 “XG-Boosting” of biofuel production in low N-by-W environments”.
Gloria Coruzzi, Carroll and Milton Petrie Professor of Biology
New York University
(212) 998-3963, gloria.coruzzi@nyu.edu
Funding Opportunity Announcement Number: DE-FOA-0002214

Relevance to Systems Biology and DOE-BER mission: There is increasing interest in analyzing complex biological data using machine learning algorithms to predict outcomes in the biological world(1). Specifically, the ability to infer a polygenic trait from genomic feature(s) is a demanding challenge for basic and applied research.  Also, functionally testing whether the feature(s) with predictive power can further shed light on the underlying mechanism remains largely unexplored.  We address these basic gaps in systems biology to address a practical application of increasing productivity in the model Biofuel crop Brachypodium in dry, nutrient poor soils.  We use a suite of machine learning algorithms approach (XG-Boost) – in which “Boosting” is a sequential learning process where the subsequent predictors learn from the errors of previous predictors.  This machine learning approach will enable us to predict Nitrogen Use Efficiency (NUE) and Water Use Efficiency (WUE) phenotypes based on transcriptome data in varieties of the model biofuel crop Brachypodium.   The outcome will be a set of features (e.g. genes) whose importance to predicting phenotypes is ranked using out-of-sample crop varieties.  The advantage of of conducting these studies in Brachypodium, is that we can functionally test genes and uncover mechansisms involved in NUE and WUE NUE and WUE by mutation and transgenesis.  Our studies relate to predictingimmediate application is to predict NUE and WUE in a model biofuel crop, but the approach we develop and deploy is relevantcan be applied across biology, agriculture or and medicine.

Novelty:  N-by-W gene responses predict WUE and NUE in crops.  The most novel aspect of our proposal, is that our Our recent studies in rice clearly show that genes responding to N-by-W interactions (N/W or NxW),  show the highest correlation with biomass and drought outcomes (e.g. W-use efficiency and Stomatal conductance) – compared to genes that only respond only to W (Fig. 1) (2) (Swift 2019).  However, to date, transcriptome studies in Brachypodium have been are limited to drought responses alone (REFs).  There are currently no datasets of the N-response transcriptome study in Brachy published to date.  Our plan to uncover is to measure the N-by-W responses in Brachypodium and use them in a machine learning pipeline – to uncover the genes that underlie NUE and WUE in the model biofuel crop,  – where we can functionally validate the mechanisms using mutants and transgenics.  

Overview of Aims:  The goal of this study, is to use machine learning approaches to uncover the genes that control biomass, WUE and NUE in the model biofuel crop, Brachypodium.  In Aim 1, we will identify the genes and phenotypes responsive to N-moles, W-moles, N-molarity (N/W) and NxW synergistic interactions by exposing Brachy to a 4x4 NxW matrix, as we have previously done in rice (Swift 2019).  Then, in Aim 2, we will extend this N-by-W analysis across a set of 105 Brachy varieties that have been identified to be tolerant, intermediate and susceptible to drought as described in (3)(Fisher 2016).  In Aim 3, we will use this N-by-W transcriptome and phenotype data in a collection of machine learning approach (XG-boost)methods to which will identify a ranked list of features (e.g. genes) whose N-by-W responses are able to predict phenotype outcomes.  Finally, in Aim 4, we will functionally validate the role of these genes in the N-by-W responses using mutants and transgenics in phenotypic assays.

Background: 
N-by-W interactions control plant growth, development and Biomass.
Since both N and W are increasingly limited in soils world-wide, N-based fertilizers and irrigation underlie modern agriculture’s goal to meet yield potential. In the coming decades, climate change will force farmers around the globe to adapt to drier, nutrient-poor soils (4, 5). At the same time, the damaging environmental impacts of synthesizing N-fertilizers - including disruption of the global N-cycle - are already being felt (5). Consequently, in an attempt to develop crops that are either N- or W-use efficient, research efforts have focused on understanding how the availability of N oror W individually in soils impacts plant biology - both at the physiological and molecular level. Arguably the most important interaction is their  combined effect on biomass and crop yield potential - which is only achieved when both N and W are non-limiting (2, 6-9).

Also, inIn recent years, the molecular and signaling components that underlie plant responses to either N or W have begun to be elucidated (10, 11); however how they overlap with one another remains poorly understood. Since combinations of N and W have a clear impact on important plant traits, it is likely that there are cross-talk existssynergistic effects between the molecular mechanisms that sense and respond to N and W.   To address this knowledge gap, we propose research strategies to study how genes responding to N-by-W interactions contribute to improving plant growth on arid, nutrient-poor marginal soils.

RESULTS
N-by-W interactions are crucial to both WUE and NUE in RICE.  Given that water (W) is a solvent for nitrogen (N), plant responses to these two key nutrient resources must be tightly linked. However, while most studies have examined how plants respond to N or W availability separately, theThe study by Swift et al., 20191 was the first to design and test a matrix of N and W doses that could test whether and how plants sense N-dose independent of water (e.g. moles), or the ratio of N/W (e.g. molarity) (Fig. 1A). Using expression data from RNA-seq, linear models were used to uncouple the genes that responded specifically to four different N-by-W categories, N (moles), W (volume), N/W (molarity) and NxW  (molar synergy) in the lab and field1. For each category of N-by-W responses, the genes that showed consistent expression patterns (up or down) in both lab and field studies were used to derive eigengene values. Eigengene expression values that correspond to N-by-W interactions (N/W or NxW), correlate with beneficial rice phenotypes such as grain yield and water use efficiency (Fig. 1B).  
[image: ]
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RESEARCH PLAN

Aim 1. Identify N-by-W response genes in Brachypodium.  Rationale: Our studies of N-by-W sensing mechanisms in rice have uncovered novel principles of nutrient-dose sensing in biology that affect crop biomass and yield in the field (2). (12) (Swift et al 2019).  Specifically, we discovered that rice plants can sense and distinguish between N-moles, W-moles, N-molarity (N/W), and the synergistic interaction of ‘NxW’ - an effect we dub ‘molar synergy’ (Fig. 1A). Through field tests of 19 rice varieties, we found that gene sets responding to N and W combinations - molarity (N/W) and molar synergy (NxW) - could predict agronomic crop traits (2) (Swift et al. 2019) (Fig. 1B).  Our goal in Aim 1 is to apply this approach to acquire new basic knowledge of how N and W interactions impact gene expression and phenotypic outcomes in the model biofuel species, Brachypodium.

Aim 2. Test N-by-W response phenotypes and transcriptome across 10 15 Brachypodium varieties with varying drought sensitivity. This aim will test the N-by-W responses – phenotypes and transcriptome- using a 2x2 NxW matrix, as we did for rice varieties (Swift. 2019) (2).  We will perform this using a select panel of 10 15 Brachy lines which were  classified as tolerant (TOL), iINT (Intermediate (INT)), or susceptible (SUS) to the drought conditions imposed during the drought screens (Fisher et al 2016) (3).  The data generated in this aim, will be used to fuel the machine learning pipeline in Aim 3  - which will rank genes based on their importance in being able to predict the phenotypes -e.g. biomass, NUE, and WUE of Brachy lines based solely on gene expression. 

[bookmark: _GoBack][image: ]Aim 3.  Using ensemble machine learning methods XG Boosting to predict phenotypes based on N-by-W responsive genes. We present a pipeline to infer a complex trait from transcript abundance using the matched phenotypic and transcriptomic data generated in Aim 2. We recently successfully used the conserved N-response data from Arabidopsis and maize to infer NUE from transcript abundance using a EXtreme Gradient Boosting algorithm (XGBoost). In this aim we will expand and optimize the machine learning pipeline using a suite of linear and non-linear methods because no one single algorithm always works the best for all species and traits (12). We will partition the datasets into training (n-1 genotypes) and testing (the left-out genotype) (Fig. 2A) and use the training data to optimize the NUE models (Fig. 2B). Next, we will use the trained models to predict NUE for the left-out genotype. To evaluate the model performance, we will compute the correlation between actual NUE in the test set and the predicted NUE. To prioritize the validation in Aim 4, we will rank the ‘important features’ (i.e. genes) from the top performing algorithms. This pipeline will also be run independently for WUE traits. 
Rationale:  Using the matched phenotypic and transcriptomic data N-by-W responses across the 10 Brachypodium lines, we present a pipeline to infer a complex trait from transcript abundance. This approach can be  applied to any other organisms as an approach to uncover novel genes involved in any physiological trait. 

[image: ]Preliminary Results:  We recently successfully used the conserved N-response data from Arabidopsis and maize as in input to XGBoost (Friedman JH. Greedy function approximation: a gradientboosting machine. Annals of Statistics. 2001;29(5):44.) , a gradient boosting framework based on decision tree algorithm, to train a machine learning model that could predict NUE using gene expression values as features (Fig. 2B). Gradient boosting is more robust to multicollinearity when features show strong correlation with other (combination of) features. The performance of XGBoost has been demonstrated by a series of kaggle winning solutions as well as KDD Cup winners (REF). For both species, we partitioned the datasets into training (n-1 genotype) and testing (the left-out genotype) (Fig. 2B) and used the training data to optimize the NUE models (Fig. 4B). Next, we used the trained models to predict NUE for the left-out genotype. To evaluate the model performance, we computed the correlation between the actual NUE in the test set and the predicted NUE. For maize, the median Pearson’s correlation coefficient (PCC) for the sixteen NUE models was 0.78. This is higher than the median PCC of models using randomly selected 274 genes (0.69, p value = 0.01), suggesting that the performance was not simply due to number reduction. 

Aim 4: Validation of candidate genes for adaptation to growth in low-N/low W soils. XGBoost The resultmethod in Aim 3, will identify a set of ranked importantce features (genes) whose N-by-W expression values predicts traits such as biomass, NUE, and WUE.   The top-ranked genes from this list will be functionally validated in Brachypodium at the Wisconsin facility XXXX. The functional validation assay will generate transgenic lines that constitutively over-express the candidate gene or mutant lines lacking it, we will grow each line in soil with low-N content spiked with 15N to measure NUE. Candidate genes that produce greatest increase in NUE and biomass relative to the wild-type, will be top candidates for introduction into biofuel crops to increase their biomass accumulation in marginal N-poor soils. 

Outcome: This team of scientists who have an established history of extensive collaboration will train students & post-docs in the fields of genomics and machine learning. This project will also provide genes that when introduced into biofuel crops will greatly improve their WUE and NUE in arid, N-poor marginal soils. 
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