any other operator in the enumeration process and present a set of new query
transformations using this approach. The new transformations bring orders of

7

magnitude improvement to the performance of some plans. For each new trans-
formation we conduct a performance evaluation study.

Chapter 5 describes the architecture and design of a system that implements
the AQuery language and model. It is a fully functional system. Its most salient
design aspect is that it is fully based on vector-processing techniques. The system
manipulates data in a vertically partitioned fashion and translates queries into
sequences of vector-operations over columns. The system itself is written in the
very same vector-oriented language to which it translates queries.

A performance comparison, both qualitative (query plans) and quantitative
(response times), between AQuery and an commercial SQL:1999 optimizer is de-
scribed in Chapter 6. SQL:1999 gained order-manipulation capabilities through
a late amendment [16] and therefore constitutes the first order-aware language
to gain commercial acceptance. The comparison shows that AQuery is more
amenable to order optimization, for its order idioms are more compact and easier
to identify. Its plans were simpler than and in some cases almost two orders of
magnitude faster than SQL:1999’s.

Finally, chapter 7 concludes by describing our ongoing work and future research
possibilities.

8

Chapter 2

State of the Art

2.1 Introduction

This chapter opens our investigation into querying ordered databases by address-
ing the following questions: Does a query language need specific features in order
to express order-dependent queries? If yes, which ones? Is there any already
existing query language with such features?

The best way to understand how hard – and why – it is to formulate queries
that involve order is to try a few examples in SQL:92. Take a table Sales(month,
sales) that stores for each month the amount sold in that month. For simplicity,
assume that months are represented by integers starting with 1. Now, try to find
the difference in sales between each month and its predecessor. (We encourage
the reader to spend a minute trying to write this query.)

The first problem lies in the “predecessor” part of the query. How does one
express such a property in a language that is based on (multi-) sets? Elements in
a set are not ordered unless an ordering relationship is provided. Here the order
can be obtained through months numbers. Again, for simplicity, let us assume
that months are numbered consecutively with no gaps. Therefore one can find a
previous month by simply subtracting 1 from the current month. Let us leave the
boundary issue of month 1 aside for a brief moment.

The second problem is that row-oriented languages such as SQL – in which
variables iterate over rows – cannot easily access two sales amounts (rows) at
once. To subtract a previous month’s sales from the current’s, both sales must be
in the same row. Producing such a configuration requires a self-join such as the
following.

[SQL:92] – Delta Sales Query (naive)
SELECT t1.month, t1.sales - t2.sales AS delta
FROM Sales t1, Sales t2
WHERE t1.month - 1 = t2.month

9

5

Sales
1
2
3
4
5

month
20
20
0

−10

deltaResult

4

sales
100
120
140
140
130

month
2
3

Figure 2.1: A Sales table instance and the result of the delta sales query

Note that the first month has no predecessor thus it was eliminated by the
join. Fixing it requires replacing the join by an outer join and handling the case
where t2.sales would be null.

[SQL:92] – Delta Sales Query
SELECTt1.month,

t1.sales - CASE
WHEN t2.sales is null THEN 0
ELSE t2.sales

END
FROM Sales t1 LEFT OUTER JOIN Sales t2

ON t1.month - 1 = t2.month

We call such a manipulation of column values at different rows Inter-row Op-
erations. In this particular case we are executing a running delta operation. It is
one of the most common order manipulations.

Another quite frequent operation category is that of the Running Aggregate
Operations, which brings together a number of cumulative operations such as
moving averages. A moving average over a column divides its elements into groups
of rows that are not necessarily disjoint (“windows”) and calculates the average
of each group. For instance, if one wanted to compute a 3-month sales moving
average, one would find the two previous sales for each month, would form a group
with the current month, and would then calculate the average of that group. This
operation would be repeated for each month.

The previous query can be used as the basis for this one, except that an extra
outer join would be required so to have the 3-sales window. Managing the null
values becomes more complex, too. The new query looks like

[SQL:92] – 3-month Sales Moving Average Query
SELECTt1.month,

t1.sales +CASE
WHEN t2.sales is null AND

t3.sales is null
THEN 2*t1.sales

WHEN t2.sales is not null AND
t3.sales is null

10

THEN t2.sales + (t1.sales+t2.sales)/2
ELSE t2.sales + t2.sales

END
FROM Sales t1 LEFT OUTER JOIN Sales t2

ON t1.month - 1 = t2.month
LEFT OUTER JOIN Sales t3
ON t1.month - 2 = t3.month

Despite the complex syntax of their SQL renditions, the queries so far are quite
simplistic. To show a more realistic example based on the operation categories
presented so far, we turn our attention to stock trading. An increasingly popular
way of trading in a very dynamic market is “day-trading.” It consists of buying
and selling shares within very short periods of time – often in the very same day
– aiming at immediate albeit modest profits. To verify whether a trader made
a profitable enough transaction, one may wish to know what would be the best
profit that could be done by buying and then selling a given stock in the same
day.

In this query we use the schema Ticks(ID, date, volume, price, timestamp),
which stores all quotes and trades for securities negotiated in a trade floor or
trading system. ID is the ticker symbol of a security, the code by which a security
is identified; timestamp is the date and time of a particular quote or trade; date
is the human-readable form of the day portion of the timestamp; volume is the
number of shares that are being negotiated; and price is the value per share.

A strategy to solve this query would be to calculate, for each row of Ticks,
what would have been the minimum price seen for that security up until that tick.
This operation is called a running minimum – another running aggregate – and
requires ticks to be sorted by ID and timestamp order. Subtracting each Tick’s
price by its running minimum yields the profit made by buying at the lowest price
up until that tick and selling at that time. The maximum of such differences is
the best profit. The graph in Figure 2.2 illustrates this approach by showing the
price curve of a stock on a given date along with its price running minimum curve.
The difference between the curves depict profits at each tick. For brevity, we omit
the solution of this query in SQL:92.

qu
ot

es

time

maximum quote

minimum quote

best
profit

ticks

running minimum

Figure 2.2: A stock’s price curve and its running minimum

11

The above examples show that writing queries that deal with order may result
in complex SQL. That is not without consequences to the query’s optimization
process – upon which declarative query languages depend so heavily to be efficient.
From a strictly algorithmic point of view, all the queries shown here could use
solutions (query plans) with linear time complexity in the database size. Had
the tables been in an appropriate order, running deltas and running minimums
would have required a single pass on the data. Yet whenever expressed in SQL,
even state-of-the-art commercial optimizers are not able to find such plans and
eliminate the (algorithmically unnecessary) joins.1

We can now go back to our first question. Do query languages need specific
mechanisms to express order operations? If one wants order-dependent queries
to be easy to read and to optimize, then yes. Now, which mechanisms would
accomplish that?

Supporting order-dependent queries means supporting an ordered data struc-
ture and providing a query language and algebra equipped to deal with it [23].
There is not consensus on whether that structure is a list, an array, an arbi-
trary combination thereof, or still some other structure or on whether that query
language should be based on SQL.

Several alternatives have been investigated and we can find inspiring insights
in the database literature. We divide these works in three categories: those that
added ordered structures and adapted SQL accordingly, those that designed a
whole data model and a language around a given structure, and finally the stan-
dard SQL approach itself, which we describe next.

2.2 Standard SQL with Late Order

Order support in SQL:1999 [15] comes indirectly from a language mechanism
whose purpose is to define a sliding window. This mechanism was in fact a late
addition to the standard [16] and was conceived more to deal with analytical
queries (OLAP) needs than to address more general order-dependent queries.

One way to present SQL:1999’s sliding windows is as a means of transforming
aggregate functions into running aggregates. For example, to compute the 3-
month sales moving average query stated previously, we define a window whose
size is of 3 positions (rows), starting two months before the current one and
finishing in the latter. This definition requires months to be sorted on ascending
order. Applying the aggregate function avg() over each distinct window yields the
desired running average. This query in SQL:1999 would look like

[SQL:1999] – 3-month Sales Moving Average Query
SELECTmonth, sales, avg(sales) OVER (ORDER BY month

1As of this writing, the DBMS products we tested picked join-based (non-linear) solutions.

12

ROWS BETWEEN 2 PRECEDING
AND CURRENT ROW)

FROM Sales

This query may not look familiar to the SQL practitioner. Having in a SE-
LECT list the aggregate function avg() and columns that were not GROUP-ed
BY may look at first as an error. It is not; this query returns the same result as
its SQL:92 counterpart. The OVER clause specifies a sliding window which mod-
ifies the function avg() to a running aggregate. The change is less in the way an
average is computed than in how many times this function is called. The OVER
clause associates to each row a window and then causes the aggregate function to
be called on that window. The net effect is that avg() is called as many times as
there are rows.

Although being quite expressive, window usage is subject to a few syntactical
restrictions [26]. For one, they can be used only in the SELECT clause. For
another, they can modify only aggregate functions. Thus, for instance, to find a
“predecessor” element as was the case in the delta sales query specified previously,
some creativity is involved. Defining a single-element sliding-window consisting
of the element that precedes the current and applying min() to such a window
would returns that very element. The delta sales query in SQL:1999 looks like

[SQL:1999] – Delta Sales Query
SELECTmonth, sales - min(sales) OVER (ORDER BY month

ROWS BETWEEN 1 PRECEDING
AND 1 PRECEDING)

FROM Sales

Some DBMS vendors provide non-standard “windowed functions” that make
the above query more intuitive. For instance, Oracle 9i has a pair of functions,
lag() and lead(), that retrieve values by their relative position [28]. The standard
itself defined other additional functions specifically to be used over windows, but
the presentation of those is beyond the scope of this discussion.

Of interest to our study is to evaluate whether the window mechanism itself
helps or hinders order-dependent queries. One way to assess it is to write the best
profit query in SQL:1999. Recall that it relied on finding a running minimum of
prices for each stock. The difficulty here is to define a sliding window that takes
care not to mix ticks of different stocks. Enforcing a sort order or a window size
alone would not suffice. We therefore resort to a more advanced way to define a
window which involves partitioning data. Our point becomes clearer if we try to
find the best profit of all stocks rather than just of a single one. This query in
SQL:1999 looks like

[SQL:1999] – Best Profit Query
SELECT ID, max(running diff)

13

FROM (SELECT ID, date,
price - min(price) OVER (PARTITION BY ID, date

ORDER BY timestamp
ROWS UNBOUNDED PRECEDING)

AS running diff
FROM Ticks) AS t1

WHERE date = ’05/11/2003’
GROUP BY ID

To transform the aggregate function min() in the desired running minimum,
we partition data by ID and date. This means that the current row’s stock ID
and quoting date values are considered when forming that row’s window. Only
after eliminating all elements that do not belong to the current row’s partition
does the sort order get enforced. We also used a cumulative way to form a window
in which it starts at the first row of the current partition seen and ends at the
current row (ROWS UNBOUNDED PRECEDING).

Because an aggregate function (max()) cannot take a running aggregate func-
tion (min(price) OVER · · ·) as an argument, this query is a nested one. The inner
block of the query calculates the running difference while the main query per-
forms grouping and aggregation. The impact of nesting is felt both on readability
and on optimization. We show in Chapter 6 how a commercial optimizer missed
optimization opportunities due to the structure of the query.

Sliding windows are not the only mechanism in which order is involved in
SQL:1999. The language incorporated a new array type; columns can now hold
arrays as opposed to just scalars. The manipulation of “array-fields” in SQL:1999
is very limited, though. There were academic prototypes that exploited arrays
fields better than SQL:1999. These will be discussed in the next section.

2.3 SQL Dialects over Ordered Structures

Academic prototypes had defined dialects of SQL with order features before
SQL:1999 was amended with OLAP functions. SEQUIN, or the PREDATOR
system to be precise, suggested a pacific cohabitation of sequences and relations
through the use of “enhanced” ADTs [31]. SRQL and its underlying algebra did
not make distinctions between relations and sequences, treating the former as a
degenerate case of the latter [29]. Let us discuss each language in turn.

2.3.1 SEQUIN

The PREDATOR database system introduced the concept of “enhanced” abstract
data types (E-ADT) [31]. By enhanced it meant that each new data type carried
more than a collection of methods that could manipulate it. It carried a particular

14

query language and even an optimizer of its own. SEQUIN is PREDATOR’s
language designed to deal with its sequence E-ADT.

A sequence in a SEQUIN query occupies the same place a table would in
SQL. The main difference is that sequences are ordered [30] and thus the FROM
clause supports special joins based on the ordering domain of the participating
sequences. This feature comes in handy to express the delta sales query. We show
the SEQUIN rendition of the query below

[SEQUIN] – Delta Sales Query
PROJECT t1.month, (t1.sales - t2.sales)
FROM Sales AS t1, PREVIOUS(Sales) AS t2

When more than one sequence appears in the from clause an implicit natural
join on their positions takes place, i.e. first element joins with first element, second
element with second element, and so on. The modifiers NEXT, PREVIOUS, and
OFFSET in the FROM clause shift entire sequences so that different alignments
can be used in the joins.

The PROJECT clause is similar to the SQL’s SELECT. It implicitly assumes
that elements of the sequences are ordered. Herein lies both an advantage and
a problem. The advantage is that enforcing order early in a query makes order
visible to all subsequent clauses. For instance, had we wanted to find the months
whose delta sales were greater than a given threshold, we would have put the
expression ’t1.sales - t2.sales > threshold’ in the WHERE clause. In SQL:1999,
where order is supported only in the SELECT clause, this query would have re-
quired nesting. The disadvantage of implicit order is that order is not declarative.
By looking at the query alone one does not know in which order the Sales sequence
is. Should the order of Sales be changed for some reason, the result of this query
would have been affected. Had the query specified in which order it expected to
handle data, such problem would not have happened.

An interesting order feature is that of the mixing of SEQUIN (sequences)
and SQL (sets) in a query. In the following example suppose Ticks’ is a table
that holds two columns: an ID one, and a sequence of quote-price elements in
timestamp order called priceSeq. To query the minimum price of every security
within a given interval one would write in SEQUIN the following query.

[SEQUIN] – Mixed SQL and SEQUIN Query
SELECT ID, SEQUIN (“PROJECTmin(price)

FROM $1
WHERE date BETWEEN

’01/01/2003’ AND ’03/31/2003”,
T’.priceSeq)

FROM Ticks’ AS T’

15

The keyword ’SEQUIN’ in the query could be seen as a function call to SE-
QUIN’s query processor. Its first argument is the query to be executed over
sequence data. The second argument is the sequence data itself corresponding to
ticks of the security’s row that is being processed. The $1 in the query is replaced
with that parameter.

This is quite a useful feature for applications that manipulate sets of sequences,
e.g. Finances and Biology. Nevertheless, nesting an entire query in the SELECT
list of another is arguably hard to read.

2.3.2 SRQL

SRQL is a SQL dialect that also manipulates sequences and relations. It does so
by representing both by the same underlying structure. A sequence is a sorted
relation, in which a list of attributes exists that defines the order of its records. A
relation is simply a degenerate case in which such a list is empty. That and other
simplifications made the writing of order manipulations in SRQL easier.

A SRQL query structure resembles that of a SEQUIN query structure. The
main improvement was to allow a query to declare in which order it requires data
to be processed rather than to assume that such order comes automatically from
the underlying data structures. The chosen order is enforced early in the query
and, as in SEQUIN, all remaining clauses can count on it. SRQL has operators to
shift sequences much as SEQUIN does, but they are not confined to the FROM
clause. To illustrate the use of these mechanisms we show the SRQL rendition of
the delta sales query below

[SRQL] – Delta Sales Query
SELECT S.month, (S.sales - SHIFT(S,-1).sales)
FROM Sales

SEQUENCE BY month AS S

In the query, the Sales relation is “sequenced” according to month order and
the result is bound, a row at a time, to the tuple variable ’S’. The expression
’SHIFT(S,-1).sales’ reads “the previous tuple to the one pointed by the tuple
variable S.” SRQL is the first language we present that is able to express this
query without explicitly resorting to a join. From an optimization point of view
such a query rendition makes the order idioms clear – it exposed both the order
in which rows are to be processed and what order manipulations are involved in
the query.

SRQL also supports the concept of sliding windows. The window definition,
much simpler and thus less powerful than SQL’s, has to adopt the same order spec-
ified in the SEQUENCE BY clause of the query. The following SRQL rendition
of the 3-month sales moving average shows the use of windows.

16

[SRQL] – 3-Month Sales Moving Average Query
SELECT month, AVG(sales) OVER -2 TO 0
FROM Sales

SEQUENCE BY month

The OVER clause defines a window based on relative positions. In this case,
avg() will be called once per row and will be passed a window that ranges from
two rows before the current (-2) until the current row (0).

We don’t know the personalities involved, but it seems likely that SQL:1999
borrowed the OVER constructs from SRQL. The concept here is clearer, though,
because the sort order is valid throughout the entire query as opposed to just
within the window. It remains that, for the same reason as SQL:1999, queries
such as the best profit one would require nesting to be expressed in SQRL.

SRQL has borrowed several mechanisms from SEQUIN, but it gave up an
important one: the ability to manipulate order (sequences) within a field.

2.4 Array-Based Querying Systems

Arrays are ubiquitous in application domains such as scientific computing and
finance. Attempts were made to develop data models and query languages that
revolve around arrays that would support such applications. Order is intrinsically
involved in array manipulation and therefore we investigate such effort.

2.4.1 AQL

Array Query Language (AQL) is a language that manipulates multidimensional
arrays [21]. Underneath AQL there is a data model based on the nested relational
calculus of [6] with the addition of primitives to handle arrays.

AQL syntax is based on set comprehensions [5]. A comprehension has the form
{ f | q1, q2,· · ·, qn }, where qualifiers qi can be either predicates or generators.
A generator is an expression of the form x ← A (reads x draws from A) that
sequentially binds elements of the collection A to variable x. The qualifiers are
evaluated from left to right. A binding is propagated until a predicate evaluates
to false under this binding. The function f in the head of the comprehension is
evaluated under all bindings that survived the predicates. The AQL rendition of
the delta sales query shown below illustrates the use of comprehensions.

[AQL] – Delta Sales Query
{ (month, sales[i] - sales[i-1]) |

[\i : (\month,\sales)] ← Sales,
i > 0 }

17

The first qualifier is a special generator that binds array elements to variables.
We assume here that Sales is an array of records (month, sales). The generator
binds at once the position of a record to the variable ’i’, and the record’s com-
ponents to variables ’month’ and ’sales’. A backslash preceding a variable signals
that the latter is being bound at that qualifier. The second qualifier is a predicate
that filters out the very first record. Array indexes in AQL start at 0. This will
avoid an out-of-bounds error in the head of the comprehension. It calculates the
delta for a given month and puts the result in a record format.

Note that AQL generators use implicit order. The language could easily be
extended with a sort user-defined function that would explicitly enforce the desired
order for a query.

AQL is the first language described so far that supports an indexing operation
– that is, a positional access to an element through a subscript. The previously
introduced languages do support some notion of row numbering but would not
allow it to be used to directly access an element. As the query demonstrates, such
a feature comes with the responsibility of avoiding out-of-bounds errors.

2.4.2 KSQL

KSQL is the SQL dialect of the database management system KDB [20]. KDB has
a fully vertically partitioned implementation of tables in which each column is a 1-
dimensional array. For that, KDB tables have been called arrables (array-tables)
[37].2 An arrable’s rows are intrinsically ordered.

What makes KSQL very effective for queries that other languages can express
only through nesting is its column-oriented semantics. It allows a single block
rendition of the best profit query.

[KSQL] – Best Profit Query
SELECT max(price - mins price) BY ID
FROM Ticks

The variables in the query refer to entire columns rather than to single values.
The construct ’BY’ has the same effect of SQL’s GROUP BY. Therefore ’price’ in
the SELECT clause is bound to a vector of prices partitioned by ID. The function
mins() is being implicitly called once for each price partition and its result is
subtracted from that very same price partition. The function max() then returns
the highest difference of price for that partition.

KSQL can express a large set of order-dependent queries in a very concise way.
But the language does not support declarative order; a change in the underlying
order of Ticks would affect the result of this query. In addition, KSQL’s syntax
is somewhat far from the classical structure SQL practitioners are used to seeing.

2This term was actually first coined in [32].

18

2.5 Discussion

The investigation we have presented here is far from exhaustive but brings a sig-
nificant cross-cut of order-manipulation mechanisms in existing query languages.
We briefly cite other pertinent work. Array manipulation, in particular image
pixel arrays, motivated at least two other works. AML [25] is a framework for
generic function application over multidimensional arrays. It is based on a small,
flexible set of algebraic operators in which several image manipulations can be
encoded. RasQL [2] also manipulates image pixel arrays but using a SQL dialect.
Both languages do not support declarative order. Ordered relations were also used
elsewhere. In [27] the relational model was extended by providing the facility of
user-defined orderings over data domains. The resulting model was called Ordered
Relational Model. It supports a variation of SQL called Ordered SQL that could
express the queries seen here, although with a peculiar syntax. Finally, sequences
were used in an extension of Datalog called Sequence Datalog [4]. The latter kept
the same syntax as Datalog but added two types of enriched terms, one capa-
ble of extracting sub-sequences from a given sequence (indexed sequenced terms)
and the other capable of concatenating sequences (constructive sequence terms).
Order wise, these works did not add any new mechanism that wasn’t mentioned
here.

The table 2.1 presents a qualitative comparison of the languages described
previously. For each language we state which underlying data model and data
structure it is based upon and what querying style and semantics it adopts. We
also determine for each of them what order manipulation mechanism they incor-
porate. By “declarative order” we refer to the ability of explicitly stating the
order in which data is supposed to be processed by a query. By “running aggre-
gates” we mean the support for cumulative aggregates (e.g., running minimum)
and windowed aggregates (e.g., moving average). By “inter-row” we refer to the
ability of using values of two or more distinct rows in a single expression. Finally,
“best profit query” shows whether a language’s rendition of it requires a nested
structure.

The table shows that there is no absolute best language. That answers our
final question regarding whether any one given language would incorporate all
necessary order manipulation mechanisms. AQL is arguably the most expressive
of the languages – comprehensions have shown to be as expressible as languages
such as OQL [13]. The missing linguistic features – declarative order and running
aggregates – could be implemented through the addition of user-defined functions.
We show in Chapter 4 that such user additions may be less than satisfactorily
handled by the optimization process. We also have a bias for pragmatic reasons
for SQL and its dialects, but reasonable people can differ on this point. KSQL
has proven to be quite appropriate for order-dependent queries and was the only
SQL dialect capable of expressing the best profit query in a single block.

19

Linguistic differences notwithstanding, arrays were the structure that provided
the greater flexibility. Any operation that can be done on an ordered set, on
a sequence, or on a table can also be done on an array representation of those
structures. The inverse doesn’t hold. Moreover, array indexing (positional access)
can be used as a primitive to express every order-manipulation mechanism studied
here. It was shown that indexing comes with the risk of having run-time (out of
bounds) error, though.

In conclusion, we claim that arrays are the best suited data structure to sup-
port order-manipulations. We seek a language that can take advantage of the
flexibility of arrays, and can express order-dependent queries in a natural, clear
way.

20

Underlying Main Data Query- Semantics
Data Model Strucutre Language

Style

SQL:1999 Relational table SQL row
SEQUIN Object-Relational sequence SQL dialect row

SRQL Ordered Relations ordered sets SQL dialect row
AQL Nested Relational arrays comprehensions row

KSQL Relational arrable SQL dialect column

Declarative Order in running inter-row best profit
Order all clauses aggregates query

SQL:1999 yes no yes window nested
SEQUIN no yes yes join nested

SRQL yes yes yes yes nested
AQL UDF yes UDF yes single block

KSQL no yes yes yes single block

Table 2.1: Comparative table of languages with order constructs

21

Chapter 3

AQuery Syntax and Semantics

3.1 An Array-Based Data Model

AQuery is a SQL dialect that is based upon an ordered data structure called
an arrable, for array-table. Informally, an arrable is a collection of named ar-
rays that, in their simplest form, are vectors of elements of a base type. In this
form, an arrable is essentially a table organized by columns. An arrable’s arrays
may assume more complex shapes, though. They may contain array-valued fields
themselves, but nesting beyond this point is not allowed.

1
2
5
9
13

ID price date ts

Series
ACME
WXYZ

[12.02 12.04 12.05]
[43.23 43.22]

05/11/03
05/11/03

[1 5 9]
[2 13]

ID price date ts

(a)

(b)

05/11/03

Ticks
ACME
WXYZ
ACME
ACME
WXYZ

12.02
43.23
12.04
12.05
43.22

05/11/03
05/11/03
05/11/03
05/11/03

Figure 3.1: Example of two well-formed arrables

Figure 3.1 shows examples of two well-formed arrables. Both store stock
quotes, but each in a particular shape. The column ID refers to the security
identifier of a quote, price is the quote itself, and date and timestamp record the
moment the quote occurred. Formally, arrables can be described as follows.

22

Definition 3.1 (Arrables) – Let T be a set of types in which each t ∈ T
corresponds to a basic type (e.g., integer, boolean, etc) or to a one-dimensional
array of elements from a basic type. Let A be a finite array of elements of a type
t ∈ T . The cardinality of A is the number of elements in A’s first dimension. The
k-th element of A is denoted by A[k], and k is said to be an index or position in
A. Indexes start at 0. An arrable r is a collection of named arrays A1, · · · , An

that have the same cardinality, and such that each Ai, 1 ≤ i ≤ n, is an array of
type ti ∈ T . 2

Definition 3.2 (Arrable Indexing) – The k-th row of an arrable r is formed
by the k-th element of each of r’s component arrays. This operation, denoted
indexing, is represented as r[k] = 〈A1[k], · · · , An[k]〉. 2

For instance, Ticks[0] corresponds to the record 〈ACME, 12.02, 05/11/03, 1〉,
Ticks [1] to 〈WXY Z, 43.23, 05/11/03, 2〉, and so on.

Because an arrable consists of arrays and arrays are ordered, an arrable’s rows
are ordered.

Definition 3.3 (Ordered by) – An arrable r may be (lexicographically) or-
dered by a subset of its arrays, B1, · · · , Bm ⊆ A1, · · · , An. If the ordering is
ascending and k1 and k2 are two indexes of r and k1 < k2, then either (i)
B1[k1] = B1[k2], · · · , Bm[k1] = Bm[k2] or (ii) there exists a i, 1 ≤ i ≤ m, such
that Bi[k1] < Bi[k2] and if i > 1 then B1[k1] = B1[k2], · · · , Bi−1[k1] = Bi−1[k2].
Or, put informally, the tuples in the ordered projection of r onto B1, · · · , Bm are
lexicographically ordered. The definitions are symmetric for descending orders,
but for the purpose of exposition, we will consider order to be ascending through-
out this chapter. 2

For instance, the arrable Ticks shown in Figure 2.1(a) could be defined as
Ticks(ID, price, date, timestamp) ORDERED BY timestamp.1

The AQuery language borrows its syntax from SQL but it permits a query
to specify the order in which it wishes to process rows. It does so through a
new clause called ASSUMING ORDER introduced between the FROM and the
WHERE clauses. The ASSUMING ORDER clause’s semantic effect is to sort
data immediately after the Cartesian product indicated by the FROM clause.

Definition 3.4 (Sort) – Let r(A1, · · · , An) be an arrable and B1, · · · , Bm ⊆
A1, · · · , An. By a sort of r over B1, · · · , Bm, we mean a permutation s of r that is
ORDERED BY B1, · · · , Bm. 2

1We are omitting the typing information here for convenience. A complete definition would
include NULLs and referential integrity information also.

23

For instance, to find ACME’s quotes ordered by timestamp, one would write

[AQuery]
SELECT price
FROM Ticks

ASSUMING ORDER timestamp
WHERE ID = ’ACME’

The order declared in the query is independent of that of the arrable to which
it refers. A smart optimizer should be able to detect the coincidence and take
advantage of it. (The topic of AQuery optimization will be further explored in
Chapter 4.)

By enforcing order in the FROM clause of a query, all of the subsequent clauses
may take advantage of it. We believe though that order throughout all clauses is a
necessary, but not a sufficient condition for having clear, concise order-dependent
queries.

3.2 Column-Oriented Semantics

One problem in expressing order-dependent queries is that often each resulting
row is a combination of values of more than one input row. For example, consider
a query to find the difference between each price and its previous value, assuming
a time order. It needs to access two prices at once that are in distinct rows to
calculate each pair’s difference. Row-oriented languages such as SQL-92 can only
iterate over only one row at a time, though. Thus they need to resort to either a
self-join or an auxiliary construct to build a row that contains both prices. This
operation has to be repeated for each pair.

In contrast, AQuery adopts a column-oriented semantics in that variables are
bound to entire arrays at a time. Because variables in AQuery always refer to
arrays, expressions always define mappings from a list of arrays to an array. For
instance, the above pair-wise difference can be captured by a simple expression –
’price - prev(price)’. The function prev() over an array A is an array such that
prevA[i] = A[i − 1] if i > 0 and A[0] if i = 0. For two arrays A and B such that
|A| = |B|, minus (-) is element-wise subtraction.

The function prev() is a sample of the set of vector-to-vector functions that
AQuery includes. These functions are classified according to their dependency on
the input’s array sort order and on the cardinality of the output they generate.
For instance, prev() is order-dependent and size-preserving. The latter property
indicates that it outputs vectors that have as many elements as the input array.
Formally order-dependency can be defined as follows.

Definition 3.5 (Order-Dependency) – An expression e that maps a list of
arrays to an array is said to be order-independent if for all operand arrays Ai,

24

1 ≤ i ≤ m, where m is the degree of the expression, and for any correspond-
ing permutations Aperm

i , then e(A1, · · · , Am)ande(Aperm
1 , · · · , Aperm

m) represent the
same multiset. For example, avg(price) is order-independent. An expression that
is not order-independent is order-dependent. For example, price - prev(price), is
order-dependent. 2

Other functions in the order-dependent, size-preserving category are the run-
ning aggregates. A running minimum over an array A, mins(A), is minsA[i] =
min(A[i], minsA[i − 1]) for 0 < i < |A| or A[i] for i = 0. Running aggregates use
this “s”-as-suffix pattern. A running sum over an array A, denoted sums(A), is
sumsA[i] = A[i] + sumsA[i − 1] for 0 < i < |A|, or A[i] for i = 0. Some running
aggregates can be computed over sliding windows. For instance, a running average
using a fixed-sized window of w positions over an array A is denoted avgs(w, A)
and is defined as avgsw,A[i] = sum(A[i− (w − 1)]..A[i])/w, for w− 1 ≤ i < |A| or
sum(A[0]..A[i])/i for 0 ≤ i < w − 1.2

Another category of vector-to-vector functions are those that are order-dependent
but not size-preserving. They reduce an array’s cardinality and as such are
called edge functions (i.e., they keep either the beginning or the end of an ar-
ray). For instance, the first n positions of an array A, denoted first(n, A), is
firstA,n = A[0..n− 1]. Similarly, lastA,n = A[|A| − n..|A| − 1].

The classic SQL aggregate functions (min, max, avg, count) can be seen as
non-order-dependent, non-size-preserving vector-to-vector functions.

Example 3.1 – The combination of column-oriented semantics and array-typed
expressions make it easier to write the best profit query (chapter 2). Recall that
this query uses the Ticks arrable of Figure 3.1 to find what would be the best
profit one could make by buying and selling a given stock in a given date. This
query required a nested formulation when written in row-oriented languages, even
order-aware ones. In AQuery, it can be written in a single block.

[AQuery] – Best Profit Query
SELECT max(price - mins(price))
FROM Ticks

ASSUMING ORDER timestamp
WHERE ID = “ACME” AND

date = “05/11/2003”

The query should be read with a column-oriented mind-set. The FROM clause
accesses the arrable Ticks and sorts it by timestamp order. In the WHERE clause,
’ID’ and ’date’ are both vectors; comparing each of them to scalars – ACME and

2Such a definition is commonplace in financial applications. Other domains may require
avgs() to return NULLs on positions where the window is incomplete. In any case, it is often
convenient to have the running average return an array the same size as its argument.

25

05/11/2003, respectively – are valid array-typed expression that result in two
booleans arrays. After they are combined, the resulting array maps each position
of Ticks to true or false. Processing the WHERE clause means eliminating the
false positions.

Note that due to the column-oriented semantics of AQuery, the mins() function
is called only once and takes the whole price vector as an argument. Subtracting a
vector (mins(price)) from another (price) with the same cardinality is a standard
array expression as is taking the max() of the resulting vector. 2

3.3 Relational Manipulation of Arrables

The AQuery algebra supports the operators of the relational algebra. But here
each operator takes array-typed expressions as arguments. If an expression is
order-dependent, then the operator behaves in an order-preserving way. Other-
wise the operator behaves in an order-cavalier way. We use the following order
equivalence between arrays to define such behavior.

Definition 3.6 (Order-Equivalence) – Let r and s be arrables over the same
set of attributes. Suppose that r is ordered by some attributes X1, · · · , Xp, and
s by Y1, · · · , Yq. Then r and s are order-equivalent with respect to attributes
B1, · · · , Bm, denoted r ≡B1,···,Bm

s, if the following conditions hold: (i) r and s
are multiset-equivalent (i.e., there exists a permutation of rows P 1, P 2 such that
P 1(r) = P 2(s)). (ii) B1, · · · , Bm is a prefix of both X1, · · · , Xp and Y1, · · · , Yq.

When r and s are simply multiset-equivalent, we say that r ≡{} s. 2

The order-cavalier variation of an operator is simply one that is multiset equiv-
alent to its order-preserving variation. In the remaining of the section we define
the order-preserving variations of the relational algebra operators.

3.3.1 Projection

Let r be an arrable and e = e1, · · · , em be a list of expressions involving r’s arrays,
such that |e1| = · · · = |em|. An order-preserving projection of r over e, denoted
πop

e (r), is defined as follows.3

projection(e,r)

1. s:= empty arrable having the same schema as e

2. for i = 0 to |r|-1
3. append <e1[i],· · ·,em[i]> to s

3Note: After considering different formalization notations including set comprehensions and
lambda calculus we have decided to use a simple minded but (to us) clear loop formulation. In
fact comprehensions would have worked well for many of the operators, but introduced problems
for some such as certain variants of order-preserving joins

26

4. end for

5. output s

As mentioned before, if any ei is order-dependent, the projection is said to be
order-preserving, otherwise the projection is order-cavalier, denoted simply πe(r).

3.3.2 Selection

Let r be an arrable and p be a predicate mapping a list of r’s arrays into an array
of booleans, such that |r| = |p|. An order-preserving selection of r over p, denoted
σop

p (r), is defined as follows.

selection(p,r)

1. s:= empty arrable having the same schema as r

2. for i = 0 to |r|-1
3. if p[i] is true

4. append r[i] to s

5. end if

6. end for

7. output s

As for a projection, a selection can be order-dependent, and either order-
preserving or order-cavalier. This may be interesting if we have a hash index for
example.

Example 3.2 – Let e= max(price - mins(price)) and p= (ID = ’ACME’) ∧ (date
= ’05/11/2003’). The Best-Profit query can be translated to the AQuery algebra
as follows,

πop
e (σop

p (sorttimestamp(Ticks)))

2

3.3.3 Group By

Grouping in AQuery uses an arrable’s facility to store array valued fields. In-
tuitively, grouping in AQuery partitions the operand arrable into disjoint sub-
arrables that share the same group value. It then transforms each sub-arrable
into a single row by replacing each non-grouped column (in the sub-array) by its
equivalent array-typed value. For instance, the arrable Series in Figure 3.1 shows
the effect of grouping the arrable Ticks in the same figure by ID and date.

Formally, let r be an arrable and g = G1, · · · , Gm be a list of expressions over
r’s arrays such that |G1| = ... = |Gm| = |r|. That is, to each r[i] there must exist
a group characterized by g[i]. The order-preserving group-by of r over g, denoted
gbyop

g , is defined as follows.

27

group-by(g,r)

1. groups := empty arrable having the same schema as g

2. s:= empty arrable having the same schema as r

3. for i = 0 to |r|-1
4. if g[i] in groups

5. j:= index of g[i] in groups

6. for each array A in r

7. if A is not a grouped-by column

8. concat r[i].A to s[j].A

9. end if

10. end for

11. else

12. append g[i] to groups

13. append r[i] to s

14. end if

15.end for

16.output s

Step 13 above forms a single element list (or equivalently a vector). Step 8
concatenates to that list. The result is that fields may consist of vectors. As
before, group-by is order-dependent if any of its grouping expressions are. Group-
by can also have an order-cavalier variation in which the assembled arrays in fields
may not be in the same order as in the original arrable.

Grouping in AQuery is independent of aggregation. To apply a function to
each array-valued element of a column, AQuery provides an operator modifier
called each. Formally, let the array A be a parameter (array) of a function F .
The execution of F modified by ’each’ is defined as follows

each(F, A)

1. B := empty array of the same type of F’s result

2. for i = 0 to |A|-1
3. append F(A[i]) to B

4. end for

5. output B

This definition can be naturally extended for cases where F takes more than
one argument.

Example 3.3 – Consider the schema Packets(pID, src, dest, length, timestamp),
where pID identifies a packet exchanged between a source (src) and a destination
(dest) host. Length refers to the size of the packet and timestamp to the moment
this packet was exchanged. A “flow” from a source s to a destination d ends
whenever there is a 2-minute gap between consecutive packets from s to d [8].
Suppose a network administrator wants to know the count of packets and their
average length within each flow. This query would need to group packets of each
flow, and compute the count and average needed. Finding the flows is very hard
to express, though, because it involves order.

28

length

[[250, 270]]
Packets’ destsrc

[[330, 280, 305]]
[[235]]

s1
s2
s2

s2
s1
s1

g3

+1121

1
1
1
1
0
0

F
F
F
T

[[1, 20]]

(c)

1
3

2
count(ts)

235
305

260
avg(length)Packets’’ destsrc

s1
s2
s2

s2
s1
s1

destsrc length ts

(a)

(b)

[[47, 150, 155]]

ts

[[141]]

F

deltas(ts)>120Packets sums(deltas(ts)>120)

F

g2

g1

155
150
47
141
20
1

305
280
330
235
270
250

s1
s1
s1
s2
s2
s2

s1

s2
s2
s2

s1
s1

Figure 3.2: Intermediate arrables in the Newtork Management Query

In AQuery, such a grouping expression corresponds to the arrable ’src, dest,
sums(deltas(timestamp)>120)’. ’deltas(col)’ is the abbreviation of ’col - prev(col)’.
Figure 3.2(a) shows how this expression is computed, supposing the Packets
arrable is sorted over src, dest, and timestamp. The expression ’delta(timestamp)>120’
finds for each packet whether it starts a new flow. Assuming that the boolean
TRUE carries a value of 1, and FALSE of 0, the expression ’sums(deltas(timestamp)
> 120)’ generates a unique flow identifier, when concatenated with src and dest.

The arrable we see in Figure 3.2(b) is the grouped one. Note that the columns
of Packets that are not columns of g (the grouping expression) have arrays within
fields. Because fields may be arrays (though not arrables), aggregate functions
may apply over an entire column or over each field. In figure 3.2(c) we see that
avg() was applied to each of the array-values of the column length.

The AQuery rendition is given below.

[AQuery] – Network Management Query
SELECT src, dest, avg(length), count(timestamp)
FROM Packets

29

ASSUMING ORDER src, dest, timestamp
GROUP BY src, dest, sums(deltas(timestamp) > 120)

The algebraic version of the network management query, supposing that e=
src, dest, each(avg(),length), each(count(),timestamp) and g= src, dest, sums(
deltas(timestamp) > 120), looks like the following. We mark with a corresponding
superscript the operations that have components modified by each.

πeach
e (gbyop

g (sortsrc,dest,timestamp(Packets)))

2

3.3.4 Flatten

Flatten generates a first normal form equivalent of an arrable that contains array-
fields. It requires every row of the input arrable to be made of scalars, or of scalars
and array-valued fields where the latter are of the same cardinality.

To define the flatten operation formally, assume that card() is a function that,
given a row, returns the maximum cardinality of any of the row’s elements. Fur-
ther let r be an arrable made of arrays A1, · · · , An and let there be a m such that
A1, · · · , Am, are vectors (contain only scalar elements) and Am+1, · · · , An contain
array fields as described earlier. Flatten over r could be defined as follows

flatten(r)

1. s:= empty arrable having the same schema as r

2. for i = 0 to |r|-1
3. for j = 0 to card(r[i])

4. append <r.A1[i], · · ·, r.Am[i], r.Am+1[i][j],· · ·, r.An[i][j]>

5. end for

6. end for

7. output s

Example 3.4 – Financial analysts often observe stock tendencies before making
purchase decisions. Moving averages are capable of smoothing the volatile stock
price curves and exposing underlying optimistic and pessimistic sentiment. For
instance, whenever a short-term trend curve (a 5-day moving average) crosses
above a longer-term one (21-day moving average) technical analysts would suspect
the stock will move up soon.

The following query would be involved in this analysis.

[AQuery] – Crossing Averages Query
WITH

averages (ID, date, a21, a5) AS
(SELECT ID, date,

30

avgs(21, price) as a21,
avgs(5, price) as a5

FROM Ticks
ASSUMING ORDER ID, timestamp

GROUP BY ID)
SELECT ID, date
FROM FLATTEN(averages)

ASSUMING ORDER ID, timestamp
WHERE a21 > a5 AND

prev(a21) <= prev(a5) AND
prev(ID) = ID

This query finds the dates where the 21-day and the 5-day moving average for
a given set of stocks cross. The WITH construct from AQuery was borrowed from
SQL:1999. It defines a “local view” that can be referenced only in the FROM
clauses of subsequent WITH queries or in the main query. Note that the view
returns the averages as array fields for each ID and date (non-1NF arrable). The
next step is simply to check crossings.

Let e= ID, date, avgs(21,price), avgs(5, price) and p= a21 < a5 ∧ prev(a21)
> prev(a5) ∧ prev(ID) = ID. The crossing averages query is translated to the
AQuery algebra as follows

r ← πop
e (gbyop

ID(sortID,timestamp(Ticks)))

πop
ID,date(σ

op
p (flatten(r)))

2

3.3.5 Cross Product and Join

Cross-product (×) in AQuery is order-cavalier and hence has the same definition as
in the relational algebra. By contrast, joins may have several variations depending
on whether and how the order of the input arrables is preserved. Let r(A1, · · · , An)
and s(B1, · · · , Bm) be arrables. A left-right order-preserving join of arrables r and
s on join predicate p, denoted r 1

lrop
p s, is defined in the following way.

join(p, r, s)

1. o:= empty arrable with schema 〈A1, · · · , An, B1, · · · , Bm〉
2. for i = 0 to |r| - 1

3. for j = 0 to |s| - 1

4. if p(r[i],s[j]) is true

5. append 〈A1[i], · · · , An[i], B1[j], · · · , Bm[j]〉 to o

6. end if

7. end for

8. end for

9. output o

31

A query’s order may require that only one of the join operand arrables’ order
be preserved. In that case a simpler order-dependent variation of the join can
be used. Suppose that r(A1, · · · , An) is the arrable for which order should be
preserved. A left order-preserving join, r 1

lop
p s, is one that is order-equivalent

with respect only to A1, · · · , An to a left-right order-preserving join of the same
two arrables.

Example 3.5 – The arrable Portfolio(ID, tradedSince) ORDERED BY ID, stores
information about the stocks that makes one analyst’s portfolio. It is a subset
of the stocks that appear in Ticks. If this analyst wanted to extract the ten last
quotes for each stock that he or she traded, then the following query could be
issued.

[AQuery] – Non-1NF Result Query
SELECT t.ID, last(10, price)
FROM Ticks t, Portfolio p

ASSUMING ORDER timestamp
WHERE t.ID= p.ID
GROUP BY t.ID

Semantically, the query first performs a cross-product (×) between Trades and
Portfolio. As mentioned before, Cross-product in AQuery is order-cavalier. Next,
the ASSUMING clause imposes the desired sort order and the join predicate is ap-
plied. Then, the resulting arrable is partitioned into groups according to ID values.
The assumed order is preserved within each group. The last() function “trims”
each array-valued price column to a maximum of the ten last positions of each
price array. Letting e= ID, each(last(),10,price) and p= Trades.ID=Portfolio.ID,
this query can be represented as follows. (Note that last() takes two arguments
and therefore that is reflected on the syntax of the ’each’ call.)

πeach
e (gbyop

ID(σop
p (sorttimestamp(Trades × Portfolio))))

2

3.4 Positional Manipulation of Arrables

AQuery exploits the ordered nature of arrables so as to support the referencing
of rows by their position. We describe two order-manipulation mechanisms that
use this facility.

3.4.1 Querying with Arrable Indexing

Because expressions in AQuery are array-typed, it is only natural to allow indexing
(i.e., access to an array’s element given its position) in the language. Yet an access

32

to a non-existent position would cause a run-time error. AQuery avoids such a
possibility by introducing the notion of safe index sequence generators (SISG). A
SISG is an expression that is always evaluated to a valid sequence of indexes. For
instance, the expression ’price[ODD]’ uses the SISG ’ODD’ to return all prices
from position 1 until the last odd position in price in that context. Other SISG is
EVEN, which works similarly to ODD but starts at 0 and uses only even positions.
We use an example to introduce the SISG EVERY n.

Example 3.6 – Suppose a financial analyst wants to know the standard deviation
of prices for ACME’s stocks and whether it would be accurate to work with
samples of its prices instead. The following query would return the standard
deviation for the price column of Ticks, for samples at every 10th price, and at
every 100th price. The function stddev() is a built-in one and calculates the
standard deviation for a vector.

[AQuery] – Array Indexing Query
SELECT stddev(price), stddev(price[EVERY 10]), stddev(price[EVERY 100])
FROM Ticks

ASSUMING ORDER timestamp
WHERE ID = ’ACME’

2

3.4.2 Querying with Row Direct Addressing

After a query’s FROM clause is evaluated, the resulting arrable implicitly gains an
additional column (vector) called ROWID. This synthetic column can be referred
to anywhere a regular column can.

Example 3.7 – Good candidate stocks for day-trading may be among the most
early-traded stocks. To discover which stocks were quoted within the first thou-
sand quotes of a given day and how many times, the following query may be
issued.

[AQuery] – Row Direct Addressing Query
WITH

OneDay AS
(SELECT ID, price, timestamp
FROM Ticks

ASSUMING ORDER timestamp
WHERE date = ’05/11/2003’)

SELECT ID, count(*)
FROM OneDay

ASSUMING ORDER timestamp

33

WHERE ROWID < 1000
GROUP BY ID

The WITH query filters out ticks that did not occur in the desired date. The
main query’s WHERE clause will eliminate all the rows having ROWIDs 1000 or
greater, according to timestamp order. Note that this query requires two steps so
as to make sure the date filter is executed before the ROWID one. 2

3.5 Comparing AQuery to Other Order-Aware

Languages

AQuery’s renditions of order-dependent queries are usually more concise than
those of row-oriented languages. To illustrate this point we present the SQL:1999
rendition of the Network Management query presented earlier. Recall that this
query’s goal is to break sequences of packets (sessions) between pairs of hosts
down into “flows” and to calculate statistics of the latter. A flow between a pair
of hosts ends – and a new one starts – whenever they stop communicating for a
period of 120 seconds or more.

[SQL:1999] – Network Management Query
WITH

Prec (src, dest, length, timestamp, ptime) AS
(SELECT src, dest, length, timestamp,

min(ts) OVER
(PARTITION BY src,dest
ORDER BY timestamp
ROWS BETWEEN 1 PRECEDING
AND 1 PRECEDING)

FROM Connections),
Flow (src, dest, length, timestamp, flag) AS
(SELECT src, dest, length, timestamp,

CASE WHEN timestamp-ptime > 120 THEN 1
ELSE 0

END
FROM Prec),
FlowID (src, dest, length, timestamp, fID) AS
(SELECT src, dest, length, timestamp,

sum(flag) OVER
(ORDER BY src, dest, timestamp
ROWS UNBOUNDED PRECEDING)

FROM Flow)
SELECT src, dest, avg(length), count(timestamp)
FROM FlowID
GROUP BY src, dest, fID

34

Separating the flows requires checking the intervals between time-consequent
packets for a given pair of hosts. Expressing this calculation in SQL:1999 is not
entirely straightforward. The first sub-query, Prec, creates a new column, ptime,
containing the previous packet’s timestamp within each source and destination.
Next, the Flow sub-query adds a flag column that is turned true (1) at each packet
whose difference to the preceding one exceeds two minutes; otherwise the flag is
turned to false (0). Next, the FlowID sub-query sums these flags cumulatively,
creating an auxiliary flow ID, fID. The main query uses these results.

By contrast, the combination of AQuery’s column-orientation, underlying data
model, and built-in support for order makes it easier to write the same query. For
convenience, we repeat the query here.

[AQuery] – Network Management Query
SELECT src, dest, avg(length), count(timestamp)
FROM Packets

ASSUMING ORDER src, dest, timestamp
GROUP BY src, dest, sums(deltas(timestamp) > 120)

For all queries presented in this chapter we found the same sort of structural
discrepancies between AQuery and SQL:1999 renditions that the Network Man-
agement query presents. Ultimately, if a calculation depends on several row values
at once, a row-oriented language needs an auxiliary construct to align those values
in a row. Nevertheless, several row-oriented languages in the literature provided
inspiring insights.

AQuery borrowed from SRQL the early introduction in a query of an order
defining clause. AQuery differs from SRQL in that the latter has a row-oriented
semantics. Therefore several expressions that are valid in AQuery are not so in
SRQL. SRQL cannot handle the table equivalent of non-1NF arrables. We have
shown that this feature was useful in order-dependent queries.

In contrast, SEQUIN can handle tables that have sequence-valued fields. But
whenever a query involves fields of both the table and the sequence, SQL is used
to deal with the former and SEQUIN with the latter. That can lead to somewhat
difficult-to-read queries.

AQuery takes its main inspiration from KSQL: namely its arrable notion, and
its column-oriented semantics. AQuery differs from KSQL by trying to preserve
the SQL flavor to a much greater extent than KSQL, by the introductin of the
ASSUMING ORDER clause to make the use of order declarative, and (though
this is independent of the semantics) by using cost-based optimization.

3.6 Conclusion

AQuery was designed to support order-dependent queries without compromising
on backwards compatibility to SQL-92 (modulo nested capabilities). AQuery’s

35

clauses are the same as SQL’s – ASSUMING ORDER is an optional clause – and
support all expressions that SQL clauses do, even though the former is column-
oriented and the latter is row-oriented.

AQuery mets the criteria defined earlier for order-aware languages. It has
declarative order, semantically the operations preserve order and the order idioms
may claim to be intuitive.

One characteristic makes AQuery particularly amenable to query optimization.
It is rather simple to identify which expression in a query and thus which clauses
are order-dependent. A simple type analysis can check whether the use of an
order-dependent function makes an expression order-dependent. We will see in
the next chapter how an optimizer can take advantage of that knowledge.

36

Chapter 4

AQuery Optimization

4.1 Introduction

A SQL query specifies how its result must look but it does not establish how
to compute it. For instance, if a query’s WHERE clause is a conjunction of
two predicates (p1 AND p2), either predicate may be chosen to execute first or
execution orders may be mixed. An optimizer decides so in a cost-conscious
fashion, usually executing the most selective predicate first or the one having a
useful index.

This optimization approach presupposes a query to have alternative query ex-
ecution plans (QEPs). A first QEP comes naturally from translating the query’s
text into its algebraic equivalent using the order of operations given by the query.
Other QEPs may be obtained by the application of query transformations, rear-
rangements of the operators in a QEP that do not alter the query’s semantics. In
our previous example, the optimizer could first use a transformation that broke a
composite selection into two simple ones. It could then decide on any order, for
there is a transformation that could commute this pair of selections [10].

AQuery optimization can be done in this transformational fashion. If a query
does not contain any mention of order then it can be optimized exactly as SQL
would be. If early ordering is used (ASSUMING ORDER clause) then transfor-
mations involving sort can be applied. In the literature, sort transformations were
addressed in two distinct but complementary ways.

The transformations in [33] avoid redundant sorting work by either eliminating
the sort altogether or by reducing the number of columns over which sort is done.
To eliminate a sort over a table r with respect to column A1 (sortA1(r)), A1

must be found to be a prefix of the existing order of r’s records. This is the case
whenever an index (to be precise, an index that orders its key information such
as a B-tree) clustered by A1 is used to scan r, or whenever a predicate such as
’A1 = value’ has been previously evaluated over r. To reduce a sort over r in
respect to columns A1 and A2 to sortA1(r), either A1 must be a key of r or A1

37

must functionally imply A2.

Example 4.1 – Suppose Connections(host, port, client, timestamp) ORDERED
BY timestamp is an arrable that stores the clients’ addresses that accessed a
network’s services (port, host) and when did they do so. The following query
fetches the clients that connected to host ’atlas’ in timestamp order. (The use of
ASSUMING ORDER here is merely illustrative; more realistic queries will follow
this introduction.)

[AQuery]
SELECT client
FROM Connections

ASSUMING ORDER timestamp
WHERE host = ’atlas’

The QEP derived directly from the query text is shown in Figure 4.1(a). We
show plans in the usual diagrammatic way but introduce some auxiliary notation
as follows. A single arc between a pair of operators means that the producer
operator is outputting records in an order-cavalier fashion (i.e., in the most efficient
or simple way possible, without guaranteeing any order). Double-arcs mean it
is doing so in an order-preserving way. Arrows represent the net effect of the
application of a transformation. Each arrow is annotated with the corresponding
transformation number. The formal descriptions of the transformations are given
in Table 4.1.

σ

π
client

sort
timestamp

host=’atlas’

Connections

σ
host=’atlas’

Connections

π
client

(a) (b)

1

Figure 4.1: An initial QEP and the application of a sort elimination transforma-
tion

Note that operators after the sort are connected by double-arcs. This im-
plies that they maintain the order the sort imposed. The sort can be eliminated
because it matches the order defined for the arrable Connections, according to
transformation 1 in Table 4.1. The resulting plan is shown in Figure 4.1(b). 2

The other way order transformations were addressed in the literature was in
a context in which sort and other operations interacted [35]. If relations were
lists rather than sets of records and relational operations were carried in an order-
preserving fashion, then sort and projection would be commutative. Similarly,

38

Sort Reduction/Elimination
(1) sortA(r) ≡order(r) r if A is a prefix of order(r)
(2) sortB(r) ≡B r if A, B is a prefix of order(r)

and |duplelim(A)| = 1

Selection
(3) σop

p (sortA(r)) ≡A sortA(σp(r)) if p is not order-dependent
(4) σp(r) ≡{} σop

p (r) if p is order-independent

Projection
(5) πop

e[i](r) ≡order(r) πop
e (σpos()=i(r)) e is an expression over r’s arrays

Join and Semi-Join

(6) sortA(r ��HHA=B s) ≡A sortA(r) ��HH
lop
A=B s if A,B ∈ schema of r,s, resp.

(7) sortA(r ��HHA=B s) ≡A sortA(r) ��HH
lop
A=B s if A,B ∈ schema of r,s, resp.

(8) σop
A=(B[i])(r) ≡order(r) r ��HH

lop
A=B σpos()=i(r) if A,B ∈ schema of r

(9) σop
p (r ��HH

lop
A=B s) ≡order(r) σop

p (σeach
p (gbyA(r)) ��HH

lop
A=B s) if A,B ∈ schema of r,s, resp.

p is ‘pos()=FIRST’ or ‘pos()=LAST’,
and B is unique

Group-By
(10) gbyop

A (sortA,B(r)) ≡A,B sorteach
B (gbyog

A (r))

Table 4.1: Equivalences between sort and remaining algebra operators

sort and selection would be so, and sort could be pushed-down over a join – the
complete list appears in [34]. These transformations all apply to AQuery as well.1

Example 4.2 – Take the same query and arrable as in the previous example,
but this time let Connections be ORDERED BY host and timestamp. For con-
venience, the initial syntax-driven QEP is repeated in Figure 4.2(a). Note that
the selection (host = ’atlas’) can now benefit from the existing order (host, times-
tamp). Note also that by evaluating the selection first, fewer records will need
to be sorted. The transformation 3 commutes a selection with a sort and when
applied here it generates the QEP shown in Figure 4.2(b).

There is a way to further save the work involved in the sort. At this point,
the order of records between the Connections scan and the selection is irrelevant
(single arcs), as is the order between this latter and the sort. Changing the
order of the records in a portion of the plan in which order is irrelevant does
not impact the semantics. Thus the selection can be converted into an order-
preserving one by transformation 4 so as to propagate the host, timestamp order.
Since the selection output contains only records from host ’atlas’ it can be said
to be ordered by timestamp. This in turn makes the sort redundant. The latter

1However, [35] and [34] consider that every expression is an order-independent one. The
implications of this are discussed in 4.3.

39

π
client

sort
timestamp

host=’atlas’

Connections

(b)

π
client

Connections

host=’atlas’

sort
timestamp

π
client

Connections

(c)

3
4

2

(a)

σ

σ

σ
host=’atlas’

Figure 4.2: An initial QEP and the application of a selection push-down transfor-
mation

manipulation is captured by transformation 2 in Table 4.1 and the final plan is
depicted by Figure 4.2(c). 2

4.2 Optimization of Edge Selections

Optimization of AQuery goes beyond sort elimination and move-around. AQuery’s
order idioms are often built around the edge-functions (e.g., first(), last()), which
allow rather aggressive optimizations as well. We introduce these new techniques
through examples and evaluate their relative performance improvement.

4.2.1 Implicit Selections and Sort-Edge

Let us use the arrable Connections once again, this time ORDERED BY host.
In an intrusion detection scenario an administrator may wish to find the last
client that connected to a given server. In AQuery this query would look like the
following.

[AQuery]
SELECT last(1, client)
FROM Connections

ASSUMING ORDER timestamp
WHERE host = ’atlas’

The above query’s initial plan is depicted in Figure 4.3(a). A regular selection
such as σhost=′atlas′ can be pushed down over a sort [35]. Transformation 3 in Table
4.1 is a slight variation of that transformation but here order-preservation or lack
thereof is made explicit. The advantages of this transformation are the same as
example 4.2’s: sort work reduction. But once more, the gains can go further.

The projection πlast(1,client) includes an implicit selection, i.e., it is only inter-
ested in one client. This is a particularity of AQuery’s column-oriented semantics
– a projection over a function that itself performs a selection. The transformation
5 in Table 4.1 is a new transformation that replaces a projection with indexing

40

σ
σ σ

σ

edge
sort

σ

π
last(1,client)

Connections

sort
timestamp

host=’atlas’
3

π
client5

pos()=LAST

Connections

π
client

sort
timestamp

host=’atlas’

pos()=LAST

π
client

LAST,timestamp

Connections

host=’atlas’

(a) (b) (c)

Figure 4.3: Implicit selection and sort-edge optimization

by a pure projection plus a selection of the desired positions. We say pos(r) = i
when we refer to the record r[i]. The special indexes for an arrable r, FIRST
and LAST, are 0 and |r| − 1, respectively. If such positions are on an end of the
operand array, we call this selection an edge selection. The result of applying this
transformation is seen in Figure 4.3(b).2

The advantage of isolating the edge-selection from the original projection is
that while the latter can’t be moved around easily, the former can. In this example,
the existence of an edge selection after a sort suggests that there is no need to
sort all the input just to use some of the elements.

AQuery implements the logical pattern σop
edge−condition(sort(r)) through a phys-

ical operator called sort-edge. It uses a modified heap-sort to keep the top (or
bottom) n elements, as appropriate. This is similar to the approach used in [7]
except that we modify the heap-sort to make it stable.3

The gains in performance provided by sort-edge are considerable. In Figure
4.4(a) we compare a sort-edge with a regular sort operation. The graph shows
that for small slabs – 1 and 10 elements – sort-edge takes a small fraction of the
time needed to sort the entire set.

The benefits of such work reductions reflect in the performance improvement
of our example query. Figure 4.4(b) compares the performance of the three plans
of shown in Figure 4.3 for a Connections arrable of 1 million rows divided across
a varying number of hosts. The “naive” plan performs the entire sort and only
then filters for host ’atlas’. The other plans start by executing the latter selection,
which can benefit from existing order. Note that in the 1- and 10-distinct hosts
scenarios a considerable number of rows have to be sorted and sort-edge delivers
a much better performance than regular sort. For the remaining scenarios, very
few rows survive the selection and both optimized plans perform equally well.

2A word of caution: Had we separated the implicit edge selection before moving the regular
selection, they would be adjacent. Regular and order-dependent selections do not commute.

3A stable sort is one that does not change the original order of records having identical value
on the sorted key. Heap-sort is not naturally stable. It becomes stable if one concatenates a
tuple ID to the key.

41

 0

100

200

300

400

500

600

700

800

900

200 400 600 800 1000

m
ili

se
co

nd
s

x times 1000 elements

regular sort
1-slab edge-sort

10-slab edge-sort

 0

100

200

300

400

500

600

700

800

900

1 10 100 1000 10000

m
ili

se
co

nd
s

1 million connections divided among x hosts

naive
regular sort

edge sort

(a) (b)

Figure 4.4: Efficiency of sort-edge technique

4.2.2 Sort Splitting

There are situations in which the arrable’s existing order facilitates the evaluation
of part of a query even though it does not match the query’s assuming order. The
sort splitting technique applies to this kind of scenario. Consider again the arrable
Connections ORDERED BY host. The following query finds all the clients that
connected to the last host to be accessed.

[AQuery]
SELECT client
FROM Connections

ASSUMING ORDER timestamp
WHERE host = last(1,host)

An initial plan for this query appears in Figure 4.5(a). Timestamp is not a
prefix of order(Connections), thus the sort over timestamp may be required.
However, host is a prefix of order(Connections), and therefore the selection
σhost=last(1,host) may take advantage of it.

The sort-splitting technique says that if A and B are arrays of an arrable r, a
selection σA=(B[i])(r) can be replaced by a semi-join as described by transformation
8 in table 4.1. The benefit of the semi-join is that we can now manipulate order
on each of the semi-join’s arguments independently.

Figure 4.5(b) shows the result of applying that transformation. Note that
last(1, host) = host[LAST]. Let’s analyze each side of the semi-join in turn.
On the right-hand side we have the pattern edge-selection / sort, which can be
efficiently implemented, as we have discussed. By contrast, the left-hand-side sort
changes what could be an interesting order to the semi-join operation. We can

42

σ
sort

timestamp

Connections

σ

π
client

Connections

(a)

host=last(1,host)

sort
timestamp

8
π

client

pos()=LAST

timestamp

Connections

(b)

sort

host=host

7
client

π

(c)

LAST,timestamp

edge
sort

Connections

Connections

sort
timestamp

host=host

Figure 4.5: Sort-splitting optimization

thus defer it until after the join. The transformation 7 in table 4.1 commutes a
semi-join and a sort. It states that under certain conditions sorting a semi-join
is equivalent to sorting its left stream and then performing an order-preserving
semi-join. The conditions hold here.

This transformation’s impact here is two-fold. First, the evaluation of the semi-
join predicate is facilitated by an existing order. Second, sorting over timestamp
has to be done just over records generated by the semi-join. This is much cheaper
than the original semi-join over the whole arrable. The resulting plan appears in
Figure 4.5(c).

 0

200

400

600

800

1000

1200

1 10 100 1000 10000

m
ili

se
co

nd
s

1 million connections divided among x hosts

naive
sort split

Figure 4.6: Efficiency of sort-splitting technique

Figure 4.6 shows the performance gains of applying the sort splitting technique
to the example query. The efficiency of the optimized plan stems from delaying
the enforcing of the ASSUMING order up until after the semi-join reduces the
number of records to be sorted. The gains stabilized at instances with 100 or
more distinct hosts because at this point the cost of the query is dominated by
the semi-join itself as opposed to the sort of its results. Note that application
of this technique whenever the number of hosts is too low (e.g. just one) may
represent an unnecessary overhead – although a small one.

43

4.2.3 Early Edge Selection and Edgeby

Edge selections can often be performed very early in a query. This requires trans-
formations that push edge selections all the way through operations such as joins.

Consider the arrable Ticks(ID, date, price, timestamp) ORDERED BY times-
tamp, which stores stock quotes, and the arrable Portfolio(ID, name, tradedSince)
ORDERED BY ID that stores the subset of securities with which an analyst deals.
Name is a unique identifier of securities in Portfolio, and so is ID. An analyst may
want to retrieve the last price of a security by its name through the following
query.

[AQuery]
SELECT last(1, price)
FROM Ticks, Portfolio

ASSUMING ORDER timestamp
WHERE Ticks.ID=Portfolio.ID

AND name = ’ACME’

An initial plan for this query is depicted in Figure 4.7(a). Note that in this plan
the selection is carried after the join and the sort. It would be more advantageous
to perform it earlier. A regular selection can be commuted with the sort by the
application of transformation 3, as was done before. Because the selection would
then be in a portion of the plan that is order-independent, it could then be pushed
down over the join using the classic join-selection commutativity [10]. The result
is seen in Figure 4.7(b).

Upon realization that the order of Ticks matches the ASSUMING ORDER of
the query, the optimizer would try to eliminate the sorting completely. Transfor-
mation 6 in table 4.1 commutes a join with a sort while still keeping track of order.
That is a slight variation of a transformation in [35] in which order-preservation
is made explicit. As Trades is already ORDERED BY timestamp, that sort may
be eliminated, as transformation 1 in Table 4.1 makes possible. The result is seen
in Figure 4.7(c).

This query also contains a projection-with-selection, and again they can be
broken apart. The consequent presence of the edge selection after the join suggests
that it may be unnecessary to perform the join in its entirety. Portfolio.ID is a
key and therefore it guarantees that each record in Ticks will match at most one
record in Portfolio. (Foreign key joins are among the most frequent of equijoins.)
Under these conditions we could push down this edge selection in the following
way: For each ID in Trades, find its last record by grouping Trades by ID and
selecting each last record. By applying the edge selection earlier, the query’s join
examines far fewer rows than before. The final selection would then pick the
desired price. This is what transformation 9 in table 4.1 does. The final plan is
shown in Figure 4.7(d).

44

Ticks

σ

Portfolio

ID=ID

sort

name="..."

π
last(1,price)

3
timestamp

π
last(1,price)

Portfolio

Ticks σ

ID=ID

name="..."

π
price

σ
pos()=LAST

5

9

π
price

σ
pos()=LAST

Portfolio

σ

ID=ID

name="..."
σ

pos()=LAST

Ticks

Gby
ID

each

π
last(1,price)

Ticks

ID=ID

sort
timestamp

Portfolio

σ
name = "..."

6

1

(a)

(c)

(b)

(d)

Figure 4.7: Early edgeby optimization

Replacing an edge-selection by a grouping operation and the very same edge-
selection may look more expensive, but it isn’t. An edge-selection applied to
groups is an idiom, called edgeby, that can be highly optimized. Edgeby is a phys-
ical operator capable of implementing the logical pattern σeach

edge−condition(Gby(r)).
Instead of separating all elements of an arrable into groups just to use a slab
of them (e.g., first n, last n, drop n, etc), edgeby discards, on-the-fly, elements
for groups that already violate the edge condition. Depending on this condition,
edgeby can scan arrables backwards or forwards. In fact, edgeby can be parame-
terized to perform grouping followed by any possible edge selection.

In most cases, an edgeby requires a small fraction of the time required to
perform the associated group-by, if done in its entirety as shown in Figure 4.8(a).
We used the arrable Ticks with 1 million records divided evenly among 10, 100,
1000, and 10000 securities. An edgeby over security ID with varying slab sizes
is tested. The more records edgeby can discard, the faster its response time.
For instance, when only a few distinct securities are used, groups are large, and
therefore most records fall off the slabs even for the biggest slab sizes tested,
greatly improving performance. As the groups get smaller (i.e., more distinct
securities are used), highly selective slabs give better performance. A degenerate
case is seen where a 100-slab is taken from groups that are themselves 100 records
wide. Edgeby doesn’t improve performance here – but doesn’t hurt either.

The result of applying the early edgeby technique is shown in Figure 4.8(b).

45

 80

100

120

140

160

180

200

220

240

260

280

10 100 1000 10000

m
ili

se
co

nd
s

1 million tuples divided in x groups

1-Slab
10-Slab

100-Slab
Group All

 0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000

m
ili

se
co

nd
s

1 million ticks divided among x securities

naive
early edgeby

(a) (b)

Figure 4.8: Efficiency of the early edgeby technique

The naive and the optimized plans for the example query can be seen. By applying
a 1-slab edgeby early in the plan, the number of records that have to be joined
is considerably reduced. The optimized plan also takes advantage of the existing
order, eliminating any sort altogether. The result is consistently faster response
times.

4.2.4 Sort Embedding

If a GROUP BY operation follows a sort it may be advantageous to invert their
order. Performing a single sort over the entire data is often more expensive than
performing several sorts, each embedded within a group.

Consider again the arrable Ticks, this time with no determined ORDERED
BY. (Often ticks arrive in a “near-timestamp” order.) The following query fetches
the ten most recent prices for each security ID

[AQuery]
SELECT ID, last(10,price)
FROM Ticks

ASSUMING ORDER ID, timestamp
GROUP BY ID

An initial plan for this query is shown in Figure 4.9(a). We can separate the
implicit selection from the projection as we did before. The resulting plan appears
in Figure 4.9(b).

It is possible to delay sort until after the GROUP BY ID is done. If delayed,
sort would have to be applied only within each group. Moreover, for this particular
query the smaller sorts would then be followed by edge selections – sort-edge would

46

LAST−10<pos() ^
pos()<=LAST

LAST−10<pos() ^
pos()<=LAST

LAST−10<pos() ^
pos()<=LAST

π

Ticks

Gby
ID

sort

each
π

σ

ID,price

ID,last(10,price) each

ID,timestamp

5 π
ID,price

σ

Ticks

sort

Gby

each

ID

ID,timestamp

π
ID,price

σ

Ticks

ID

sort

Gby

each

timestamp
each

(a) (b) (c)

10

Figure 4.9: Sort-embedding optimization

apply. The transformation 10 in table 4.1 allows commuting a sort with a group-
by. Note that (a) group by must deliver its results in the same order it is grouping
by over (an order-generating operator); and (b) grouping must be over a prefix
of sort’s arguments. The result of this transformation is shown in Figure 4.9(c).
Note how a double-arc connects group-by and sort-each, because this instance of
group by is order generating.

Figure 4.10(a) characterizes the performance gains of sort-eaches as compared
to the entire sort they replace. We used arrables of 1 million records and varied
the number of groups. When only one group exists, there’s no point in applying
the technique – but, again, there’s no penalty in doing so. Replacing one big sort
by several smaller ones starts to payoff whenever more than 10 groups exist.

150

200

250

300

350

400

450

500

550

600

650

1 10 100 1000 10000

m
ili

se
co

nd
s

1 million tuples divided in x groups

Sort All
Sort Each

 0

1000

2000

3000

4000

5000

6000

7000

100 1000 10K 100K 1000K

m
ili

se
co

nd
s

1 million Ticks divided among x IDs

Naive
Sort Embed

(a) (b)

Figure 4.10: Efficiency of the sort embedding technique

The efficiency of sort-embedding reflects in the performance of the example
query. Figure 4.10(b) shows the comparative performance of plans for the naive
and optimized cases. The naive plan sorts the whole arrable, groups the entire
result and applies the edge-selection only at the end. Cost remains rather high,

47

even when the edge selection removes most records. By contrast, the optimized
plan trades one big sort for several smaller ones – sort-edges, in fact. Thus, even in
the degenerate case where each group has only one record (i.e., number of distinct
hosts is equal to the cardinality of the arrable), the optimized plan saves the cost
of a big sort. The curves show order of magnitudes difference at instances with
small number of distinct hosts.

4.3 Related Work

Order management is not normally fully integrated in a query’s optimization
process. Sort has traditionally been seen as a physical property to be included in
a plan (if not specified by SQL’s ORDER BY clause) only to support an efficient
algorithm such as merge join. Mechanisms such as Starburst’s “glue” [22] or
Volcano’s “enforcer” [12] made sure a sort step was added whenever an efficient
algorithm required it. This approach to order management was shown to miss
several optimization opportunities [33].

The authors in [33] suggested and implemented an order-management step in
their optimization process. It greatly improved QEPs for queries that have order
requirements due to the clauses ORDER BY, GROUP BY, or the DISTINCT
modifier. The transformations 1 and 2 in table 4.1 come from their work. Yet this
order management step did not consider interactions between sort and other op-
erations – an important condition to perform order-management as an integrated
aspect of query optimization.

To the best of our knowledge the authors in [35] were the first to promote
sort to a logical operator and to suggest that order optimization could (i) be
transformational and (ii) be considered at the same time as other transformations.
AQuery follows this same idea.

While using several of the transformations in [35] – namely transformations 3,
6, and 7 in table 4.1 – AQuery has contributed a few of its own – transformations
5, 8, 9, and 10. The transformations suggested here go a step further by taking
into account the fact that expressions in a query can be order-dependent. (In
[35] expressions are all order-independent.) This allowed, for instance, to identify
that two selections over order-dependent expressions do not commute, but they
would had the expressions been otherwise. AQuery also differs from that work by
treating edge selections as a case of order-dependent selections rather than as a
new operator (called operator top-k in [35]).

In fact, edge selections were first described in [7]. A clause STOP AFTER
was suggested that was capable of limiting the final cardinality of queries whose
results were ordered (by an ORDER BY). The sort-edge operator presented here
was motivated by a similar operator described there. There are two differences
that distinguishes AQuery from that work, though. First, in [7] the optimiza-
tion process for STOP AFTER was considered in a phase prior to – rather than

48

integrated with – the phase in which plan enumeration takes place. Therefore
interaction between sort and other operators are not fully considered. Second,
AQuery language allows edge selections to occur at any point of the query and
not only at its end. We have shown, for instance, queries that applied edge se-
lections within groups (e.g., last 10 quotes of each security in a Portfolio). We
have also shown that new techniques such as sort embedding can be applied to
optimize these queries.

A particularly inspiring integrated optimization technique appeared in [21].
The AQL optimizer can manipulate operators (or newly added functions) on the
calculus level, i.e., by application of variations of λ-calculus reductions over the
operators definitions. Reductions help find syntactically simpler forms of an ex-
pression while keeping its semantics intact. We have not yet fully exploited that
ability in AQuery. On the other hand, we have shown that, for instance, the
sort splitting technique requires more than simplifying an expression. It involved
transforming what was one sort plus a selection in a semi-join plus two sorts plus
a selection – and that resulted in sorting fewer tuples than the simpler expression.
A complete fusion of these ideas requires more exploration.

49

Chapter 5

System Design and
Implementation

5.1 A Column-Oriented Execution Model

The AQuery system is a database management system that implements the arrable-
based data model and that supports AQuery as the query interface. In developing
a new database system, we wanted to investigate how the use of arrays as the ba-
sic data structure could work for performance. Our studies started with how to
execute a query, once a query execution plan is obtained.

To carry out an execution plan a system has to run each of the plan’s operators.
There are some alternatives to do so. The most common way is to equip each
operator with a get-next-row interface (getNext()) that returns one row of the
operator’s result at a time. This execution model is called iterator-based [11]. To
obtain a plan’s first resulting row the system calls the root operator’s getNext()
interface. In turn, the root operator calls the getNext() of the operator from
which it consumes rows. This cascading effect propagates down the plan until a
leaf operator reads an input’s row. The row is passed back to the caller and it gets
processed on its way up. Assuming it belongs to the query’s result, it eventually
arrives back at the root operator. The system starts the process over again until
an end-of-rows is signaled.

The iterator model has several advantages, but its efficiency is poor especially
because of poor cache. Cache inefficiency is due to the loading of unnecessary
columns’ data to perform an operation [1]. For instance, if a selection’s predicate
involved only one column, it would not need an entire row of values to evaluate
the predicate. The unused fields occupy precious cache space.

In addition, the iterator model has an inherent overhead of a function call per
row per operator. In a simple-predicate selection, a call’s cost (parameter stacking
and context saving) can be of the same order as the evaluation of the predicate
itself.

50

A contrasting execution model is the column-oriented one found in the Monet
database system [3]. Instead of handling a row at a time, the model assumes
data is vertically partitioned in columns and manipulates these columns as units.
For instance, a selection would look at the column involved in the predicate, and
only at this, and would return the row IDs and that column’s data that satisfy
the predicate. This model presents better performance in modern architecture
hardware – hierarchical memory and super-scalar CPU – than the iterator one
[24].

The AQuery system uses a column-oriented model as well, but slightly more
generally than Monet. The model maps easily to arrables which are naturally par-
titioned in arrays (columns). To perform the above selection, the AQuery system
might materialize its results as Monet does. But this would involve performing
memory copies of data. Alternatively, the AQuery system passes on the next op-
erator the reference to the data it operated upon along with a collection of indexes
to the still relevant rows. This avoids unnecessary materialization. We use the
term effective index array to denote this collection of indexes resulting from one
operator that may be passed along to subsequent operators. A running example
of a plan demonstrates how this concept works.

Consider the arrable Trades, depicted in Figure 5.1, which stores prices at
which stocks exchanged hands, and at which quantities (volume) and timestamps
these transactions took place. The arrable Base, shown in the same figure, clas-
sifies stocks according to the type of business they conduct, using a Standard
Industry Code (SIC). For visualization purposes we show the indexes of each
arrable’s rows in the left-hand column (small fonts under the arrables name).
Consider further the following query that fetches the last quote of each stock in
the COMPUTER industry.

[AQuery]
SELECT t.ID, last(price)
FROM Trades t, Base b

ASSUMING ORDER t.ID, ts
WHERE t.ID = b.ID AND

SIC = “COMP”
GROUP BY t.ID

The first step of a plan for this query is to initialize an effective index array.
For clarity, let us assume temporarily that the arrables fit entirely in memory.
The initial index array would contain all the existing indexes for both arrables,
that is, 0..6 for arrable Trades and 0..2 for Base. This structure is depicted in
Figure 5.2(a).

Following the query’s text, the next operation in the plan would be the join
of the two arrables. Because the predicate involves the columns Trades.ID and
Base.ID, the join operation needs to access only these columns. The effective

51

2

1

IDTrades price

ACME
XYWZ
EMCA

0

1

2

IDBase

COMP
AUTO
COMP

SIC

7
6
5
4
3
2
1

ts

3

ACME
XYWZ
ACME
EMCA
EMCA
ACME
XYWZ

12.05
42.35
12.04
17.19
17.20
12.02
42.37

0

6

5

4

Figure 5.1: Two example arrables and their rows indexes

BaseTrades

2
2
1
1
0
0
0

4
3
6
1
5
2
0

BaseTrades

2
1
0

Base

6
5

0

Materialize the result arrable

Initialize index array

Group by ID

Filter for "COMP"

Sort by ID

Join of Trades and Base

(b)(a)

(c)

(e) (f)

(d)

1
1
2
2
0
0
0

6
1
4
3
5
2

4

2
2
0
0
0

4
3
5
2
0

BaseTrades

3
2
1
0

Trades

IDResult c1

17.20
12.02

1

0

EMCA
ACME

[2, 2]
[0, 0, 0]

[3, 4]
[0, 2, 5]

BaseTrades

Figure 5.2: Effective index array during a query execution

52

index array depicted in Figure ??(b) shows how this operation recorded which
pair of positions of Trades and Base satisfied the join predicate.

Although irrelevant at this point of the query, the index array imposes an
ordering for the rows of the intermediate result so far. Coincidentally, the first
row of the intermediate result is a join of the first rows of the arrables, Trades[0]
and Base[0]. The following row is the join of the third row of Trades, Trades[2],
and the first row of Base, Base[0] – and so on. Note that the indexes used here
are positions relative to the arrables. Data need not be stored in ascending index
order (storage physical independence). What is important here is the ability to
fetch a row by its position, a natural approach for arrays.

The ordering of rows in the current index array is not the one specified by the
query’s ASSUMING ORDER clause and thus a next step in a plan could be a sort.
Recall that the ASSUMING ORDER is over Trades.ID and Trades.timestamp.
Here again only those columns need to be accessed to compute the new index array.
The sort would rearrange the indexes in a way to impose an ID and timestamp
order. The Figure 5.2(c) shows the result of the operation.

Note that the sort took as input the result of the join operation. The permu-
tation occurred on pairs of indexes of both arrables.

A selection may follow that eliminates the indexes that do not correspond
to computer industry’s stocks. The only column needed here is Base.SIC. The
selection loads it and dereferences using the effective indexes that correspond to
the Base arrable. Note that the Base.SIC column has three values in the original
arrable. But here, the resulting data vector has six positions (0, 0, 0, 2, 2, 1),
for a join and a sort have already been applied. The selection thus generates the
effective index array seen in Figure 5.2(d).

Note that the selection eliminated the indexes that contained 1 in the Base
portion of the index array.

The next operation is the GROUP BY. The first step here is to index the
column Trades.ID by the portion of the index array corresponding to the arrable
Trades. Then, the operation captures the notion of groups by putting the indexes
of rows that belong together in a same array-valued field of the effective index
array. Figure 5.2(e) shows the effect of GROUP BY.

The effective index array shows that the result of calculating the query up
until the GROUP by has two rows. Moreover, each of the columns that was
not grouped-by will have array-values fields. For instance, if one wished to fetch
Trades.prices for the first group, one would load that column and use values at
positions 0, 2, and 5. For the second group, positions 3 and 4 would be used
instead.

Finally, the projection in the SELECT clause may be applied. A final projec-
tion means materialization of the results. Here it takes into consideration that
ID was grouped-by. Only the first index of each group is used in the result (i.e.,
ID[0] and ID[3]). By contrast, the function last() is called once for each group

53

and is passed the corresponding price arrays for each group (price[0 2 5] for group
0, and price[3 4] for 1). It returns the values of price[5] and price[4] respectively.
The resulting arrays are then assembled into an arrable, show in Figure 5.2(f).

The column-oriented execution model does not prevent a plan from using a
constrained amount of memory. To understand why, we introduce the notion of
pipelining among operators. A non-blocking operator (pipeline-friendly) is one
that can decide on an answer without checking all the input rows. It therefore
does not stop the flow of rows until it reads all the input. For instance, selection
is a non-blocking operator. Sort is blocking.

To limit the memory a query plan uses, it suffices to adapt the execution of
each operator type to the limitation. A non-blocking operator would chop the
input columns to appropriately sized slices and would process one slice at a time.
A blocking operator can use implementations based on external algorithms (e.g.,
sort on disk).

In summary, the execution model stores tuples of indexes instead of tuples of
values. It dereferences those indexes on demand.

5.2 Implementing the Execution Model

The AQuery system implements the column-oriented execution model using an
interpreted array-oriented language called K [19]. K is a modern descendant of
APL [17], the reference language on array manipulation. In these languages, any
data structure can be represented by arbitrarily shaped arrays, which can be ma-
nipulated by the composition of very simple but highly efficient array primitives.
These primitives operate on the array level, i.e., they are mappings from an array
(or a list thereof) to an array. Because AQuery was built on top of K, it was
natural to represent AQuery’s arrables and operators.

A K implementation of an arrable follows the latter’s definition: a collection
of named arrays. On disk, an arrable is mapped to its own sub-directory. Each
component array is stored in a file named after the column it represents. In
memory, an arrable is represented by a dictionary structure. Entries are named
after the column they represent and each entry stores a column’s array. Whenever
a column needs to be accessed, the system loads the corresponding array-file
from disk to virtual memory and adds an entry to the corresponding arrable’s
dictionary. When the array (column) is no longer needed the system eliminates
the dictionary entry, freeing memory.

To be executed, a plan’s operators are translated into a sequence of K instruc-
tions that follow a three-step template. In step one, the operator receives both
the column handles it needs (e.g., the columns involved in a selection’s predicate)
and the current effective index array of the query. In step two, the operator ac-
cesses data (uses the index array to retrieve the still relevant columns’ values) and

54

performs its calculation (evaluates the predicate over the values). In step three,
it returns the updated index array (eliminates the rows that mapped to false).

In this context, the system translates a plan into a K function that puts to-
gether a sequence of such operators. The function takes handles to the arrables
it manipulates and outputs an arrable. The Figure 5.3 shows the code generated
for the following query.1

[AQuery]
SELECT last(price)
FROM Trades

ASSUMING ORDER ID,ts
WHERE ID= ‘XYZW’

A query plan is an anonymous function, defined between the curly braces of
lines 1 and 8. Immediately after its definition, the system calls the function passing
a list of arrables (line 8). In this case, the function takes only a singleton list, a
handle to the Trades arrable. The query plan starts by initializing its effective
index array in line 2, with as many index vectors as there are input arrables. The
code here is generic, in that it would have worked correctly if any other number
of arrables were passed. The next step in that plan is to load data. Line 3 defines
which column handles are going to be used; the variable ’cols’ is thus initialized
with handles for three columns. In line 4 the data for these columns are fetched
from disk, resolving their address. A dictionary named ‘r’ is created to hold the
Trades arrable’s data in memory. Next, in line 5, the columns ‘r.ID’ and ‘r.ts’ are
sorted in ascending order. That is what the K operators ‘<+’ (flip and sort) are
doing in that line. Note that all access to these variables is now indexed by the
corresponding portion of the effective index array, eia[0]. As a result of the sort
the index array is rearranged, as in ’eia:eia@....’ Line 6 computes which positions
of the contain “XYWZ” in their r.ID column. Again, the effective index array is
rearranged accordingly. Finally, line 7 calls the in-line function last ’x[-1+#x]’
and passes to it the price column at position that are still pertinent. Thus, only
the prices of stock ‘XYWZ’ ordered by ID and timestamp are passed. The line 7
then creates the resulting arrable which contains a column called ’price’ and the
result of the last function.

5.3 From Text to Execution: the entire flow

Having discussed the execution engine’s strategy, we are now ready to discuss the
entire process from text to execution.

1Operations on K are denoted by symbols which makes the code extremely compact. Critics
and even the language designer agree that K code looks like line noise to the uninitiated.

55

1. {[t] / declare parameter
2. eia:(#t)#_n / initialize eia
3. cols:‘ID‘price‘ts / list of needed columns
4. r:@[_n;cols;:;{1:($t[0]),"/",$x}’cols] / load data into dic r
5. eia:eia@\:<+(r.ID[eia[0]];r.ts[eia[0]]) / sort by ID,ts
6. eia:eia@\:&r.ID[eia[0]]~‘‘XYWZ’’ / selection over ID
7. :.,(‘price; {x[-1+#x]}[r.price[eia[0]]]) / compute last
8. }[,‘trades]

Figure 5.3: Example of a K plan

5.3.1 Parsing

The text first undergoes lexical and syntactical analysis, commonly referred to as
“parsing.” These phases make sure a query has valid syntax and generates an
abstract syntax tree. The AQuery system parses a query using a LL(1) grammar
and a recursive decent parser and generates tree that represents the query’s text.
This format is more amenable to the semantics step.

5.3.2 Semantics Step

Semantics checks in AQuery do more than simply verify that all the objects in a
query – columns, arrables, functions – exist. AQuery semantics requires expres-
sions to obey shape constraints, as discussed in Chapter 3. For instance, a search
condition in the WHERE clause is a boolean expression whose cardinality is equal
to that of the arrable resulting from the FROM clause. Therefore, each use of a
non-size-preserving function in that clause must pass a semantics check.

To illustrate how shape verification is done, consider the expression ’col +
first(10,col).’ Addition is valid between two equally sized arrays, between two
scalars, or between an array and a scalar. Therefore the above expression is
invalid.

The AQuery system captures these shape constraints in tables such as Table
5.1 for the addition operation. Initial cardinality refers to the number of elements
a column first had in the context being considered. For instance, in the FROM
clause initial cardinality has as many elements as the table, in the WHERE as
many element as the Cartesian product of the FROM clause generated, and so on.
This notion is important because some clauses require initial cardinality (WHERE,
GROUP BY, HAVING) while others don’t (SELECT).

56

+ n m 1 initial

n n error n error
m error m m error
1 n m 1 initial

initial error error initial initial

Table 5.1: Cardinality of the addition operation

5.3.3 Relational Optimization Support

Once semantics correctness is verified, a query is translated into its algebraic for-
mat. The result is a tree in which nodes are operators from the arrable algebra
described in chapter 3. This tree is a possible plan for the query, but only rarely a
good one. Algebra equivalences (query transformations) may generate an equiv-
alent plan with improved performance. These transformations are described in
the relational literature [10] and new ones regarding order equivalence were intro-
duced in chapter 4. Applying a transformation to a plan entails generating a new
plan, which may share several nodes with the original one. Given the number of
equivalent plans that even a small set of transformations can generate, support
for plan manipulation is needed.

The AQuery system uses a data structure called MEMO [12] to store a forest
of query plans in an efficient way. The main idea behind the MEMO is to group
tree nodes into equivalence classes. Two nodes will belong to the same class if the
result of processing the queries to which they belong up and including that node is
semantically equivalent. A group is characterized by properties of the data their
nodes generate. Examples of properties are: tables and columns accessed thus far,
predicates applied, etc. In the AQuery system data ordering is a discriminating
property for groups.

Figure 5.4 shows two representation of the MEMO structure for the query that
fetches the last quote of the ‘XYWZ’ stock. Operations are represented as squares.
An operation that takes the result of another one as input has the group of the
latter indicated in the lower right corner. Groups of operations are numbered and
a subset of the properties of each group is shown on the left-hand side of their
MEMO. Recall that the query in question performs a scan on Trades to retrieve
the ID, price, and timestamp columns; a sort over ID and timestamp; a filtering
(selection) over ID; and, finally, a materialization (projection) of the application
of last() over the resulting price vector. The configuration of the MEMO will
depend on the arrable’s order.

If the Trades arrable were ORDERED BY ID and timestamp, then the MEMO
in figure 5.4(a) would result. The scan of Trades appears as the first operation in
group 0. (We refer to it as operation 0.0.) The query also performs a sort, but
because the arrable is already in a convenient order, the sort is redundant. There-
fore, the sort over the result of the scan would not change the data’s properties

57

and thus sort is placed in the same group as the scan. (It becomes operation 0.1.)
Note that the nodes that point to group 0 may now choose between two alternate
sub-plans. The subsequent operations change properties of the data and as such
they are inserted into groups of their own. This MEMO represents two possible
plans: <2.0 ← 1.0 ← 0.0> or <2.0 ← 1.0 ← 0.1 ← 0.0>.

Trades
sort
ID,ts

last(price)

order:ID,timestamp
predicates:none

columns:ID,timesamp,price

predicates:ID=‘XYWZ’
columns:last(price)

order:ID,timestamp
predicates:ID=‘XYWZ’

columns:ID,timesamp,price

order:ID,timestamp projection

(a)

scan

0

0

1
2

0

1
selection

ID=‘XYWZ’

0

1

scan
Trades

sort
ID

selection
ID=‘XYWZ’

order:ID,timestamp
2

columns:ID,timestamp,price

order:timestamp
3

columns:ID,timestamp,price
ID=‘XYWZ’
selection

0

sort
ID

3

predicates:ID=‘XYWZ’

columns:ID,timesamp,price

predicates:ID=‘XYWZ’

(b)

1

2
4

projection
last(price)

order:ID,timestamp

columns:last(price)
predicates:ID=‘XYWZ’

columns:ID,timesamp,price

order:ID,timestamp
predicates:none

order:timestamp
predicates:none

0

Figure 5.4: Two possible MEMO configurations for a given query

If Trades were ORDERED BY timestamp alone, The MEMO depicted in
Figure 5.4(b) would result. Sorting on ID and timestamp now generates a distinct
result than that of the scanning of Trades. Therefore, the scan and that sort belong
to different groups (0 and 1, respectively).

This query may benefit from the transformation that commutes a sort with a
selection. That is, instead of sorting the outcome of group 0 and then filtering, it
does the reverse. A new filter node that takes group 0 as input is inserted in the
MEMO in a group 3, for no other group in the MEMO shares its properties. The
node that sorts the output of the new filter is inserted in group 2 for it shares its

58

properties. That MEMO now encodes two possible plans: <4.0 ← 2.0 ← 1.0 ←
0.0> and <4.0 ← 2.1 ← 3.0 ← 0.0>.

At the time of this writing the system was still not applying query transfor-
mation automatically. An accurate cost-model is still missing. The system either
generates a syntax-directed plan automatically or it generates plans in an inter-
active fashion where the system finds possible transformations to be applied and
prompts a user to pick one until the user is satisfied with the plan.

5.3.4 ‘K’-Code Generation

After a plan is chosen, it is translated into K language instructions. The transla-
tion is made one node at time. Each type of node requires a different translation
strategy. For instance, the code generated for a selection should evaluate its ex-
pression and filter the current index array accordingly. By contrast, the code
generated for a sort should trigger a reordering of the index array. Moreover,
nodes are sensitive to the context. The code generated for a projection changes
depending on whether there is grouping or not. The latter’s expressions have to
be “eached” whereas the former’s need not. The code generation module handles
all these nuances.

The code generation module performs optimizations of its own. The most
salient one is a limited but quite effective form of common sub-expression elimina-
tion in which column references appear more than once in a same expression. For
instance, take the expression ‘price - prev(price).’ Accessing the still active posi-
tions of price twice is unnecessary. Upon detection of repeated column-references,
it creates temporaries to store that result.

5.4 Conclusion

Performance is a major goal of the design of the AQuery system. Each technique
in our framework plays a role in performance:

• Processing a query by maintaining its effective index array prevents unnecessary
copies of data to be passed among operators. A selection, for instance. doesn’t
need to copy the actual selected tuples, but only to forward their positions to the
next operation. A sort does not need to produce a new ordered copy of the data
but only a permutation of positions. Ultimately, processing indexes as opposed
to copies of data allows the system to defer materialization of results up until the
end of the query.

• Column-wise representation of data avoids unnecessary disk accesses. It ensures
that in every transfer only data that is actually going to be used – as opposed to
entire rows with column data unused by a query – is fetched. This also benefits
cache utilization, because irrelevant fields don’t clutter cache lines.

59

• Evaluating expressions in a vector-oriented fashion promotes high reference lo-
cality. Vectors are contiguous in memory and most operations involve a sequential
scan of a vector, often a contiguous one. Vector-orientation also allows calls to
processing functions to be made only once for the entire vector as opposed to once
for each element of the vector.

The AQuery system is a ongoing effort. We are currently investigating a
query enumerating algorithm [14] that along with a suitable cost model would be
able to apply the transformations automatically. We are also considering more
sophisticated disk sub-system such as the one described in [38].

60

Chapter 6

Performance Analysis

6.1 Introduction

This chapter addresses the efficiency of AQuery in performing order-dependent
queries. It does so by comparing the performance of the AQuery system against
that of a commercial SQL:1999 one.1 SQL:1999 [16] was chosen because its order
features are implemented in at least two major DBMS products, and its syntax
and semantics are thoroughly documented.

We have resorted to somewhat advanced SQL:1999 features to write the order-
dependent queries we test here. To make the chapter more accessible to unfamiliar
readers, we present a quick introduction to the “window” feature in the remainder
of this section. The more advanced reader may want skip to Section 6.2.

One way to introduce a SQL:1999’s window is as a function that maps each
table’s rows to a subset of this table. We will use the table T1 in figure 6.1 to
show two running examples.

50
40
30
20
10

1
3
2
1
2

c3c2

b
a
b
a
a

c1T1

Figure 6.1: A table to be used on a window definition

In our first example, let’s assume one wanted to identify for each given row
all the rows that preceded it. Let us assume an ordering based on column c2. To
make the example more interesting, we impose a partitioning on column c1, that
is, column c2 is ordered within partitions defined by column c1. To specify such
a window in SQL:1999 one would write WINDOW w PARTITION BY c1 ORDER

1Due to license agreement restrictions, we omit the name of the product.

61

BY c2 ROWS UNBOUNDED PRECEDING. The last part of the window declaration
says that the width of a window spans from the first row (of the partition) up until
the row being considered. Figure 6.2 shows the calculation of such a window over
table T1. In the figure, the window instance that corresponds to row i, according
to the ordering given, is denoted wi.

20
10
40
50
30

w0 w1 w2 w3 w4

0

1

2

3

4

c3 over w
min(c3)

20
10
10
50
302

T1 c1 c2

a
a
a
b
b

1
2
3
1

Figure 6.2: A running minimum window

Our example window is useful, for instance, to compute a running minimum.
It suffices to apply the aggregate function min() to each of the window instances,
as the Figure 6.2 shows. In a query, this calculation could be used as follows.2

[SQL:1999]
SELECT *, min(c3) OVER (PARTITION BY c1

ORDER BY c2
ROWS UNBOUDED PRECEDING)

FROM T1

A window may be used in the SELECT clause provided that the query applies
an aggregate function over its instances.

In our second example, suppose one wanted to fetch just the previous row
for each of T1’s row rather than all the preceding rows. Let us use the same
partitioning and ordering criteria as before. The difference is thus on the window
width. To use a single-row wide window that contains a previous row, one would
say in SQL:1999 WINDOW z PARTITION BY c1 ORDER BY c2 ROWS BETWEEN

1 PRECEDING AND 1 PRECEDING. The Figure 6.3 shows the calculation of such
a window over the table T1.

This window is useful, for instance, to obtain a column’s previous value, the
equivalent of prev() in AQuery. Note that even though the window instances
contain only one row, a query must still specify an aggregating function to use
the window. In this case min(), max(), and avg() would all have the same effect.
Suppose one wants the previous element of each c3’s value, the implementing
SQL:1999 query is shown below.

2We are using the inline definition of the window here. In the full definition case, the
WINDOW clause would be added at the end of the query and the expression would refer to the
window name as in ‘min(c3) OVER w.’ As of this writing only the inline use of windows was
supported, though.

62

10
40
50
30

z0 z1 z2 z3 z4

0

1

2

3

4

c3 over z
min(c3)

null
20
10
null
50

20

T1 c1 c2

a
a
a
b
b

1
2
3
1
2

Figure 6.3: A previous row window

[SQL:1999]
SELECT *, min(c3) OVER (PARTITION BY c1

ORDER BY c2
ROWS BETWEEN 1 PRECEDING
AND 1 PRECEDING)

FROM T1

6.2 The Best Profit Query

The Best Profit query finds, for a given stock and a given date, the best profit
one could obtain by buying it and then selling it later that same day. This query
has been discussed previously in section 2.2 but for convenience, we again present
the relevant aspects.

The query uses the arrable/table Ticks(ID, date, price, timestamp), where
ID is the ticker of a traded security, timestamp identifies the date and time of a
particular trade, date is a human-readable form of the day portion, and price is
the price of the security. The table version of Ticks had indexes on timestamp
(clustering), on ID (non-clustering), and on date (non-clustering). The arrable
version was ORDERED BY timestamp.

The AQuery and SQL:1999 renditions of this query are the following.

[AQuery]
SELECT max(price - mins(price))
FROM Ticks

ASSUMING ORDER timestamp
WHERE ID = ’ACME’ AND date = ’05/11/2003’

[SQL:1999]
SELECT max(running diff)
FROM (SELECT ID, date,

price - min(price) OVER (PARTITION BY ID,date
ORDER BY timestamp
ROWS UNBOUNDED PRECEDING)
AS running diff,

FROM Ticks) AS t1
WHERE ID = ’ACME’ AND date = ’05/11/2003’

63

The structure of the two renditions differs because in SQL:1999 an aggre-
gate function (max()) cannot take a running aggregate (min(price) OVER · · ·) as
an argument. Nevertheless, both renditions sort first (ASSUMING/ORDER BY
timestamp) and then filter (ID=‘ACME’ AND date=’05/11/2003’). Note that an
optimal plan would do the inverse – sorting is more expensive than filtering.

The plans generated for the two queries are shown in Figurefig:6plan1. The
AQuery plan exploits the possibility of performing an early selection. Sort and
selection are adjacent and can be commuted with a simple transformation (Table
4.1 transformation 3). Since there were indexes available to evaluate each of the
selection’s conjuncts, AQuery could use them both. Sort was done only on the
reduced set of rows.

index scan index scan

date index ID,timestamp index

AQuery

Group by
aggregate on max()

Select
on ID and Date

Sort
on ID, timestamp

table scan

Ticks table

SQL:1999

index−and

Project
on max(price−mins(price)

Sort
on ID,timestamp

Figure 6.4: Plans for the best-profit query

By contrast, in the SQL:1999 query the sort and the selection are separated by
a window operation. The SQL:1999 optimizer doesn’t push the selection down.
It could in this case since the selection doesn’t impact the way groups are formed
in the OVER clause; it just eliminates entire groups.3 It remains though that
pushing a selection over a projection that contains windowed functions (SELECT
· · · price - min(price) OVER · · ·) requires considerable analysis. The SQL:1999
system we have analyzed chose none of the available indexes.

The difference in plans is noticed in the response times. The chart in Figure
6.5 shows the relative improvement of the AQuery’s plan over the SQL:1999 op-
timizer’s. We used Ticks arrables/tables with varying number of securities from
200 to 1000, and using 1000/ticks per security. The chart shows that AQuery
results were between eight and twenty one times faster for the best-profit query.

This and the remaining experiments were conducted on a Pentium III-M
1.13Mhz with 1Gb of memory running Linux. The timings reported correspond

3If vendors use this thesis to improve their SQL:1999 systems, we will consider that a mark
of success.

64

to wall clock timings. We were careful to allocate the same amount of memory
for both optimizers and made sure execution used cold buffers (empty).

 8

 10

 12

 14

 16

 18

 20

 22

200 400 600 800 1000

Im
pr

ov
em

en
t

No. of securities (1000 ticks per security)

AQuery

Figure 6.5: Best profit query relative improvement

The difference grows with the size of the input because the more securities
used, the more the SQL:1999 plan sorts rows that will eventually be discarded.

6.3 Network Management Query

The Network Management query’s goal is to break sequences of packets (sessions)
between pairs of hosts down into “flows” and to compute statistics of the latter.
A flow between a pair of hosts ends (and a new one starts) whenever they stop
communicating for a period of 120 seconds or more. The schema involved in the
query is Packets(pID, src, dest, length, timestamp), where pID identifies a packet
exchanged between a source (src) and a destination (dest) host, length refers to the
size of the packet, and timestamp to the moment this packet was exchanged. The
table version of Packets had indexes over timestamp (clustered) and a composed
one over source, destination, and timestamp (non-clustered). The arrable version
was ORDERED BY timestamp. The AQuery rendition of this query was discussed
in Example 3.3, but we repeat it here, along with its SQL:1999 counterpart.

[AQuery]
SELECT src, dest, avg(length), count(timestamp)
FROM Packets

ASSUMING ORDER src, dest, timestamp
GROUP BY src, dest, sums(deltas(timestamp) > 120)

[SQL:1999]
WITH

Prec (src, dest, length, timestamp, ptime) AS

65

(SELECT src, dest, length, timestamp,
min(timestamp) OVER

(PARTITION BY src,dest
ORDER BY timestamp
ROWS BETWEEN 1 PRECEDING
AND 1 PRECEDING)

FROM Packets),
Flow (src, dest, length, timestamp, flag) AS
(SELECT src, dest, length, timestamp,

CASE WHEN timestamp-ptime > 120 THEN 1
ELSE 0

END
FROM Prec),
FlowID (src, dest, length, timestamp, fID) AS
(SELECT src, dest, length, timestamp,

sum(flag) OVER
(ORDER BY src, dest, timestamp
ROWS UNBOUNDED PRECEDING)

FROM Flow)
SELECT src, dest, avg(length), count(timestamp)
FROM FlowID
GROUP BY src, dest, fID

Expressing this calculation in SQL:1999 was not as straightforward as in
AQuery, although the execution flow of both queries are quite similar – at least se-
mantically. In SQL:1999, the first sub-query, Prec, creates a new column, ptime,
containing the previous packet’s timestamp within each source and destination
partition. It uses a window that partitions by source and destination, sorts by
timestamp, and uses a one-row width window instance. In AQuery, there is no
partitioning but sort is done over source, destination, and timestamp. The Prec
sub-query has the same effect of a prev(timestamp) in AQuery. (Recall that
deltas(col) is equivalent to col - prev(col).)

Next, the SQL:1999 Flow sub-query adds a flag column that is turned true
(1) at each packet whose difference to the preceding one exceeds two minutes;
otherwise the flag is turned to false (0). In the AQuery rendition, this is what the
expression ’deltas(timestamp) > 120’ does.

The SQL:1999 query continues by calculating FlowID, which sums the flags
cumulatively, creating an auxiliary flow ID, fID. Note that a new window is re-
quired here that does not fully agree with the preceding window definition. In
AQuery, the sums() function does a similar task without resorting to any addi-
tional sort. The main query in SQL:1999 uses these results in exactly the same
way as the SELECT clause of the AQuery rendition.

Once more the query structure impacted the quality of the plans found, which
are shown in Figure 6.6. The main difference between the two plans is an extra

66

sort on the SQL:1999 one. Its optimizer added a sort by the same columns it is
grouping by. By contrast, AQuery’s group by is dependent on – and thus benefits
from – the order enforced by the ASSUMING clause. The SQL:1999 optimizer
did consider both windows to have the same ordering requirements, though, by
sorting only once by source, destination, and timestamp. It is unclear from the
SQL:1999 plan documentation how the ptime attribute is calculated.

load columns

Connections arrable

Group by

Sort
on src,dest,fID

aggregate on avg(length), count(timestap)

Project
on src,dest,lentgh,fID

Sort
on src,dest,timestamp

table scan

Connections table

AQuery

SQL:1999

on src,dest,timestamp

on src,dest,avg(length),count(timestamp)
Project

Group by
src, dest, sums(...)

Sort

Figure 6.6: Plans for the network management query

AQuery took advantage of the existing order and used a stable algorithm to
eliminate that column from the sort.

Here again the difference in the plans brought discrepant response times. The
chart in Figure 6.7 shows the relative improvement of the AQuery plan over
SQL:1999’s. We used a Packets arrable/table with 100 sessions and varied the
number of packets for each session from 2K to 10K. AQuery results were from a
little less than 2.4 to 3 times faster.

A clear component of the worse response time is the extra sort but that
alone cannot account for the entire time difference. We believe that the vertical-
partitioning, array-processing approach of AQuery is playing an important role
here. For one, processing a column at a time as opposed to a row at a time de-
mands far less overhead. While in the latter case, each operator is called once
every time an operator needs a row (iterator model), in AQuery there is only one
call per operator (full columns are returned). For another, vertical partitioning
and array processing combined highly favored locality of reference.

67

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

2000 4000 6000 8000 10000
Im

pr
ov

em
en

t

size of sessions in packets (100 sessions)

AQuery

Figure 6.7: Network management query relative improvement

6.4 Conclusion

These experiments suggest basic flaws in the straightforward implementation of
SQL:1999 for order queries. In the best-profit query, ordering was part of a more
complex operation, a window, and therefore the optimizer missed the opportunity
of pushing down a highly selective filtering operation through it. The moral here
is that if order implies complex structures (windows) then even trivial transfor-
mations (selection push-down) may require serious analysis.

In the network management query, the ordering by source, destination, and
flow ID is equivalent to that by source, destination, and timestamp. Flow ID
grows monotonically with the latter. The optimizer missed that and inserted an
extra sort step in the query. The moral here is that the more complex the syntax,
the harder it is to find order idioms.

The experiments showed that AQuery’s structural simplicity helped find much
better plans. This translated into performance improvements often greater than
an order of magnitude.

68

Chapter 7

Conclusion

7.1 Summary

A query in AQuery may determine the order through which it wishes to manip-
ulate data. The query’s clauses can exploit this order by the use of array-typed
expressions and vector-to-vector functions. The use of order does not force a
query to use a more complex structure than it normally would. As a consequence,
queries that in other languages are hard to write become as natural in AQuery as
SQL is for unordered queries.

The data ordering in a query is independent of the order in which data is
stored. If these orderings match, then the query may execute more efficiently,
but there is no semantic effect of the order. If these orderings don’t match, then
the sort work involved can often be diminished. AQuery’s conciseness fosters
recognition of common order idioms for which we have provided some effective
optimization techniques. The techniques complement the vast body of knowledge
in query transformations which mostly apply to AQuery as well.

The AQuery system is the validation of these ideas. It executes AQuery queries
over arrables by breaking them down into a sequence of array primitives. We have
used the system to successfully write several queries that occur in the finance and
network management domains.

7.2 Ongoing Work

The motivational study we conducted in several application areas showed that ad-
hoc order-dependent querying is virtually unavailable commercially. (SQL:1999
systems are known not to be widely used in finances, Biology, or network manage-
ment.) We are responding to that need with a major effort for making AQuery
public. We are building a database of regression tests that cover the entire lan-
guage. Our ultimate goal is to have a solid system by the time of its first release.

69

As a parallel effort, we continue to investigate other query transformation for
order dependent queries. Nevertheless, we are still experimenting on how to make
the AQuery system apply these transformations automatically.

7.3 Future Work

Our current implementation carries several performance-improving operations such
as edgeby or sort-edge. However, we have not yet touched other possibilities
for gaining performance through parallelism or modern-architecture hardware ex-
ploitation (super-scalar CPUs and hierarchical memory). Our extensive use of
arrays makes the latter seem particularly promising. Current super-scalar CPUs
can use Single Instruction Multiple Data (SIMD) parallelism; we therefore can
convert several of our array primitives to use this facility.

Finance is a domain where often order-dependent querying involves streaming
data. AQuery showed a natural facility to express streams-based queries. We have
however identified important queries in which the analysis of very recent data may
be triggered by events on the head of the stream. This quasi-streaming approach
in which one would need to backtrack to recent elements of a stream is an avenue
that interests us.

Biological sequence databases for DNA or proteins make extensive use of
order-dependent operations. The order idioms and the optimization techniques
found here would still be valid, but the query language interface may need to be
rethought. This is another avenue that we hope to pursue.

70

Bibliography

[1] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis.
Weaving Relations for Cache Performance. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 169–180, 2001.

[2] Peter Bauman, Andreas Dehmel, Paula Furtado, Roland Ritsch, and Norbert
Widmann. The Multidimensional Database System RasDaMan. In Proceed-
ings of the 1998 ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 575–577, 1998.

[3] Peter A. Boncz. Monet: A Next-Generation DBMS Kernel for Query-
Intensive Applications. PhD thesis, Universiteit van Amsterdam, The Nether-
lands, 2002.

[4] Anthony J. Bonner and Giansalvatore Mecca. Sequences, Datalog, and Trans-
ducers. Journal of Computer and System Sciences (JCSS), 57(3):234–259,
1998.

[5] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong.
Comprehension Syntax. SIGMOD Record, 23(1):87–96, 1994.

[6] Peter Buneman, Shamim Navqi, Val Tannen, and Limsoon Wong. Principles
of Programming with Complex Objects and Collection Types. Theoretical
Compute Science, 149(1):3–48, 1995.

[7] Michael J. Carey and Donald Kossmann. On Saying ‘Enough Already!’ in
SQL. In Proceedings of the 1997 ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 219–230, 1997.

[8] Chuck Cranor, Yuan Gao, Theodore Johnson, Vlaidslav Shkapenyuk, and
Oliver Spatscheck. Gigascope: High Performance Network Monitoring with
an SQL Interface. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 623–623, 2002.

[9] Marco de Vivo, Eddy Carrasco, Germinal Isern, and Gabriela O. de Vivo.
A Review of Port Scanning Techniques. ACM Computer Communications
Review, 29(2):41–48, 1999.

71

[10] Hector Garcia-Molina, Jeffrey Ullman, and Jennifer Widom. Database System
Implementation. Prentice-Hall, 1999.

[11] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM
Computing Surveys, 25(2):73–170, 1993.

[12] Goetz Graefe and William McKenna. The Volcano Optimizer Generator:
Extensibility and Efficient Search. In Proceedings of the International Con-
ference on Data Engineering (ICDE), pages 209–218, 1993.

[13] Torsten Grust. Comprehending Queries. PhD thesis, University of Konstanz,
1999.

[14] Yannis E. Ioannidis and Eugene Wong. Query Optimization by Simulated
Annealing. In Proceedings of the 1987 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD), pages 9–22, 1987.

[15] ISO/IEC 9075. Information Technology - Database Languages - SQL, 1999.

[16] ISO/IEC 9075. Amendment 1:2001 - Information Technology - Database
Languages - SQL (SQL/OLAP), 2001.

[17] Kenneth E. Iverson. A Programming Language. Wiley, 1962.

[18] Kaippallimalil J. Jacob and Dennis Shasha. FinTime - A Financial Time
Series Benchmark. SIGMOD Record, 28(4):42–48, 1999.

[19] KX Systems. K Reference Manual.

[20] KX Systems. KSQL Reference Manual.

[21] Leonid Libkin, Rona Machlin, and Limsoon Wong. A Query Language for
Multidimensional Arrays: Design, Implementation, and Optimization Tech-
niques. In Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 228–239, 1996.

[22] Guy M. Lohman. Grammar-like Functional Rules for Representing Query
Optimization Alternatives. In Proceeding of the 1988 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD), pages 18–27,
1988.

[23] David Maier and Bennet Vance. A Call to Order. In Proceedings of the
Twelfth ACM Symposium on Principles of Database Systems (PODS), pages
1–16, 1993.

[24] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing
Database Architecture for the New Bottleneck: Memory Access. The VLDB
Journal, 9(3):231–246, 2000.

72

[25] Arunprasad P. Marathe and Kenneth Salem. Query Processing Techniques
for Arrays. The VLDB Journal, 11(1):68–91, 2001.

[26] Jim Melton. Advanced SQL:1999 – Understanding Object-Relational and
Other Advanced Features. Morgan Kaufmann Publishers, 2002.

[27] Wilfred Ng. An Extension of the Relational Data Model to Incorporate Or-
dered Domains. ACM Transactions on Database Systems (TODS), 26(3):344–
383, 2001.

[28] Oracle. Analytic SQL Features in Oracle 9i, december 2001.

[29] Raghu Ramakrishnan, Donko Donjerkovic, Arvind Ranganathan, Kevin S.
Beyer, and Muralidhar Krishnaprasad. SRQL: Sorted Relational Query Lan-
guage. In Proceedings 10th International Conference on Scientific and Sta-
tistical Database Management (SSDBM), pages 84–95, 1998.

[30] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. SEQ: A Model
for Sequence Databases. In Proceedings of the 11th Intenational Conference
on Data Engineering (ICDE), pages 232–239, 1995.

[31] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. The Design and
Implementation of a Sequence Database System. In Proceedings of the In-
ternational Conference on Very Large Data Bases (VLDB), pages 99–110,
1996.

[32] Dennis Shasha. Time Series in Finances. Summer School in Extending
Database Technologies in La Baule, France, 1999.

[33] David E. Simmen, Eugene J. Shekita, and Timothy Malkemus. Fundamental
Techniques for Order Optimization. In Proceedings of the 1996 ACM SIG-
MOD International Conference on Management of Data (SIGMOD), pages
57–67, 1996.

[34] Giedrius Slivinskas. A Middleware Approach to Temporal Query Processing.
PhD thesis, Aalborg University, Denmark, 2001.

[35] Giedrius Slivinskas, Christian S. Jensen, and Richard T. Snodgrass. Bringing
Order to Query Optimization. SIGMOD Record, 31(2):5–14, 2002.

[36] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram,
Eugene J. Shekita, and Chun Zhang. Storing and querying ordered XML
using a relational database system. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 204–
215, 2002.

73

[37] Arthur Whitney and Dennis Shasha. Lots o’ Ticks: Real-Time High Perfor-
mance Time Series Queries on Billions of Trades and Quotes. In Proceedings
of the 2001 ACM SIGMOD International Conference on Management of Data
(SIGMOD), 2001.

[38] Jingren Zhou and Kenneth A. Ross. A Multi-Resolution Block Storage Model
for Database Design. In To appear in the Proceedings of the 2003 Interna-
tional Database Engineering and Application Symposium (IDEAS), 2003.

[39] Yunyue Zhu and Dennis Shasha. StatStream: Statistical Monitoring of Thou-
sands of Data Streams in Real Time. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 358–369, 2002.

74

