Introduction
Individual elements in complex systems can be reliant on each other for their behavioraffect one another.  Consider an ecosystem in a forest.  Think of each organism in the forest as a node that has a graph edge to every other organism that it comes in contact with.  Because this is a fairly large forest, many of the organisms in the forest will never come into contact with each other, and thus do not require an edge.  This is the idea of sparsity in a graph, or a measure of the amount of possible edges vs. actual edgesonly some possible edges are actual edges.  
Each edge in this graph is a directed edge with some real numbered value.  Positive values are for beneficial relationships, i.e., a bird tree has a positive relationship with a large tree to a bird because it the tree provides shelter, or a fox rabbit has a positive relationship with to a rabbit fox because the rabbit is food.  Conversely, the rabbit fox would have a strongly negative edge to the foxrabbit, indicating a detrimental relationship.  This network models the functional relationships between the nodes, and gives us a picture of the interactions between organisms in the forest.
Looking at how systems change over time can give valuable insights into how each member of the system relates to other members.  [Jesse: make this active and add in examples: Knowing the interactions between members of a system can lead to inferences. For example, more foxes may lead to fewer rabbits in the short term, but then fewer rabbits will lead to fewer foxes in the medium term.] By learning the interactions between members of a system, new aspects of their functionality can be inferred.  And once new functionality is inferred, this can drive future experiments.  Network inference can thus be looked at both as a hypothesis generating and an explanatory framework.  
These inferred networks can also be used to predict future data.  
*** Some more introduction and cool things about network inference *** They are visual. The quantification of edges can allow us to filter out less important edges in favor of more important ones.
Definition
The idea motivation behind building gene regulatory networks is similar to the forestbuilding ecosystem edges in the forest example above.  Instead of organisms, each node is now a gene, and the edges between genes indicate some sort of relationship.  When For example, if whenever Gene 1’s expression value goes up, Gene 2’s expression value also goes up, then we place … [Jesse: active voice].  A positively weighted directional edge can be placed from Gene 1 to Gene 2.  Adding a third gene, Gene 3, whose expression value is reduced when Gene 2’s goes up, allows the beginning of a formation of an interesting network.  From this extremely simple network, it can be inferred that if something causes Gene 1’s expression value to increase, Gene 3’s will decrease down the linesometime later. 
A gene regulatory network (GRN) [Jesse: no acronyms except DNA] is a graph where the nodes represent genes, and the edges between the nodes represent relationships how those genes are influencing the expression of each othershow how different genes affect one another.  Given a GRN,Gene regulatory networks can answer questions such as “When Gene 1 becomes expressed, how does that affectwhat happens to Gene 2?” can be asked.  Gene regulatory networks are powerful tools for understandinggive insight into the function and organization of how both individual and groups of genes work in an organism.  

[Jesse: I think you don’t need to say any more about importance.  The next question is how to do the inference.]
A common assumption is that these networks are sparse, meaning that there are far fewer actual edges than possible edges.  This is a powerful assumption that drives much of the work in gene network inference.  These problems are far more tractable when assuming sparsity, and having a sparse network where only the strongest edges have survived is parsimonious.  *** More on sparsity ***
Relationships between genes can be inferred by looking for dependencies and trends in gene expression data.  For example, if every time Gene 1 became expressed, Gene 2 became expressed shortly thereafter, a dependency may be inferred.   These inferred edges can be used to construct a network that represents interactions between individual genes and between groups of genes.
Why Important
Understanding how genes regulate each other is important in the explanation of functional relationships.  For example, while it may be known that a given gene codes for a specific protein, understanding the regulatory network around that gene allows understanding of how that gene becomes activated or repressed, and what happens to other genes down the line.
GRNs can also be used to infer new functionality of genes.  Inferring the connections between nodes in the network allows for learning of new functionality and interactions.  Different behavior of genes may be observed when looking at time-series data versus steady state.  On the system’s way to an equilibrium state, genes may function in different groups, sub-networks can interact with each other, or other possibly novel interactions may occur that would be missed if only steady-state data were observed. 
*** More on importance.  *** 

Approach of This Book
The approach of this book is to allow for an intuitive understanding of how geneThis book shows the methods used to infer networks, using gene networks as the primary example. Both the kinds of data available (e.g. time series data, knockout data), the number of data points, and the quality of the data all influence the choice of algorithms. We will break the methods into components, discuss when to use each variation of each component, and offer both the software and a workflow-driven tool to run a variety of components in a coherent way network inference works by deconstructing some of the large number of available algorithms for gene network inference into their component parts.  The assumption is being made that there is no one-size-fits-all algorithm for gene network inference, and often, the algorithm and workflow being used will have to be custom tailored to the particular dataset.  Developing an  Uunderstanding of these components allows you the reader to create for the creation of new algorithms by mixing and matching.  New workflows and new algorithms can be created by taking parts of existing algorithms and combining them parts of other algorithms, allowing for customized algorithms that fit a given dataset.
The different parts of popular algorithms in the literature will be broken down into their component pieces, and examples will be provided to allow the reader understanding of what each piece is doing, and how they fit together.  The algorithms have been broken up into three discrete approaches: dynamic Bayesian, information-theoretic, and ordinary differential equations (ODE).  Some of these algorithms have components that fall outside of these discrete categories, but will be presented along with the rest of the algorithm.
Experimental Data Inputs
Transcriptome
Transcriptome, or expression data, isis the data most often used for gene generally what is used for regulatory network inference.  There are roughly two types of expression data: steady state and time-series.  The basic ideas for both types of transcriptome data are the same.  TakeIn a typical experiment, an experimentalist will take two groups of genetically identical organisms, where one is a control and one is the test subject.  Now,The experimentalist will perturb the test specimens in different ways. For example, one will receive a nutrient and the other won’t. in some way.  For example, if the organisms are plants; starve both the control and test specimens of nitrogen.  Now introduce nitrogen into the test specimen.  It is at this point where the two main types of transcriptome data differ.  The “expression value” is a ratio of the amountsome measure of the difference of expression between the control and the test specimens.
Steady-State Data
Steady-state data consists of expression readings taken at a single time point.  These are usually taken after the organism has been perturbed in some way and enough time has elapsed for the organism to incorporate the perturbation.  Consider the aforementionedfor example a group of nitrogen- starved plants.  To obtain steady-state data, the experimentalist would add nitrogen would be added to the plants and measure a microarray would be done on both the control and test plants once they were at equilibriumtheir expression sometime later.  That is, once the expression values of the genes have stopped changing as a result of the perturbation.  This gives a snapshot of what happens to the network involved with the particular experimental perturbation.  By looking at what happens over as the result of many different types of perturbations, networks and functional relationships can be inferred.
The main benefit of steadySteady-state data is that it is relatively easy to obtain.  Most public microarray databases are full of steady-state experiments, making it an inexpensive way to augment other, more expensive forms of data.  Databases of steady-state data generally vary by organism, but some popular ones include The Arabidopsis Information Resource (TAIR), an Arabidopsis database available at http://arabidopsis.org, GeneExpDB, an E. Coli database available at http://chase.ou.edu/oubcf/, and ***Add one for yeast***.  More links to databases are available in Appendix ***.
There are a few other types of steady-state data that should be discussed.  Each type is used for a different kind of analysis, and some are more helpful to network inference than others.Some experiments take genetically identical organisms and perturbs some one way and some in another way.  Others change the genetics. For example, knock-out or knock-down experiments fully or partly remove a gene from a specimen. Such experiments allow one to infer the function of the gene that has been fully or partly removed. For the purposes of network inference, a knock-out can tell you whether one gene affects another, directly or indirectly. For example, if knocking out gene g has no effect on gene g’, then we should not draw an edge from g to g’. On the other hand, if knocking out gene g cause g’ to increase, then there is likely to be a direct or indirect repressive effect of g on g’. Frequently, you will find a large set of knock-outs, where each member of the set knocks out a single gene. Occasionally, you will have experiments having pairs of knock-outs.
The converse of a knock-out is an overexpression experiment in which genetic material is inserted that causes some gene g to express itself at a high level either continuously or based on experimental control. Again, if overexpressing g has no effect on g’, then we should not draw an edge from g to g’ . Conversely, if g’ goes up when g is overexpressed, then g has either a direct or indirect inductive effect on g’
Wild type
	Wild-type data is microarray taken from a “wild type” organism, or a phenotype of that organism that occurs in the wild and isn’t a clone of one of the organisms commonly used in experiments.  These data can be useful *** More on wild types and how they’re used ***
Knock-out / Knock-down
	Knock-out and knock-down data are extremely useful in network inference.  A knock-out is when a gene is completely removed from a specimen, and a knock-down is when the gene is forced to be less prominent.  These data types can be used to observed what happens to the rest of the genes after some perturbation, as above, when a gene is missing.  Commonly, a small set of genes that are related are selected from the organism, and each gene in this set is knocked out in turn.  Microarrays are then run, following the control/perturbed specimen paradigm above.
	A full set of knock-outs or knock-downs in turn can be an extremely powerful dataset.  Information is given about the effects that each had on every other gene in the set.  By looking at how genes respond to knock-outs and knock-downs, edges can be drawn on a graph between genes.  However, it is difficult to give these edges weights because we don’t know anything about the dynamics of the system from these data, only what the effects of losing a given gene are at an equilibrium point.

Time Series
Time-series data consists of several microarrays taken over the course of the some perturbation (either knock-out, over-expression, or conditional).  The plant is perturbed at time 0, and microarrays are taken every N minutes until the genes reach an equilibriumat different time points.  EssentiallyOften, time-series microarray data attempts to capture what happens between the perturbation and the the steady-state equilibriumsteady-state.  [Jesse: the word equilibrium means “death” to most biologists] How do the genes get to a steady state?  Time-series data are extremely powerful as they illuminate the inner workings of a network.
The dynamics of the system can be modeled by observing how the expression values change over time.  If the time points are close enough, we will assume that we can model the effects due to single edges.  By modeling these dynamics, relationships between genes are inferred, allowing for the discovery of new interactions and a clearer picture of how networks change over time.  
*** Some more stuff on time series data and results obtains with it ***
However,Thus, time series data often allows us to give quantitative values to edges. they are also more difficult and more costly to collect than steady-state data.

So, there are two dimensions in the data: what is perturbed (a condition or genetics) and whether we have a single time point or multiple closely spaced time points.

Other
*** RNA-Seq, as suggested by Manny as an up-and-coming new data that may replace microarrays *** We have so far discussed expression data without saying where it comes from. As of this writing, there are two technologies: …. For the most part, the type of data does not influence our algorithms. Inasmuch as RNA-Seq is higher quality data, it will give us better results.


Overall Workflow of Inference
Inferring a network requires the coordination ofentails several different analysis steps. Each step can be done in different ways, and different steps can be taken depending on the available data.  For instance, assume that we have an extremely large dataset.  Running aAttempting to infer edges in a dataset of more than 1,000 genes may be infeasible because we won’t have the data to distinguish different causal possibilities. For example, if, in a group of experiments, genes g1, g2, and g3 always rise and and fall together, then there will be no way to distinguish a causal link to or from one of these genes from a causal link to or from another. computationally intractable.  Clustering our these genes together to reduce the size of the data set and to eliminate unsupported distinctions among genesce N may beis a reasonable first step in this case.  Given a different datasetadditional data where having complete steady state knock-out data is available,data, we may be able to break apart clusters if, say, g1 has a different effect on g4 than g2 does. 
Because there are so many ways to build networks, there should be a way to evaluate them. The basic idea is to leave out some data (e.g. the last time point of a time series) and call that test data. The remaining data, called training data, is used to form a variety of networks depending on different methods used. One can then test each network on the test data.  The best network suggests the best method. (This is a slight simplification, because it is best to test a method using several random seeds to avoid choosing one method over another for the wrong reason.) the topology of the network can be inferred before attempting to infer the dynamics.  Exactly how these steps are combined into a pipeline is extremely data dependent.  There is likely no one-size-fits-all algorithm that will infer the best network from any arbitrary dataset.  Thus, eExperimentation and testing are required to figure out the best network for a given dataset.
TheIn general, the workflow for inferring gene regulatory networks can be organized into four distinct steps, each of which can be performed in several different ways.  The first step clusters the elements of large datasets in order to reduce the size of the inference problem.  The second step uses steady-state knock-out data (if available) to infer at least some of the topology of the network.  The third step infers a dynamical graph model (when closely spaced time series data is available) whose nodes are either single genes or gene clusters and whose edges are either inductive or repressive edges.  These edges may be “seeded” based on the results of the knock-out data.  The fourth step prunes the dynamical model based on resampling and consensus techniques.
[ Workflow diagram showing the 4 steps above ]
 The actual “inference” is occurring in step 3.  However, if steady-state data is available, inferring the topology of the network before inferring the dynamics is an extremely useful step.  If the dataset is extremely large, the inference algorithms themselves may not be able to finish in a reasonable amount of time, or give nonsensical answers when they do.
[bookmark: _GoBack]
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