
Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Resolving inconsistencies and redundancies in declarative process models

Claudio Di Ciccioa,⁎, Fabrizio Maria Maggib, Marco Montalic, Jan Mendlinga

a Vienna University of Economics and Business, Austria
b University of Tartu, Estonia
c Free University of Bozen-Bolzano, Italy

A R T I C L E I N F O

Keywords:
Process mining
Declarative process
Conflict resolution
Redundant constraints

A B S T R A C T

Declarative process models define the behaviour of business processes as a set of constraints. Declarative
process discovery aims at inferring such constraints from event logs. Existing discovery techniques verify the
satisfaction of candidate constraints over the log, but completely neglect their interactions. As a result, the
inferred constraints can be mutually contradicting and their interplay may lead to an inconsistent process model
that does not accept any trace. In such a case, the output turns out to be unusable for enactment, simulation or
verification purposes. In addition, the discovered model contains, in general, redundancies that are due to
complex interactions of several constraints and that cannot be cured using existing pruning approaches. We
address these problems by proposing a technique that automatically resolves conflicts within the discovered
models and is more powerful than existing pruning techniques to eliminate redundancies. First, we formally
define the problems of constraint redundancy and conflict resolution. Second, we introduce techniques based on
the notion of automata-product monoid, which guarantees the consistency of the discovered models and, at the
same time, keeps the most interesting constraints in the pruned set. The level of interestingness is dictated by
user-specified prioritisation criteria. We evaluate the devised techniques on a set of real-world event logs.

1. Introduction

The automated discovery of processes is the branch of the process
mining discipline that aims at constructing a process model on the
basis of the information reported in event data. The underlying
assumption is that the recorded events indicate the sequential execu-
tion of the to-be-discovered process activities. The compact and correct
representation of the behaviour observed in event data is one of the
major concerns of process mining. Process discovery algorithms are
classified according to the type of process model that they return, i.e.,
either procedural or declarative. Procedural process discovery techni-
ques return models that explicitly describe all the possible executions
allowed by the process from the beginning to the end. The output of
declarative process discovery algorithms consists of a set of constraints,
which exert conditions on the enactment of the process activities. The
possible executions are implicitly established as all those ones that
respect the given constraints. Mutual strengths and weaknesses of
declarative and procedural models are discussed in [1,2].

One of the advantages of procedural models such as Petri nets is the
rich set of formal analysis techniques available. These techniques can,
for instance, identify redundancy in terms of implicit places or

inconsistencies like deadlocks [3]. In turn, similar facilities are not
provided for novel declarative modelling languages like DECLARE. This is
a problem for several reasons. First, we are currently not able to check
the consistency of a generated constraint set. Many algorithms that
generate DECLARE models include in the output those constraints that
are individually satisfied in the log in more than a given number of
cases. The interaction of returned constraints is thereby neglected, with
the consequence that subsets of constraints can end up contradicting
one another. Second, it is currently unclear whether a given constraint
set is free of redundancies. Since there are constraint types that imply
one another, it is possible that the generated constraint sets are
partially redundant. The lack of formal techniques for handling these
two issues is unsatisfactory from both a research and a practical angle.
This is also a roadblock for conducting fair comparisons in user
experiments when a Petri net without deadlocks and implicit places
is compared with a constraint set of unknown consistency and
redundancy-freedom.

In this paper, we address the need for formal analysis of DECLARE

models. We define the notion of an automata-product monoid as a
formal notion for analysing consistency and local minimality, which is
grounded in automata multiplication. Based on this structure, we

http://dx.doi.org/10.1016/j.is.2016.09.005
Received 15 December 2015; Received in revised form 20 September 2016; Accepted 21 September 2016

⁎ Corresponding author. Vienna University of Economics and Business, Institute for Information Business (Building D2, Entrance C) – Welthandelsplatz 1, A-1020 Vienna, Austria.
E-mail addresses: claudio.di.ciccio@wu.ac.at (C. Di Ciccio), f.m.maggi@ut.ee (F.M. Maggi), montali@inf.unibz.it (M. Montali), jan.mendling@wu.ac.at (J. Mendling).

Acronyms: LTL, linear temporal logic; FOL, first order logic; LTLf, linear temporal logic on finite traces; MSO, monadic second order logic; RE, regular expression; FSA, finite state
automaton

Information Systems xx (xxxx) xxxx–xxxx

0306-4379/ © 2016 Elsevier Ltd. All rights reserved.
Available online xxxx

Please cite this article as: Di Ciccio, C., Information Systems (2016), http://dx.doi.org/10.1016/j.is.2016.09.005

http://www.sciencedirect.com/science/journal/03064379
http://www.elsevier.com/locate/is
http://dx.doi.org/10.1016/j.is.2016.09.005
http://dx.doi.org/10.1016/j.is.2016.09.005
http://dx.doi.org/10.1016/j.is.2016.09.005

devise efficient analysis techniques. Our formal concepts have been
implemented as part of a process mining tool that we use for our
evaluation. By analysing event log benchmarks, we are able to show
that inconsistencies and redundancies occur in process models auto-
matically discovered by state-of-the-art tools. First, our technique can
take such process models as input and return constraints sets that are
consistent. To this end, contradictory subsets are identified and
resolved by removing the constraints generating the conflict. Second,
our technique eliminates those constraints that do not restrict the
behaviour of the process any further, i.e., that do not convey any
meaningful information to the output. As a consequence, the returned
sets are substantially smaller than the ones provided by prior algo-
rithms, though keeping the expressed behaviour equivalent to the
inconsistency-free process. This paper extends the research presented
in our former publication [4] with a complete and self-consistent
definition of the adopted formal concepts and algorithms. We also
provide alternative strategies to be utilised during the redundancy and
consistency check, so as to allow for different criteria to prioritise the
constraints during the pruning phase. This is of crucial importance,
since manipulating a declarative process model towards removal of
inconsistencies and redundancies is intrinsically expensive from a
computational point of view. Furthermore, we introduce a comple-
mentary technique to further reduce the number of redundancies in the
models after the first check. Finally, we broadly extend the evaluation
with an analysis of our implemented approach over real-world data sets
including the event logs provided for the former editions of the BPI
challenge.

The paper is structured as follows. Section 2 illustrates intuitively
the problems that we tackle with the proposed research work. Section 3
describes the preliminary notions needed to formally contextualise the
challenged issues. Section 4 formally specifies the problems of incon-
sistencies and redundancies in detail. Section 5 defines our formal
notion of automata-product monoid, which offers the basis to formalise
the techniques for consistency and redundancy checking. Section 6
illustrates the results of our evaluations based on real-world bench-
marking data. Section 7 discusses our contributions in the light of
related work. Finally, Section 8 concludes the paper.

2. Motivation

Declarative process models consist of sets of constraints exerted on
tasks, which define the rules to be respected during the process
execution. A well-established language for modelling declarative pro-
cesses is DECLARE [5,6]. DECLARE defines a set of default templates,
which are behavioural rules that refer to parameters in order to
abstract from tasks. In DECLARE, e.g., Init x() is a template imposing
that a given parametric task x must be the one with which every process
instance starts. End x() specifies that every process instance must
terminate with the given task x. Response x y(,) states that if task x is
carried out, then task y must be eventually executed afterwards.
Precedence x y(,) imposes that y can only be performed if x has been
previously executed.

Let us consider a simple example process having three tasks, a, b,
and c. By indicating the execution sequence of tasks with their name,
possible enactments that fulfil a process model consisting of aInit () and

cEnd () are: (i) abababc and (ii) ababac. If we consider an event log
made of the aforementioned execution sequences and use any declara-
tive discovery algorithm to reveal a declarative process model that
could have generated them, it would correctly return a set of
constraints including aInit () and cEnd () because they are always
satisfied. However, the set of constraints would include also (1)

a bPrecedence (,) and (2) a cPrecedence (,), as well as (3)
a cResponse (,) and (4) b cResponse (,): those four constraints hold true

in the event log as well. Nevertheless, if a is already bound to be the
first task to be carried out in every process instance aInit(()), clearly no
other task can be executed if a is not done before. Therefore, the first

two constraints can be trivially deduced by aInit (). They add no
information, yet they contribute to uselessly enlarge the set of
constraints returned to the user as the outcome of the discovery. By
the same line of reasoning, the third and fourth constraints are
superfluous with respect to bEnd (). Intuitively, this example outlines
the problem of redundancy, which is one of the two challenges that we
tackle with this research work: the objective is to remove from the set of
constraints in the discovered process model those ones that do not add
information, i.e., that are not restricting the process behaviour any
further given the remaining ones.

In the context of declarative process discovery, event logs can be
affected by recording errors or report exceptional deviations from the
usual enactments [7]. In such cases, constraints that were originally
part of the process may be violated in some of the recorded executions.
If discovery algorithms take into account only those constraints that
always hold true in the event log, a minimum amount of noise might
already cause several constraints to be discarded from the returned set
[8–10]. To circumvent this issue, declarative discovery algorithms offer
the possibility to tune a so-called support threshold: it specifies the
minimum fraction of cases in which a constraint is fulfilled within the
event log to let such constraint be included in the discovered model.
However, this comes at the price of possibly having conflicts in the
model though: constraints that hold true in a fraction of the event log
above the set threshold can contradict other constraints. In such a case,
the model becomes unsatisfiable, i.e., it exerts conditions that cannot
be met by any possible execution. Such a model would clearly be to no
avail to the discovery intents. This issue outlines the problem of
inconsistencies in the discovered model, which we challenge in this
research paper.

The aim of the presented approach is therefore twofold: Given a
discovered declarative process model, we want to (1) remove its
inconsistencies and (2) remove its redundancies. To pursue these
objectives, we aim at keeping the process behaviour as similar as
possible to the original one when removing inconsistencies, and
retaining the minimum number of constraints that still represent the
same original behaviour while getting rid of the redundancies. The
number of combinations of constraints to test for the optimum of both
problems is not tractable in practice, because every subset of the
original constraints set should be confronted with the others. Our
solution instead requires a polynomial number of checks over con-
straints to provide a sub-optimal yet effective solution. Furthermore,
different criteria can be adopted to express (1) the desired behavioural
closeness and (2) the preferability of constraints to be retained. To this
extent, our solution envisages (1) the relaxation of conditions exerted
by the contradicting constraints and (2) different ranking criteria for
constraints, respectively.

3. Declarative process modelling and mining

This section defines the formal background for our research
problem. In particular, we introduce and revisit the concepts of event
logs and of declarative process modelling and mining.

Notational conventions: We adopt the following notations. Given a
set X, (i) the multi-set of X is denoted as  X(); (ii) the power-set of X is
denoted as  X(); (iii) a sequence of elements x X∈i is denoted by the
juxtaposition of its elements x x x⋯ n1 2 ; (iv) the cardinality of X is
denoted as X| |; the same notation applies both to the length of
sequences and the cardinality of multi-sets.

Identifiers in cursive sans-serif format will be written in sans-serif
letters when assigned to actual parameters. Generic identifiers of tasks,
e.g., will be indicated as a, b, and c, whereas concrete assignments of
task identifiers will be written as a, b, and c.

3.1. Event logs

An event is a system-recorded information reporting on the

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

2

Claudio Di Ciccio
Hervorheben
Use for "a", "b" and "c" the same sans-serif font you used for, e.g., Response(a, c) in the left column.In the following similar cases, I will just highlight the text and comment it as "Sanf-serif".

execution of a task during the execution of a process. Events are
labelled with so-called event classes, i.e., task names [11]. We assume
that each event uniquely corresponds to the execution of a single task.
This assumption builds upon the work on event class reconciliation of
Baier et al. [12,13]. We thus abstract every event with its event class, in
turn related to a task. A finite sequence of events is named trace. A
complete trace represents the execution of a process instance from the
beginning to the end. An event log is a collection of traces. If multiple
process instances have been executed by conducting the same sequence
of tasks, multiple traces in the event log consist of the same sequence of
events, accordingly.

Formally, an event log L is a multi-set of traces ti with i L∈ [1, | |],
which in turn are finite sequences of events ei j, with i L∈ [1, | |] and
j t∈ [1, | |]i [14–16]. The log alphabet is the set of symbols identify-
ing all possible tasks and event classes. We write a b c, , to refer to
them. Without loss of generality, we also refer to events as occurrences
of symbols in . By denoting the set of sequences of tasks as * we
have that L ∈ (*). An example of log is: L t t= { , }1 2 where
t abcacbacd=1 and t ababc=2 . Event logs are the fundamental input
of automated process discovery algorithms [14,17].

3.2. Declarative process modelling languages

A declarative process modelling language represents the behaviour
of processes by means of constraints, i.e., rules that must not be
violated during the execution of process instances. Such rules are
meant to be exerted over tasks in the context of temporal structures like
imperative process models or logs. To date, DECLARE is one of the most
well-established declarative process modelling languages. It provides a
standard library of templates (repertoire), i.e., behavioural constraints
parametrised over activities. Table 1 lists the constraints that will be
considered in this paper. Typical examples of DECLARE constraints are

aParticipation () and b cResponse (,). The former specifies that a must be
executed in every process instance. The latter declares that if b is
executed, then c must eventually follow. The constrained task of

aParticipation () is a, whereas the constrained tasks of b cResponse (,)
are b and c. The template of aParticipation () is Participation, whilst the
template of b cResponse (,) is Response. Participation is an example of
existence template, because it asserts conditions on the execution of a
single activity. Response is an example of a relation template as it
specifies conditions over pairs of activities. For relation templates,
activations and targets are defined: the former is a task whose

execution imposes obligations on the enactment of another task, i.e.,
the target. E.g., b is the activation and c is the target of b cResponse (,),
because the execution of b requires c to be executed eventually.

Formally, a template is a predicate C/ ∈n , where C is the DECLARE

repertoire and n denotes its arity, i.e., the number of parameters [18].
In this article, we consider constraints of arity not higher than 2,
because they constitute the subset of constraints discovered by the
majority of declarative process miners [19–21]. Nevertheless, the
presented approach can be seamlessly extended to the case of
constraints of higher arity. Existence templates are unary, whereas
relation templates are binary. Formal parameters of constraints are
denoted by x and y for binary constraints or as x x,…, n1 for constraints
of a generic arity n. We will interchangeably use, e.g., /2 or x y(,) to
denote a template of arity 2. Templates will be denoted as when their
arity is unspecified or clear from the context.

A constraint is the application of a template over tasks by means of
the assignment of its formal parameters to elements in . Formally,
given a template C/ ∈n , a parameter assignment γn is a function

n[1,] → , where n[1,] is the set of integers ranging from 1 to n. γ i()n is
meant to assign the i-th parameter of /n to a task in , in compliance
with the positional notation of the parameters of predicates. The
/ −constraintn resulting from γn, written γ /n, is also represented as

C γ γ n= ((1),…, ())n n . For example, b cResponse (,) denotes the con-
straint resulting from the application of γ : {1, 2} →2 to the
Response/2 template, where bγ (1) =2 and cγ (2) =2 .

In light of the above, and taking inspiration from the tabular
representation of behavioural relations in [22,76], we can define a
declarative process model as follows.

Definition 3.1 (Declarative process model). A declarative process
model is a tuple C Γ= , , where:

• is a finite non-empty set of tasks;

• C is a finite non-empty repertoire of templates;

• CΓ γ γ n i= { / : / ∈ , : [1,…,] → , ≥ 0}n n ni i is a finite set of
Constraints.

Γ is a subset of the constraints universe C , which corresponds to the
set of all constraints C that derive from the instantiation of every
template C/ ∈n with every possible assignment to tasks in . Note
that by definition two different assignments γn and γ

′n
can be applied to

the same constraint /n. It is the case, e.g, when a bResponse (,) and
b cResponse (,) both belong to the declarative process model: aγ (1) =2

Table 1
DECLARE templates.

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

3

Claudio Di Ciccio
Notiz
This is not the table of Declare templates. Please check the original submitted manuscript and change accordingly.

and bγ (2) =2 , bγ
′
(1) =2 and cγ

′
(2) =2 , hence

a bResponseγ Response/ = (,)2 and b cResponseγ Response′/ = (,)2 .
DECLARE is a declarative process modelling language providing the

repertoire of templates listed in Table 1. Having, e.g., A a b c= { , , }, in
DECLARE AC would contain aInit (), bInit (), cInit (), a bResponse (,),

b aResponse (,), b cResponse (,), c bResponse (,), a cResponse (,),
c aResponse (,), etc.

We respectively indicate activation and target of a template as |•
and |=⇒. Hence, Response x y x(,) | =• , and Response x y y(,) | ==⇒ . With a
slight abuse of notation, we use the same notation also for constraints:

a b aResponse (,) | =• , a b bResponse (,) | ==⇒ . Moreover, we assume that
for a template x() of arity 1, activation and target coincide:

x x x() | = ()| =• =⇒ .
As said, events are meant to be recordings of the tasks carried out

during the process enactment. Therefore, we will interchangeably
interpret DECLARE rules as (i) behavioural relations between tasks in a
process model or (ii) conditions exerted on the occurrence of events in
traces. We will henceforth consider that, e.g., aParticipation () imposes
that every trace contains at least an occurrence of a. Likewise,

b cResponse (,) indicates that after the occurrence of b, c occurs after-
wards in the trace. Both t1 and t2 in the example log L are compliant
with aParticipation () and b cResponse (,). Such conceptual matching is
typical of DECLARE mining approaches [9,23], as event logs are used to
analyse to what extent constraints are respected by counting the
number of fulfilments within traces.

3.2.1. Evaluation and satisfiability of a declarative process model
Since constraints are predicates, they can be evaluated and checked

for satisfiability. In particular, as exposed by Räim et al. [24], every
constraint of a declarative process model can be evaluated over traces
by adopting a semantics based on linear temporal structures. We thus
introduce the notion of evaluation of a constraint over a trace as a
function Cη: × * → {⊤, ⊥}, such that:

C⎧⎨⎩η C t C t(,) = ⊤ if ∈ evaluates to true over ∈ *
⊥ otherwise. (1)

If the conditions imposed by the constraint are satisfied by every event
in the trace, then the trace fulfils the constraint, i.e., the constraint
evaluates to true (⊤) over the trace.

With a slight abuse of notation, we denote the evaluation of a
declarative process model C Γ= , , over a trace by means of the
same symbol η, and define it as follows:

C⎧⎨⎩η t C Γ C t(,) = ⊤ if for all ∈ ⊆ , evaluates to true over ∈ *
⊥ otherwise.

(2)

The notion of evaluation of a declarative process model leads to the
satisfiability problem, i.e., checking whether there exists a trace over
which the model evaluates to true. Hereinafter, we denote the set of
traces that satisfy a declarative process model as its language:

t η t() = { ∈ (*): (,) = ⊤}. (3)

Since a declarative process model is evaluated to ⊤ on a trace t only
if all its constraints are evaluated to ⊤ on t (Eq. (2)), given two models

C Γ= , , and C Γ′ = , , ′ where Γ Γ′ ⊆ , it follows that
() ⊆ (′). The declarative process model C= , , ∅I trivi-

ally accepts any trace consisting of elements of , because it imposes
no constraints. Hence, () = (*)I is the most underfitting
declarative process model, but not interesting from a business process
perspective, since it accepts any possible behaviour. Likewise, empty
process models, i.e., not satisfiable by any trace, are equivalently
ineffective. As an example, we can consider the DECLARE constraints

a bCoExistence (,) and a bNotCoExistence (,). The first one states that in a
trace a and b always co-occur. The second one establishes that if a
occurs in a trace, then b cannot occur, and vice versa. It follows that a

model a b a b a bC CoExistence NotCoExistence= { , }, , { (,), (,)}∅ is
unsatisfiable, because the two constraints are contradicting, which
implies () = ∅∅ . Notice that also the declarative process model

a b a b a b aC CoExistence NotCoExistence Init′ = { , }, , { (,), (,), ()}∅ is
still unsatisfiable, although aInit () is not in contradiction with

a bCoExistence (,) nor with a bNotCoExistence (,). This observation leads
to the problem that we want to address: finding and removing contra-
dicting constraints that make declarative process models unsatisfiable.

3.2.2. Discovery of a declarative process model
A declarative process model can be discovered by evaluating all

constraints in the constraints universe over the event log and returning
all and only those constraints that evaluate to ⊤ over the event log.
However, this would make the discovered model overfitting, with the
consequence that if the event log contained errors, then the discovered
model would be affected by erroneously discarded or added constraints
[25]. To overcome this issue, metrics have been introduced that make
the discovered model less prone to faulty log entries.

Taking inspiration from the area of data mining [26], we adopt the
support metric [19,21]. Support assesses the degree of fulfilment of
constraints in the event log by scaling the number of traces fulfilling the
constraint by the number of traces in the log. Support is defined as a
function C  σ: × (*) → [0, 1] ⊆ ≥0, with ≥0 being the set of
positive real numbers, computed as follows:

σ C L t L η C t
L

(,) = { ∈ : (,) = ⊤} .
(4)

Given the example event log from above, L t t= { , }1 2 where
t abcacbacd=1 and t ababc=2 , we have that: a Lσ Participation((),) = 1.0,

b c Lσ Response((,),) = 1.0, and a b Lσ Response((,),) = 0.5, because no
b follows the last a occurring in t1.

Typically, a discovered declarative process model consists of those
constraints having a support higher than a user-specified threshold:
Those that are fulfilled in a significant number of cases belong to the
discovered model. However, the amount of constraints that the
discovered model consists of is usually overwhelming, when only
relying on such criterion. Therefore, metrics for assessing the relevance
of constraints have been established, i.e., confidence κ and interest
factor ι, which scale the support by the ratio of traces in which the
activation occurs, resp. both the constrained tasks occur. Confidence
and interest factor are defined as functions
C  κ: × (*) → [0, 1] ⊆ ≥0, and C  ι: × (*) → [0, 1] ⊆ ≥0, re-

spectively, which are computed as follows:

κ C L σ C L t L C t
L

(,) = (,) × { ∈ : | ∈ } ,•

(5)

ι C L σ C L t L C t C t
L

(,) = (,) × { ∈ : | ∈ and | ∈ } .• =⇒

(6)

Different variants of calculating these metrics have been proposed
[19,27,28]. Notice that both κ and ι scale the value of σ by a number
included in the range [0, 1]. By their definition, it always holds true that
given a constraint C and an event log L,

ι C L κ C L σ C L0 ≤ (,) ≤ (,) ≤ (,) ≤ 1.

3.3. Declare template types and subsumption

DECLARE is a declarative process modelling language that provides a
repertoire of templates for the specification of constraints over tasks.
The list of templates considered in this paper is provided in Table 1.
Here, we describe how the templates are divided into types and
constitute a subsumption hierarchy [29,27,25], as illustrated in Fig. 1.

Examples of constraints in DECLARE are: (i) Participation a(), specify-
ing that task a must occur in every trace; (ii) AtMostOne a(), declaring
that a must occur not more than once in a trace; (iii)
RespondedExistence a b(,), imposing that if a occurs in a trace, then also

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

4

b must occur in the same trace. Participation and AtMostOne are
existence templates. Because they exert restrictions on the number of
occurrences of a task in a trace, they belong to the type of cardinality
constraint templates. Init a() and End a() are existence constraints
stating that a must be the first, resp. the last, event occurring in all
traces. Therefore, they belong to the type of position constraints. Both
their templates are subsumed by Participation, because they imply that
the constrained task occurs in every trace in order to be the first or the
last one. Fig. 1(a) illustrates the subsumption hierarchy of existence
constraint templates. Templates are indicated in solid boxes. The
subsumption between templates is drawn with a line starting from
the subsumed template and ending in the subsuming one, with an
empty triangular arrow recalling the UML IS-A graphical notation.

As Fig. 1(b) illustrates, RespondedExistence x y(,) generates an off-
spring of related relation templates. Its directly subsumed templates
(children) are Response x y(,) and Precedence y x(,). Response a b(,) im-
poses that eventually after an occurrence of a (the activation), b (the
target) must occur. Dually, Precedence a b(,) requires that before an
occurrence of the activation task b, target task a occurs. Both
constraints strengthen the conditions exerted by RespondedExistence
by specifying that not only must the target occur, but also in which
relative position in the trace (after or before the activation). However,
the role of activation and target are swapped in Precedence, w.r.t.
RespondedExistence. Owing to this, RespondedExistence and Response
belong to the type of forward-unidirectional relation templates,
whereas Precedence is a backward-unidirectional relation template.

Technically, given two n-ary templates C, ′ ∈ , we say that is
subsumed by ′, written ⊑ ′, if for every trace t ∈ * and every
parameter assignment γn from the parameters of to tasks in ,
whenever t complies with the instantiation of with γn, then t also
complies with the instantiation of ′ with γn. For binary templates, we
write ⊑ ′− if the subsumption holds by inverting the parameters of ′
w.r.t. those in , i.e., by considering templates x y(,) and y x′(,). We
thus have that Response RespondedExistence⊑ . By the same line of
reasoning, we have that Precedence RespondedExistence⊑ −. ⊑ is transitive
(if ⊑ ′ and ′⊑ ″ then ⊑ ″) and reflexive (⊑). We also introduce
the inverse relation of ⊑, i.e., ⊒, which we use to indicate that
subsumes ′, i.e., ⊒ ′: E.g., RespondedExistence Response⊒ , and
RespondedExistence Precedence⊒ −. In the following, we extend the usage
of ⊑ and its inverse relation to constraints too: C C⊑ ′ means that

constraint C is subsumed by constraint C′, e.g.,
a b a bResponse RespondedExistence(,)⊑ (,).

In the subsumption hierarchy of both Response and Precedence, the
direct child templates are AlternateResponse and AlternatePrecedence.
The concept of alternation strengthens the parent template by adding
the condition that between pairs of activation and target, not any other
activation occurs. The subsumption hierarchy concludes with
ChainResponse and ChainPrecedence: they impose that occurrences of
activation and target are immediately adjacent.

The conjunction of a forward-unidirectional relation template and a
backward-unidirectional relation template belonging to the same level
of the subsumption hierarchy generates the so-called coupling tem-
plates: Succession x y(,), e.g., holds when both Response x y(,) and
Precedence x y(,) hold true. In addition, the coupling template
CoExistence is equal to the conjunction of RespondedExistence and
RespondedExistence−. For every coupling template , a function fw ()
and bw () are defined that resp. return the related forward-unidirec-
tional relation and the backward-unidirectional relation templates.
Hence, fw Succession x y Response x y((,)) = (,) and bw Succession x y Precedence x y((,)) = (,).
In Fig. 1(b), the functions fw and bw are indicated by grey arcs labelled
as forward and backward, respectively. With a slight abuse of
notation, we will adopt function symbols fw and bw not only for
templates but also for constraints.

Finally, coupling templates CoExistence, Succession and
ChainSuccession correspond to other templates that share the same
activations and exert opposite conditions on the targets: resp.,
NotCoExistence, NotSuccession and NotChainSuccession. For instance,
CoExistence a b(,) states that a and b always co-occur in a trace.
NotCoExistence a b(,) states instead that if either a (resp. b) occurs in
the trace, then b (resp. a) cannot. Owing to this, NotCoExistence,
NotSuccession and NotChainSuccession are named negative templates.
Given a negative template, e.g., NotCoExistence, we say that it negates
the corresponding coupling template, e.g., CoExistence. Due to the
opposite conditions exerted on the targets, the subsumption hierarchy
gets also reverted w.r.t. the corresponding negated templates:
NotCoExistence NotSuccession NotChainSuccession⊑ ⊑ . In Fig. 1(b), nega-
tive templates are graphically linked to their corresponding coupling
templates by means of wavy grey arcs labelled as negates.

Based on the concept of subsumption, we can define the notion of
relaxation . is a unary operator that returns the direct parent in the

Fig. 1. The subsumption map of DECLARE templates. Templates are indicated by solid boxes. The subsumption relation is depicted as a line starting from the subsumed template and
ending in the subsuming one, with an empty triangular arrow recalling the UML IS-A graphical notation. The coupling constraint templates are linked to the related forward-
unidirectional relation constraint and backward-unidirectional relation constraint templates by means of grey arcs. The negative constraint templates are graphically linked to the
corresponding coupling constraint templates by means of wavy grey arcs.

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

5

subsumption hierarchy of a given template. If there exists no parent for
the given template, then returns a predicate that would hold true for
any possible trace, i.e., ⊤. Formally, given a template C∈ , we have:

C

C

⎧
⎨⎪
⎩⎪

() =
′ if (i) ′ ∈ ⧹{ }, (ii) ⊑ ′, and

(iii) ∄ ″ ∈ ⧹{ , ′} s. t. ⊑ ″ and ″⊑ ′
⊤ otherwise (7)

We extend the relaxation operator and the subsumption relation to
the domain of constraints, such that, e.g.,

a b a bResponse RespondedExistence((,)) = (,).

3.4. Semantics of DECLARE as regular expressions

A plethora of semantics for DECLARE templates have been proposed
in the literature by relying on different logic-based approaches,
including Linear Temporal Logic (LTL) [30,31], Linear Temporal
Logic on Finite Traces (LTLf) [32,33], First Order Logic (FOL)
formulae over finite ordered traces [27,33] and abductive logic
programming [34]. We adopt regular expressions (REs) because they
allow us to take advantage of well-established techniques for calculat-
ing automata products, which are at the base of our approach. Table 1
lists the translation of templates into REs.

Regular expressions are a formal notation to compactly express
finite sequences of characters, a.k.a. matching strings. The syntax of
REs consists of any juxtaposition of characters of a given alphabet,
optionally grouped by enclosing parentheses (and), to which the
following operators can be applied: binary alternation | and concatena-
tion, and the unary Kleene star *. Thus, the regular expression
a bc d e()* | identifies any string starting with a, followed by any number
of repetitions of the pattern (sub-string) bc (optionally, none) and
closed by either d or e, such as ad, abcd, abcbce and ae. Table 1
adopts the POSIX standard for the following additional shortcut
notations: (i) . and x[^] respectively denote any character or any
character but x, (ii) + and ? operators respectively match from one to
any and from none to one occurrences of the preceding pattern. We
also make use of (iii) the parametric quantifier m{, }, with m being
integer higher than 0, which specifies the maximum number of
repetitions of the preceding pattern, and (iv) the parametric quantifier
n{ , }, with n being integer higher than or equal to 0, which specifies the
minimum number of repetitions of the preceding pattern. We recall
here that (i) REs are closed under the conjunction operation & [35],
and (ii) the expressive power of REs completely covers regular
languages [36], thus (iii) since regular grammars are recognisable
through REs [37,36], for every RE, a corresponding deterministic finite
state automaton (FSA) exists, accepting all and only the matching
strings [38]. The conjunction operator & satisfies commutativity and
associativity. Its identity element is .*.

3.5. Finite state automata

A (deterministic) FSA is a finite-state labelled transition system
A Σ S s δ S= 〈 , , , , 〉0 f , where: Σ is an alphabet; S is the finite non-empty
set of states; s S∈0 is the initial state; δ S Σ S: × → is the transition
function, i.e., a function that, given a starting state and a character of
the alphabet, returns the target state (if defined); S S⊆f is the set of
final (accepting) states [37]. For the sake of simplicity, we will omit the
qualification “deterministic”. A finite path π of length n over A is a
sequence π π π= ,…, n1 of tuples π s σ s δ= , , ∈i i i i−1 , for which the
following conditions hold true: (i) π1, the first tuple, is such that s s=0

0
(i.e., π starts from the initial state of A) and (ii) the starting state of πi is
the target state of π π s σ s s σ s s σ s: = , , , , , , … , ,i n n n−1 0 1 1 1 2 2 −1 . A
finite string of length n ≥ 0, i.e., a concatenation σ σ σ= … n1 of
characters σ Σ∈i , is accepted by A if a path π of length n is defined
over A and is such that (i) for every i n∈ [1,], π s σ s= , ,i i

i
i−1 , and (ii)

π s σ s= , ,n i
n

n−1 is s.t. s S∈n
f . We overload the notation by denoting

as A Σ() ⊆ (*) the (possibly infinite) set of strings accepted by A.
FSAs are closed under the product operator × [39]. A product of

two FSAs A and A′ accepts the intersection of languages (sets of
accepted strings) of each operand: A A A A(× ′) = () ∩ (′). The
product of FSAs is an isomorphism for the conjunction of REs, i.e.,
the product of two FSAs respectively corresponding to two REs is
equivalent to the FSA that derives from the conjunction of the two REs
[40]: given the REs r r, ′, and naming as the operation leading from
an RE to the corresponding FSA, we have that

r r r r(& ′) = () × (′). The product operator × is commutative
and associative. The identity element for × over the alphabet Σ is
A Σ s s s Σ s s= 〈 , { }, , { } × × { }, { }〉I

0 0 0 0 0 (Fig. 2(a)). It accepts all strings
over Σ A Σ: () = (*)I . The absorbing element is
A Σ s s= 〈 , { }, , ∅, ∅〉∅

0 0 (Fig. 2(b)). It does not accept any string:
A() = ∅∅ .

4. Formalisation of the problem

In this section, we present the twofold problem tackled in this work.
First, we want to avoid that the discovered declarative process models
contain inconsistencies, i.e., contradictions among constraints that
make the overall model unsatisfiable. Second, we want to minimise
the number of constraints in the discovered declarative process models,
in particular by eliminating those that are redundant.

4.1. The consistency problem

In Section 3.2, we have introduced the general notions of declara-
tive process model and of its language, defined in terms of the set of
traces that satisfy all constraints present in the model. We have also
discussed that not all declarative process models are meaningful. One
extreme case is the one in which the declarative process C Γ= , ,
of interest is unsatisfiable, i.e., () = ∅. In this case, cannot be
used for simulation nor execution, since there exists no trace that
satisfies it. In addition, the usage of to evaluate the compliance of a
log confuses the process analyst, since every trace is trivially considered
non-compliant. Furthermore, acts as an absorbing element when
composing it with another declarative model ′, in the sense that the
model resulting from the composition continues to be unsatisfiable,
irrespectively of the constraints contained in ′.

An unsatisfiable model C Γ= , , contains at least one con-
straint C Γ∈ that is in conflict with the other constraints
C C Γ C,…, ∈ ⧹{ }Γ1 | |−1 , i.e., for which no trace exists that satisfies them
all. Formally, there is no t ∈ * such that η C t(,) = ⊤ for every
C Γ C∈ ⧹{ } and η C t(,) = ⊤. Addressing the consistency problem
means ensuring that a declarative process model is satisfiable, i.e.,
accepts at least one execution trace. When the process model is
unsatisfiable, this requires to identify and remove those constraints
that are in conflict.

This problem is extremely challenging. In fact, there could be
multiple sets of conflicting constraints, each formed by two or more
constraints. Their identification is thus inherently intractable, as it
requires in the worst case to consider all possible subsets of Γ [41].
Furthermore, once such conflicting sets are singled out, there are in
general exponentially many ways of removing constraints belonging to
such sets so as to fix the inconsistency. This issue is particularly difficult

Fig. 2. Finite state automata acting as identity element and absorbing element for the
automata cross-product operation.

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

6

to manage in the context of declarative process discovery, since each
newly discovered constraint could suddenly introduce a conflict with
the partial declarative process model discovered so far.

On the other hand, the consistency problem is pervasive in
declarative process discovery. To illustrate this, we utilise the event
log set of the BPI challenge 2012 [42]. The event log pertains to an
application process for personal loans or overdrafts of a Dutch bank. It
contains 262,200 events distributed across 24 different possible event
classes and 13,087 traces. Process mining tools such as MINERful [27]
and Declare Maps Miner [19] generate declarative process models in
DECLARE from event logs. In essence, these models define a set of
declarative constraints that collectively determine the allowed and the
forbidden traces.

The main idea of declarative process discovery is that the overfitting
of the discovered models can be avoided by defining thresholds for
parameters such as support, confidence and interest factor. By choos-
ing a support threshold smaller than 100%, we can easily obtain
constraint sets that are supported by different parts of the log and that
contradicts each other. E.g., when using MINERful on the BPI
challenge 2012 event log with a support threshold of 75%, it returns
the constraints Participation(A_Preaccepted), NotChain-
Succession(A_Preaccepted,W_Completeren aanvrag), and Chain-
Response(A_Preaccepted,W_Completeren aanvrag), which have an
empty set of traces that fulfil all of them. In fact, the first constraint
imposes that A_Preaccepted must be executed at least once, the second
constraint imposes that A_Preaccepted is never directly followed by
W_Completeren aanvrag, whereas the third one requires that if
A_Preaccepted is executed, W_Completeren aanvrag must immedi-
ately follow. Clearly, such inconsistent constraint sets should not be
returned by the discovery algorithm.

4.2. The minimality problem

The second problem we tackle in this work is minimality. This
problem is concerned with the informative content of the discovered
declarative process model. The goal is to understand whether all its
constraints effectively contribute to the separation between compliant
and non-compliant traces, or are instead redundant. Let

C Γ= , , and let C Γ∈ be a constraint of . Intuitively, we
say that C is redundant in if the set of compliant traces (i.e., the
language defined by) is not affected by the presence of C . Formally,
let C Γ C′ = , , ⧹{ } be the declarative process model obtained
from by removing constraintC . We then have thatC is redundant in

if () = (′).
In this light, addressing the minimality problem means transform-

ing the discovered declarative process model into one that is language-
wise equivalent, but does not contain redundant constraints. Models
that contain redundancies are pointlessly difficult to understand for the
process analysts, since redundant constraints do not provide any
additional information about the permitted and forbidden behaviours.

Like for consistency, this problem is inherently difficult and calls for
the application of suitable strategies that find a reasonable trade-off
between optimality and computational efficiency. In fact there are, in
general, exponentially many ways of making a model redundancy-free.
This is, again, particularly critical in the context of declarative process
discovery. Every newly discovered constraint could in fact introduce
redundancy, which could be removed either by ignoring the newly
discovered constraint or by dropping a set of already discovered
constraints redundant with the new one.

To show to which extent this problem is present in concrete
declarative process modelling languages such as DECLARE, we recall
the fact that DECLARE templates can be organised in a hierarchy of
constraints, depending on a notion of subsumption, as discussed in
Section 3.3. This notion of subsumption is tightly related to that of
redundancy, since a constraint can be immediately recognised as

redundant if it is subsumed by another constraint present in the partial
declarative process model discovered so far. However, we stress the fact
that redundancy could be detected, in some cases, only by analysing the
model as a whole, and not just considering pairs of constraints.

When using MINERful on the BPI challenge 2012 event log with a
support threshold of 75%, it returns the constraints
ChainResponse(A_Submitted,A_PartySubmitted) and NotChain-
Succession(A_Submitted,A_Accepted). The latter constraint is clearly
redundant, because the former requires the first task following
A_Submitted to be A_PartySubmitted. Therefore, no other task but
A_PartySubmitted can directly follow. A fortiori, A_Submitted and
A_Accepted cannot be in direct succession. Clearly, such redundant
constraint pairs should not be returned.

4.3. Framing the problem

In Sections 4.1 and 4.2, we have introduced the issues of consis-
tency and redundancy in declarative process models. We now frame
these problems in the context of declarative process discovery.

Our goal is to define effective post-processing techniques that, given
a previously discovered DECLARE model possibly containing incon-
sistencies and redundancies, manipulate it by removing inconsistencies
and reducing redundancies, but still retaining as much as possible its
original structure. In this respect, the post-processing is completely
agnostic to the process mining algorithm used to generate the model as
well as to the input event log.

This latter assumption makes it impossible to understand how
much a variant of the discovered model fits with the log. However, we
can at least assume that each single constraint in retains the
support, confidence, and interest factor that were calculated during the
discovery phase. These values can be used to decide which constraints
have to be prioritised, and ultimately decide whether a variant ′ of

has to be preferred over another variant ″.
In principle, we could obtain an optimal solution by exhaustive

enumeration, executing the following steps:

1. The vocabulary of is extracted.
2. The set C of all possible candidate constraints is built.
3. The power-set C() of all possible subsets of C , i.e., of all possible

DECLARE models using constraints in C , is computed.
4. A set of candidate models over and C is obtained from C(),

by filtering away those models that are inconsistent or contain
redundant constraints.

5. A ranking of the models in is established, considering their
similarity to the original discovered model .

However, this exhaustive enumeration is unfeasible in the general
case, given the fact that it requires to iterate over the exponentially
many models in C(), an intractably huge state space. Consequently,
we devise a heuristic algorithm that mediates between optimality of the
solution and computational efficiency. In summary, its main features
are the following:

• It produces as output a consistent variant of the initial model .
This is a strict, necessary requirement.

• The algorithm works in an incremental fashion, i.e., it constructs the
variant of by iteratively selecting constraints. Once a constraint is
added, it is not retracted from the model. This is done by iterating
through the candidate constraints in descending order of suitability.
The degree of suitability is dictated by an ordering relation that sorts
the constraints before the algorithm starts the checking phase. An
example of such an ordering relation is the ranking of constraints on
the basis of their support, confidence, and interest factor: it makes
the algorithm retain the constraints that better fit the log from which
they were discovered. On the one hand, this drives our algorithm to

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

7

favour more suitable constraints and remove less suitable con-
straints in the case of an inconsistency or a redundancy. On the
other hand, this has a positive effect on performance and also
guarantees that the algorithm is deterministic.

• Due to incrementality, the algorithm is not guaranteed to produce a
final variant that is redundancy-free and minimal in the number of
constraints, but we still achieve a local minimum. Our experimental
findings show that this local minimum is satisfactory, since the
algorithm is able to significantly reduce the number of redundant
constraints w.r.t. the state-of-the-art discovery algorithms.

5. The approach

This section describes how we tackle the problem of finding a non-
redundant consistent DECLARE model in a way that reduces the
intractable theoretical complexity. First, we present the algebraic
structure on top of which the check of redundancies and conflicts is
performed: It bases upon the mapping of the conjunction of DECLARE

constraints to the product of FSAs. Thereafter, we define and discuss
the algorithm that allows us to pursue our objective. In particular, we
rely on the associativity of the product of FSAs. This property allows us
to check every constraint one at a time and include it in a temporary
solution. This is done by saving the product of the constraints checked
so far with the current one. For the selection of the next candidate
constraint to check, we make use of a greedy heuristic, which explores
the search space by gathering at every step the constraint that has the
highest support or is most likely to imply the highest number of other
constraints. Notice that the commutativity of the automata product
guarantees that conflicting constraints are found, regardless of the
order with which they are checked. The algorithm proceeds without
visiting the same node in the search space twice.

5.1. Constraints as automata

As already shown in [21], DECLARE constraints can be formulated as
regular expressions (REs) over the log alphabet. The assumption is that
every task in the log alphabet is bi-univocally identified by a character.
Thus, traces can be assimilated to finite sequences of characters (i.e.,
strings) and regular languages represent the traces allowed by a
DECLARE model. A constraint is thus evaluated to true over a trace if
and only if the corresponding string is matched by the constraint's
regular expression.

Using the POSIX wildcards, we can express, e.g., aInit () as a.*,
and a bResponse (,) as [^a]*(a.*b)*[^a]*. The comprehensive list of
transpositions for DECLARE templates is listed in Table 1 and
explained in [40]. Henceforth, we will refer to such a mapping as

C()Reg , which takes as input a constraint C and returns the
corresponding RE: E.g., Response((a, b)) = [^a]*(a.*b)*[^a]*Reg . If
we consider the operations of conjunction between DECLARE con-
straints (∧) and intersection between REs (&), Reg is a monoid
homomorphism w.r.t. ∧ and &. In other words, given two constraints
C and C′, C C C C(∧ ′) = () & (′)Reg Reg Reg , preserving closure, asso-
ciativity and the identity element (resp., ⊤ and .*).

As mentioned in Section 3.4, an RE can always be associated to a
deterministic labelled FSA, which accepts all and only those finite
strings that match the RE. We name as the operation leading from
an RE to an FSA, thus we have that a DECLARE constraint can be
associated with its corresponding FSA, A C= (())C

Reg . Henceforth,
we also call AC the C − automaton. Under this interpretation, a con-
straint C is evaluated to true over a trace if and only if its events can be
replayed as a finite path on the C-automaton that terminates in an
accepting state, i.e., when its corresponding string is accepted by the
C-automaton.

Fig. 3. FSAs accepting the traces compliant with some Declare constraints over the log alphabet a b c{ , , }.

Fig. 4. Product automata of the FSAs shown in Fig. 3.

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

8

Claudio Di Ciccio
Notiz
This image is oversized with respect to the others.

Considering an example declarative process model
Init AlternateResponse ChainPrecedenceM = A, { , , , ...}, Γ with A a b c= { , , } and

Init AlternateResponse ChainPrecedenceΓ = { (a), (a, b), (b, c)}, the C-
automata of the set of constraints Γ are drawn in Fig. 3: aInit((()))Reg ,

a bAlternateResponse(((,)))Reg , and b cChainPrecedence(((,)))Reg are depicted in
Fig. 3(a), (b), and (c), respectively. Fig. 4 shows the product automata
that are derived from the intersection of such constraints:

a a bInit AlternateResponse((())) × (((,)))Reg Reg is illustrated
in Fig. 4(a), and a a bInit AlternateResponse((())) × (((,))) × (Reg Reg Reg

b cChainPrecedence((,))) is illustrated in Fig. 4(b).
We remark that by applying to the RE of a conjunction of

constraints, we obtain an FSA that corresponds to the product × of
the FSAs for the individual constraints [35]: C C((∧ ′)) =Reg

C C(()) × ((′))Reg Reg . Also, we recall that the identity element
for FSAs is a single-state automaton whose unique state is both initial
and accepting, and has a self-loop for each character in the
considered alphabet.

Given a model C Γ= , , , we can therefore implicitly describe
the set of traces that comply with as the language accepted by the
product of all C-automata (one for every C Γ∈). In the light of this
discussion, our approach searches a solution to the problem of finding
a non-redundant consistent DECLARE model within the automata-
product monoid, i.e., the associative algebraic structure with identity
element (the universe-set of FSAs) and product operation ×. For the
automata-product monoid, the property of commutativity holds.

5.2. Sorting constraints

The objective of the algorithm is to visit the constraints in the
declarative process model only once. At every visit, the analysed
constraint is checked whether it is conflicting or redundant. In the
first case, it is relaxed (replaced by the subsuming constraint) and
checked again. If the constraint is not subsumed by any another, it is
removed from the set of constraints. In case of redundancy, the
constraint under analysis is removed from the set of discovered
constraints. The order in which the constraints are checked is thus of
utmost importance, as it determines their priority. The priority, in turn,
implicitly defines the “survival expectation” of a constraint, as con-
straints that come later in the list are more likely to be pruned if they
are either redundant or conflicting.

We identify four notions of ordering relations for declarative
process models. Three of them are suitable for all models, i.e., (i)
order on the degree of activation linkage ≤⇝, (ii) partial order on the
type ≤T, and (iii) partial order on the subsumption ≤⊒; the last one is
specific for discovered models, i.e., (iv) order on support, confidence,
and interest factor ≤σκι.

The first ordering relation is based on the notion of degree of
activation linkage. Given a constraint C in the template instantiation
relation Γ of a model and its activation C|•, it counts the number of
tasks that play the role of target in constraints that share the same
activation of C. Formally,

C Γ a C Γ a C C C⇝(,) = { ∈ : ∃ ′ ∈ s. t. = ′| and | = ′| } .=⇒ • • (8)

Recalling that we consider for unary constraints the activation to
coincide with the target, for the example model

Init AlternateResponse ChainPrecedenceM = A, { , , , ...}, Γ , where a b cA = { , , } and
Init AlternateResponse ChainprecedenceΓ = { (a), (a, b), (b, c)}, we have

that (i) Init⇝((a), Γ) = 2,, (ii) AlternateResponse⇝((a, b), Γ) = 2 , (iii)
ChainPrecedence b c⇝((,), Γ) = 1. The (total) order on the degree of

activation linkage is thus defined as follows:

C C C Γ C Γ with C C Γ≤ ′ ⇔ ⇝ (,) ≤ ⇝ (′,), , ′ ∈ .⇝ (9)

This relation is meant to sort constraints by the number of tasks that
are subject to conditions over the execution of their activation.

The partial order on the type of constraints is driven by the
expertise acquired in the last years in the context of DECLARE discovery

[29,19]. In particular, we tend to preserve those constraints that have
the potential of inducing the removal of a massive amount of other
constraints due to redundancy. As an example, consider the case of the
Init template: given a ∈ , if Init a() holds true, then also the relation
constraint Precedence a b(,) is guaranteed to hold true for every
b a∈ ⧹{ }. This means that, in the best case, | | − 1 constraints will
be removed because they are all redundant with Init a(). Similarly,
consider the positive relation constraint ChainResponse a b(,): it implies
NotChainSuccession a c(,) for every c a b∈ ⧹{ , }. Thus,
ChainResponse a b(,) has the potential of triggering the removal of
| | − 2 negative constraints due to redundancy. Therefore, the order-
ing by type sorts constraints according to the following ranking from
the highest to the lowest:

5. position constraints,
6. cardinality constraints,
7. coupling constraints,
8. forward- and backward-unidirectional relation constraints,
9. negative constraints.

We define the partial order on the subsumption as follows:

C C C C≤ ′ ⟺ ⊒ ′⊒ (10)

Those constraints that have the highest likelihood to induce other
constraints are ranked the highest by both the last two orderings.
Therefore, their application seems to be suitable to prune out the
highest number of constraints, especially during the redundancy check.
Therefore, we introduce the hybrid ordering relation ≤T⊒, defined as
follows:

C C C C C C C C≤ ′ ≡ (≤ ′ ∧ ¬ (′ ≤)) ∨ ≤ ′.T⊒ T T ⊒ (11)

In essence, it compares the type of constraints C and C′. If they are the
same, i.e., C C C C≤ ′ ∧ ¬ (′ ≤))T T holds true, then the comparison is
made on the basis of ≤⊒.

Finally, for discovered declarative process models, functions σ, κ
and ι are defined for constraints. Therefore, the last ordering relation
based on these functions can be applied:

C C σ C L σ C L κ C L κ C L ι C

L ι C L

≤ ′ ⟺ (,) ≤ (′,) ∨ (,) ≤ (′,) ∨ (,

) ≤ (′,).
σκι

(12)

Such an ordering is meant to give priority to those constraints that are
violated the least within the event log or whose constrained activities
occur most frequently. The idea is to remove those constraints that are
redundant or conflicting starting from those that are less fitting with
the event log.

The aforementioned ordering relations are not strict, because they
are not asymmetric: For instance, in the example given for the order on
the degree of activation linkage, both a a bInit AlternateResponse() ≤ (,)⇝
and a b aAlternateResponse Init(,) ≤ ()⇝ hold true. Since the number of
constraints in a model is finite, we can assume the existence of a strict
total order over constraints ≤# s.t. only one of the following three
statements holds for every pair of constraints C , C′: Either (i) C C≤ ′# ,
or (ii) C C′ ≤# , or (iii) C C= ′. Relation ≤# can be based, e.g., on a
perfect hash relation, or on an enumeration-based ordering of con-
straints. This notion allows us to postulate the creation of a strict total
order relation ≤ based on a sequential application of any combination
≤ ,…,≤n1 of the aforementioned ordering relations ≤⇝, ≤T⊒, and ≤σκι.
This is inductively defined as follows:

C C C C C C C C C C≤ ′ ≡ ⋁ (≤ ′ ∧ ′ ≤) ∨ ≤ ′ ∨ (≤ ′).
i n

i i i
≤ ,…,≤ ∈[1, −1]

+1 #
n1

(13)

This relation orders constraints by applying the first ordering relation
≤1 to the pair of constraints C C(, ′). If they are such that C C≤ ′1 and
C C′ ≤1 , then the comparison by means of≤2 is applied, and so forth till
the n-th stage is reached. Then,≤# is applied. By definition,≤# is a strict

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

9

Claudio Di Ciccio
Durchstreichen

Claudio Di Ciccio
Eingefügter Text
4.

Claudio Di Ciccio
Durchstreichen

Claudio Di Ciccio
Eingefügter Text
3.

Claudio Di Ciccio
Durchstreichen

Claudio Di Ciccio
Eingefügter Text
2.

Claudio Di Ciccio
Durchstreichen

Claudio Di Ciccio
Eingefügter Text
1.

total order, therefore it holds that C C≤ ′# and C C′ ≤# if and only if
C C= ′.

We introduce an algorithm henceforth referred to as
sortBy Γ s(, ≤ ,…,≤ ,)n1

⇄ . Its input consists of (i) a set of constraints
Γ , (ii) a set of ordering relation symbols ≤ ,…,≤n1 over constraints,
and (iii) a constant s ∈ {ASC, DESC}⇄ , specifying whether the sort has
to be performed in an ascending (ASC) or descending (DESC) order. It
returns a list of constraints ordered on the basis of the strict total order
relation ≤

≤ ,…,≤n1
.

Fig. 5 depicts the following example DECLARE model:

C Participation Precedence NotCoExistence Response

Γ Participation Precedence

Precedence NotCoExistence

Participation

Response

Response Participation NotCoExistence

Response

Response

M = A = {a, b, c, d, e, f, g, h},

= { , , , , …}

= { (a), (a, b),

(b, c), (b, e),

(c),

(d, e),

(f, g), (f), (f, d),

(f, h),

(g, h)} .

The application of sortBy on Γwith the ordering relation
symbols ≤⇝ and ≤T⊒ returns the following list:

sortBy Γ Participation

Response

Response

NotCoExistence

Precedence

NotCoExistence

Participation

Precedence

Response

Participation

Response

(, { ≤ , ≥ }, DESC) = (f),

(f, g),

(f, h),

(f, d),

(a, b),

(b, e),

(c),

(b, c),

(d, e),

(a),

(g, h) .

Γ⇝ ⊒

The order of constraints deeply affects the way in which the
proposed algorithm verifies whether they are contradicting or redun-
dant. The algorithm indeed iterates over the list and checks at every
step the current constraint against the ones that have already been
processed. Reading the constraints as returned by the {≤ , ≤ }T⊒ ⇝
descending sorting, it can be verified that d eResponse (,) is classified
as redundant as well as aParticipation (). The reason why d eResponse (,)
is recognised as redundant resides in the fact that it imposes that e
occurs after d. However, the already visited constraint fParticipation ()
and f dNotCoExistence (,) respectively state that f always occur and that
its occurrence implies d to not occur at all. Therefore, specifying

conditions based on the occurrence of task (d) is redundant because d
cannot occur. For what aParticipation () is concerned, it is classified as
redundant because of the already visited constraints a bPrecedence (,),

cParticipation (), and b cPrecedence (,). They specify that c must always
occur cParticipation(()), and that if c occurs, then b must precede it

b cPrecedence((,)). Hence, b always occurs too. a bPrecedence (,) spe-
cifies that b cannot occur if it is not preceded by a. Thus, a must occur
as well and Participation(a) can be classified as redundant.

Notice that f hResponse (,) is redundant too. In fact, f gResponse (,)
specifies that if f occurs, then g must occur too. a bResponse (,) imposes
that, after g, h must occur. As a consequence, after f, h must also occur.
However, a bResponse (,) is checked only as the very last constraint in
the list, hence after f hResponse (,). Therefore, f hResponse (,) cannot be
recognised as redundant. The redundancy would be detected if a
second iteration was conducted over the list, by considering whether
the current constraint is already implied by all the others. This is the
reason why our approach provides for such a second check, which
comes at the price of a slower computation though. Notice that we
execute the second iteration from the last element to the first one so
that constraints with lower priority are processed (and in case
eliminated) first.

Finally, we remark here that there is no risk of overlooking
contradicting constraints. This can be intuitively explained by the fact
that a contradicting constraint always leads to an empty model,
regardless of whether it is evaluated as first or last. The different order
can only affect which constraint among the ones in conflict is checked
last and hence classified as contradicting.

5.3. The algorithm

Algorithm 1 outlines the pseudocode of our technique. Its input
consists of: (i) A DECLARE model C Γ= , , discovered from an
event log L ∈ (*), bearing a set of constraints Γ defined over log
alphabet and repertoire C, (ii) a list of ordering relation symbols
≤ ,…,≤n1 , and (iii) a Boolean flag r II specifying whether a second
redundancy check has to be performed or not. For every C Γ∈ , we
assume that its support, confidence, and interest factor are given too,
which is the usual condition when is the output of mining
algorithms such as Declare Maps Miner or MINERful. Table 2(a)
shows an example of Γ , i.e., Γ, defined on the log alphabet a b c d{ , , , }.
We also assume that the same metrics are defined for those constraints
that are not in , yet are either their subsuming, negated, forward or
backward versions. For the sake of readability, these additional
constraints are not reported in Table 2. Table 2(b) shows the output
that corresponds to the post-processing of Table 2(a), provided that the
ordering relation symbols provided are ≤ , ≤σκι T⊒ and r II is false.
Constraints that are considered as redundant are coloured in grey.
Struck-out constraints are those that are in conflict with the others and
thus dropped from the returned set.

Algorithm 1. Algorithm makeConsistent r(, ≤ ,…,≤ ,)n1
II , returning

the suboptimal solution to the problem of finding a minimal set of non-
conflicting constraints in a discovered DECLARE model. Its input consists
of a declarative process model C Γ= , , , a list of ordering
relation symbols ≤ ,…,≤n1 , and a Boolean flag r II, enabling a second
check for redundancies.

Fig. 5. An example of a DECLARE model.

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

10

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Durchstreichen

Claudio Di Ciccio
Eingefügter Text
T

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Notiz
Replace this image with text, as in the listing on the left column

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Given and its constraints set Γ , the first operation
removeSubsumptionHierarchyRedundancies prunes out redundant
constraints from Γ based on the subsumption hierarchy. The proce-
dure removes the subsuming constraints if their support is less than
or equal to the subsumed ones. Forward and backward constraints are
also eliminated if the corresponding coupling constraint has an
equivalent support. The result is stored in Γ′. The details of this
operation have already been described in [27]. The usefulness of this
procedure resides in the fact that it reduces the number of candidate
constraints to be considered, thus reducing the number of iterations
performed by the algorithm. In Table 2(b), this operation is respon-
sible for the elimination of aParticipation (), due to the fact that aInit ()
is known to hold true.

Thereafter, we partition Γ′ into two subsets, i.e.: (i) ΓS consisting of
those constraints that are verified over the entire event log (i.e., having
a support of 1.0), and (ii) ΓU containing the remaining constraints. The
reason for doing this is that the former is guaranteed to have no
conflict: given the fact that constraints are discovered using the
alphabet of the event log, those that have a support of 1.0 can be
joined, giving rise to a consistent constraint model.

Even though constraints in ΓS are guaranteed to be conflict-free,
they could still contain redundancies. Therefore, the following part of
the algorithm is dedicated to the elimination of redundant constraints
from this set. To check redundancies, we employ the characterisation of
constraints in terms of FSAs. Instead, constraints in ΓU may contain
both redundancies and inconsistencies. Table 2(b) presents the parti-
tion of into ΓS and ΓU.

First, we initialise an FSA A to be the identity element w.r.t. the
automata product. In other words, A is initialised to accept any
sequence of events that map to a task in the log alphabet. This
automaton incrementally incorporates the constraints of the input
model based on their priority. To set up redundancy elimination in ΓS

as well as redundancy and inconsistency elimination in ΓU, we then
order their constitutive constraints according to the criteria specified by
the user, ≤ ,…,≤n1 . The ranking determines the priority with which

constraints are analysed.
After the sorting, constraints are stepwise considered for inclusion

in the refined model by iterating over the corresponding ranked lists.

Constraints in ΓS, i.e., C Γ∈i
Γ

list
SS
, are only checked for redundancy,

whereas constraints in ΓU, C Γ∈i
Γ

list
UU
, are checked for both redundancy

and consistency. For every constraint C Γ∈i
Γ

list
SS
, redundancy is

checked by leveraging language inclusion. In particular, this is done

by computing the FSA ACi
ΓS

for Ci
ΓS

and then checking whether its

generated language
⎛
⎝⎜

⎞
⎠⎟ACi

ΓS
is included inside A(), which considers

the contribution of all constraints processed so far. If this is the case,
then the constraint is dropped. Otherwise, A is extended with the
contribution of this new constraint (by computing the product

A A× Ci
ΓS
) and Ci

ΓS
is added to the set ΓR of constraints to be returned.

In the example of Table 2(b), a dCoExistence (,) is analysed after the
existence constraints aInit () and dEnd () based on the preliminary
sorting operation. It thus turns out to be redundant, because aInit ()
and dEnd () already specify that both a and d will occur in every trace.
Therefore, they will necessarily always co-occur.

Redundancy and consistency checks of constraints C Γ∈i
Γ

list
UU

is
performed by the resolveConflictAndRedundancy procedure
(Algorithm 2). The procedure checks the consistency of those con-
straints that are not redundant. The redundancy is, again, checked
based on the language inclusion of the language generated by the

currently analysed constraint
⎛
⎝⎜

⎞
⎠⎟ACi

ΓU
in A(), where A is the

automaton that accumulates the contribution of all constraints that
have been kept so far. The consistency is checked through a language

emptiness test performed over the intersection of
⎛
⎝⎜

⎞
⎠⎟ACi

ΓU
and A().

This is done by checking that
⎛
⎝⎜

⎞
⎠⎟A A× ≠ ∅Ci

ΓU
. In case a conflict is

detected, we do not immediately drop the conflicting constraint, but we
try, instead, to find a more relaxed constraint that retains its intended

Table 2
Example of input constraint set processing.

(a) Input

Constraint σ κ ɩ

Init(a) 1.0 1.0 1.0
Participation(a) 1.0 1.0 1.0
CoExistence(a,d) 1.0 1.0 1.0
End(d) 1.0 1.0 1.0
NotChainSuccession(b,d) 1.0 0.9 0.8
NotChainSuccession(a,b) 0.75 0.5 0.5
ChainResponse(b,c) 1.0 0.9 0.8
NotChainSuccession(a,b) 0.9 0.7 0.6
NotChainSuccession(a,b) 0.8 0.7 0.6
ChainResponse(b,a) 0.75 0.9 0.9

(b) Processed output

i Constraint σ κ ɩ

1 Init(a) 1.0 1.0 1.0

Γlist
S 2 End(d) 1.0 1.0 1.0

3 CoExistence(a,d) 1.0 1.0 1.0
4 ChainResponse(b,c) 1.0 0.9 0.8
5 NotChainSuccession(a,b) 1.0 0.9 0.8

ΓlistU 1 NotChainSuccession(a,b) 0.9 0.7 0.6
2 NotChainSuccession(a,c) 0.8 0.7 0.6
3 AlternateResponse(b,a) 0.75 0.9 0.9

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

11

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif, not italic

Claudio Di Ciccio
Hervorheben
Sanf-serif, not italic

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Unterstreichen
Colour this text grey

Claudio Di Ciccio
Unterstreichen
Colour this text grey

Claudio Di Ciccio
Durchstreichen

Claudio Di Ciccio
Eingefügter Text
4

Claudio Di Ciccio
Notiz
One line is missing here. Check the original submitted manuscript. In this line, the constraint (NotChainSuccession(a,d)) is in overstriked text.

Claudio Di Ciccio
Hervorheben
Sanf-serif

Claudio Di Ciccio
Hervorheben
Sanf-serif

semantics as much as possible, but does not incur in a conflict. To do
so, we use the constraint subsumption hierarchy. In particular, we use
the relaxation operator to retrieve the parent constraint of the
conflicting one, and we recursively invoke the
resolveConflictAndRedundancy procedure over the parent. The recur-
sion terminates when the first non-conflicting ancestor of the conflict-
ing constraint is found or when the top of the hierarchy is reached. The
two cases are resp. covered in the example of Table 2(b) by

b aChainResponse (,), replaced by b aAlternateResponse (,), and by
a dNotChainSuccession (,), which is removed because a non-conflicting

ancestor does not exists. Note that a dNotChainSuccession (,) is to be
eliminated because of the interplay of the other two NotChainSuccession
constraints, aInit () and dEnd (). b aChainResponse (,) is in conflict with

b cChainResponse (,).

Algorithm2. Algorithm resolveConflictAndRedundancy A Γ C Γ(, , ,)R V ,
adding a constraint C to the set of constraint ΓR, if it has not already

been checked (and thus included in ΓV), and is neither conflicting nor
redundant with the already added constraints.

If the constraint under analysis is a coupling constraint, then we
know that it is constituted by the conjunction of a corresponding pair of
forward and backward constraints. In this situation, it could be the case
that all the relaxations of the coupling constraint along the subsump-
tion hierarchy continue to be conflicting, but the conflict would be
removed by just considering either its forward or backward component
(or a relaxation thereof). Consequently, we also recursively invoke the
resolveConflictAndRedundancy procedure on these two components.

To limit the issue of missing some redundancies, due to the single
iterative check over the elements in the constraint lists, a second check
can be performed. The technique is slightly different from the one
applied before and requires more computational time. For this reason,
(i) it is performed after the first iteration has taken place, so as to
diminish the amount of constraints to be verified and (ii) it is an

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

12

Claudio Di Ciccio
Hervorheben
This should have been the caption of Algorithm 2, which is now put in place of Table 1 in this copy (page 3), for some reason. Please check the original submitted copy.

Claudio Di Ciccio
Notiz
This is Algorithm 1. Add the caption as in the original submitted copy.

Claudio Di Ciccio
Textfeld
Algorithm 3 is missing. Check the original submitted manuscript.

optional functionality, activated by the user-specified flag r II. Its
pseudocode is listed in Algorithm 3. It takes as input a set of non-
conflicting constraints ΓR and a list of order relation symbols
≤ ,…,≤n1 . First, the product-automaton AR is built that consists of
the product of all constraint-automata of elements in ΓR. Thereafter,
constraints in ΓR are sorted according to ≤ ,…,≤n1 in ascending order,
i.e., the reverse order w.r.t. the first pass (this is because constraints
with a lower priority are processed first and eliminated if redundant).
The ordered list that comes out of the sorting is Γlist

R . For each constraint
C in Γlist

R , a new product-automaton is built that considers all
constraints in ΓR except C . It is hereinafter indicated as ΓC̸

R. The
redundancy check is thus performed: if the language accepted by ΓC̸

R is
a subset of the language accepted by ΓR, then the declarative process
model excluding C is as restrictive as the declarative process model
including C . This means that C can be classified as redundant.
Algorithm 3. Algorithm resolveRedundancies Γ(, ≤ ,…,≤)n

II R
1 ,

removing from ΓR those constraints that are redundant. The check is
applied once for every constraint in ΓR, in ascending order w.r.t. the criteria
specified by ≤ ,…,≤n1 .

The algorithm proceeds iteratively for all remaining constraints in
Γlist
R . Although every element in the list is visited once, the overall

procedure is expensive in terms of computation time because a new
product-automaton must be built at every step by the cross-product of
l − 1 constraint-automata, where l is the cardinality of the set of input
constraints ΓR. The procedure cannot take advantage of the associa-
tivity of the cross-product operation, because temporary automata are
built at every step without storing the intermediate result of l − 2 cross-
products. However, the additional computational effort is compensated
by a higher accuracy in the redundancy-check: in the example of
Section 5.2, the redundant constraint f hResponse (,) would be detected
by the second-pass algorithm, whilst it was not captured in the first
check.

Finally, a last complete pass over constraints in ΓR is done, to check
again whether there are subsumption-hierarchy redundancies. If so, ΓR

is pruned accordingly.
Complexity of the algorithm: We close this section by elaborating

on the complexity of the algorithm, considering as input the number of
constraints contained in the discovered model. To better highlight the
different sources of complexity, we consider the overall complexity as
well as the complexity obtained from the crude algorithm, without
considering the contribution of the automata-manipulating operations.
This is particularly important because, even though in the worst case
the automata-manipulating operations are exponential in the number
of constraints, in practice, they have a nonmonotonic behavior.
Consider, for example, the cross-product operation between an auto-
maton A and the automaton A C= (())C

Reg of constraint C: it is not
guaranteed that A A× C has a number of states bigger than that of A.
This is witnessed, e.g., by the automaton in Fig. 6: The size of the
automaton of Fig. 3(b), generated by a a bInit AlternateResponse(), (,),
and b cChainPrecedence (,), is bigger than the size of its cross-product
with the automaton of cAtMostOne ().

Theorem 5.1. Given a DECLARE model containing n constraints, a
list ≤ ,…,≤n1 of ordering relation symbols, and a Boolean flag r II,
algorithm makeConsistent r(, ≤ ,…,≤ ,)n1

II runs in time

• O (2)n , if the automata-manipulating operations are considered
part of the algorithm;

• O n()2 , if r II is true (i.e., the algorithm includes redundancy double
check) and the automata-manipulating operations are considered
not part of the algorithm;

• O n n(·log()), if r })II is false (i.e., the algorithm skips redundancy
double check) and the automata-manipulating operations are
considered not part of the algorithm.

Proof. As shown in [27], operation remove-
SubsumptionHierarchyRedundancies (lines 1 and 18 in Algorithm 1)
requires a check based on a depth-first visit on a subsumption
hierarchy's direct acyclic graph (see Fig. 1) for every constraint in the
input model. For the coupling constraints, also their related forward-
and backward-unidirectional relation constraints are considered. The
hierarchy structure is however fixed and the number of steps for the
visit are thus limited. In particular, the worst case is represented by
ChainSuccession a b(,), as it can be seen in Fig. 1. It requires at most 6
comparisons: 4 for the subsuming constraints, i.e., AlternateSuccession a b(,),
Succession a b(,), CoExistence a b(,), RespondedExistence a b(,), and 2 for
the forward- and backward-unidirectional relation constraint, resp.
ChainResponse a b(,) and ChainPrecedence a b(,). Both invocations thus
cost O n(). By construction, operation removeSubsumption-
HierarchyRedundancies returns a set of constraints Γ′ such that
Γ n| ′| ≤ .

Lines 7 and 14 of Algorithm 1 both apply a sorting algorithm to sets
of constraints ΓS and ΓU, respectively. Notice that Γ n| | ≤S and Γ n| | ≤U .
An efficient algorithm such as merge-sort consequently requires
O n n(·log()) for this step.

The instructions from line 8 to line 13 of Algorithm 1 are repeated
for all constraints in ΓS. Within the loop, and Reg operations require
O (1), since they are applied to a single constraint. To separate the
sources of complexity inherent to the algorithm, and those coming
from the manipulation of automata, we explicitly denote the complexity
of the language-inclusion check of line 11 and the automata-product of
line 12 as⥁T

⊃ and⥁A
T
× respectively. With this notation at hand, we get

that the loop from line 8 to line 13 of Algorithm 1 can be executed in
O n(·(⥁ + ⥁))A

T T
⊃ × .

At line 15 of Algorithm 1, a loop over the constraints in ΓU starts.
For every constraint in ΓU, procedure resolveConflictAndRedundancy
(Algorithm 2) is invoked. The time complexity of the procedure is
affected again by the cross-product operation and the language-check.
The recursive calls of lines 10, 12 and 13 are limited and independent
of the number of constraints in Γ : the worst case is represented by a
ChainSuccession a b(,) constraint passed in input as C , because it
presents a chain of 4 subsuming constraints (hence, in 4 cases a

C() exists) and has both a forward- and a backward-unidirectional
relation constraint, namely ChainResponse a b(,) and
ChainPrecedence a b(,). For each of them, 4 further subsuming con-
straints exist as well (cf. Fig. 1(b)). The total amount of recursive calls
is thus at most 12. However, every invocation of procedure
resolveConflictAndRedundancy for each constraint can include in ΓR

up to 3 new constraints in place of the passed one, because the
subsuming, forward- and backward-unidirectional relation constraints
may be added in line 7, executed within the respective recursive
invocations at lines 10, 12 and 13. Therefore, Γ n| | ≤ 3·R , and, in turn,
the time required by the loop starting at line 15 of Algorithm 1 is
O n(·(⥁ + ⥁))A

T T
⊃ × .

Finally, procedure resolveRedundanciesII (Algorithm 3) is invoked if
and only if parameter r II is set to ⊤ (line 17 of Algorithm 1). The
constraints in ΓR are preliminarily sorted at line 1 of Algorithm 3, with
cost O n n(·log()). Then, automaton AR is built as the cross-product of all
constraints in ΓR. The computational complexity of this step is
O n(·⥁)A

T
× . Within the loop starting at line 3, for every constraint

C Γ∈ R, the new automaton A ⊂⃒R is built as the cross-product of all
constraints in ΓR except C (line 5). Each execution of the cross-product
brings, again, a cost ofO n(·⥁)A

T
× . At line 6, the languages of AR and A ⊂⃒R

are compared, with cost ⥁T
⊃. All in all, the computational cost of

Fig. 6. Product automaton of aInit (), a bAlternateResponse (,), b cChainPrecedence (,), and
cAtMostOne ().

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

13

Claudio Di Ciccio
Durchstreichen

resolveRedundanciesII is thus O n n(·⥁ + ·⥁)A
2 T T

× ⊃ .

To conclude, we notice that the two costs ⥁A
T
× and ⥁T

⊃ can be

uniformly represented by a single source of complexity ⥁T , since the
inclusion checks all depend on previous cross-product constructions.

Consequently, the overall algorithm runs in time:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟O n n n n·log + ·⥁ + ·⥁

sorting

T

conflict and redundancy (single) check

2 T

redundancy double−check

The three statements of the theorem directly follows, by noticing that
computing the cross-product automaton of (at most) n regular expres-
sions is, in the worst case, exponential in n [43,44], and that the third
element of the sum above is only present when r II is true.□

6. Experiments and results

In this section, we illustrate the evaluation of our implemented
approach. The approach has been validated in terms of (i) efficacy,
measured by the number of pruned redundant constraints and detected
inconsistencies, and (ii) efficiency, measured as computation time.
Experiments have been conducted on process models discovered from
real-world collections of event logs, provided by the IEEE Task Force
on Process Mining on the 3TU Datacentrum platform,1 i.e.,

• the event log of a loan application process of a Dutch financial
institute, published in the context of the BPI challenge 2012 [42],

• the collection of three event logs of the Volvo IT incident and
problem management, resp. describing closed issues, incidents, and
open problems, from the BPI challenge 2013 [45],

• the event log of ITIL processes of Rabobank Group ICT, from the
BPI challenge 2014 [46], and

• the event log of a road traffic fines management process [47].

All experiments were run on a machine equipped with an Intel Core
i5-3320M, CPU at 2.60 GHz, quad-core, Ubuntu Linux 12.04 operating
system. The tool was implemented in Java SE 7 and integrated with the
MINERful declarative process miner. It can be downloaded at: www.
github.com/cdc08x/MINERful.

In the following subsections, we show (i) an in-depth analysis of the
results obtained by checking consistency and redundancy of the models
discovered with MINERful and Declare Maps Miner from the loan
application process log and (ii) a summary of the results obtained from

the redundancy check conducted over the models discovered from all
aforementioned logs. We recall here that both MINERful and Declare
Maps Miner already provide ad hoc techniques to reduce the size of the
returned models [27,19]. Nevertheless, no mechanism allows them to
remove inconsistencies or those non-trivial redundancies that our
approach is able to find out.

6.1. Consistency and redundancy checking (BPI challenge 2012)

Here, we describe the outcome of the application of the proposed
approach to detect inconsistencies over a declarative process model
discovered from the event log provided for the BPI challenge 2012. The
BPI challenge 2012 log was chosen for such an analysis because it is the
one that presents inconsistencies in the discovered model already at
relatively elevated thresholds of support. The event log pertains to an
application process for personal loans or overdrafts. It contains
262,200 events distributed across 24 event classes and includes
13,087 traces. With this experiment, we show that our approach is
capable of pruning the discovered models by detecting inconsistencies
within the constraints discovered by two state-of-the-art declarative
process discovery algorithms: MINERful and Declare Maps Miner. We
set up both miners to return constraints with a support higher than
75%, a confidence higher than 12.5%, and an interest factor higher
than 12.5%. In a realistic scenario, indeed, event logs could contain
errors due to recording mistakes or exceptional deviations from the
usual execution [7]. Therefore, it makes sense to include those rules
that are not fulfilled in the totality of the cases. Since we do not know
how many errors or exceptional process enactments affected the log
under analysis, we based our choice upon previous studies on the
sensitivity of the discovered DECLARE constraints to the presence of
noise in event logs [25]. The levels of confidence and interest factor are
motivated by the need to limit the unavoidable increased number of
constraints that are included in the result as the support threshold is
lowered.

Table 3 summarises the results of the experiment. In the first set of
experiments (Table 3(a)), we used MINERful. The number of discov-
ered constraints was 306. On top of that, we applied the proposed
algorithm, setting ≤ , ≤ , ≤σκι⇝ T⊒ as the ordering relation symbols and
r II to false. We obtained 130 constraints in total, with an execution time
of 9171 ms. In the original set of 306, there were two sets of conflicting
constraints that made the entire model inconsistent. The first set was
NotChainSuccession(A_Preaccepted, W_Completeren aanvrag),
ChainResponse(A_Preaccepted,W_Completeren aanvrag), and
Participation(A_Preaccepted). The second set was
NotChainSuccession(W_Completeren aanvraag, A_Accepted),
ChainResponse(W_Completeren aanvraag,A_Accepted), and
Participation(W_Completeren aanvraag). Both inconsistencies were
detected by our algorithm. Note that the percentage of reduction over
the set of discovered constraints (that was already pruned based on the
subsumption hierarchy) was of 58%.

In the second set of experiments (Table 3(b)), we used the Declare
Maps Miner. We discovered a set of constraints using the same
thresholds for support, confidence and interest factor adopted for the
previous experiment. The tool (that provides an ad hoc technique for
pruning) discovered 69 constraints. By applying the proposed algo-
rithm starting from this set, we obtained 41 constraints (with an
execution time of 2764 ms). The percentage of reduction was still
around 40%.

Redundant constraints can be pruned based on complex reduction
rules that are not supported by the state-of-the-art declarative process
discovery algorithms. For example, from our experiments, we derived
that AtMostOne(A_Finalized) becomes redundant due to the presence
in combination of AtMostOne(A_PartlySubmitted), Participation-
(A_PartlySubmitted), and AlternatePrecedence(A_PartlySubmitted,-
A_Finalized). Indeed, Participation (A_PartlySubmitted) and
AtMostOne(A_PartlySubmitted) combined ensure that

Table 3
Results of the application of the approach on the models discovered from the BPIC 2012
log [42] by MINERful and Declare Maps Miner.

(a) MINERful

Original model 306 cns.
Detected conflicts 2 cns.
Detected redundancies 174 cns.
Gain 57.52%

Time 9171 ms

(b) Declare Maps Miner

Original model 69 cns.
Detected conflicts 0 cns.
Detected redundancies 28 cns.
Gain 40.58%

Time 2764 ms

1 http://data.3tu.nl/repository/collection:event_logs_real

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

14

http://www.github.com/cdc08x/MINERful
http://www.github.com/cdc08x/MINERful
Claudio Di Ciccio
Notiz
Remove the blank line here in Table 3 before the bottom line

Claudio Di Ciccio
Durchstreichen

Claudio Di Ciccio
Eingefügter Text
,

Claudio Di Ciccio
Notiz
Put a space after commas, or similar weird formattings occur.

A_PartlySubmitted occurs exactly once. Then Alternate-
Precedence(A_PartlySubmitted,A_Finalized) ensures that either
A_Finalized does not occur or if it occurs it is preceded by the unique
occurrence of A_PartlySubmitted without the possibilities of other
occurrences of A_Finalized in between. Another example is
NotSuccession(W_Nabellen offertes,A_Submitted), which is redun-
dant with the combination of Init(A_Submitted),
AtMostOne(A_PartlySubmitted), Participation(A_PartlySubmitted),
and ChainSuccession(A_Submitted,A_PartlySubmitted). Indeed,
AtMostOne (A_PartlySubmitted) and Participation (A_Partly-
Submitted) combined ensure that A_PartlySubmitted occurs exactly
once. This constraint in combination with Chain-
Succession(A_Submitted,A_PartlySubmitted) and Init(A_Submitted)
ensures that A_Submitted occurs only once at the beginning of every
trace and, therefore, it can never occur after any other activity.

We want to finally remark that the pruning of redundancies of our
approach does not alter the behaviour of the returned model. Those
constraints that are eliminated are indeed those that can be removed
without affecting the way in which the process can be enacted, because
they do not restrict the possible executions any further. This is
substantially different from the pruning based on thresholds like
support, confidence and interest factor that modifies the set of the
allowed behaviours. The next subsection illustrates a comprehensive
view on the results of redundancy checking performed on a large set of
real-world event logs.

6.2. Redundancy checking analysis

To assess the capability of the proposed approach to identify and
prune the redundant constraints from a model, we ran the implemen-
ted algorithm on process models discovered from real-world logs. We
utilised MINERful to discover the declarative process models from
every log provided by the past editions of the BPI challenges in (i)
2012, (ii) 2013, (iii) 2014, and from (iv) the real-world event log of
road traffic fines management process. Hereinafter, we will refer to the
respective discovered process models as (i) “BPIC 2012”, (ii) “BPIC
2013/1”, “BPIC 2013/2”, and “BPIC 2013/3”, (iii) “BPIC 2014”, and
(iv) “Fines”.

We have set the support threshold to 75% for the discovery phase.
For the first log in the list, we have set the thresholds for confidence
and interest factor to 25% and 12.5%, respectively, whereas for the
remaining ones we have used the thresholds 12.5% and 6.25%. These
values were chosen so as to keep the returned constraints in a range
that allowed several computationally intensive routines: (i) 226 for
BPIC 2012, (ii) 30 for BPIC 2013/1, 76 for BPIC 2013/2, and 20 for
BPIC 2013/3, (iii) 108 for BPIC 2014, and (iv) 46 for Fines. We have
applied our technique on every discovered process model using every
combination of defined ordering relations ≤⇝, ≤T⊒, and ≤σκι, plus a
random sort used as a baseline. In all the aforementioned cases, the
proposed algorithm was run twice: once having the Boolean flag r II set
to true, thus enabling the second pass over the pruned constraints and
once having r II set to false. For every run, we have measured the
number of redundancies pruned, the computation time needed, and the
average support σ, confidence κ, and interest factor ι of the returned
constraints. We use the first metric to assess the efficacy of our
approach, the second one to evaluate its efficiency, and the last three
to estimate the fitness of the pruned model w.r.t. the original log.

Table 4 shows the obtained results on BPIC 2014 with (Table 4(b))
and without (Table 4(a)) the second-pass procedure enabled, respec-
tively. The ordering relations are listed in the tables in their order of
application. For the sake of readability, only the subscript under the ≥
symbol is shown: Hence, e.g., “T⊒ ⇝” stands for the consecutive
application of ordering relations ≤T⊒ and ≤⇝ to sort the constraints.
In Table 4(a), the highlighted lines show the best sorting policies when
the second pass is not enabled in terms of number of computation time,
average support/confidence/interest factor of the returned constraints,

and detected redundancies. The results confirm the influence of the
adopted sequences of ordering relations on the examined metrics: The
lowest computation time is achieved when ≤⇝ is applied first
(1027 ms), the highest combination of average σ , κ , ι is obtained when
≤σκι is applied first (resp., 0.932, 0.473, 0.369), and the highest number
of detected redundancies (30 over 108, i.e., 27.778%) is obtained when
≤T⊒ is applied first. Table 4(b) shows the effect of the application of the
second-pass check: the number of detected inconsistencies consider-
ably raises in the range of 38–40 with a tangible gain of 26–166.667%
over the first pass. This, however, comes at the price of a far slower
computation time, about 10–20 times slower, and of a general decrease
in terms of average support/confidence/interest factor. We remark
here that the number of performed checks remains acceptable despite
the second pass: in no case they amount to more than 199, hence not
more than twice the number of the constraints in the original model
(108). This helps the computation time to remain under 40 s in all
cases. We recall here that an exhaustive search would have required up
to approximately 3×1032 checks over an equivalent number of cross-
products between automata, thus being computationally infeasible.

Table 5 shows the boost effect in terms of detected redundancies
given by the second-pass strategy. The highest numbers in terms of
pruned redundant constraints are depicted there. Noticeably, 90.265%,
65.217%, and 47.368% of constraints are classified as redundant for
BPIC 2012, Fines, and BPIC 2013/2, respectively. This entails that a
significant number of constraints could have been omitted from the
returned models without altering the set allowed behaviours.

Fig. 7 shows the proportion of pruned constraints over all analysed
logs using the sorting that worked best in terms of redundancy
detection, i.e., ≤ , ⇝T⊒ . The abscissae indicate the types of templates.
Triples of bars respectively represent the cumulative number of
constraints that sum up (i) in all input models, (ii) after the first
redundancy check, and (iii) after the second-pass redundancy check.
Horizontal lines describe the average percentage of pruned constraints
after the two redundancy check phases, resp. 50.4% and 64.03%.
Relation constraints in particular tend to be more subject to redun-
dancy, because more than half of them are pruned by the application of
the proposed algorithm. This can be due to several factors. First,
existence constraints can imply many relation constraints, as in the
case, e.g., of Participation a(), implying that also
RespondedExistence b a(,) holds true for all b a∈ ⧹{ }. Furthermore,
non-chain relation constraints are also transitive: Therefore, if, e.g.,
Response a b(,) and Response b c(,) hold true, also Response a c(,) must
hold true. Finally, relation templates create a hierarchical structure of
subsumptions, thus parents along the hierarchy branches tend to be
often pruned out: this is the case, e.g., when a bChainPrecedence (,)
holds true, thus making a bAlternatePrecedence (,), a bPrecedence (,) and

b aRespondedExistence (,) redundant.
Table 6 shows how the sorting order influences the resulting model

in all the examined cases. All these results refer to the application of the
proposed algorithm only in its first phase, because the second pass tend
to alter and level off the metrics of interest. Table 6(a) presents the
sequences of ordering relations that maximise the number of pruned
constraints: for all models,≤T⊒ is the only ordering relation that occurs
in every combination. Table 6(b) lists the sequences of ordering
relations that allow for the highest support, confidence and interest
factor. As expected, ≤σκι is always involved. Table 6(c) presents the best
achieved computation times. In this case, ≤⇝ is always in the list of
ordering relations. Finally, Table 6(d) shows the application of a
random sort as a baseline: As expected, the random sort leads to less
efficacy in terms of detected redundancies, to a higher computation
time, and to an average lower support, with respect to all the values
achieved by the other sorting criteria.

The results listed in Table 7 are aggregated on the basis of applied
ordering relations. In particular, each of them shows mean and
standard deviation values for the metrics under analysis, resp. (i)
Table 7(a) for the number of pruned constraints, (ii) Table 7(c) for the

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

15

Claudio Di Ciccio
Hervorheben
Notice that without highlighting the lines in Tables 4(a) and 4(b), this sentence is inconsistent with what the tables show.

support, confidence and interest factor of the returned constraints, and
(iii) Table 7(b) for the computation time. Highlighted rows evidence
the set-ups performing best, i.e., (i) ≤ , ≤T⊒ ⇝ , allowing for pruning
42.5 constraints on average, (ii) ≤⇝ , allowing for computation times
of 854.33 ms on average, (iii) ≤ , ≤σκι ⇝ , producing constraints that
have an average support, confidence, and interest factor of resp.
95.331, 45.618, and 30.485.

The outcomes illustrated both in Tables 6 and 7 show that the user's
choice on the sorting criteria influences the quality of the result in terms
of (1) computation time, (2) pruned redundancies, or (3) fitness w.r.t.
the event log. (1) When a faster computation is required, the order on
the degree of activation linkage should be chosen. This is due to the fact

that such a criterion speeds up the building of the product automaton,
which is the most expensive operation in terms of computation time. The
activations of the constraints with a higher degree of activation linkage
are indeed involved as activations of several constraints. Consequently,
the higher number of restrictions exerted on the same activation tends to
be reflected in a limited number of states and transitions of the
associated product-automaton. (2) To maximise the amount of pruned
constraints, the partial order on the type and subsumption turns out to
be the best choice. Such a criterion was indeed introduced for this
purpose. The partial order on the type of constraints tends to rank as
first those constraints that entail several other constraints, i.e., those that
induce more redundancies. (3) Finally, to keep the constraints with a
higher fitness w.r.t. the event log, the order on support, confidence, and
interest factor of constraints should be taken into account, because it
ranks first those constraints that were fulfilled and activated more often
in the event log. As they are ranked first, they are assigned a higher
priority when it comes to pruning redundancies out. Because the sorting
criteria can be sequentially composed to build a strict total order over the
constraints based on the hierarchical application of (partial) orders,
different combinations of the aforementioned criteria can be used. The
relatively small amount of required running time benefits an interactive
selection of the criteria by the users. To further refine the results
achieved, the second pass can be enabled at the price of a higher
computational effort.

Table 5
Highest amounts of detected redundancies in the process models.

Process Input cns. Redundancies 1st pass 2nd pass

BPIC 2012 226 204 (90.265%) 154 (68.142%) 50 (22.124%)
BPIC 2013/1 30 12 (40%) 9 (30%) 3 (10%)
BPIC 2013/2 76 36 (47.368%) 21 (27.632%) 15 (19.737%)
BPIC 2013/3 20 5 (25%) 5 (25%) 0 (0%)
BPIC 2014 108 38 (35.185%) 28 (25.926%) 10 (9.259%)
Fines 46 30 (65.217%) 25 (54.348%) 5 (10.87%)

Table 4
Results of the experiments over the model discovered from the BPIC 2014 [46] log.

(a) Single pass

Sorting Redundancies Time (ms) Avg. Supp. (%) Avg. Conf. (%) Avg. IntF. (%)

⇝ T⊒ σκι 28 1154 92.683 46.402 37.494
⇝ σκι T⊒ 27 1027 92.774 46.218 37.420
T⊒ ⇝ σκι 29 1911 92.583 45.919 37.112
T⊒ σκι ⇝ 28 1677 92.488 45.831 36.965
σκι ⇝ T⊒ 15 1584 93.223 47.315 36.936
σκι T⊒ ⇝ 15 1737 93.223 47.315 36.936
⇝ σκι 27 1064 92.774 46.218 37.420
⇝ T⊒ 28 1078 92.683 46.402 37.494
T⊒ σκι 28 1629 92.488 45.831 36.965
T⊒ ⇝ 30 1899 92.488 45.444 36.525
σκι T⊒ 15 1731 93.223 47.315 36.936
σκι ⇝ 15 1608 93.223 47.315 36.936
⇝ 28 1231 92.683 46.402 37.494
T⊒ 30 1565 92.488 45.444 36.525
σκι 15 1824 93.223 47.315 36.936

Random 26 1451 92.273 46.493 36.927

(b) Double pass

Sorting Checks Redundancies (2nd) Time (2nd) (ms) Avg. Supp. (%) Avg. Conf. (%) Avg. IntF. (%)

⇝ T⊒ σκι 186 38 10 24 767 23 699 91.639 43.108 34.395
⇝ σκι T⊒ 187 38 11 25 937 24 884 91.639 43.108 34.395
T⊒ ⇝ σκι 185 40 11 25 684 23 960 91.383 42.909 35.295
T⊒ σκι ⇝ 186 40 12 28 954 27 250 91.383 42.909 35.295
σκι ⇝ T⊒ 199 40 25 35 621 34 073 91.401 43.122 35.472
σκι T⊒ ⇝ 199 40 25 36 020 34 422 91.401 43.122 35.472
⇝ σκι 187 38 11 27 071 25 929 91.639 43.108 34.395
⇝ T⊒ 186 38 10 24 596 23 590 91.639 43.108 34.395
T⊒ σκι 186 40 12 27 362 25 715 91.383 42.909 35.295
T⊒ ⇝ 184 40 10 27 257 25 623 91.383 42.909 35.295
σκι T⊒ 199 40 25 37 793 36 104 91.401 43.122 35.472
σκι ⇝ 199 40 25 37 316 35 684 91.401 43.122 35.472
⇝ 186 38 10 25 771 24 652 91.639 43.108 34.395
T⊒ 184 40 10 27 259 25 776 91.383 42.909 35.295
σκι 199 40 25 36 956 35 188 91.401 43.122 35.472

Random 188 40 14 25 041 23 788 91.394 42.891 35.244

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

16

Claudio Di Ciccio
Hervorheben
Highlight this line in the table, as in the original submitted copy

Claudio Di Ciccio
Hervorheben
Highlight this line in the table, as in the original submitted copy

Claudio Di Ciccio
Hervorheben
Highlight this line in the table, as in the original submitted copy

Claudio Di Ciccio
Notiz
Remove the blank line before the bottom line

Claudio Di Ciccio
Hervorheben
Highlight this line in the table, as in the original submitted copy

Claudio Di Ciccio
Hervorheben
Highlight this line in the table, as in the original submitted copy

Claudio Di Ciccio
Hervorheben
Highlight this line in the table, as in the original submitted copy

Claudio Di Ciccio
Hervorheben
Notice that without highlighting the lines in Tables 7(a) and 7(b), this sentence is inconsistent with what the tables show.

Throughout this section, the results of the application of our approach
to real-world benchmark data have been reported and analysed in depth.
Experimental evidence has shown that the proposed algorithm can find
inconsistencies in the discovered declarative models, which is an
unprecedented result in the literature. Furthermore, redundancies are
found within the discovered constraint sets, which amounted to approxi-
mately one-third on average with a single-pass checking, and increased

by a supplementary 15% with a second pass. Both achievements were
yielded in reasonable computation times: up to 3 s for the single-pass and
up to 40 s for the double-pass. As per the experimental results, the
proposed approach enhances the output of both MINERful and Declare
Maps Miner, i.e., the two state-of-the-art declarative process miners. The
following section examines the works published so far in the literature
that deal with topics related to our research endeavour.

Table 6
Best set-ups for tests over process models discovered from real-world logs.

Process Sorting Redundancies Time (ms) Avg. Supp. (%) Avg. Conf. (%) Avg. IntF. (%)

(a) Maximising pruned redundancies
BPIC 2012 T⊒ 172 2265 98.567 53.430 27.920
BPIC 2013/1 T⊒ σκι ⇝ 9 262 92.659 37.463 29.696
BPIC 2013/2 T⊒ ⇝ σκι 21 1165 96.129 36.108 25.423
BPIC 2013/3 ⇝ σκι T⊒ 5 255 92.837 28.452 18.940
BPIC 2014 T⊒ 30 1565 92.488 45.444 36.525
Fines T⊒ 25 328 96.744 54.648 33.710

(b) Maximising support, confidence, and interest factor
BPIC 2012 ⇝ σκι 138 3283 98.659 53.304 29.626
BPIC 2013/1 ⇝ σκι T⊒ 6 287 93.384 42.105 35.299
BPIC 2013/2 σκι ⇝ T⊒ 6 1376 96.546 39.187 28.764
BPIC 2013/3 σκι T⊒ ⇝ 3 211 93.489 33.155 20.270
BPIC 2014 ⇝ T⊒ σκι 28 1154 92.683 46.402 37.494
Fines σκι ⇝ 23 315 97.027 63.272 37.685

(c) Minimising computation time
BPIC 2012 ⇝ 149 1643 99.163 52.332 29.551
BPIC 2013/1 σκι ⇝ T⊒ 6 259 93.403 39.496 32.711
BPIC 2013/2 T⊒ ⇝ σκι 21 1165 96.129 36.108 25.423
BPIC 2013/3 ⇝ T⊒ σκι 3 210 93.489 33.155 20.270
BPIC 2014 ⇝ σκι T⊒ 27 1027 92.774 46.218 37.420
Fines σκι ⇝ 23 315 97.027 63.272 37.685

(d) Random
BPIC 2012 Random 129 6041 97.475 60.052 29.940
BPIC 2013/1 Random 3 339 91.437 36.635 29.517
BPIC 2013/2 Random 11 1511 95.054 37.062 25.049
BPIC 2013/3 Random 0 265 92.936 28.043 19.053
BPIC 2014 Random 26 1451 91.394 42.891 35.244
Fines Random 12 470 92.273 46.493 36.927

Fig. 7. Redundancy reduction w.r.t. template types.

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

17

7. Related work

Our research relates to three streams of research: consistency
checking for knowledge bases, research on process mining, and
specifically research on DECLARE. Research in the area of knowledge

representation has investigated the issue of consistency checking. In
particular, in the context of knowledge-based configuration systems,
Felfernig et al. [48] have challenged the problem of finding the core
cause of inconsistencies within the knowledge base during its update
test in terms of minimal conflicting sets (the so-called diagnosis). The

Table 7
Average metrics of the processed models.

(a) Detected redundancies

Sorting Redundancies

Mean Std. dev.

⇝ 35.333 56.330
⇝ T⊒ 36.333 58.267
⇝ T⊒ σκι 34.667 52.796
⇝ σκι 33.667 51.717
⇝ σκι T⊒ 34.167 52.442
T⊒ 42.500 64.214
T⊒ ⇝ 42.500 64.190
T⊒ ⇝ σκι 41.000 59.097
T⊒ σκι 39.500 58.298
T⊒ σκι ⇝ 39.333 57.895
σκι 31.500 51.725
σκι ⇝ 31.333 51.321
σκι ⇝ T⊒ 31.667 52.129
σκι T⊒ 31.833 52.533
σκι T⊒ ⇝ 31.833 52.533

(b) Computation time

Sorting Time (ms)

Mean Std. dev.

⇝ 854.33 581.46
⇝ T⊒ 879.33 687.46
⇝ T⊒ σκι 1009.17 993.07
⇝ σκι 1096.00 1156.43
⇝ σκι T⊒ 1013.67 1028.96
T⊒ 1005.00 833.79
T⊒ ⇝ 1077.83 875.61
T⊒ ⇝ σκι 1071.17 949.71
T⊒ σκι 1121.17 1025.05
T⊒ σκι ⇝ 1147.50 1099.41
σκι 1214.83 1150.95
σκι ⇝ 1204.50 1200.64
σκι ⇝ T⊒ 1211.00 1256.90
σκι T⊒ 1170.33 1062.78
σκι T⊒ ⇝ 1186.17 1120.59

(c) Support, confidence, and interest factor

Sorting Avg. Supp. (%) Avg. Conf. (%) Avg. IntF. (%)

Mean Std. dev. Mean Std. dev. Mean Std. dev.

σκι 95.328 2.2175 45.527 10.7225 30.349 6.7563
σκι ⇝ 95.331 2.2225 45.618 10.7773 30.485 6.6520
σκι ⇝ T⊒ 95.324 2.2123 45.551 10.7363 30.370 6.7394
σκι T⊒ 95.321 2.2071 45.574 10.7506 30.391 6.7226
σκι T⊒ ⇝ 95.321 2.2071 45.574 10.7506 30.391 6.7226
⇝ 95.477 2.7512 43.449 7.8523 30.041 5.9047
⇝ T⊒ 95.458 2.7320 43.455 7.9847 29.941 5.9725
⇝ T⊒ σκι 95.365 2.5993 43.441 7.8767 29.840 5.9915
⇝ σκι 95.350 2.6817 44.216 10.0872 30.823 6.8060
⇝ σκι T⊒ 95.335 2.6621 44.170 10.0439 30.751 6.8626
T⊒ 95.026 2.5021 43.296 9.2921 28.874 5.8584
T⊒ ⇝ 95.054 2.5248 43.442 9.4212 28.856 5.7861
T⊒ ⇝ σκι 94.962 2.3475 43.226 9.0047 28.774 5.9934
T⊒ σκι 94.914 2.3141 43.280 8.6290 28.839 5.8918
T⊒ σκι ⇝ 94.919 2.3220 43.251 8.6005 28.829 5.8968

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

18

Claudio Di Ciccio
Hervorheben
Highlight this line in the table, as in the original submitted copy

Claudio Di Ciccio
Hervorheben
Highlight this line in the table, as in the original submitted copy

Claudio Di Ciccio
Hervorheben
Highlight this line in the table, as in the original submitted copy

proposed solution relies on the recursive partitioning of the (extended)
constraint satisfaction problem into subproblems, skipping those that
do not contain an element of the propagation-specific conflict [49]. In
the same research context, the work described in [50] focuses on the
detection of non-redundant constraint sets. The approach is again
based on a divide-and-conquer approach, which favours, however,
those constraints that are ranked higher in a lexicographical order.
Differently from such works, we tend to exploit the characteristics of
DECLARE templates in a sequential exploration of possible solutions. As
in their proposed solutions, though, we base upon a preference-
oriented ranking when deciding which constraints to keep in the
returned set.

The idea to apply process mining in the context of workflow
management systems has been introduced in [51]. Processes are
modelled as directed graphs in which vertices represent the activities
and edges stand for the dependencies between them. Cook and Wolf
[52], at the same time, investigate similar issues in the context of
software engineering processes. They describe three methods for
process discovery: (i) neural network-based, (ii) purely algorithmic,
and (iii) adopting a Markovian approach. The purely algorithmic
approach builds a finite state machine where states are fused if their
futures (in terms of possible behaviours for the next k steps) are
identical. The Markovian approach uses a mixture of algorithmic and
statistical methods, so as to cope with noise. However, the results
presented in [52] are limited to sequential behaviour only. From [51]
onwards, many techniques have been proposed. The α-algorithm [53]
and its extensions α++ [54], α# [55], and α$ [56] are algorithmic
solutions that exploit behavioural relations between pairs of activities
to discover a procedural process model from an event log. Differently
from the declarative constraints of DECLARE, such relations are mutually
exclusive: since they do not overlap, they are by construction non-
redundant. Behavioural profiles have been introduced by Weidlich
et al. [57] as metrics to compare the similarity of procedural process
models, as well as to measure the compliance of reported process
executions w.r.t. a normative process model [58]. They also partition
the product space of activities without semantic overlaps. The work of
Polyvyanyy et al. [22] proposes a repertoire of exclusive behavioural
relations between pairs of activities, along with a thorough study of
their logical and mathematical properties. These behavioural relations
are used as a means to analyse or discover procedural models, and
cannot be applied to declarative languages.

Our work is related to research on declarative process discovery and
modelling. In [9], the authors introduce the first version of Declare
Maps Miner, an approach based on the instantiation of a set of
candidate DECLARE constraints that are checked against an event log
to identify the ones that are satisfied in a higher percentage of traces.
This approach has been improved in [19] by reducing the number of
candidates to be checked through an Apriori algorithm, originally
developed by Agrawal and Srikant for mining association rules [59]. In
[60], the same approach has been applied for the repair of DECLARE

models based on log and for guiding the discovery task based on
Apriori knowledge provided in different forms. In this work, some
simple reduction rules are presented. These reduction rules are,
however, not sufficient to detect redundancies due to complex interac-
tions among constraints in a discovered model as demonstrated in our
experimentation. In [10,28], the authors present an approach for the
mining of declarative process models expressed through a probabilistic
logic. The approach first extracts a set of integrity constraints from a
log. Then, the learned constraints are translated into Markov Logic
formulae that allow for a probabilistic classification of the traces. In
[61,20], the authors present an approach based on Inductive Logic
Programming techniques to discover DECLARE process models. These
approaches are not equipped with techniques for the analysis of the
discovered models like the one presented in this paper. In [21,27], the

authors introduce MINERful, a two-step algorithm for the discovery of
DECLARE constraints. As a first step, a knowledge base is built, with
information about temporal statistics gathered from logs. Then, the
statistical support of constraints is computed by querying that knowl-
edge base. Also these works introduce a basic way to deal with
redundancy based on the subsumption hierarchy of DECLARE templates
that is not capable to deal with redundancies due to complex interac-
tions of constraints. In [62], the authors propose an extension of the
approach presented in [21,27] to discover target-branched DECLARE

constraints, i.e., constraints in which the target parameter is replaced
by a disjunction of actual tasks. Here, as well as redundancy reductions
based on the subsumption hierarchy of DECLARE constraints, also
different aspects of redundancy are taken into consideration that are
characteristic of target-branched DECLARE, such as set-dominance.

Different logic-based approaches have been used to define the
semantics of the DECLARE templates. In principle, they have been
expressed by means of LTL formulae [63], as in [30,31]. Their
interpretation on finite traces with LTLf has been later clarified by
[32,33]. In [20], CIFF integrity constraints have been used, based on
abductive logic programming [34]. Building on the fact that LTLf has
the same expressive power as FOL over finite traces [64,65], the works
in [27,33] describe DECLARE templates in such formal representation. In
[66], DECLARE constraints are translated into equivalent Petri nets with
weighted, reset and inhibitor arcs. In [40,21], REs are used to define
the semantics of the DECLARE repertoire. Since REs and Monadic
Second Order Logic (MSO) over finite traces [33,67] have equivalent
expressiveness, REs have a higher expressive power than LTLf and, as
such, are a suitable language to include the formulation of DECLARE.
This additional expressiveness is exploited in [68] to model DECLARE

meta-constraints that account for compensations and contextual con-
straints. Interestingly, the techniques presented in this article can be
seamlessly applied to such enriched models.

Dynamic Condition Response Graphs (DCR Graphs) [69] are a
well-known declarative process modelling language alternative to
DECLARE. They are not directly discussed from the perspective of
consistency and redundancy [70], but can benefit from our work due
to their grounding in Büchi automata [71].

Recently, De Smedt et al. [72] have conducted extensive studies on
the so-called “hidden dependencies” [73], i.e., on the generation of
implicit constraints tying activities due to the interaction of other
constraints explicitly defined in a process model. The work of De Smedt
et al. has lead to an approach that automatically uncovers the hidden
dependencies in order to improve the understandability of declarative
models.

8. Conclusion

In this paper, we addressed the problems of eliminating redundant
and inconsistent constraint sets that are potentially generated by
declarative process mining tools. After providing a formal definition
of declarative models, we have formalised the problem and discussed
its intractability due to its inherent exponential complexity. Thereupon,
we have described our solution based on the notion of automata-
product monoid and devised the corresponding analysis algorithms.
The evaluation based on our prototypical implementation demon-
strates that constraint sets discovered with state-of-the-art declarative
process miners can be further pruned such that the result is consistent
and locally minimal.

Our approach always finds all the conflicting constraints in a
declarative process model. Furthermore, it substantially reduces the
size of the discovered models by removing those constraints that do not
alter by any means the allowed behaviours. It detects an elevated
number of redundancies in process models returned by state-of-the-art
discovery algorithms, notwithstanding the fact that they have built-in

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

19

ad hoc procedures to circumvent the problem of redundancy.
The sorting criteria adopted to sequentially check the constraints

play a crucial role in determining the quality to prioritise in the result.
The partial order on the type and subsumption yields a higher number
of detected redundancies. The order on support, confidence, and
interest factor promotes those constraints that are satisfied the most
and involving the most frequent tasks, hence raising the average
support, confidence and interest factor of the constraints in the
returned model. The order on the degree of activation linkage favours
a more efficient computation in terms of time. By choosing which
criteria to adopt and in which sequence, the user can thus influence the
outcome. Nevertheless, it is in our plans to relieve the human actors
from this choice, so as to let them specify the preferred target quality to
strive for and make the algorithm automatically find a local optimum
by trying different combinations of the aforementioned sorting criteria.
Such an extension would be backed by the relatively small computation
time required to return the intermediate results to be compared. As
shown in the paper, the approach is capable of processing real-world
process models in relatively short time.

Furthermore, we are planning to integrate our approach with the
one of De Smedt et al. [72], which unveils the hidden dependencies
among DECLARE constraints. The latter would drive the search for
redundancies seen as dependencies from a core set of constraints,
interactively decided by the user. It is also in our plans to involve the
users to receive feedback on the outcome of the pruning technique in
order to gain a better understanding on the perceived quality of the
results, in a similar way to the studies reported in [74,27].

In future research, we also aim at extending our work towards
redundancy freedom, so as to ensure that, although not necessarily
minimal, the discovered model is provably free of redundancies.
Furthermore, we want to go beyond the pure control-flow perspective
and extend our technique to the case of data- and resource-aware
declarative process mining. When mining declarative constraints with
references to data and resources, one of the challenges is to identify
comparable notions of subsumption and causes of inconsistency. We
also plan to follow up on experimental research comparing Petri nets
and DECLARE [1,2]. Prior experiments in that regard shed light on the
fact that the declarative modelling approach suffered from the lack of
consistency and redundancy checks [75,70]. The notions defined in this
paper help design declarative and procedural process models that are
equally consistent and minimal, such that an unbiased comparison
would be feasible.

References

[1] D. Fahland, D. Lübke, J. Mendling, H.A. Reijers, B. Weber, M. Weidlich, S. Zugal,
Declarative versus imperative process modeling languages, in: T.A. Halpin,
J. Krogstie, S. Nurcan, E. Proper, R. Schmidt, P. Soffer, R. Ukor (Eds.), , BMMDS/
EMMSAD, Lecture Notes in Business Information Processing vol. 29, Springer,
Berlin, Heidelberg, Germany, 2009, pp. 353–366. http://dx.doi.org/10.1007/978-
3-642-01862-6_29.

[2] D. Fahland, J. Mendling, H.A. Reijers, B. Weber, M. Weidlich, S. Zugal, Declarative
versus imperative process modeling languages, in: S. Rinderle-Ma, S.W. Sadiq,
F. Leymann (Eds.), , Business Process Management Workshops, Lecture Notes in
Business Information Processing vol. 43, Springer, Berlin, Heidelberg, Germany,
2009, pp. 477–488. http://dx.doi.org/10.1007/978-3-642-12186-9_45.

[3] T. Murata, Petri nets: properties, analysis and applications, Proc. IEEE 77 (4)
(1989) 541–580. http://dx.doi.org/10.1109/5.24143.

[4] C. Di Ciccio, F.M. Maggi, M. Montali, J. Mendling, Ensuring model consistency in
declarative process discovery, in: H.R. Motahari-Nezhad, J. Recker, M. Weidlich
(Eds.), , BPM, Lecture Notes in Computer Science vol. 9253, Springer International
Publishing, Switzerland, 2015, pp. 144–159. http://dx.doi.org/10.1007/978-3-
319-23063-4_9.

[5] M. Pesic, Constraint-based workflow management systems: shifting control to
users (Ph.D. thesis), Technische Universiteit Eindhoven, 10 2008. URL 〈http://
repository.tue.nl/638413〉

[6] W.M.P. van der Aalst, M. Pesic, H. Schonenberg, Declarative workflows: balancing
between flexibility and support, Comput. Sci. R & D 23 (2) (2009) 99–113. http://
dx.doi.org/10.1007/s00450-009-0057-9.

[7] C.W. Günther, W.M.P. van der Aalst, Fuzzy mining – adaptive process simplifica-
tion based on multi-perspective metrics, in: G. Alonso, P. Dadam, M. Rosemann
(Eds.), Business Process Management, 5th International Conference, BPM 2007,

Brisbane, Australia, September 24–28, 2007, Proceedings, Lecture Notes in
Computer Science, vol. 4714, Springer, Berlin, Heidelberg, Germany, 2007, pp.
328–343. http://dx.doi.org/10.1007/978-3-540-75183-0_24

[8] C. Di Ciccio, M. Mecella, Studies on the discovery of declarative control flows from
error-prone data, in: R. Accorsi, P. Ceravolo, P. Cudré-Mauroux (Eds.), SIMPDA,
CEUR Workshop Proceedings, CEUR-WS.org, vol. 1027, 2013, pp. 31–45. URL
〈http://ceur-ws.org/Vol-1027/paper3.pdf〉

[9] F.M. Maggi, A.J. Mooij, W.M.P. van der Aalst, User-guided discovery of declarative
process models, in: CIDM, IEEE Computer Society, Los Alamitos, CA, USA, 2011,
pp. 192–199. URL http://dx.doi.org/10.1109/CIDM.2011.5949297

[10] E. Bellodi, F. Riguzzi, E. Lamma, Probabilistic logic-based process mining, in: W.
Faber, N. Leone (Eds.), CILC, CEUR Workshop Proceedings, CEUR-WS.org, vol.
598, 2010. URL 〈http://ceur-ws.org/Vol-598/paper17.pdf 〉

[11] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, W.M.P. van der Aalst, XES,
XESame, and ProM 6, in: P. Soffer, E. Proper (Eds.), Information Systems
Evolution – CAiSE Forum 2010, Hammamet, Tunisia, June 7–9, 2010, Selected
Extended Papers, Lecture Notes in Business Information Processing, vol. 72,
Springer, Berlin, Heidelberg, Germany, 2010, pp. 60–75. http://dx.doi.org/10.
1007/978-3-642-17722-4_5.

[12] T. Baier, C. Di Ciccio, J. Mendling, M. Weske, Matching of events and activities – an
approach using declarative modeling constraints, in: K. Gaaloul, R. Schmidt,
S. Nurcan, S. Guerreiro, Q. Ma (Eds.), , BPMDS, Lecture Notes in Business
Information Processing vol. 214, Springer International Publishing, Switzerland,
2015, pp. 119–134. http://dx.doi.org/10.1007/978-3-319-19237-6_8.

[13] T. Baier, A. Rogge-Solti, J. Mendling, M. Weske, Matching of events and activities:
an approach based on behavioral constraint satisfaction, in: R.L. Wainwright, J.M.
Corchado, A. Bechini, J. Hong (Eds.), Proceedings of the 30th Annual ACM
Symposium on Applied Computing, Salamanca, Spain, April 13–17, 2015, ACM,
New York, NY, USA, 2015, pp. 1225–1230. http://dx.doi.org/10.1145/2695664.
2699491. URL http://doi.acm.org/10.1145/2695664.2699491

[14] W.M.P. van der Aalst, Process Mining: Discovery, Conformance and Enhancement
of Business Processes, Springer, Berlin, Heidelberg, Germany, 2011. http://
dx.doi.org/10.1007/978-3-642-19345-3.

[15] M. de Leoni, F.M. Maggi, W.M.P. van der Aalst, An alignment-based framework to
check the conformance of declarative process models and to preprocess event-log
data, Inf. Syst. 47 (2015) 258–277. http://dx.doi.org/10.1016/j.is.2013.12.005.

[16] D. Fahland, W.M.P. van der Aalst, Model repair – aligning process models to
reality, Inf. Syst. 47 (2015) 220–243. http://dx.doi.org/10.1016/j.is.2013.12.007.

[17] W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K. Alves
de Medeiros, M. Song, H.M.W.E. Verbeek, Business process mining: an industrial
application, Inf. Syst. 32 (5) (2007) 713–732. http://dx.doi.org/10.1016/
j.is.2006.05.003.

[18] C. Di Ciccio, F.M. Maggi, J. Mendling, Efficient discovery of target-branched
declare constraints, Inf. Syst. 56 (2016) 258–283. http://dx.doi.org/10.1016/
j.is.2015.06.009 URL 〈http://www.sciencedirect.com/science/article/pii/
S0306437915001271〉.

[19] F.M. Maggi, R.P.J.C. Bose, W.M.P. van der Aalst, Efficient discovery of under-
standable declarative process models from event logs, in: J. Ralyté, X. Franch,
S. Brinkkemper, S. Wrycza (Eds.), , CAiSE, Lecture Notes in Computer Science vol.
7328, Springer, Berlin, Heidelberg, Germany, 2012, pp. 270–285 URL http://dx.
doi.org/10.1007/978-3-642-31095-9_18.

[20] F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, S. Storari, Exploiting
inductive logic programming techniques for declarative process mining, Trans.
Petri Nets Other Models Concurr. 2 (2009) 278–295 URL http://dx.doi.org/10.
1007/978-3-642-00899-3_16.

[21] C. Di Ciccio, M. Mecella, A two-step fast algorithm for the automated discovery of
declarative workflows, in: CIDM, IEEE Computer Society, Los Alamitos, CA, USA,
2013, pp. 135–142. http://dx.doi.org/10.1109/CIDM.2013.6597228. URL 〈http://
ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6588692〉

[22] A. Polyvyanyy, M. Weidlich, R. Conforti, M. La Rosa, A.H.M. ter Hofstede, The 4c
spectrum of fundamental behavioral relations for concurrent systems, in: G. Ciardo,
E. Kindler (Eds.), , Application and Theory of Petri Nets and Concurrency – 35th
International Conference, PETRI NETS 2014, Tunis, Tunisia, June 23-27, 2014.
Proceedings, Lecture Notes in Computer Science vol. 8489, Springer International
Publishing, Switzerland, 2014, pp. 210–232. http://dx.doi.org/10.1007/978-3-
319-07734-5_12.

[23] C. Di Ciccio, M. Mecella, Mining constraints for artful processes, in:
W. Abramowicz, D. Kriksciuniene, V. Sakalauskas (Eds.), , BIS, Lecture Notes in
Business Information Processing vol. 117, Springer, Berlin, Heidelberg, Germany,
2012, pp. 11–23. http://dx.doi.org/10.1007/978-3-642-30359-3_2.

[24] M. Räim, C. Di Ciccio, F.M. Maggi, M. Mecella, J. Mendling, Log-based under-
standing of business processes through temporal logic query checking, in:
R. Meersman, H. Panetto, T.S. Dillon, M. Missikoff, L. Liu, O. Pastor, A. Cuzzocrea,
T. Sellis (Eds.), , CoopIS, Lecture Notes in Computer Science vol. 8841, Springer,
Berlin, Heidelberg, Germany, 2014, pp. 75–92. http://dx.doi.org/10.1007/978-3-
662-45563-0_5.

[25] C. Di Ciccio, M. Mecella, J. Mendling, The effect of noise on mined declarative
constraints, in: P. Ceravolo, R. Accorsi, P. Cudre-Mauroux (Eds.), , Data-Driven
Process Discovery and Analysis, Lecture Notes in Business Information Processing
vol. 203, Springer, Berlin, Heidelberg, 2015, pp. 1–24. http://dx.doi.org/10.1007/
978-3-662-46436-6_1.

[26] C.C. Aggarwal, Data Mining – The Textbook, Springer International Publishing,
Switzerland, 2015. http://dx.doi.org/10.1007/978-3-319-14142-8.

[27] C. Di Ciccio, M. Mecella, On the discovery of declarative control flows for artful
processes, ACM Trans. Manag. Inf. Syst. 5 (4) (2015) 24:1–24:37. http://
dx.doi.org/10.1145/2629447.

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

20

http://dx.doi.org/10.1007/978-642-6_29
http://dx.doi.org/10.1007/978-642-6_29
http://dx.doi.org/10.1007/978-642-9_45
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1007/978-319-4_9
http://dx.doi.org/10.1007/978-319-4_9
http://repository.tue.nl/638413
http://repository.tue.nl/638413
http://dx.doi.org/10.1007/s00450-0057-,0,0,2
http://dx.doi.org/10.1007/s00450-0057-,0,0,2
doi:10.1007/978-540-0_24
http://ceur-s.org/Vol-paper3.pdf
http://dx.doi.org/10.1109/CIDM.2011.5949297
http://ceur-s.org/Vol-paper17.pdf
doi:10.1007/978-642-4_5
doi:10.1007/978-642-4_5
http://dx.doi.org/10.1007/978-319-6_8
doi:10.1145/2695664.2699491
doi:10.1145/2695664.2699491
http://doi.acm.org/10.1145/2695664.2699491
http://dx.doi.org/10.1007/978-642-3
http://dx.doi.org/10.1007/978-642-3
http://dx.doi.org/10.1016/j.is.2013.12.005
http://dx.doi.org/10.1016/j.is.2013.12.007
http://dx.doi.org/10.1016/j.is.2006.05.003
http://dx.doi.org/10.1016/j.is.2006.05.003
http://dx.doi.org/10.1016/j.is.2015.06.009
http://dx.doi.org/10.1016/j.is.2015.06.009
http://www.sciencedirect.com/science/article/pii/S0306437915001271
http://dx.doi.org/10.1007/978-642-9_18
http://dx.doi.org/10.1007/978-642-9_18
http://dx.doi.org/10.1007/978-642-3_16
http://dx.doi.org/10.1007/978-642-3_16
doi:10.1109/CIDM.2013.6597228
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=,0,0,2
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=,0,0,2
http://dx.doi.org/10.1007/978-319-5_12
http://dx.doi.org/10.1007/978-319-5_12
http://dx.doi.org/10.1007/978-642-3_2
http://dx.doi.org/10.1007/978-662-0_5
http://dx.doi.org/10.1007/978-662-0_5
http://dx.doi.org/10.1007/978-662-6_1
http://dx.doi.org/10.1007/978-662-6_1
http://dx.doi.org/10.1007/978-319-8
http://dx.doi.org/10.1145/2629447
http://dx.doi.org/10.1145/2629447

[28] E. Bellodi, F. Riguzzi, E. Lamma, Y. Bi, M.-A. Williams (Eds.), KSEM, Lecture Notes
in Computer Science vol. 6291, Springer, Berlin, Heidelberg, Germany, 2010, pp.
292–303. http://dx.doi.org/10.1007/978-3-642-15280-1_28.

[29] D.M.M. Schunselaar, F.M. Maggi, N. Sidorova, Patterns for a log-based strength-
ening of declarative compliance models, in: J. Derrick, S. Gnesi, D. Latella,
H. Treharne (Eds.), , IFM, Lecture Notes in Computer Science vol. 7321, Springer,
Berlin, Heidelberg, Germany,, 2012, pp. 327–342. http://dx.doi.org/10.1007/978-
3-642-30729-4_23.

[30] M. Pesic, H. Schonenberg, W.M.P. van der Aalst, Declare: full support for loosely-
structured processes, in: EDOC, IEEE Computer Society, Los Alamitos, CA, USA,
2007, pp. 287–300. URL http://doi.ieeecomputersociety.org/10.1109/EDOC.
2007.25

[31] A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adamns, N. Russell (Eds.), Modern
Business Process Automation: YAWL and its Support Environment, Springer,
Berlin, Heidelberg, Germany, 2010 URL 〈http://www.springer.com/computer
+science/database+management+%26+information+retrieval/book/978-3-642-
03120-5〉.

[32] G. De Giacomo, R. De Masellis, M. Montali, Reasoning on LTL on finite traces:
insensitivity to infiniteness, in: C.E. Brodley, P. Stone (Eds.), Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27–31, 2014,
Québec City, Québec, Canada, Association for the Advancement of Artificial
Intelligence, Palo Alto, CA, USA, 2014, pp. 1027–1033. URL 〈http://www.aaai.org/
ocs/index.php/AAAI/AAAI14/paper/view/8575〉

[33] G. De Giacomo, M.Y. Vardi, Linear temporal logic and linear dynamic logic on finite
traces, in: F. Rossi (Ed.), IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, August 3–9, 2013, IJCAI/
AAAI, 2013. URL 〈http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/
view/6997〉

[34] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, P. Torroni, Verifiable
agent interaction in abductive logic programming: the Sciff framework, ACM Trans.
Comput. Log. 9 (4) (2008) 29:1–29:43. http://dx.doi.org/10.1145/
1380572.1380578.

[35] S. Gisburg, G.F. Rose, Preservation of languages by transducers, Inf. Control 9 (2)
(1966) 153–176. http://dx.doi.org/10.1016/S0019-9958(66)90211-7 URL
〈http://www.sciencedirect.com/science/article/pii/S0019995866902117〉.

[36] R. McNaughton, H. Yamada, Regular expressions and state graphs for automata,
IEEE Trans. Electron. Comput. EC-9 (1) (1960) 39–47. http://dx.doi.org/10.1109/
TEC.1960.5221603.

[37] N. Chomsky, G.A. Miller, Finite state languages, Inf. Control 1 (2) (1958) 91–112.
[38] A. Church, Logic, arithmetic and automata, in: Proceedings of the International

Congress of Mathematicians, 1962, pp. 23–35 (about the correspondence of FSAs
and RExs).

[39] M.O. Rabin, D. Scott, Finite automata and their decision problems, IBM J. Res.
Dev. 3 (1959) 114–125. http://dx.doi.org/10.1147/rd.32.0114.

[40] J. Prescher, C. Di Ciccio, J. Mendling, From declarative processes to imperative
models, in: R. Accorsi, P. Ceravolo, B. Russo (Eds.), SIMPDA, CEUR Workshop
Proceedings, CEUR-WS.org, vol. 1293, 2014, pp. 162–173. http://dx.doi.org/10.
13140/2.1.1577.4409. URL 〈http://ceur-ws.org/Vol-1293〉

[41] F.M. Maggi, M. Westergaard, M. Montali, W.M.P. van der Aalst, Runtime
verification of ltl-based declarative process models, in: S. Khurshid, K. Sen (Eds.), ,
Runtime Verification – Second International Conference, RV 2011, San Francisco,
CA, USA, September 27–30, 2011, Revised Selected Papers, Lecture Notes in
Computer Science vol. 7186, Springer, 2011, pp. 131–146. http://dx.doi.org/
10.1007/978-3-642-29860-8_11.

[42] B.F. van Dongen, Real-life event logs – a loan application process, in: Second
International Business Process Intelligence Challenge (BPIC'12), 2012. http://dx.
doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

[43] S. Yu, Q. Zhuang, K. Salomaa, The state complexities of some basic operations on
regular languages, Theor. Comput. Sci. 125 (2) (1994) 315–328. http://dx.doi.org/
10.1016/0304-3975(92)00011-F.

[44] S. Yu, State complexity of regular languages, J. Autom. Lang. Combin. 6 (2) (2001)
221.

[45] W. Steeman, Real-life event logs – an incident management process, in: Third
International Business Process Intelligence Challenge (BPIC'13), 2013. http://dx.
doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07.

[46] B.F. van Dongen, Real-life event logs – logs from itil processes of rabobank group
ict, in: Fourth International Business Process Intelligence Challenge (BPIC'14),
2014. http://dx.doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35.

[47] M. de Leoni, F. Mannhardt, Road traffic fine management process (2015). http://
dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

[48] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, Consistency-based diagnosis
of configuration knowledge bases, Artif. Intell. 152 (2) (2004) 213–234. http://
dx.doi.org/10.1016/S0004-3702(03)00117-6.

[49] U. Junker, QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems, in: D.L. McGuinness, G. Ferguson (Eds.), Proceedings of the
Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on
Innovative Applications of Artificial Intelligence, July 25–29, 2004, San Jose,
California, USA, The MIT Press, 2004, pp. 167–172 URL 〈http://www.aaai.org/
Library/AAAI/2004/aaai04-027.php〉.

[50] A. Felfernig, C. Zehentner, P. Blazek, COREDIAG: eliminating redundancy in
constraint sets, in: 22nd International Workshop on Principles of Diagnosis (DX),
Munich, Germany, 2011.

[51] R. Agrawal, D. Gunopulos, F. Leymann, Mining process models from workflow logs,
in: H.-J. Schek, G. Alonso, F. Saltor, I. Ramos (Eds.), , Advances in Database
Technology – EDBT'98, Lecture Notes in Computer Science vol. 1377, Springer,
Berlin, Heidelberg, 1998, pp. 467–483 URL http://dx.doi.org/10.1007/

BFb0101003.
[52] J.E. Cook, A.L. Wolf, Discovering models of software processes from event-based

data, ACM Trans. Softw. Eng. Methodol. 7 (3) (1998) 215–249. http://dx.doi.org/
10.1145/287000.287001 URL http://doi.acm.org/10.1145/287000.287001.

[53] W.M.P. van der Aalst, T. Weijters, L. Maruster, Workflow mining: discovering
process models from event logs, IEEE Trans. Knowl. Data Eng. 16 (9) (2004)
1128–1142 URL 〈http://csdl.computer.org/comp/trans/tk/2004/09/k1143abs.
htm.

[54] L. Wen, W.M.P. van der Aalst, J. Wang, J. Sun, Mining process models with non-
free-choice constructs, Data Min. Knowl. Discov. 15 (2) (2007) 145–180 URL
http://dx.doi.org/10.1007/s10618-007-0065-y.

[55] L. Wen, J. Wang, W.M.P. van der Aalst, B. Huang, J. Sun, Mining process models
with prime invisible tasks, Data Knowl. Eng. 69 (10) (2010) 999–1021. http://
dx.doi.org/10.1016/j.datak.2010.06.001.

[56] Q. Guo, L. Wen, J. Wang, Z. Yan, P.S. Yu, Mining invisible tasks in non-free-choice
constructs, in: H.R. Motahari-Nezhad, J. Recker, M. Weidlich (Eds.), , Business
Process Management – 13th International Conference, BPM 2015, Innsbruck,
Austria, August 31–September 3, 2015, Proceedings, Lecture Notes in Computer
Science vol. 9253, Springer, 2015, pp. 109–125. http://dx.doi.org/10.1007/978-3-
319-23063-4_7.

[57] M. Weidlich, J. Mendling, M. Weske, Efficient consistency measurement based on
behavioral profiles of process models, IEEE Trans. Softw. Eng. 37 (3) (2011)
410–429. http://dx.doi.org/10.1109/TSE.2010.96.

[58] M. Weidlich, A. Polyvyanyy, N. Desai, J. Mendling, M. Weske, Process compliance
analysis based on behavioural profiles, Inf. Syst. 36 (7) (2011) 1009–1025. http://
dx.doi.org/10.1016/j.is.2011.04.002.

[59] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large
databases, in: J..B. Bocca, M. Jarke, C. Zaniolo (Eds.), VLDB, Morgan Kaufmann,
1994, pp. 487–499 URL 〈http://www.vldb.org/conf/1994/P487.PDF〉.

[60] F.M. Maggi, R.P.J.C. Bose, W.M.P. van der Aalst, A knowledge-based integrated
approach for discovering and repairing declare maps, in: C. Salinesi, M.C. Norrie,
O. Pastor (Eds.), , CAiSE, Lecture Notes in Computer Science vol. 7908, Springer,
Berlin, Heidelberg, Germany, 2013, pp. 433–448. http://dx.doi.org/10.1007/978-
3-642-38709-8_28.

[61] E. Lamma, P. Mello, M. Montali, F. Riguzzi, S. Storari, Inducing declarative logic-
based models from labeled traces, in: G. Alonso, P. Dadam, M. Rosemann (Eds.),
Business Process Management, 5th International Conference, BPM 2007, Brisbane,
Australia, September 24–28, 2007, Proceedings, Lecture Notes in Computer
Science, vol. 4714, Springer, Berlin, Heidelberg, Germany, 2007, pp. 344–359.
http://dx.doi.org/10.1007/978-3-540-75183-0_25

[62] C. Di Ciccio, F.M. Maggi, J. Mendling, Discovering target-branched declare
constraints, in: S.W. Sadiq, P. Soffer, H. Völzer (Eds.), , BPM, Lecture Notes in
Computer Science vol. 8659, Springer International Publishing, Switzerland, 2014,
pp. 34–50. http://dx.doi.org/10.1007/978-3-319-10172-9_3.

[63] E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, Cambridge, MA,
USA, 2001.

[64] D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the temporal analysis of fairness, in:
Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL '80, ACM, New York, NY, USA, 1980, pp. 163–173.
http://dx.doi.org/10.1145/567446.567462.

[65] V. Diekert, P. Gastin, First-order definable languages, in: J. Flum, E. Grädel,
T. Wilke (Eds.), , Logic and Automata, Texts in Logic and Games vol. 2, Amsterdam
University Press, Amsterdam, Netherlands, 2008, pp. 261–306.

[66] J. De Smedt, S.K. Vanden Broucke, J. De Weerdt, J. Vanthienen, A full r/i-net
construct lexicon for declare constraints, Available at SSRN 2572869, 2015. http://
dx.doi.org/10.2139/ssrn.2572869. URL 〈http://ssrn.com/abstract=2572869〉

[67] J.R. Büchi, Weak second-order arithmetic and finite automata, Math. Logic Q. 6
(1–6) (1960) 66–92. http://dx.doi.org/10.1002/malq.19600060105 (proof of
MSO-FSA equivalence).

[68] G. De Giacomo, R.D. De Masellis, M. Grasso, F.M. Maggi, M. Montali, Monitoring
business metaconstraints based on LTL and LDL for finite traces, in: S.W. Sadiq,
P. Soffer, H. Völzer (Eds.), , Business Process Management - 12th International
Conference, BPM 2014, Haifa, Israel, September 7–11, 2014. Proceedings, Lecture
Notes in Computer Science vol. 8659, Springer International Publishing,
Switzerland, 2014, pp. 1–17. http://dx.doi.org/10.1007/978-3-319-10172-9_1.

[69] T.T. Hildebrandt, R.R. Mukkamala, Declarative event-based workflow as distrib-
uted dynamic condition response graphs, in: K. Honda, A. Mycroft (Eds.), ,
PLACES, EPTCS vol. 69 (2010), 2010, pp. 59–73 URL http://dx.doi.org/10.4204/
EPTCS.69.5.

[70] H.A. Reijers, T. Slaats, C. Stahl, Declarative modeling – an academic dream or the
future for bpm?, in: F. Daniel, J. Wang, B. Weber (Eds.), , Business Process
Management - 11th International Conference, BPM 2013, Beijing, China, August
26–30, 2013. Proceedings, Lecture Notes in Computer Science vol. 8094, Springer,
2013, pp. 307–322. http://dx.doi.org/10.1007/978-3-642-40176-3_26.

[71] R.R. Mukkamala, T.T. Hildebrandt, From dynamic condition response structures to
büchi automata, in: J. Liu, D.A. Peled, B. Wang, F. Wang (Eds.), 4th IEEE
International Symposium on Theoretical Aspects of Software Engineering, TASE
2010, Taipei, Taiwan, 25-27 August 2010, IEEE Computer Society, 2010, pp. 187–
190. http://dx.doi.org/10.1109/TASE.2010.22. URL 〈http://ieeexplore.ieee.org/
xpl/mostRecentIssue.jsp?punumber=5587707 〉

[72] J. De Smedt, J. De Weerdt, E. Serral, J. Vanthienen, Improving understandability
of declarative process models by revealing hidden dependencies, in: S. Nurcan,
P. Soffer, M. Bajec, J. Eder (Eds.), , CAiSE, Lecture Notes in Computer Science vol.
9694, Springer International Publishing, Switzerland, 2016, pp. 83–98. http://
dx.doi.org/10.1007/978-3-319-39696-5_6.

[73] C. Haisjackl, I. Barba, S. Zugal, P. Soffer, I. Hadar, M. Reichert, J. Pinggera,

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

21

http://dx.doi.org/10.1007/978-642-1_28
http://dx.doi.org/10.1007/978-642-4_23
http://dx.doi.org/10.1007/978-642-4_23
http://doi.ieeecomputersociety.org/10.1109/EDOC.2007.25
http://doi.ieeecomputersociety.org/10.1109/EDOC.2007.25
http://www.springer.com/computer+cience/databaseanagement+26nformation+etrieval/book/978-642-5
http://www.springer.com/computer+cience/databaseanagement+26nformation+etrieval/book/978-642-5
http://www.springer.com/computer+cience/databaseanagement+26nformation+etrieval/book/978-642-5
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8575
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8575
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://dx.doi.org/10.1145/1380572.1380578
http://dx.doi.org/10.1145/1380572.1380578
http://dx.doi.org/10.1016/S0019-66)90211-,0,0,2
http://dx.doi.org/10.1016/S0019-66)90211-,0,0,2
http://dx.doi.org/10.1109/TEC.1960.5221603
http://dx.doi.org/10.1109/TEC.1960.5221603
http://refhub.elsevier.com/S0306-15)30205-sbref26
http://dx.doi.org/10.1147/rd.32.0114
doi:10.13140/2.1.1577.4409
doi:10.13140/2.1.1577.4409
http://ceur-s.org/Vol-,0,0,2
http://dx.doi.org/10.1007/978-642-8_11
http://dx.doi.org/10.1007/978-642-8_11
doi:10.4121/uuid:3926db30712-aebc91f
doi:10.4121/uuid:3926db30712-aebc91f
http://dx.doi.org/10.1016/0304-92)00011-
http://dx.doi.org/10.1016/0304-92)00011-
http://refhub.elsevier.com/S0306-15)30205-sbref30
http://refhub.elsevier.com/S0306-15)30205-sbref30
doi:10.4121/uuid:a7ce5c557-b85586e1a2b07
doi:10.4121/uuid:a7ce5c557-b85586e1a2b07
doi:10.4121/uuid:c3e5d162fdb0d82f5268819c35
doi:10.4121/uuid:270fd440-4fb99699b47990f5
doi:10.4121/uuid:270fd440-4fb99699b47990f5
http://dx.doi.org/10.1016/S0004-03)00117-,0,0,2
http://dx.doi.org/10.1016/S0004-03)00117-,0,0,2
http://www.aaai.org/Library/AAAI/2004/aaai04php
http://www.aaai.org/Library/AAAI/2004/aaai04php
http://dx.doi.org/10.1007/BFb0101003
http://dx.doi.org/10.1007/BFb0101003
http://dx.doi.org/10.1145/287000.287001
http://dx.doi.org/10.1145/287000.287001
http://csdl.computer.org/comp/trans/tk/2004/09/k1143abs.htm
http://csdl.computer.org/comp/trans/tk/2004/09/k1143abs.htm
http://dx.doi.org/10.1007/s10618-0065-
http://dx.doi.org/10.1016/j.datak.2010.06.001
http://dx.doi.org/10.1016/j.datak.2010.06.001
http://dx.doi.org/10.1007/978-319-4_7
http://dx.doi.org/10.1007/978-319-4_7
http://dx.doi.org/10.1109/TSE.2010.96
http://dx.doi.org/10.1016/j.is.2011.04.002
http://dx.doi.org/10.1016/j.is.2011.04.002
http://www.vldb.org/conf/1994/P487.PDF
http://dx.doi.org/10.1007/978-642-8_28
http://dx.doi.org/10.1007/978-642-8_28
doi:10.1007/978-540-0_25
http://dx.doi.org/10.1007/978-319-9_3
http://refhub.elsevier.com/S0306-15)30205-sbref44
http://refhub.elsevier.com/S0306-15)30205-sbref44
doi:10.1145/567446.567462
http://refhub.elsevier.com/S0306-15)30205-sbref45
http://refhub.elsevier.com/S0306-15)30205-sbref45
http://refhub.elsevier.com/S0306-15)30205-sbref45
doi:10.2139/ssrn.2572869
doi:10.2139/ssrn.2572869
http://ssrn.com/abstract=,0,0,2
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1007/978-319-9_1
http://dx.doi.org/10.4204/EPTCS.69.5
http://dx.doi.org/10.4204/EPTCS.69.5
http://dx.doi.org/10.1007/978-642-3_26
doi:10.1109/TASE.2010.22
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=,0,0,2
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=,0,0,2
http://dx.doi.org/10.1007/978-319-5_6
http://dx.doi.org/10.1007/978-319-5_6
Claudio Di Ciccio
Durchstreichen

Claudio Di Ciccio
Durchstreichen

Claudio Di Ciccio
Durchstreichen

Claudio Di Ciccio
Durchstreichen

Claudio Di Ciccio
Eingefügter Text
R. De Masellis

B. Weber, Understanding declare models: strategies, pitfalls, empirical results,
Softw. Syst. Model. (2014) 1–28. http://dx.doi.org/10.1007/s10270-014-0435-z.

[74] C. Di Ciccio, M. Mecella, Mining artful processes from knowledge workers' emails,
IEEE Internet Comput. 17 (5) (2013) 10–20. http://dx.doi.org/10.1109/
MIC.2013.60.

[75] S. Zugal, P. Soffer, J. Pinggera, B. Weber, Expressiveness and understandability
considerations of hierarchy in declarative business process models, in: I. Bider,

T. Halpin, J. Krogstie, S. Nurcan, E. Proper, R. Schmidt, P. Soffer, S. Wrycza (Eds.),
, Enterprise, Business-Process and Information Systems Modeling, Lecture Notes
in Business Information Processing vol. 113, Springer, Berlin, Heidelberg, 2012,
pp. 167–181. http://dx.doi.org/10.1007/978-3-642-31072-0_12.

[76] A. Polyvyanyy, A. Armas-Cervantes, M. Dumas, L. García-Bañuelos, On the
expressive power of behavioral profiles, , Formal Asp. Comput 28 (4) (2016)
597–613. http://dx.doi.org/10.1007/s00165-016-0372-4.

C. Di Ciccio et al. Information Systems xx (xxxx) xxxx–xxxx

22

http://dx.doi.org/10.1007/s10270-0435-
http://dx.doi.org/10.1109/MIC.2013.60
http://dx.doi.org/10.1109/MIC.2013.60
http://dx.doi.org/10.1007/978-642-0_12
http://dx.doi.org/10.1007/s00165-0372-,0,0,2

	Resolving inconsistencies and redundancies in declarative process models
	Introduction
	Motivation
	Declarative process modelling and mining
	Event logs
	Declarative process modelling languages
	Evaluation and satisfiability of a declarative process model
	Discovery of a declarative process model

	Declare template types and subsumption
	Semantics of Declare as regular expressions
	Finite state automata

	Formalisation of the problem
	The consistency problem
	The minimality problem
	Framing the problem

	The approach
	Constraints as automata
	Sorting constraints
	The algorithm

	Experiments and results
	Consistency and redundancy checking (BPI challenge 2012)
	Redundancy checking analysis

	Related work
	Conclusion
	References

