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Inferelator Pipeline

TODO: Clean up language

TODO: Add “putting it all together” section for how these algorithms are combined

TODO: Add “When to use” section

TODO: Latex equations

TODO: Figure out how much ODE stuff to cover

TODO: Beef up intuitions in the Inferelator section  

What it does:


The Inferelator Pipeline is a network inference algorithm that incorporates not only time series data, but steady state data as well.  The Inferelator Pipeline consists of three algorithms: Median Corrected Z-Scores (MCZ), Time-Lagged Context Likelihood of Relatedness (tlCLR), and Inferelator 1.0.  Each algorithm creates its own scored estimate of the network topology, and a heuristic is used to combine the scores to create a consensus model for the topology.

Median Corrected Z-Scores


Median Correct Z-Scores are used in the Inferelator Pipeline to estimate the topology of the network.  In this segment of the pipeline, wild-type (Xwt) and knock-out (Xko)steady state data are used.  You’ll need to explain what knock-out really means somewhere. Wild-type data as an estimate of the population will generally be noisy, as the number of observations available in an experiment is typically be too is tyopically much too small small to obtain an accurate representation of an entire population.  In order to account for this, the median of the set of wild-type observations for each gene is taken and used as the wild-type value.


Once we have the median wild-type values, we can calculate a z-score for each pair for each knock-out experiment.  Explain what this does intuitively, i.e. how far is the wild-type value for gene g away from the knock-out; this expresses the importance of the knockout for gene g. Here are the details:

That is, for each observation of gene i with gene j knocked out, calculate the z-score:


** z(x_i,x_j) = x^ko_ij - x^wt_i / sigma_i ** latex this please parenthesize properly too
where sigma_i is the standard deviation of xi over all of the wild-type and knock-out observations.  Matrix Zmcz is an NxN matrix containing the z-scores:


Zmcz = ** latex this, N x N matrix of zmcz scores**

These z-scores can be used to reconstruct the regulatory network by treating each zmczi,j as a confidence measure of the regulatory interaction xj→xi.  We can also use these confidence measures to obtain a ranking of the most likely regulatory interactions for use later in the pipeline.  MCZ cannot be used to 


But there is a catch: In order to calculate the MCZ matrix, you need wild-type for each gene and knock-out data for each pair of genes. This is too strong. You can use knockout data even if only partial.  This level of dataset completeness has been provided in the DREAM3 and DREAM4 in-silico challenges, but may be difficult to obtain in real-world experimental data.  For this reason, MCZ is an optional part of the Inferelator Pipeline.  Another limitation of MCZ is that if a gene is not highly expressed in the wild-type data, then the MCZ statistic may not be a reliable predictor of the targets of that gene.

Time-Lagged Context Likelihood of Relatedness


The next segment of the pipeline, Time-Lagged Context Likelihood of Relatedness (tlCLR), is based off of an algorithm by Faith, et al. called Context Likelihood or Relatedness (CLR).  This algorithm calculates a statistic called Mutual Information (MI), that is similar to a correlation statistic in that it grows as the relationship between signals becomes stronger, and shrinks as the relationship decreases.  However, it differs from correlation in that it does not assume a linear relationship between signals nor does it assume continuity.  Mutual information is calculated by subtracting the joint entropy of their signals (in this case the measurements of the two genes) from the sum of  entropies (of each gene by itself).  Intuitively, the entropy of a measurement is how much information one learns from the measurement. So the entropy of your weight in the morning when calculated to the nearest 10 pounds is quite low because you can predict your weight from yesterday’s weight. If two genes g1 and g2 rise and fall together, then if you know the value of gene g1, you have a good sense of the value of gene g2 and vice versa. That would say their mutual information is high. The “joint entropy” is the information you get from knowing the two measurements and the single entropy of each gene is the information from knowing the measurement of just that one gene in isolation.
** Equation 3 from DREAM4 paper, showing the equation for static-MI **

In the case of the Inferelator Pipeline, the two signals whose mutual information we are interested in are the expression of a transcription factor (TF) and its target.  We use MI as a measure of similarity between the expression levels of pairs of genes.  Gene pairs that have a higher MI value are more likely to have a regulatory interaction between them.


In previous MI algorithms, such as CLR, inferred interactions were undirected.  This presents a problem when inferring regulatory networks, as many of the interactions in the network are directed.  To account for this, tlCLR uses temporal information to infer the direction of the interaction by defining dynamic-MI.  We will now refer to the previous definition of MI as static-MI.  Dynamic-MI is calculated by creating an ODE that approximates the changes in expression value over time for each gene
 pair.  For further information on how dynamic-MI is calculated, please see Greenfield, et al. (2010) and Madar, et al. (2009). You need to give the intuition at least, especially because this is very closely related to what Piotr does, so you will be going full circle. Actually, you seem to do that when you discuss Lars.

Once dynamic-MI and static-MI are calculated for each gene pair, a background correction is made.  First, a Z-score for the regulation between between xi and xj is calculated using the dynamic-MI:

** Equation 11 from DREAM4 paper, dynamic-MI z-score calculation **

We then calculate the Z-score for the regulation between xj and xi using both the static-MI and dynamic-MI:

** Equation 12 from DREAM4 paper, static/dynamic-MI z-score calculation **

These values are combined into a final Z-score:

** z^tlCLR_i,j = sqrt(z^2_1 + z^2_2) **

This combined Z-score matrix, like the Z-score matrix from MCZ, can be used to calculate a network topology with ranked edges.  We’ll be able to use these ranked edges in the Inferelator inference algorithm and in the pipeline post-processing.

Inferelator
The Inferelator algorithm is the workhorse of the Inferelator Pipeline.  It is an ODE based inference algorithm that learns a sparse dynamical model for each gene as a function of a list of P potential regulators, where P is a parameter that the maximum amount of potential regulators Inferelator should consider.  This list of potential regulators for each gene is generally obtained from the Z-score matrix of MCZ or tlCLR.  However, any method that generates a ranking of regulators per gene may be used.  Inferelator then takes the top P most likely regulators from the list, and builds a sparse dynamical model for that gene.  It should be noted that if there are not enough regulators in the list to satisfy P, Inferelator will use as many as possible.

Inferelator uses Least Angle Regression (LARS) to implement an l1 constraint on the matrix of dynamical parameters, B.  This is done to enforce sparsity in B.  For more information on LARS, please read section XX.

TODO: Add a bit more information about the intuition behind the Inferelator 1.0 step

Putting it all together


TODO:

· Pipelines

· Heuristic for combining MCZ, tlCLR, and Inf Z-scores

��Not sure how much I should go into the ODE and equations here.  It goes quite deep in the paper.  Should I simply refer to the citation?






