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Abstract

In this dissertation, we advance a theoretical framework for modeling the

electromechanics of the heart tissue. The set of governing equations de-

scribes both mechanical deformation and electrophysiology, and accounts

for their interaction. Our mechanical model is based on foundations of

nonlinear continuum mechanics, following an orthotropic exponential con-

stitutive law for the passive tissue deformation. We consider both the

viscoelastic case and the more traditional but idealized hyperelastic case.

We couple this mechanical system with a four-variable phenomenological

model for human ventricular action potential. We achieve electromechan-

ical coupling through both active tension, encoded in models of active

strain and active stress, and stress-assisted diffusion. The inclusion of

stress-assisted diffusion, in particular, is a novel aspect of our model that

has not yet been incorporated into an active stress framework or viscoelas-

tic mechanical model.

We first implement our model in 2D using a mixed-primal finite element

scheme. We perform computational tests to investigate the effects of our

model’s parameters, as well as the effects of viscosity and stress-assisted

diffusion. We then extend the model to 3D, although this requires some

adaptation of our original formulation to yield anatomically accurate re-

sults. We conclude by proposing several possible extensions to our model.
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular disease is the leading cause of death worldwide [1], despite the exten-

sive research that has made the heart one of the most well-studied organs [61]. The

global community is committed to fighting this pandemic; institutions like the World

Health Organization have established action plans to increase awareness of, monitor,

and assess its severity [1]. In order to effectively combat cardiovascular disease, how-

ever, we need a robust scientific understanding of the workings of the heart and the

nature of such health conditions.

Recent progress in the field is encouraging. The concept of patient-specific treat-

ments is no longer a distant dream, but a conceivable reality and the topic of ongoing

research [13, 27, 41]. However, a major obstacle is our incomplete knowledge about

the relationship between processes at the cellular and subcellular level, and the per-

formance of the organ as a whole [5]. Indeed, a great deal of treatment is still based

on trial-and-error experimentation rather than true scientific understanding of the

changes responsible for the onset and progression of disease [26]. Several treatments,

such as resynchronization therapy and antiarrhythmic medications, for example, are

known to be ineffective or even exacerbate pathological conditions in some patients,

for reasons that are not yet well understood [8, 32, 69].

An obstacle to deep understanding of cardiac function is the difficulty of acquiring

sufficiently detailed data [40]. Until recently, there were no experimental techniques

capable of recording 3D cardiac activity with high enough spatio-temporal resolu-

tion to provide the required level of information [65]. A recent study by Christoph

et al. [18] is one of the first, having succeeded in using optical mapping to assess

electromechanical waves.

1
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Computational models have thus been critical in allowing for extensive study of

the heart even without sufficient data. The development of complex multi-scale and

multi-physics models, accompanied by advances in simulation and imaging techniques,

has enabled researchers to investigate the many different aspects of cardiac function

and disease [40]. The hope is that the knowledge gained from these models can

contribute to new and improved treatment methods [26]. In this dissertation, we seek

to contribute to the current state of computational cardiac modeling.

The heart is an incredibly complex organ, with subprocesses occurring and in-

teracting with one another at different spatial and temporal scales (see Figure 1.1)

[67]. The scientific community has generally approached the formidable task of mod-

eling cardiac function by addressing these subprocesses separately, with the intention

of later combining them into a comprehensive whole-heart model [64]. Thus most

cardiac modeling studies to date have focused on either the mechanical or electro-

chemical aspects, and these fields have historically advanced almost independently

[5]. Investigations of cardiac mechanics can be traced back to Woods’ 1892 model for

stress in the heart wall [13], though most of our understanding of the heart’s geom-

etry and the importance of its nonlinear mechanical properties did not emerge until

Figure 1.1: Spatial and temporal scales of processes contributing to heart function.
Models of heart function typically incorporate some combination of these subpro-
cesses. Our model focuses on myocardial action potential and muscle contraction.
Figure taken from [52].
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the 1970s. Cardiac electrophysiology owes much of its progress to the Hodgkin and

Huxley models of the 1950s, which paved the way for detailed models of electrical

activity by focusing on the underlying physiology [61].

While the literature is extensive with respect to both areas of cardiac modeling,

there has been comparatively little work done to merge the two [5, 48]. In particular,

mechanoelectrical feedback (MEF), which accounts for the multi-scale interactions

through which mechanical deformation affects electrical properties, is often omitted

[45]. There is a parallel trend in the experimental realm — a great deal of available

data has been acquired by suppressing mechanical deformation [16], thus limiting the

extent to which we can learn about its effect on electrical properties.

This independence of the mechanical and electrochemical realms of cardiac mod-

eling is problematic. The vast majority of cardiac models have been developed to

investigate the mechanisms of cardiac arrhythmia, or irregular heartbeat [64]. This

type of abnormal electrical activity, which is thought to be associated with reentrant

electrical waves [45], is extremely dangerous and a major cause of sudden cardiac

death [20]. Although there is strong reason to believe that mechanical deformation

affects reentrant arrhythmias [48], few studies actually incorporate this [45]. The role

of mechanics in arrhythmia is still not completely understood [18], but experiments

by Loppini et al. [42] showed that mechanoelectrical feedback plays a major role in

electrical activation, and it is also believed to be relevant for many pathological con-

ditions [48]. Consider, for example, commotio cordis, in which physical impact to the

heart initiates ventricular fibrillation, and precordial thump, in which physical impact

can stop fibrillation [37].

In recognition of this disconnect, several groups have made a concerted effort to

construct more complete models. Recent work has focused on: improving computa-

tional methods for coupling mechanics and electrophysiology [5, 14, 62]; incorporat-

ing a third field of fluid dynamics to account for the effects of blood flow on cardiac

function [67, 68] (see [52] for a recent review); and developing whole-heart, 3D, and

patient-specific models [27, 41, 64]. The next step will be to integrate the knowledge

gained from these advances in modeling with clinical applications, thereby improving

diagnosis, therapy, and prognosis.
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1.2 Goals of this Dissertation

The overarching goal of this dissertation is to advance the theoretical framework

for modeling orthotropic cardiac electromechanics, incorporating the phenomenon of

stress-assisted diffusion. While this study builds upon previous work in the field (most

notably Cherubini et al. [16, 17], Loppini et al. [42]), our model contributes several

novelties.

A distinguishing feature of our approach is the introduction of the mechanoelec-

trical feedback (MEF) in the conductivity tensor, through a direct dependence on the

Kirchhoff stress; in the literature this is referred to as stress-assisted diffusion (SAD).

As we have discussed, mechanoelectrical feedback is often omitted from cardiac mod-

els. Those that do include MEF generally only account for stretch-activated channels

and not SAD. However, recent studies [16, 42] have demonstrated that SAD exerts

significant effects in electromechanical models of cardiac function. This dissertation

provides further insight into the role of SAD in cardiac electromechanics by investi-

gating its effects in a more advanced model, both in its description of mechanics and

electrophysiology.

While both [16, 42] consider only hyperelastic tissue, we also consider the vis-

coelastic case. Furthermore, our model incorporates a three-field elasticity formula-

tion, motivated by the desire to avoid volumetric locking and to solve directly for

variables of interest. In particular, we solve for the Kirchhoff stress, which we use

explicitly in our incorporation of SAD. This formulation, which includes a pressure-

stabilization term needed in the lowest-order case, is a generalization of the three-field

formulation for nearly incompressible hyperelasticity, designed in Chavan et al. [14]

using quadrilateral meshes.

We further advance the framework put forth by recent studies by including a

more realistic model for ventricular action potential. More precisely, we adopt the

Bueno-Orovio et al. [10] human-specific model, which is generally considered to be the

minimal model required to accurately reproduce action potential morphologies. Both

Loppini et al. [42] and Cherubini et al. [16] investigated SAD using simpler models.

Finally, we implement our model on an idealized 3D geometry, which has not yet

been done for models incorporating SAD. In fact, we are not aware of any existing

literature that has implemented a viscoelastic and anisotropic model incorporating

stress-assisted conductivities in a stress-based formulation, particularly in 3D geome-

tries. Thus, this dissertation contributes a unique framework for studying the effects

of SAD.
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This dissertation is presented as follows. We conclude this chapter with a brief

overview of cardiac function to familiarize the reader with the subject of our work.

In Chapter 2, we describe the mathematical models that we use to construct a fully

coupled electromechanical model of cardiac function. We discuss the mechanical and

electrophysiological components separately, then describe our coupling of the two

fields and the extension to 3D. In Chapter 3, we outline the numerical implementation

of our model. Chapter 4 provides an overview of our results, which we discuss in

Chapter 5, along with possible extensions of our model.

1.3 Overview of the Cardiac Cycle and Physiology

We now provide a brief overview of the cardiac cycle. This chapter is not intended

to be a comprehensive description; instead, we strive to highlight details that are

important from a modeling perspective, lending insight into the assumptions and

decisions we make in constructing our model.

It is important to consider features of the heart at both a macroscopic and mi-

croscopic level. Macroscopically, the heart is comprised of four parts: the left and

right atria and the left and right ventricles. Both sides of the heart follow the same

overall cycle, though the right side of the heart pumps deoxygenated blood into the

lungs, and the left side pumps oxygenated blood into the circulatory system. In this

dissertation, as is common in the field, we focus on the left ventricle. This is partly

for simplicity, but also because the left ventricle is under the highest pressure of the

four sections by far [50], and thus the most prone to developing lethal arrhythmias

[64].

Broadly, the cardiac cycle can be broken into the diastole, or filling phase, and the

systole, or ejection phase [50]. The filling of the ventricles with blood occurs passively

due to a pressure difference, with suction resulting from the release of elastic strain

energy [49]. In contrast, the ejection of blood from the atria into the ventricles and

from the ventricles into the circulatory system is an active process, which we attribute

to the strain created by contraction of the muscle fibers [49].

This leads us to the microscopic level. Cardiac tissue is composed of excitable

muscle cells, called cardiomyocytes, arranged in helical bundles running parallel to

one another and separated by sheets of collagen. Cardiomyocytes are shaped like

elongated cylinders, typically 80 − 100µm long, with a radius of 5 − 20µm [21].

The tissue forms three layers –– the endocardium (inner tissue), myocardium (core

tissue), and epicardium (outer tissue) — to make up the ventricular and atrial walls
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Figure 1.2: Simplified diagram of ventricular tissue layers (a) and transmural config-
uration of muscle fibers and laminar sheets (a-b). Figure taken from [52].

(see Figure 1.2). Though the boundaries between them are not known exactly, the

layers do exhibit slightly different properties [41]; O’Hara et al. [47] present a dataset

for the differences between cells in each layer to complement their highly detailed

model of human action potential.

The heart’s activation system is largely calcium-based. An action potential, or

rapid rise and fall of transmembrane potential, develops automatically in so-called

pacemaker cells in the sinoatrial node [50]. Gap junctions between cells allow for

the transmission of the action potential through the tissue, its arrival triggering the

movement of ions across the cell membrane. Inward currents (largely Na+) are re-

sponsible for depolarizing, and thus exciting, cardiac cells, while outward currents

(largely K+) repolarize the membrane to its resting potential [36]. Depolarization

opens calcium channels in the cell membrane, allowing a slower inward current of

Ca2+ to form. This triggers a larger release of Ca2+ from the sarcoplasmic reticulum,

known as calcium-induced-calcium-release. The subsequent rise in intracellular Ca2+

initiates a response in the muscle fibers, whereby thick filaments (known as myosin)

bind to and pull on thin filaments (known as actin), resulting in contraction [54].

This electrically-induced mechanical response is often called excitation-contraction

coupling, and is an important link between the mechanical and electrophysiological

systems in the heart. A simplified version of this process is depicted in Figure 1.3.

The arrangement of the cardiac fibers is critical to both the electrical and mechan-

ical aspects of cardiac function. The calcium-based activation signal travels up to four

times faster along the fiber axis than in the sheet and normal directions [21, 41, 52].

Furthermore, the contraction caused by the interaction of actin and myosin occurs
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Figure 1.3: Simplified diagram of a cardiac cell, depicting its contractile mechanism.
Figure taken from [52].

along the fiber direction, causing directionally heterogeneous active strain in the ven-

tricular wall [6, 41, 49]. The orientation of the fibers also dictates the manner in

which the heart can bend and twist, governing, for example, the shortening of the

left ventricle from apex to base during contraction [6, 15, 58].

We have omitted a great deal of detail in this overview of the cardiac cycle and

physiology. While we have barely scratched the surface in either respect, we hope that

this chapter has succeeded in providing a glimpse into the complexity of the heart

and motivating the manner in which we attempt to reconstruct it mathematically.





Chapter 2

Mathematical Models

2.1 General Approach

This project deals with the numerical approximation of the active contraction of

the cardiac muscle, and the representation of mechanoelectrical feedback (MEF) us-

ing a recent model of stress-assisted diffusion (SAD) [16]. We thus require a model

that describes both the mechanical and electrical properties of cardiac tissue. We

describe the mechanics using theories from nonlinear elasticity and continuum me-

chanics, which are appropriate for describing the large deformations seen during the

cardiac cycle and approximating the collective behavior of cardiomyocytes. We adopt

an orthotropic constitutive law proposed by Holzapfel and Ogden [30], which expresses

the experimentally observed relationship between stress and strain [45]. We couple

this with a four-variable phenomenological model of human action potential, devel-

oped by Bueno-Orovio et al. [10].

In this chapter, we describe both the mechanical and electrophysiological compo-

nents of our model. We then discuss the coupling between the two, including SAD

and active tension generation. Finally, we describe the calculation of the fiber and

sheetlet directions, which is the extra step required to extend the model to 3D.

2.2 Mechanical Model

We consider a deformable body in its reference configuration Ω ⊂ R
d, d ∈ {2, 3},

with piecewise smooth boundary ∂Ω. We define x0 to be a point in Ω, such that

u(x0, t) = x(x0, t) − x0 : Ω → R
d denotes a displacement field describing the new

position x in the deformed, or current, configuration Ωt (see Figure 2.1). The motion

from point to point is written as x = X (x0, t). An important measure of deformation

in nonlinear continuum mechanics is the deformation gradient F = I + ∇u, which

9
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Figure 2.1: Displacement field of a particle.

maps tangent vectors in the reference configuration to tangent vectors in the current

configuration [29]. Its Jacobian determinant, J = detF = ρ0/ρ, gives the change

in volume due to deformation, where ρ0 and ρ indicate density of the undeformed

and deformed material, respectively. With no motion, F = I, and with no change

in volume, J = 1. Each of these measures of deformation is essential to our model

because the nature of the tissue’s movement is not known in advance [56].

We define two stretch tensors, C = F⊺F and B = FF⊺, as the right and left

Cauchy-Green deformation tensors, respectively. We base our measures of strain on

C, defining its first isotropic invariant as

I1(C) = tr(C),

and its anisotropic, or directionally dependent, pseudo-invariants as

I4,f = f0 ·Cf0 = f · f , I4,s = s0 ·Cs0 = s · s, I8,fs = f0 ·Cs0 = f · s.

I4,i, i ∈ {f, s} measure direction-specific stretch, and I8,fs concerns the angle spanned

by f and s and the relative shear between these directions [26]. Our undeformed coor-

dinate system is defined by (f0(x), s0(x),n0(x)), corresponding to the local preferred

directions of cardiac fibers, transversal collagen sheetlets, and the normal cross-fiber

field n0 = f0×s0, respectively (Figure 2.2). This mutually orthogonal coordinate sys-

tem is necessary to describe the myocardium tissue, which is an orthotropic material

displaying distinct behavior in each direction [30]. While some studies opt instead

for a simpler isotropic or transversely isotropic material law, the consensus in the

field is that an orthotropic law is required to accurately represent cardiac tissue [52].

In 2D, we align f0(x) and s0(x) with the x- and y- axes, but in 3D, calculation of
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Figure 2.2: Simplified diagram of cardiac tissue, depicting its locally orthonormal
coordinate system.

the fiber fields requires further computation to account for rotational anisotropy (see

Section 2.5).

We adopt the constitutive model proposed in Holzapfel and Ogden [30]. Treating

the cardiac tissue as a hyperelastic medium, we derive its first Piola-Kirchhoff stress

tensor from a strain-energy function, which is written in terms of the invariants of C

to guarantee frame indifference [6]. We write

Ψpas(F) =
a

2b
eb(I1−d) +

afs
2bfs

[

ebfsI
2
8,fs − 1

]

+
∑

i∈{f,s}

ai
2bi

[

ebi(I4,i−1)2
+ − 1

]

, (1)

where a, b, ai and bi are material parameters, and (γ)+ := γ for γ > 0, and zero oth-

erwise. The parameters used in our study are given in Table A.1, although it should

be noted that these are generally determined through experimental observations, the

results of which have been shown to vary depending on experimental setup [54].

2.2.1 Activation Mechanisms

We must also consider the ability of cardiac tissue to deform in the absence of external

loads. This is typically done by adopting either an active stress or an active strain

formulation. Rossi [53] carried out a qualitative comparison of the two formulations,

and found that both are appropriate for modeling cardiac deformations. Details of

anisotropic activations can be found in Usyk et al. [66] for active stress and Rossi

et al. [55] for active strain descriptions.
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While the active strain approach is adopted in many instances in the literature (for

example, [6, 17, 49]), and is often favored due to the practicality of measuring strains

directly using imaging techniques [53], the active stress approach is somewhat simpler

and more natural for our needs. Our model incorporates stress-assisted diffusion,

whereby the diffusion tensor depends explicitly on stress, as discussed in Section 2.4.1.

Thus, solving for this quantity directly is convenient. We thus choose to adopt the

active stress formulation for our 2D model, although we find that the active strain

formulation better reproduces physiologically accurate deformation regimes in 3D;

this will be further discussed in Section 2.5.

Active stress. Following an active stress assumption, the activity of the muscle

cells is accounted for by splitting the stress tensor into an active component and the

standard passive component [3], such that

P = Ppas +Pact. (2)

It is typical to use P, the first Piola-Kirchhoff stress tensor, when working in the

reference configuration. A simple transformation gives us the Cauchy stress tensor

σ = J−1PF⊺, which is natural to use when working in the current configuration.

We obtain our definition of Ppas from Equation (1),

Ppas =
∂Ψpas

∂F
− pJF−⊺, (3)

where p is solid hydrostatic pressure. We assume that the active stress component

exhibits different behavior in each local direction, with its intensity depending on the

degree of stretch in each direction and the scalar field of active tension Ta, whose dy-

namic behavior will be specified later on in Section 2.4.2. This gives us an orthotropic

active stress tensor,

Pact =
Ta
I4,f

Ff0 ⊗ f0 + k
Ta
I4,s

Fs0 ⊗ s0 + k
Ta
I8,fs

Fn0 ⊗ n0. (4)

Here, k is a positive constant representing transverse fiber stress development as a

fraction of axial tension, set to k = 0.3 to agree with experimental results [66].

Check this is final version.
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Active strain. An alternative approach is to instead decompose the deformation

gradient into an active and passive component, such that

F = FpasFact.

Equation (1) now defines Ψ(Fpas), and Equation (3) now defines the entire first Piola

Kirchoff stress tensor P. Instead of defining an orthotropic model for Pact, we adopt

the orthotropic model for Fact used in Cherubini et al. [17],

Fact = I+ γff0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0, (5)

where the coefficients γi, i ∈ {f, s, n} are smooth scalar functions of cell shortening

ξ, describing the macroscopic stretch in each respective direction. These parameters

serve as the analog to active tension Ta in the active stress formulation. Following

the method proposed by Rossi et al. [55], we define these as

γf = ξ, γs = (1 + ξ)−1(1 +K0ξ)
−1 − 1, γn = K0ξ.

We use a simple sinusoidal function to represent ξ, and vary K0 according to position

within the wall.

2.2.2 Force Balance

We now consider force balance. By the balance of linear momentum, and adopting

an incompressibility constraint, we have

ρ ∂ttu−∇ ·P = ρ0b in Ω× (0, tfinal], (6a)

ρJ − ρ0 = 0 in Ω× (0, tfinal]. (6b)

From here, we will assume zero body load such that b = 0. We opt to retain the

inertial term due to its potentially stabilizing effect, though its impact on the electrical

and mechanical behavior of the tissue was found by Costabal et al. [20] to be minimal,

and it is typical to assume quasistatic behavior [52].

The incompressibility constraint requires that volume is perfectly preserved, so

that compression in one direction leads to extension in another. We require that

tissue density is constant, and thus J = 1. This is a common and reasonable assump-

tion, as studies cited in Holzapfel and Ogden [30] demonstrated, although cardiac

tissue is not actually perfectly incompressible. The volume of the ventricular wall,

which makes up a large portion of the total volume of the heart, actually changes

significantly according to blood flow [26]. For this reason, some models adopt a
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nearly-incompressible formulation, constructed using a penalty term (see, for exam-

ple, [19, 26]).

Balance of angular momentum dictates that the Cauchy stress tensor σ = J−1PF⊺

must be symmetric, thus the Kirchhoff stress tensor Π = PF⊺ is symmetric [29,

60]. Part of the novelty of our approach will be in dealing with Π rather than

P, motivated partly by the ease with which it can be stored computationally and

the convenience of solving for a value explicitly used in our incorporation of SAD

(discussed in Section 2.4).

2.2.3 Viscoelasticity

One potential modification of our model is to include viscoelastic effects. In a study

by Sommer et al. [59], extension and shear tests demonstrated the viscoelastic (as well

as nonlinear and orthotropic) properties of myocardial tissue, believed to be related to

the molecule titin [44]. Indeed, all materials exhibit both elastic and viscous behavior

– a purely elastic or purely viscous material is an idealization. Thus, although most

cardiac models assume purely elastic behavior (including recent works [17] and [42]),

this simple modification could make our model more realistic.

To incorporate viscosity, we can decompose the first Piola Kirchhoff stress tensor

P into an elastic component and a viscous component,

P = Pe +Pv. (7)

Depending on whether one adopts the active stress or active strain formulation, Pe

may decompose into the active and passive components already discussed in Sec-

tion 2.2.1.

Whereas elasticity concerns stress and strain, viscosity concerns the rate of strain

[38]. We will thus construct the viscous component of stress by considering the rate of

change of our deformation gradient and strain tensors. We derive these from x,u, and

F, using the methods described in Holzapfel [29]. Recalling that X (x0, t) is motion,

we can write

F =
∂X (x0, t)

∂x0

,

Ḟ =
∂

∂t

(

∂X (x0, t)

∂x0

)

.



2.2. MECHANICAL MODEL 15

Note that this is equivalent to the material velocity gradient, referring to the reference

configuration. We rewrite this as

Ḟ = ∇v0(x0, t),

and push forward into the current configuration to obtain the spatial velocity gradient,

∇v(x, t) = ḞF⊺,

which will help us construct the rate of change of our Cauchy strain tensors. First,

we decompose the spatial velocity gradient into the rate of deformation tensor and

the spin tensor,

v(x, t) = d+w =
1

2
(∇v +∇v⊺) +

1

2
(∇v −∇v⊺).

We then have

Ċ = 2FdF⊺, Ḃ = (∇v)B+B(∇v)⊺.

We adopt the model proposed by Karlsen [33], in which the viscous component of

the Cauchy stress is given by

σv = αeβİ1Ḃ. (8)

Using a simple Piola transformation, we pull back to the reference domain and acquire

the viscous component of the first Piola-Kirchhoff stress tensor,

Pv = Jσv F
−⊺.

Throughout this dissertation, we perform simulations for both the hyperelastic

and viscoelastic cases, offering a comparison of the two when possible. For further

detail on the topic of viscoelasticity, we encourage the reader to consult Kumaran

[38].



16 CHAPTER 2. MATHEMATICAL MODELS

2.2.4 Full Mechanical System

We now define

G(u) :=
∂Ψpas

∂F
F⊺ +PactF

⊺,

or, in the case of viscoelasticity,

G(u) :=
∂Ψpas

∂F
F⊺ +PactF

⊺ +Pv F
⊺.

Then

Π = G(u)− pJI, (9)

motivating the interpretation of G(u) as the stress without a contribution from pres-

sure. This definition is necessary in the active stress formulation, in which we wish

to solve directly for Π.

We now have the components we require to model the mechanical behavior of

cardiac tissue. Our full mechanical system consists of Equation (6a) written in terms

of Π, Equation (6b), and Equation (9):

ρ ∂ttu−∇ ·ΠF−⊺ = 0, (10a)

J − 1 = 0, (10b)

Π− G(u) + pJI = 0, (10c)

endowed with appropriate boundary conditions according to the particular experi-

mental setting. In 2D, we assume a robin boundary condition,

ΠF−⊺ν + ηJF−⊺u = 0 on ∂Ω× (0, tfinal], (11)

where ν is the outward unit normal vector on ∂Ω, and η is a stiffness coefficient.

This type of boundary condition is a good choice as it allows enough movement to

simulate the flexibility of real tissue, but satisfies the need to restrict the movement

of the boundary to ensure well-posedness. In 3D, we used mixed boundary conditions

to fix the ventricular base and simulate the pressure exerted by blood flow; the exact

forms of these conditions are given in Section 2.5.

Recall that the goal of this dissertation is to advance the theoretical framework for

modeling cardiac electromechanics. We have now outlined the mechanical component

of our model, and we continue by describing the electrical component.
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2.3 Electrophysiological Model

The other main component of our model is a four-variable phenomenological model

for human action potential, developed by Bueno-Orovio et al. [10]. This model is

simpler than more detailed physiological models ([31] and [63] for example, with up

to 67 variables), but is considered to be the minimal model required to reproduce

physiological action potential morphologies. In fact, the flexibility of the minimal

model allows it to recreate the morphologies produced by the Ten Tusscher et al.

[63] physiological model simply by tuning parameters. Because of the computational

costs involved in our work, augmented by the technical complexity of coupling with

the mechanical equations and eventually solving on a realistic 3D domain, the Bueno-

Orovio et al. [10] model’s minimal computational requirements are of great benefit.

This is also the motivation behind the choice to work with a monodomain model of

electrical propagation as opposed to a bidomain model. In differentiating between the

intracellular and extracellular domains, the bidomain model is more physiologically

accurate because it accounts for the potential difference across the cell membrane

[61]. Reduction to the monodomain model is a nontrivial simplification, requiring an

assumption of equal anisotropy rates in the two domains. However, it is advanta-

geous in its computational efficiency, and is thus common practice in the field [9, 53].

Multiple studies have investigated the differences in the results given by each model,

and the consensus is that the difference is extremely small (1–2%), and smaller than

the error introduced by discretization [9, 51]. Extension to the bidomain model is not

of great difficulty, but at this time, we do not consider it to be a priority worth the

extra computational cost.

Despite these simplifications, however, the Bueno-Orovio et al. [10] model adds

additional accuracy and complexity beyond what is accounted for in similar existing

studies. The modified two-variable Karma [34] model used in Cherubini et al. [17]

and the three-variable Fenton and Karma [21] model used in Loppini et al. [42] are

sufficient for capturing some important features, but fail to properly represent the

morphology of the human action potential. Furthermore, it is important to note that

the Bueno-Orovio et al. [10] model is specific to human ventricular action potentials,

unlike the simpler models which were fitted to generic cells.
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The propagation of electric potential v in cardiac tissue can be described by a

reaction-diffusion system,

χ
∂v

∂t
−∇ · (D∇v) = Iext − g(v, ~r) in Ω× (0, tfinal], (12a)

d~r

dt
= ~m(v, ~r) in Ω× (0, tfinal], (12b)

where χ is the ratio of membrane area to tissue volume, D is the conductivity tensor,

~r are ionic quantities, and Iext is a spatio-temporal external stimulus applied to the

medium (defined in Section 3.2). We impose a no-flux boundary condition and the

initial conditions proposed in Bueno-Orovio et al. [10],

D∇v · ν = 0 on ∂Ω× (0, tfinal], (13a)

v = 0 in Ω× {0}, (13b)

~r = [1, 1, 0] in Ω× {0}, (13c)

where ν is the outward unit normal vector on ∂Ω. We emphasize that D is a tensor

quantity to allow for directional differences in the conductivity properties of cardiac

tissue [61]. We can rescale the dimensionless variable v to dimensions of mV within

the physiological range using the relation VmV = 85.7v − 84.

We assume that the total ionic current consists of a fast inward (fi), slow in-

ward (si) and slow outward current (so),

g(v, ~r) = gfi(v, ~r) + gsi(v, ~r) + gso(v, ~r),

where the adimensional individual currents are given by

χ gfi(v, ~r) = −r1H(v − θ1)(v − θ1)(vv − v)/τfi,

χ gsi(v, ~r) = −H(v − θ2)r2r3/τsi,

χ gso(v, ~r) = (v − v0)(1−H(v − θ2))/τo +H(v − θ2)/τso.

The kinetics of the gating variables ~r are given by

~m(v, ~r) =







(1−H(v − θ1))(r1,∞ − r1)/τ
−
1 −H(v − θ1)r1/τ

+
1

(1−H(v − θ2))(r2,∞ − r2)/τ
−
2 −H(v − θ2)r2/τ

+
2

((1 + tanh(k3(v − v3)))/2− r3)/τ3






.

Here H is the Heaviside step function, and the time constants and infinite values are

defined as:

τ−1 = (1−H(v − θ−1 ))τ
−
1,1 +H(v − θ−1 )τ

−
1,2,
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τ−2 = τ−2,1 + (τ−2,2 − τ−2,1)(1 + tanh(k−2 (v − v−2 )))/2

τso = τso,1 + (τso,2 − τso,1)(1 + tanh(kso(v − vso)))/2

τ3 = ((1−H(v − θ2))τ3,1 +H(v − θ2)τ3,2,

τo = ((1−H(v − θ0))τo,1 +H(v − θ0)τo,2

r1,∞ =

{

1, v < θ−1
0, v ≥ θ−1

,

r2,∞ = ((1−H(v − θ0))(1− v/τ2,∞) +H(v − θ0)r
∗
2,∞.

The model proposed in Bueno-Orovio et al. [10] has a heterogeneous character

that we do not consider in our study. They develop separate parameter sets to

reproduce experimental results for the epicardium, myocardium and endocardium, as

well as parameter sets that mimic the results of two more complicated ionic models

for human ventricular cells. For simplicity, we use the parameter set developed for

the epicardium, assuming that it is consistent throughout the cardiac wall. These

parameter values are given in Table A.2.

This section outlined our model for the evolution of voltage and ionic species

during the cardiac cycle. At this point, we have the components necessary to describe

both mechanical deformation and the propagation of action potential in cardiac tissue;

in the next section, we consider the interaction of these subprocesses.

2.4 Electromechanical Coupling

A major focus of our model is electromechanical coupling, which we incorporate

bidirectionally. We account for the effect of tissue deformation on conductivity via

stress-assisted diffusion, and consider excitation-contraction coupling in our model of

active tension.

2.4.1 Stress-Assisted Diffusion

Mechanoelectrical feedback (MEF) is the mechanism by which the mechanical defor-

mation of the cardiac tissue influences its electrophysiological properties. There are

two main mechanisms of MEF: stretch-activated channels, and the recently proposed

stress-assisted diffusion (SAD), which describes the effect of tissue deformation on the

spreading of the action potential through the tissue. Most of the literature address-

ing MEF does not include SAD, but rather incorporates stretch-activated channels
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by including a second reaction term iSAC(v,F) in the equation for v (12a). This term

induces an additional inward current that adds to the depolarization in the form

iSAC(v,F) = C
(

√

I4,f − 1
)

(v − E),

where E and C are the reversal potential and the maximal conductance of the chan-

nels, respectively. This term is active only in the case of positive strains, or I4,f ≥ 1

(see [36]). In our study, we focus exclusively on SAD, but we refer the interested

reader to Loppini et al. [42] for a comparison of the two mechanisms.

We include the phenomenon of SAD by constructing the conductivity tensor D

such that it depends directly on the Kirchhoff stress. This is one reason why it

is convenient to solve for stress directly in our model. We advance the theoretical

framework put forward in previous works, incorporating the anisotropy introduced by

stress proposed in Cherubini et al. [16] (and later exploited for simplified 2D cardiac

electromechanics in Loppini et al. [42]), as well as the inherent anisotropy proposed

in Cherubini et al. [17]. We set

D(v,F,Π) = [D0 +D1v]JC
−1 +D0JF

−1f0 ⊗ f0F
−⊺/2 +D2F

−1ΠF−⊺, (14)

where the values for Di, i = {0, 1, 2} are displayed in Table A.3. We adopt the value

of D0 calculated in Bueno-Orovio et al. [10] specifically for human ventricular cells.

The values of D1 and D2 are selected such that D0 is the dominant coefficient.

The first term accounts for linear and nonlinear conductivity, or self diffusion

depending on v. The second term accounts for anisotropy by encouraging diffusion in

the direction of the fiber fields. The third term accounts for stress-assisted diffusion,

whereby diffusion increases in areas of higher stress. The inclusion of both voltage-

and stress-dependent terms in the conductivity tensor is, to our knowledge, a novel

element of our model.

This definition of the conductivity tensor is an example of strong coupling, whereby

the monodomain equations depend on the deformed configuration [19]. A Piola trans-

formation is thus required to pull back into the reference configuration, which is why

each term includes a factor of C−1 = F−1F−⊺. This nonlinear dependence of the

conductivity tensor on the deformation gradient suggests strain-enhanced tissue con-

ductivity (also referred to as geometric feedback [19]).
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2.4.2 Active Tension

In the active stress formulation, the dependence of active mechanical deformation on

excitation-contraction coupling is encoded through Ta, representing active tension in

the cells. A simple model for active tension could be constructed using a sinusoidal

function varying in time, for example, to mimic the tension generated during the

cardiac cycle.

As discussed in Section 1.3, however, excitation-contraction coupling is largely

calcium-driven. We thus develop a simplified model for active tension Ta depending

only on calcium dynamics. The Bueno-Orovio et al. [10] model does not explicitly

account for calcium, but its dynamics are approximately represented by the model’s

third gating variable r3 [52]. Using r3 as a proxy for calcium concentration, we write

Ta − α1D0 ∆Ta = α2 r3, (15)

where α1 and α2 are parameters determining the steepness of the gradient and the

range of Ta, respectively, given in Table A.3. The smooth gradient produced by Equa-

tion (15) is appropriate as it ensures that active tension generation reflects the intra-

cellular calcium concentration, but not its fast dynamics. This also helps contribute

to the regularization of stress and pressure, which will be discussed in Section 3.1.

It is also common to model active tension with a dependence on stretch, a nonlin-

ear function of I4,f [49, 52]. We opt to retain the formulation given in Equation (15)

for now, although this could be an area for further development.

We have now discussed each of the main components of our electromechanical

model of cardiac function: the mechanics, the electrophysiology, and the electrome-

chanical coupling. We conclude this chapter by describing how we extend this coupled

model to 3D.

2.5 Extension to 3D

Extension to 3D requires us to reconsider our boundary conditions, calculate fiber

and sheetlet directions, and perhaps most importantly, consider the physiological

accuracy of the model. Each of these components requires an understanding of the

geometry in question. We thus begin with a description of our 3D domain; while this

perhaps pertains more to the topic of Chapter 3, it is natural to discuss it here.
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Figure 2.3: 3D domain for a simplified left ventricle, with fiber and sheetlet directions
(left and right, respectively). The boundaries in Equations (17)-(19) and (20b) are
denoted by ∂Ωbase, ∂Ωendo, and ∂Ωepi.

3D Domain. We implement our model on an idealized left-ventricular geometry.

This consists of a truncated ellipsoid constructed with tetrahedral meshes using

GMSH [25]. Our boundaries are defined by ∂Ωbase, ∂Ωendo, and ∂Ωepi, which are

clearly identified in Figure 2.3. We ultimately hope to implement our model on

anatomically realistic meshes; implementing our model on this idealized geometry

serves as a precursor to applying it to the more detailed geometries.

Boundary conditions. We impose a zero normal displacement condition on the

base, a traction condition consisting of a time-dependent pressure on the endo-

cardium, and a Robin condition on the epicardium. The stiffness coefficient of the

Robin condition varies spatially, following the method proposed in Cherubini et al.

[17]. We define

η(y) :=
1

yb − ya

[

ηa(yb − y) + ηb(y − ya)
]

, (16)

where ya and yb denote the vertical positions of the apex and base, respectively, and

ηa and ηb denote the stiffness coefficients of the apex and base, respectively. We

require that ηa < ηb, so that stiffness is greatest at the base and decreases along the

central axis. This reproduces the stiffness imposed by the contact of the muscle with
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the aortic root, which is resistant to movement, and the more flexible pericardial sac

and surrounding organs. Our boundary conditions are thus

u · ν = 0 on ∂ΩBase × (0, tfinal], (17)

Pν − pNJF
−⊺ν = 0 on ∂ΩEndo × (0, tfinal], (18)

Pν + ηJF−⊺u = 0 on ∂ΩEpi × (0, tfinal], (19)

where ν is the outward unit normal vector on ∂Ω, pN is a time-dependent prescribed

boundary pressure, and η is the spatially-dependent stiffness given in Equation (16).

We define a simple model for pN ,

pN = p0 sin
2(πt),

to mimic the variation in the pressure exerted by the blood as it enters and leaves

the ventricle. Values for ηa, ηb, and p0 are given in Table A.1.

Calculation of fiber fields. To model cardiac activity in 3D we require the fiber

and sheetlet directions, as both the mechanical and electrical systems are direction-

ally heterogeneous (refer to Section 1.3). We can model these coordinates using the

method of Rossi et al. [55], also used in Cherubini et al. [17], for example. We begin

by defining the center axis of the left ventricle as a unit vector k0, pointing from apex

to base. As we must account for rotational anisotropy within the ventricular wall,

we set the limits of fiber rotation, or the endocardial and epicardial fiber angles, to

θendo = 60◦ and θepi = −50◦, respectively.

We calculate sheetlet direction and position within the ventricular wall by solving

a mixed Poisson problem for a potential φ and sheetlet direction ψ:

−∇ · ψ = 0 and ψ = ∇φ in Ω, (20a)

ψ · ν = 0 on ∂Ωbase, φ = 0 on ∂Ωendo, φ = 1 on ∂Ωepi. (20b)

A discrete solution ψh is found using piecewise linear finite elements, and the final

sheetlet directions are calculated by normalization, such that s0 = ψh/‖ψh‖. We then

take the vector rejection of k0 from s0 (or the component of k0 orthogonal to s0),

k̂0 = k0 − (k0 · s0)s0, and cross its normalization with s0 to obtain the so-called flat

fiber field, f̂0 = s0× k̂0/‖k̂0‖. These fibers lie in the sheetlet planes, but we must now

account for rotational anisotropy, where the degree of rotation of the fibers depends
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on their position within the wall, given by the potential φ. The correctly oriented

fibers are thus given by

f̃0 = f̂0 cos θ(φh) + s0 × f̂0 sin θ(φh) + s0(s0 · f̂0)[1− cos θ(φh)],

where θ(φh) := [(θepi − θendo)φh + θendo]/180π is the function defining fiber angle

variation. Finally, we normalize, to obtain f0 = f̃0/‖f̃0‖. Our third direction is given

by n0 = f0×s0, providing a set of locally orthonormal coordinates. This can be seen

in Figure 2.3, where the arrows indicate the fiber directions (left) and sheetlet normal

directions (right). We note that this method works well only for single ventricle

models; for biventricular geometries, the method must be redefined.

Physiological accuracy. Preliminary inspection reveals that our mechanical sys-

tem using the active stress formulation does not yield physiologically accurate de-

formations when implemented on the 3D domain. Due to the contraction of cardiac

muscle fibers along their axis in response to electrical activation, we should see con-

traction of the ventricle in the upward direction against a rigid base. To satisfy

incompressibility, this should be complimented by a thickening of the ventricular wall

[15, 58]. However, our model of active stress displays stretching in the downward

direction instead. To investigate this, we implement the active strain formulation in

3D and compare the two models.

(a) (b)

Figure 2.4: Comparison of displacement in active stress and active strain regimes.
Ventricle color represents magnitude of displacement, while arrows indicate displace-
ment direction.
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Figure 2.4 shows a cross section of the ventricle at t = 500ms for both formula-

tions, using the same parameter values where applicable. Note that both the stress

and strain formulations result in torsion, or twisting, of the ventricle (which is ex-

pected), but only the active strain formulation yields wall-thickening and sufficient

shortening from apex to base. These geometrical changes are important, as they fa-

cilitate the ejection of blood from the ventricle [15, 58]. For the sake of physiological

accuracy, we thus conduct our 3D analysis of stress-assisted diffusion using the active

strain formulation. While it lies outside the scope of this dissertation, the discrep-

ancies between the models are of great importance, and will be the focus of future

work.





Chapter 3

Numerical Methods

In this chapter, we describe the numerical algorithm used to implement our model.

We also discuss the so-called S1-S2 stimulation protocol, which allows us to simulate

the effect of reentrant arrhythmias. Finally, we present the idealized left ventricular

geometry which we use to test our model in 3D.

3.1 Weak Formulation and Galerkin Discretization

To solve this system numerically, we use a mixed-primal finite element method (see

[56] for details on a similar derivation). This method is widely recognized for being

extremely versatile, particularly in its applicability to complicated geometries. The

term mixed refers to the simultaneous approximation of different physical quantities,

which is beneficial in that it respects the structure of our governing equations in the

mechanical system. For the sake of simplicity, we concentrate the presentation in this

section to the case of the active stress formulation; modification to the active strain

formulation is straightforward. For a detailed explanation of the mixed finite element

method, we refer to Gatica [23].

27
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We consider the problem in its reference configuration, as the current configuration

is unknown, and cast it into its variational form by integrating against test functions.

For t > 0, find (u, p,Π) ∈ H1(Ω)×L2(Ω)×L
2(Ω) and (v, ~r, Ta) ∈ [H1(Ω)]5 such that

∫

Ω

ρ ∂ttu · v +

∫

Ω

Π : ∇vF−⊺ −

∫

∂Ω

ηF−⊺ u · v = 0 ∀v ∈H1(Ω), (21a)
∫

Ω

[J − 1] q = 0 ∀q ∈L2(Ω), (21b)
∫

Ω

[Π− G(u) + pJI] : τ = 0 ∀τ ∈L
2(Ω), (21c)

∫

Ω

∂v

∂t
w +

∫

Ω

D(v,F,Π)∇v · ∇w =

∫

Ω

[

g(v, ~r) + Iext

]

w ∀w ∈ H1(Ω), (21d)

∫

Ω

∂~r

∂t
· ~s =

∫

Ω

~m(v, ~r) · ~s ∀~s ∈ [H1(Ω)]3, (21e)
∫

Ω

α1D0 ∇Ta · ∇ϕ+

∫

Ω

Ta ϕ =

∫

Ω

α2 r3 ϕ ∀ϕ ∈ H1(Ω). (21f)

Here we define L2(Ω) to be the Lebesgue space of square integrable functions on

Ω, and H1(Ω) to be the Sobolev space of of square-integrable functions with square-

integrable derivatives, that is

L2(Ω) =
{

v :

∫

Ω

v2dV <∞
}

, H1(Ω) =
{

v ∈ L2(Ω) :
∂v

∂Xi

∈ L2(Ω), i = 1, ..., d
}

.

We let H1(Ω) = H1(Ω)d, and L
2(Ω) = L2(Ω)d×d. Our choice of function space is

motivated by the need to compute the gradients of v, w, Ta, and ϕ, and to satisfy

regularity requirements.

It is important to note the significance of the three-field elasticity formulation.

This approach allows us to avoid the phenomenon of volumetric locking, or unphys-

ically small deformation, as discussed for the case of cardiac biomechanics in Baroli

et al. [7]. While other methods exist to address this issue, such as using higher

order elements [6], stabilized mixed formulations [57], or Lagrange multiplier-based

methods [28], our approach not only prevents locking [39] but also directly solves for

variables of interest [56]. This is particularly helpful in accommodating our model’s

electromechanical coupling, in which the the conductivity explicitly depends on the

stress tensor.

The solvability analysis of nonlinearly coupled problems such as (21) is well beyond

the scope of this dissertation. We mention nevertheless that the coupling of linear



3.1. WEAK FORMULATION AND GALERKIN DISCRETIZATION 29

elasticity and stress-assisted diffusion problems has been recently addressed in the

context of mixed-primal formulations in Gatica et al. [24]. The tools required to

establish well-posedness involve fixed-point theorems, compactness arguments, higher

regularity, and the Babuška-Brezzi and Lax-Milgram theorem (for a simple review of

these theorems, we again refer to Gatica [23]). For the case of hyperelasticity and

nonlinear bidomain equations, the theoretical aspects involve much more technical

arguments, and a first attempt has been advanced in Andreianov et al. [4]. The

satisfaction of the requirements is still an area of active research in the community

and so we simply proceed under the assumption that (21) is well-posed.

We discretize our problem using a mixed-primal Galerkin approach based on the

variational form given above. We split Ω into triangles or tetrahedra K of maximum

diameter hK , and call this partition Th. The meshsize is then h := max{hK : K ∈ Th}.

We seek a piecewise linear approximation of displacement, and piecewise constant

approximations of solid pressure and Kirchhoff stress entries. All unknowns in the

electrophysiological system (the voltage and gating variables) are approximated with

Lagrange finite elements, which are piecewise linear and continuous. We seek our

approximations in the finite-dimensional spaces Vh ⊂ H1(Ω), Qh ⊂ L2(Ω), Th ⊂

L
2(Ω), Wh ⊂ H1(Ω), defined in the general case of arbitrary order k ≥ 0, as follows:

Vh := {vh ∈ H1(Ω) : vh|K ∈ Pk+1(K)d, ∀K ∈ Th},

Qh := {qh ∈ L2(Ω) : qh|K ∈ Pk(K), ∀K ∈ Th},

Th := {τh ∈ L
2(Ω) : τh|K ∈ Pk(K)d×d, ∀K ∈ Th},

Wh := {wh ∈ H1(Ω) : wh|K ∈ Pk+1(K), ∀K ∈ Th},

where Pr(R) denotes the space of polynomial functions of degree s ≤ r defined on the

set R. In the 2D case, we use lowest order elements (k = 0).

To discretize in time, we partition our time interval of interest [t0, tmax = 600ms]

into discrete steps of size ∆t = tn+1− tn = 0.3ms. We select this temporal resolution

based on the finding by Cherubini et al. [17] that this is the coarsest possible time

step that produces conduction velocities in physiological ranges.

We use a first-order semi-implicit method to to solve for our unknowns at time

tn+1, letting x
n+1 denote the value of a given variable x at time tn+1. We use backward

Euler time integration to advance the linear part of diffusion implicitly, but calculate

nonlinear reaction terms and coupling via stress-assisted diffusion explicitly. The

advantage of this scheme is that all nonlinear terms in the kinetic equations are
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calculated from known quantities (vnh , ~r
n
h ). Our fully discrete system can be expressed

as follows:

For each n = 0, 1, . . .: find (Πn+1
h ,un+1

h , pn+1
h ) and (vn+1

h , ~r n+1
h , T n+1

a,h ) such that

ρ

∫

Ω

un+1 − 2un + un−1

∆t2
· vh +

∫

Ω

Πn+1
h

: ∇vhF
−⊺(un+1

h ) (22a)

−

∫

∂Ω

ηF−⊺(un+1
h )un+1

h · vh = 0 ∀vh ∈ Vh, (22b)
∫

Ω

[J(un+1
h )− 1] qh = 0 ∀qh ∈ Qh, (22c)

∫

Ω

[Πn+1
h − G(un+1

h ) + pn+1
h J(un+1

h )] : τh = 0 ∀τh ∈ Th, (22d)

∫

Ω

vn+1
h − vnh
∆t

wh +

∫

Ω

D(vnh ,F(u
n
h),Π

n
h )∇v

n+1
h · ∇wh (22e)

−

∫

Ω

[

g(vnh , ~r
n
h ) + Iext

]

wh = 0 ∀wh ∈ Wh, (22f)

∫

Ω

~r n+1
h − ~r n

h

∆t
· ~sh −

∫

Ω

~m(vnh , ~r
n
h ) · ~sh = 0 ∀~sh ∈ Wh, (22g)

∫

Ω

α1D0 ∇T
n+1
a,h · ∇ϕh +

∫

Ω

T n+1
a,h ϕ−

∫

Ω

α2 r
n
3 ϕ = 0 ∀ϕh ∈ Wh. (22h)

We find that with lowest order elements in the 2D case, our numerical method

converges to a solution only in certain cases if the meshes are constructed from trian-

gular and not quadrilateral cells. To address this, we stabilize the pressure by adding

a bilinear jump term in the weak formulation of the problem. This effectively penal-

izes a jump in pressure between adjacent cells, minimizing the appearance of spurious

oscillations in the solution. This type of modification can be found in the literature

as a method of solving problems such as the Stokes’ equations with low order finite

elements [12, 46].

We reformulate the discrete incompressibility condition as

∫

Ω

[J − 1] qh +
∑

e∈Eh

∫

e

κhe[ph]h[qh]h = 0 ∀qh ∈ Qh, (23)

where e ∈ Eh is an edge in the set of edges contained in the mesh, he is the length

of a given edge, [γ]h indicates the jump in γ across the cell boundaries, and κ is a

regularization parameter. After spatio-temporal discretization, this becomes

∫

Ω

[J(un+1
h )− 1] qh +

∑

e∈Eh

∫

e

κhe[p
n+1
h ]h[qh]h = 0 ∀qh ∈ Qh. (24)
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We tune κ so that the adjustment to our original formulation is as small as possible so

as not to disturb the structure of the problem, but large enough to penalize pressure

jumps and provide stability. Note that only the discrete problem is actually affected,

as there is no jump in the continuous case; thus, we have not modified our governing

equations.

Of course, we must acknowledge that the scheme presented in (22) introduces lag

into our system because we calculate the reaction terms with old data. With a small

enough time step, however, this does not seem to cause a problem — the dynamics

still behave as expected. Other more detailed reaction models require much more

sophisticated time-advancing schemes, such as Rush-Larsen or many-stage Runge

Kutta methods, for example. In our case, we accept the additional error in exchange

for the computational benefits. Nevertheless, this is an area that future iterations of

this model may well improve upon.

Considering the timescales on which these processes occur can further assist in

reducing the computational load. Electrophysiological changes take place on a much

faster timescale and with steeper spatial gradients than do mechanical changes, at

least macroscopically. Thus, we solve the electrophysiological equations at each

time step, but solve the mechanical equations at every 5th time step, such that

∆tmech = 5 ·∆telectro. Some have further exploited these differences in discretization

requirements, using a coarser spatial mesh for the mechanics than for the electrophys-

iology. However, with strong coupling between the mechanics and the electrophysiol-

ogy, as we have, the imperfect overlap between different meshes would be problematic

and increase model complexity [5].

We implement our model in FEniCS [2], an open-source computing platform for

solving partial differential equations using the finite element method. By default,

FEniCS solves nonlinear problems using Newton’s method. We specify that the linear

system occurring in the Newton iteration will be solved by LU factorization, with

iterates terminating after a tolerance of 1e−7 on the l∞-norm of the residual has

been achieved. We take advantage of the University of Oxford’s remote machine

shadowcat, with 36 cores and 768GB RAM, to run our code.
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3.2 S1-S2 Excitation Protocol

The initiation, maintenance, prevention and treatment of so-called reentrant waves is

a major focus of current research due to their implication in atrial and ventricular fib-

rillation [61]. We are thus interested in investigating the formation of spiral reentrant

waves in our model setup, following the stimulation protocol described in Karma [35].

In 2D, we excite the entire left edge of the tissue with a stimulus labeled S1, creating

a planar wave moving evenly through the tissue. An asymmetric stimulus (such as

a square or strip), labeled S2, is then applied during the vulnerable window near the

end of the refractory period, when some of the tissue has recovered excitability but

depolarization is still blocked elsewhere. This causes unbalanced excitation, which

can lead to the formation of a spiral wave. We will define the spiral front as the edge

of the spiral wave, where the excitation front meets the repolarization waveback of the

action potential. In our simulations, both waves have amplitude 3 and duration 3ms.

The S2 stimulus, occurring at t = 330ms and t = 335ms in 2D and 3D, respectively,

is a square wave in the bottom left quadrant or octant, respectively. These stimuli

are included as Iext in Equation (12a). For example, in 2D, we have

Iext =

{

1, x ≤ 0.5L, y ≤ 0.5L, t ∈ [335, 338],

0, otherwise,
(25)

where L is the side length of a square slab of tissue.



Chapter 4

Results and Analysis

In this chapter we present the results obtained from implementing our model in

FEniCS [2]. In the interest of reproducibility, we have included basic examples of the

code written for this dissertation in a GitHub repository located at

https://github.com/ampropp/MMSC-Dissertation.

4.1 Illustrating the Need for Pressure Stabiliza-

tion

The pressure profile from simulations performed without and with the pressure stabi-

lization modification are shown in Figure 4.1. These were conducted with α2 = 0.01

and η = 0.001. The difference is striking – the pressure stabilization method was

extremely successful. The reader may thus assume that all 2D results that follow in

this chapter were obtained using this pressure stabilization method.

Figure 4.1: Comparison of pressure at t = 348ms for simulations performed without
(left) and with (right) the pressure stabilization modification. Simulations were per-
formed under identical conditions except for the modification described in Section 3.

33
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4.2 Verification of numerics

In order to verify our numerical method and investigate convergence, we construct

an accuracy test using the method of manufactured solutions, following the method

of Bürger et al. [11]. We conduct this analysis for the active stress formulation, with

the constitutive law proposed by Holzapfel and Ogden [30] and given in Equation (1).

Considering a square 2D domain Ω = (0, 1)2, we construct a smooth exact dis-

placement, smooth exact transmembrane potential, and smooth reaction functions.

We then calculate load and source terms that satisfy the governing equations. Fi-

nally, we measure errors between the exact and approximate solutions on meshes of

increasing refinement, and evaluate the rate of convergence in suitable norms. We

expect first order convergence due to our choice of finite element spaces.

We define a simplified steady-state system,

Π− G(u)− pJI = 0,

−∇ · (ΠF−⊺) = f

Ta −∇ · (D0 ∇Ta)− w = g,

−∇ · ([D0JC
−1 +D1JF

−1ΠF−⊺]∇v)+

v + (1− v) vw = j,

w − w2 + v = k,

which includes the monodomain equations, with stress-assisted diffusion and simple

cubic and quadratic kinetics. Here, f, g, j and k are source terms constructed such

that the closed-form solutions to the system defined above are given by the smooth

functions

Π = G(u)− pJI , constructed from u, p, v, w, Ta,

u =
(

0.1 sin(πx) cos(πy), 0.1 cos(πx) cos(πy)
)

,

p = 0.1 sin(πx) sin(πy),

v = 0.1 cos(πx) cos(πy),

w = 1 + 0.1 cos(πx) sin(πy) sin(πx),

Ta = 1 + 0.1 cos(πx) sin(πy).

The results of this accuracy test are given in Tables 4.1 and 4.2. Error is cal-

culated for each entity in its natural norm, and convergence rates are calculated as
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r(x) = log
(

e(x)/ẽ(x)
)

/ log(h/h̃), where e and ẽ denote the errors generated on con-

secutive meshes of size h and h̃, respectively. We generally achieve the expected

first-order convergence, and see that error is dominated by the approximation of Π

and p.

Convergence of Mechanical Entities

DoF h e(Π) r(Π) e(u) r(u) e(p) r(p)

77 0.7071 43.2520 −− 3.761 e−02 −− 3.016 e+01 −−
253 0.3536 27.1374 0.6725 3.426 e−02 0.3345 1.903 e+01 0.6647
917 0.1768 12.5351 1.1140 2.166 e−02 0.7615 9.211 e+00 1.0470
3493 0.0884 6.26365 1.0010 1.181 e−02 0.8751 4.801 e+00 0.9401

Table 4.1: Errors and convergence rates of approximate solutions Πh, uh, and ph.
Here, DoF denotes degrees of freedom, and h denotes the maximum cell size.

Convergence of Electrophysiological Entities

DoF h e(v) r(v) e(w) r(w) e(Ta) r(Ta)

77 0.7071 1.528 e−01 −− 1.926 e−01 −− 1.562 e−01 −−
253 0.3536 9.020 e−02 0.7601 1.069 e−01 0.8499 8.475 e−02 0.8820
917 0.1768 4.912 e−02 0.8769 5.739 e−02 0.8968 4.335 e−02 0.9673
3493 0.0884 2.818 e−02 0.8016 3.176 e−02 0.8536 2.183 e−02 0.9896

Table 4.2: Errors and convergence rates of approximate solutions vh, wh, and Ta,h.
Here, DoF denotes degrees of freedom, and h denotes the maximum cell size.

4.3 Conditions on Parameter D2

Through a combination of linear stability analysis and inspection, we are able to

loosely establish the range of values of D2 for which we can obtain a solution. For

this analysis, we assume fixed values of D0 = 1.171×10−3 (proposed by Bueno-Orovio

et al. [10]) and D1 = 9.0 × 10−4. The difference of an order of magnitude ensures

positive definiteness even at resting potential.

We determine that the condition required to retain parabolicity is

3

2
D0 +D1v +D2P

(

1 +
∂u

∂x0

)

> 0,

as this ensures positive definiteness of D, also required to satisfy the maximum princi-

ple [43]. We cannot determine exact conditions onD2 becauseD depends on unknown
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quantities whose ranges depend heavily on experimental setup. However, if D2 is suf-

ficiently small, it should be the case that D remains positive definite in most feasible

situations.

Computational experiments reveal a window of values of D2 for which our method

converges. In the 2D hyperelastic case, we found that the upper bound for D2 is

approximately D2 = 7.5 e−3, with the numerical solver failing to converge for larger

values. In these simulations, stress achieved an L2-norm of between 0.006 and 0.6.

The viscoelastic case was able to accept larger values of D2, up to D2 = 9.5 e−3,

with the L2-norm of stress falling between 0.001 and 0.5. The 3D hyperelastic case

achieved much higher levels of stress (with an L2-norm of between 2 and 1200), and

thus could only accept values of D2 up to D2 = 3.5 e−5. We did not find a difference

in this respect between the hyperelastic and viscoelastic cases.

4.4 2D Results

In this section, we review the results produced by testing our model on a 2D slab

of tissue with dimensions 12.0 cm × 12.0 cm. As we are mainly interested in the

behavior of the tissue in response to a spiral wave, we consider the time interval

t ∈ [320ms, 600ms], with the S2 square wave stimulus occurring at t = 330ms.

The formation and evolution of the spiral wave on its deforming domain (enlarged

to 24.0 cm× 24.0 cm for the purposes of visualization) can be seen in Figure 4.2. The

spiral is initiated by the diffusion of voltage and ionic entities from the S2 stimulus

into the leftmost section of the tissue, which has recovered enough excitability after

S1. The wave then spreads outwards in all directions, engulfing the entire tissue

except for the region that was just excited by the S2 wave. This spreading into the

excitable regions forms a spiral-like shape that is self-stimulating.

4.4.1 Parameter Testing

We conducted a simple sensitivity analysis on our model’s parameters for both the

hyperelastic and viscoelastic cases. We conducted our analysis by increasing or de-

creasing either α1, α2 or η by one order of magnitude, holding the others constant at

their reference values (α1 = 10.0, α2 = 0.5, and η = 0.001, as listed in Appendix A).

This simple analysis therefore does not test for compounding or competitive effects.

We began by evaluating α1 and α2, the parameters governing active tension in

Equation (15). Parameter α1 helps determine Ta’s smoothness, while α2 controls its

range. Our tests confirmed these effects, which are visible in Figure 4.3. We found
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(a) t = 350ms (b) t = 400ms (c) t = 450ms

(d) t = 500ms (e) t = 600ms (f) t = 680ms

(g) t = 800ms (h) t = 900ms (i) t = 1000ms

Figure 4.2: Evolution of voltage after S2 stimulus, showing formation of reentrant
spiral wave on deforming tissue.



38 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.3: Profiles of Ta taken across the tissue at y = 6 cm and t = 432ms to
evaluate the effect of parameters α1 and α2.

that larger values of α1 produced smoother gradients in pressure and stress, while

larger values of α2 produced higher magnitude displacement, Kirchhoff stress, and

pressure, as well as some more subtle changes in ionic quantities.

Parameter η determines the stiffness of the tissue. Decreasing η resulted an in-

crease in the magnitude of displacement, stress, and pressure, as expected. However,

the effect was extremely minimal, even across the three orders of magnitude tested

(η = 0.0001 to η = 0.01). The effects on ionic entities were even smaller. This was

the case for both the hyperelastic and viscoelastic cases.

Though these tests were not exhaustive, the fact that they yielded the expected

results provides additional confidence in our model. Furthermore, our model’s rela-

tively low sensitivity to changes in the parameters implies that our choice of {α1, α2, η}

is likely not driving the dynamics we see in our more fundamental results (regard-

ing viscoelasticity and SAD). The reader may assume from this point that α1 = 10.0,

α2 = 0.5, and η = 0.001 in all 2D simulations (these values are also given in Table A.1

and Table A.3).

4.4.2 Effects of Viscosity

We found that accounting for viscous behavior in the tissue led to decreased displace-

ment, stress, and pressure. This result was robust to every parameter combination



4.4. 2D RESULTS 39

that we tested (see Section 4.4.1), and consistent spatially. The overall profiles of dis-

placement, Kirchhoff stress, and pressure were similar between the viscoelastic and

hyperelastic models, but more extreme in the hyperelastic case. This can be seen in

Figure 4.4, which shows the profiles of the mechanical entities over a line segment

crossing the tissue horizontally, and in Figure 4.5a, which shows an overlaid image of

the deformed tissues for both cases.
We also saw subtle differences in the ionic quantities between the hyperelastic

and viscoelastic cases, as shown in Figures 4.5b and 4.5c. The edge of the voltage

gradient differed between the two, with slightly higher values in the hyperelastic case.

The calcium concentration throughout the spiral wave was also slightly higher for the

hyperelastic case. It is unsurprising that the changes in ionic quantities between the

hyperelastic and viscoelastic cases were more subtle than the mechanical changes;

viscoelasticity is accounted for in the mechanical equations, and thus affects ionic

quantities only indirectly as a consequence of electromechanical coupling.

We proceeded to investigate the effects of changing the viscosity parameters. The

parameter β from Equation (8) exerted very minimal influence over the observed dy-

Figure 4.4: Comparison of mechanical entities between hyperelastic and viscoelastic
models. The plots show the profiles of pressure, magnitude of stress, and magnitude
of displacement over a line crossing the tissue horizontally at y = 7 cm, above the S2
stimulus region, at t = 400ms. The dotted lines correspond to the hyperelastic model,
and the solid lines to the viscoelastic model. Displacement, stress, and pressure are
generally greater in the hyperelastic case.
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(a)
(b) (c)

Figure 4.5: Comparison of hyperelastic and viscoelastic models at t = 432ms on a
zoomed-in section of tissue. (a) Displacement u on 2D domain, warped by magnitude
of u. The more deformed hyperelastic tissue is reduced to 65% opacity to emphasize
differences. (b) vhyper − vvisco. (c) r3,hyper − r3,visco.

namics. Even for the five orders of magnitude tested, from β = 0.0001 to β = 1.0,

the differences in displacement, voltage, and all other variables were minuscule. This

could be because of the low rates of change of deformation that we see in our simu-

lations.

We also tested values of γ across three orders of magnitude, from γ = 2.26 to

γ = 226.0. As expected, increasing the value of γ, thereby increasing the viscoelastic

contribution to Kirchhoff stress, magnified the differences between the hyperelastic

and viscoelastic cases (essentially magnifying the effects seen in Figure 4.4). We also

found that higher values of γ not only reduced the magnitude of Π, u, and p, but

smoothed their profiles, reducing the distances between peaks and troughs.

Unless otherwise noted, the reader may assume from this point that β = 0.01 and

γ = 22.6 in all 2D viscoelastic simulations. These values, proposed by Karlsen [33],

ensure that the viscoelastic component is large enough to have an effect, but does not

completely overwhelm the dynamics of the tissue.

4.4.3 Stress-Assisted Diffusion

In addition to determining the approximate range of D2 for which we can find an

approximate solution (Section 4.3), we also investigated the effect ofD2 on the tissue’s

response to the spiral wave. Figure 4.6 shows the differences in the ionic quantities

between simulations with D2 = 1.0 e−5 and D2 = 5.0 e−1 at time t = 388ms, after

the spiral has formed.
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Closer inspection reveals that these differences were due to a difference in con-

duction velocity induced by SAD. In Figure 4.7, we see that conduction velocity was

higher for larger values of D2, or a larger SAD contribution. When the wave first

emerged, the peak action potential was more advanced for the small D2 case, but

the large D2 peak eventually caught up to and surpassed it. The ionic quantities fol-

lowed the same trend. Indeed, an analysis similar to that which produced Figure 4.7

revealed that the overall profiles of the ionic quantities were highly similar between

the two cases compared in Figure 4.6, but differed in the speed at which they moved

through the tissue.

This effect on conduction velocity was not spatially consistent. SAD increased

conduction velocity in the fiber (horizontal) direction, but actually decreased conduc-

tion velocity in the vertical and diagonal directions. This resulted in a noteworthy

effect on the growth of the spiral wave. Figure 4.8 shows a comparison of the spiral

wave in the viscoelastic case for two different values of D2. The upper right area of

the spiral is visibly flattened in the simulation with a larger value of D2, suggesting

that propagation of the voltage was suppressed in that direction. A similar effect was

seen in the hyperelastic case.

Figure 4.9 provides another view of this effect. The voltage on the spiral front

was initially higher for low D2, meaning that the spiral wave emerged faster with a

smaller SAD contribution. As the spiral grew, however, voltage on the horizontally-

moving front became higher for large D2. Thus, a larger SAD contribution caused the

voltage to move faster in the fiber direction. In the upward, diagonal, and downward

directions, however, we did not see this effect.

(a) r1 (b) r2 (c) r3

Figure 4.6: Differences in ionic quantities from varying SAD parameter D2 at
t = 388ms. “Signed Err” is calculated as x0 − x1, where x0 is the profile with
D2 = 5.0 e−1, and x1 is the profile with D2 = 1.0 e−5.



42 CHAPTER 4. RESULTS AND ANALYSIS

(a) t = 356ms (b) t = 456ms

Figure 4.7: Propagation of action potential with varying values of D2. Propagation is
measured by taking the profile of v over a horizontal line segment crossing the upper
half of the tissue at y = 7 cm. The larger value of D2 (dark blue) shows a higher
conduction velocity.

It should be noted that conduction velocity was also sensitive to spatial discretiza-

tion. This effect is documented in the literature [52]. In Table 4.3, we include the

results of a simple convergence test for conduction velocity, similar to the benchmark

test conducted in Rossi [53]. We calculated the horizontal propagation of the ac-

tion potential using different timesteps and mesh refinements. We also conducted

the analysis for ∆t = 0.6ms, but this timestep was too coarse to capture the kinetic

dynamics, and thus the numerics did not converge. This test confirms that with

(a) D2 = 1.0 e−5 (b) D2 = 5.0 e−1

Figure 4.8: Effect of SAD on spiral wave at t = 412ms in the viscoelastic case.
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our timestep and mesh refinement (0.3ms, and above 100, 000 DoF, respectively),

conduction velocity is in the physiological range.

Convergence of Conduction Velocity, cm/ms

DoF h ∆t = 0.05ms ∆t = 0.1ms ∆t = 0.3ms

27038 0.3817 0.2260 0.2063 0.2030
108576 0.1909 0.1569 0.1411 0.1368
170919 0.1527 0.1466 0.1315 0.1272
246456 0.1273 0.1401 0.1265 0.1200
554960 0.0849 0.1297 0.1161 0.1103

Table 4.3: Convergence of conduction velocity with respect to temporal and spatial
discretization.

(a) t = 340ms (b) t = 376ms (c) t = 416ms

(d) t = 428ms (e) t = 456ms

Figure 4.9: Voltage difference due to SAD, calculated as vA−vB, where A corresponds
to D2 = 5.0 e−1 and B corresponds to D2 = 1.0 e−5. Note that the spiral develops
earlier for the smaller value of D2. However, after t = 412ms, the spiral is more
developed in the fiber direction (horizontally) with the larger value of D2, indicating
a faster conduction velocity in this direction.
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(a) t = 330ms (b) t = 390ms (c) t = 410ms

(d) t = 520ms (e) t = 730ms

Figure 4.10: Evolution of voltage after S2 stimulus (t = 335ms), showing formation
of a double-sided spiral wave on a contracting ventricle. The shadow of the original
ventricle geometry is shown for comparison.

4.5 3D Results

We now review the results produced by implementing our model with the active strain

formulation on an idealized 3D rendering of the left ventricle. After the S2 stimulus

excites a group of cells in the lower left octant at t = 335ms, a spiral wave forms and

sweeps around both sides of the ventricle, the two sides merging at approximately t =

395ms. Simultaneously, we see contraction in the upwards direction, complemented

by torsion and thickening of the ventricle wall. Figure 4.10 shows the propagation of

the action potential on the deforming ventricle, with the original ventricle geometry

shown with reduced opacity for comparison. The S2 stimulus occurs on the underside

of the ventricle and thus the nascent spiral is not visible in the images, but the two

arms of the spiral can be seen later in Figure 4.10b.
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(a) (b)

Figure 4.11: Comparison of displacement in hyperelastic and viscoelastic cases in 3D
at t = 560ms. Ventricle color represents magnitude of displacement, while arrows
indicate displacement direction. The hyperelastic case (a) shows more contraction
and wall-thickening than the viscoelastic case (b).

4.5.1 Effects of Viscosity

We found that the effects of viscosity in 3D were comparable to those seen in 2D.

Figure 4.11 shows a comparison of the hyperelastic and viscoelastic case, with arrows

pointing in the direction of displacement. The ventricle modeled as a hyperelastic

tissue clearly undergoes more extreme displacement, contracting more overall and

displaying greater wall thickening. This trend was consistent throughout the time

interval evaluated (up to 1 s). However, different from our 2D results, the pressure

was not consistently greater in the hyperelastic case. Figure 4.12 shows the pressure

profiles for both cases at t = 550ms. In the hyperelastic case, pressure was concen-

trated on the inner boundary of the ventricular wall, decreasing rapidly in the outward

direction. In the viscoelastic case, pressure was more evenly spread throughout the

ventricular wall, showing a smoother profile than the hyperelastic case. As a result,

pressure on the outer edge of the ventricular wall was higher in the viscoelastic case.

Conduction velocity was extremely similar between the hyperelastic and viscoelas-

tic cases. The overall profiles of ionic quantities showed the same trends, as well. How-

ever, the voltage and calcium concentrations were generally higher in the viscoelastic

case.



46 CHAPTER 4. RESULTS AND ANALYSIS

(a) (b)

Figure 4.12: Comparison of pressure in hyperelastic and viscoelastic cases in 3D at
t = 560ms. Ventricle color represents pressure. The hyperelastic case (a) shows a high
concentration of pressure in the endocardium (or inner ventricular wall), while the
viscoelastic case (b) shows a smoother, more even distribution of pressure throughout
the wall.

4.5.2 Stress-Assisted Diffusion

Similar to in the 2D case, SAD impacted the propagation of the spiral wave in a direc-

tionally dependent manner. In the fiber direction, SAD led to earlier advancement of

the spiral. In the the transverse direction, the non-SAD case advanced earlier. Figure

4.13 shows the difference in voltage for the two cases (along with the actual voltage

profile, for reference). The color contrast is indicative of a difference in the location of

the peak voltage. The effect seen in the fiber direction (indicated by the white arrows

in Figure 4.13) was not seen in the other directions. On the timescale by which the

action potential moves through the ventricle, we were unable to detect a difference

in conduction velocity. However, it is clear that there was a directionally-dependent

effect of SAD on action potential propagation.



4.5. 3D RESULTS 47

(a) t = 382ms (b) t = 392ms

Figure 4.13: Effect of SAD on spiral wave propagation in 3D. These images are of the
underside of the ventricle. The top panels show voltage, and the bottom panels show
the difference between the SAD case and non-SAD case, calculated as vSAD−vnon-SAD.
The SAD case action potential propagated faster along the fiber direction than the
non-SAD case action potential. The red on the outer edge of the spiral front indicates
that the voltage peak, or the front of the action potential, was more advanced in the
SAD case.





Chapter 5

Conclusions

In this dissertation, we modeled and numerically approximated the active contraction

of the cardiac muscle. We focused particularly on the representation of the so-called

mechanoelectrical feedback, incorporating a recent model of stress-assisted conduc-

tivity. Our model consists of a mechanical system, governed by nonlinear continuum

mechanics, coupled with a four-variable minimal model for human ventricular action

potential. We considered both the hyperelastic and viscoelastic cases, and both 2D

and 3D domains. While we opted for an active stress formulation in 2D, due to

convenience in calculating Π and avoidance of volumetric locking in the lowest-order

case, we opted instead to adopt the active strain formulation in 3D. This allowed us

to obtain a physiologically accurate deformation regime, although it required us to

slightly reformulate our model.

Our work advances the field of cardiac electromechanics by incorporating several

novel elements. Stress-assisted diffusion, in particular, is not often accounted for

in such models. We combine this effect with an accurate model of human action

potential, viscoelasticity, and a stress-based formulation in 2D. We also analyze the

effect of SAD in 3D, which has not yet been done, although we do this for using an

active-strain formulation.

In addition to evaluating the effects of certain model parameters and exploring the

allowable range for D2, we also detected robust effects of viscoelasticity and stress-

assisted diffusion. Viscoelasticity consistently reduced the level of displacement and

stress as the excitation wave passed through the tissue. It also resulted in more

evenly distributed pressure throughout the tissue in 3D. These results are physically

reasonable, as viscoelastic materials are known to dissipate energy as they deform

[22].

Stress-assisted diffusion provided a directionally-dependent effect on action po-

tential propagation. In 2D, SAD led to an increase in conduction velocity in the fiber
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direction. In 3D, SAD resulted in an earlier development of the action potential in

the fiber direction, though the ultimate effect on conduction velocity was unclear.

The nontrivial effects of both viscoelasticity and stress-assisted diffusion in our

model suggest that they may play an important role in governing cardiac function

and its response to external stimuli.However, further work remains in order to fully

understand their contribution to the mechanical and electrophysiological behavior of

cardiac tissue.

5.1 Extensions

The ultimate goal remains to create ever more realistic models of cardiac function.

Further advancements to the theoretical framework built upon in this dissertation

are readily apparent. Two non-invasive and natural extensions would be to run our

model on physiologically detailed 3D geometries of the heart, and to validate our

model against experimental results.

Perhaps the most pressing task motivated by this study, however, is further inves-

tigation of the discrepancies between the active stress and active strain formulations

discussed in Section 2.2.1. We were unable to determine the reason for the stretch-

ing produced by the active stress formulation, in contrast to the contraction and

wall-thickening in the active strain formulation. Preliminary experiments with dif-

ferent parameter values, formulations of active tension, and minor modifications to

the active stress model were unsuccessful in producing the physiologically accurate

deformation. Deeper analysis is thus required to bridge this gap.

Possible extensions to the model itself are numerous. The inclusion of temperature

variations, for example, would simultaneously extend our model and that of Cherubini

et al. [17]. A more physiologically accurate model should also consider poroelastic

effects in order to account for perfusion of the tissue. We could additionally extend

the minimal cell model and thermodynamically consistent activation model to state-

of-the-art descriptions, which involve very large, stiff systems of ordinary differential

equations. We could adopt the O’Hara et al. [47] model, involving 57 ODEs for ionic

entities and currents, for example. Incorporating this type of model would require

extensive testing of various operator splitting techniques and nonlinear solvers.

Another obvious next step would be to generalize our model to the use of bidomain

equations instead of the monodomain model. Our current reaction-diffusion equation

of the form

χ
∂v

∂t
−∇ · (D∇v) = Iext − g(v, ~r) in Ω× (0, tfinal],
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assumes equal anisotropy rates, meaning that the conductivity of the intracellular

and extracellular domains are related by De = λDi, where λ is a constant scalar.

Without this assumption, we would adopt a system of the form

χ
∂v

∂t
−∇ · (Di ∇v)−∇ · (Di ∇ue) = Iext − g(v, ~r) in Ω× (0, tfinal],

−∇ · (Di ∇v)−∇ · ((Di +De)∇ue) = 0 in Ω× (0, tfinal],

which describes the transmembrane potential as the difference between intracellular

and extracellular currents, v = ui − ue [61]. This not only adds computational

complexity, but requires careful consideration in modeling each conductivity tensor.

Taking this one step further, one could also investigate the appropriate trans-

mission conditions to impose when considering a multi-domain environment, such as

the heart-torso interface. Electromechanical coupling with the surrounding torso and

organs would be a novel contribution to the field.





Appendix A

Model Parameters

Mechanical Parameters

a 0.23621 [N/cm2] b 10.810 [−]
af 0.116037 [N/cm2] bf 14.154 [−]
as 0.37245 [N/cm2] bs 5.1645 [−]
afs 4.0108 [N/cm2] bfs 11.300 [−]
η 0.01 [N/cm2] pN 0.1 [−]
ηa 0.001 [N/cm2] ηb 0.01 [N/cm2]
β 0.01 [s] γ 22.6 [Pa · s]

Table A.1: Mechanical model parameters.

Electrochemical Parameters

vo 0.0 τ−1,1 60.0

vv 1.55 τ−1,2 1150.0

v−2 0.03 τ−2,1 60.0

vso 0.65 τ−2,2 15.0

v3 0.9087 τso 0.11
θ1 0.3 τo1 30.0181
θ−1 0.006 τo2 0.9957
θ2 0.13 τso,1 2.0458
θo 0.006 τso,2 0.65
k−2 65.0 τ3,1 2.7342
k3 2.0994 τ3,2 16.0
kso 2.0458 τso 1.8875
r∗1,∞ 0.94 τ+1 1.4506

τ2,∞ 0.07 τ+2 200.0

Table A.2: Monodomain equation parameters. All parameters are dimensionless.
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Coupling Parameters

D0 1.171 [cm2/s] α1 10.0 [−]
D1 0.9 [cm2/s] α2 0.5 [−]
D2 0.01 [cm2/s]

Table A.3: Parameters governing electromechanical coupling.
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