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ABSTRACT
Computational analysis of natural science experiments often confronts noisy

data due to natural variability in environment or measurement. Drawing conclusions
in the face of such noise entails a statistical analysis.

Parametric statistical methods assume that the data is a sample from a popula-
tion that can be characterized by a speci�c distribution (e.g., a normal distribution).
When the assumption is true, parametric approaches can lead to high con�dence
predictions. However in many cases particular distribution assumptions do not hold.
In that case, assuming a distribution may yield false conclusions.

The companion book Statistics is Easy gave a (nearly) equation-free intro-
duction to non-parametric (i.e. no distribution assumption) statistical methods. The
present book applies data preparation, machine learning, and non-parametric statis-
tics to three quite di�erent life science datasets. We provide the code as applied to
each dataset in both R and Python 3. We also include exercises for self-study or
classroom use.

KEYWORDS
scienti�c data, case studies, non-parametric statistics, machine learning,
data cleaning, null value imputation.
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Introduction
The book is aimed at computer scientists, bioinformaticians, and computa-

tionally oriented scientists. We describe three case studies in order to illustrate
di�erent aspects of data analysis. All code is provided in both R and Python 3
and is available on Github (https://github.com/StatisticsIsEasy/StatisticsIsEasy and
https://github.com/StatisticsIsEasy/CaseStudies).

In the Basic Work�ow section of the present chapter, we describe the steps of
any data-driven study: data preparation, analysis (including machine learning), and
statistical evaluation.

In the Technology Choices section, we describe alternativemethods to achieve
the objective of each step of the analysis work�ow.

Finally, in the Case Studies Overview section, we brie�y describe each case
study, its dataset, and the techniques applied for each of its work�ow steps.

Faced with a dataset and an analysis goal of your own, we suggest that you �nd
the most similar case study from this book and use our code as a starting template to
solve your problem. You may then add and substitute code from elsewhere onto that
basic sca�old.

1.1 BASICWORKFLOW

The basic data-driven work�ow consists of three parts:

1. Data preparation - Put the data in good form for analysis. This constitutes the
majority of the work for a practicing data scientist and consists of the following
general steps.

(a) Format the data used in the dataset, usually through some form of parsing.
The end result is often a table. For example, for the breast cancer dataset,
each row corresponds to a patient and each column value is some tumor
measurement.

(b) Normalize raw data so that di�erent features or experimental measure-
ments are rendered comparable.

(c) Handle missing data by ignoring some inputs or imputing missing values.
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2. Analysis - Analysis can mean calculating some metric of interest or creating
a causal and/or predictive model. The metric might be something simple like
weight or yield. Causality and prediction models are built from inference meth-
ods such as regression, machine learning, or forecasting. They might be used to
diagnose patients as having malignant or benign growths.

3. Statistical Analysis - The �rst step is to assess the analytical measurements
and/or models to determine whether they could have arisen due to random
chance. In the case of a measurement (say the weight of chickens), the question
might be which treatment (e.g. chicken diets) might cause a statistically signi�-
cantly di�erent value of somemeasurement (e.g., �nal chickweight) than a stan-
dard diet. In the case of inference models, the question might be which model
gives statistically signi�cantly better classi�cation results (e.g., in the breast can-
cer case, which model gives a more accurate diagnosis). Here are some typical
choices and tasks in statistical analysis:

(a) The choice between a paired vs. unpaired statistical analysis. For ex-
ample, suppose we are evaluating a treatment, and that one group of pa-
tients receive the treatment and a di�erent group does not (the control
group). We must use an unpaired analysis, because they are di�erent peo-
ple. On the other hand if the same patients are measured before and after
treatment (as when sick patients are given a medicine in the cystic �bro-
sis study), then we can use a paired test, because we are comparing the
same person before and after a treatment. A paired test is better at detect-
ing subtle e�ects, because it removes the e�ect of confounding factors due
to di�erences among patient populations.

(b) The choice of accuracy measure. For classi�cation problems, these are
based on notions of "precision" (roughly, the fraction of predictions of the
class of interest that are correct) and "recall" (roughly, the fraction of entities
in the class of interest that are correctly predicted). For problems in which
we are trying to predict a numerical value, the accuracy measure is based
on either a relative or absolute numerical error of a predicted value to an
actual value. We discuss both of these cases later in this chapter.

(c) The task of determiningwhether some causal factor (e.g., an experi-
mental perturbation)might be associatedwith somechange in amea-
surement of interest more than would be expected from random chance
alone. For example, the putative causal factor might be a change in diet
and the measurement might be the �nal chicken weight. If the measure-
ment with the factor (e.g., new diet) is di�erent enough from the measure-
ment without the factor (e.g., normal diet), then the di�erence would be
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said to have a low p-value. When the p-value is low enough, then random
chance is unlikely to be an explanation of the di�erence.

(d) Choosing the correct multiple hypothesis testing correction proce-
dure.When one asks about many phenomena, e.g. which of thousands of
genes is a�ected by cystic �brosis, computing a p-value is not enough. The
reason is that by random chance, some changes to genes that have a low
p-value would materialize, even if health status had no real e�ect on genes.

The choice then is which multiple hypothesis testing correction procedure
to use. The false discovery rate is the most common. The false discovery
rate is an estimate of the fraction of genes that might fall below a certain
p-value threshold simply due to chance (i.e., unrelated to health status).

(e) Estimating the range of the e�ectwe can expect by choosing one course
of action rather than another. In the chicken case study, for example, we
might ask about the range of the expected magnitude of the weight gain for
a chicken on a new diet compared with a chicken on a normal diet.

(f) Thedetermination ofwhich features of some treatment or condition
that most in�uence the result. For example, in the breast cancer case
study, we want to �nd the features of cell nuclei that are most diagnostic
for breast cancer.

1.2 TECHNOLOGY CHOICES

As mentioned above, the overall work�ow consists of data preparation, data anal-
ysis, and statistical evaluation. This section gives a brief review of the technologies
for each of these. The github (https://github.com/StatisticsIsEasy/CaseStudies) asso-
ciatedwith this book has all the code in this section and thatwe have used throughout
the book, in R or Python 3 (and usually both). Alternatively, we authors can send you
a zip �le.

1.2.1 DATA PREPARATION TECHNOLOGIES
Before preparing the data, it’s good to look at it. We mean that literally. Because the
culture of computing is to care about method more than about data, computation-
ally trained people don’t stare at the data enough. For example, due to experimental
methods, some data valuesmay havewildly di�eringmagnitudes, outliers, and/or null
values. Eyeballing the data will often suggest actions to perform. For example, there
might be outliers, which are values that are substantially di�erent from mean values,
indicating an error in data recording. Sometimes, a mechanical �aw in an instrument
can render an entire experiment’s results invalid.



4 1. INTRODUCTION

Normalization
Most analyses will have to compare di�erent features andweight their e�ect on some
metric of interest. To take an example from normal life, a person’s temperature is
more important than his or her shoe size in determining whether that person feels
sick. If the di�erent features can take vastly di�erent ranges of values, that may skew
the weighting in any analysis.

Certain computational methods therefore perform z scaling of the values: For
each value v of feature X, scaling subtracts the mean of X from v and then divides
that result by the standard deviation of X. Scaling makes sure each value of X is
transformed to a number of standard deviations away from the mean of X, resulting
in what is known as the z-score.

z =
v − µ
σ

(1.1)

For example, let’s take 15 randomly generated body mass index (BMI) values1:

import numpy as np
bmi = np.random.randint(18,32,15)
bmi

array([30, 22, 21, 25, 25, 29, 23, 20, 25, 27, 20, 18, 29, 27, 19])

Nowwe calculate the mean and standard deviation of these array values. Then,
for each value, we will subtract the mean and divide by the standard deviation to get
the z-score scaled values.

mu = np.mean(bmi)
sigma = np.std(bmi)
(bmi - mu)/sigma

array([ 1.58851015, -0.52950338, -0.79425507, 0.26475169, 0.26475169,
1.32375846, -0.26475169, -1.05900676, 0.26475169, 0.79425507,

-1.05900676, -1.58851015, 1.32375846, 0.79425507, -1.32375846])

Di�erent normalization methods can work better for di�erent data. For exam-
ple, when preparing each RNA-seq dataset for the cystic �brosis analysis, we may be
1Our github site has both R and Python code, but we use Python in the book text
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more interested in the relative amount of each gene’s RNA compared to other genes
rather than the absolute amount. Thus, normalization would consist of dividing each
gene’s counts by the total counts for a given RNA-seq reading. This calculates the
proportion of the counts that belong to the gene for that reading. We do this for all
RNA-Seq readings so they can now be comparable. Bushel [2020]

Normalization, whether to do it and how to do it, can in�uence all downstream
analysis, so it’s good to see whether the results of an analysis are robust to di�erent
normalization techniques.

Missing data
There are two basic ways to deal with missing data within datasets: (i) remove any
data item containing missing data, or (ii) infer the missing values from other data
(called imputation). While removing the data item requires less e�ort and thought,
it can sometimes lead to a loss of hard-to-obtain information. For example, suppose
some patient in an Alzheimer study is missing a blood plasma test during a partic-
ular visit. The data for that day would include other informative metrics measured
for the patient. Throwing out the entire day’s data because of the one missing test
value might result in an excessive loss of information. Common imputation methods
include:

1. Method 1: Replace the missing values of some measurement with the arith-
metic mean value of that measurement. In the example above, if the blood pres-
sure reading is missing for a patient for a single visit, imputation could simply
take the arithmetic mean of the blood pressure readings of all other visits of that
patient. If no other measurements are available for that patient, than take the
median measurement of all patient measurements.

2. Method 2: Replace the missing values with median. As in the previous method,
but use median instead of arithmetic mean.

3. Method 3: Linear interpolation. If data comes in the form of a time series per
individual, then the value at time t of some measurement for individual may be
well estimated by taking the arithmetic mean of the value of that measurements
of that individual at times t-1 and t+1.

4. Method 4: Design a machine learning model to predict the value of a missing
measurement given the values of other measurements. This entails building, for
each measurement type with missing values, a model based on the values of
other measurement types.
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Which imputation method to use can have an important e�ect on the results of
an analysis, so the method and its justi�cation should be carefully explained in any
research paper.

1.2.2 METHOD SELECTION
Di�erent researchers may analyze the same dataset in di�erent ways. For instance,
in the genomic data example of cystic �brosis, we might be looking for genes that are
di�erentially expressed due to disease or that change due to some treatment. Alter-
natively, we might be interested in predicting whether a patient has cystic �brosis or
not. The objective of the study determines the inference methods to select.

Many books (e.g., Hastie [2001]) and thousands of papers have been written
about inference methods. This book includes just a few that work well for modest
amounts of data: regression methods, decision trees, random forests, and support
vector machines. Neural networks generally are most useful when datasets are much
larger than those considered here. As new methods become available, packages will
incorporate them and you will be able to use them.

Quality Metrics for Classi�cation
In addition to analytical methods for classi�cation, there are metrics to measure the
accuracy of the methods on the given data. These are based on two notions called
Precision and Recall. For the sake of illustration, we describe these notions in terms
of classi�cation of cancer.

• Precision is the number of correct cancer classi�cations divided by all predicted
cancer classi�cations. Symbolically, suppose CancAll is the set of people who
have cancer; ClassCorrect is the set of people whom the classi�er claims have
cancer and do; and ClassAll is the set of people whom the classi�er claims have
cancer whether they do or not. Then:

precision =
||ClassCorrect||
||ClassAll||

(1.2)

(Note that the notaion ||S|| notation means the number of members of set S.)

Higher precision means few false positives.

• Recall is the number of correct cancer classi�cations divided by all patients who
have cancer. Using the symbols from the previous bullet:

recall =
||ClassCorrect||
||CancAll||

(1.3)

High recall means few false negatives.
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• There is usually a trade-o� between precision and recall. A low acceptance
threshold may yield higher recall but lower precision and conversely. To bal-
ance the two, one can capture both in onemetric called the F-score (also known
as the F1-score).

The F-score can be calculated by dividing the product of precision and recall
by the sum of precision and recall and multiplying the result by 2.

The formula for the F score is:

Fscore = 2
(precision ∗ recall)
(precision+ recall)

(1.4)

Quality Metrics for Prediction
When the goal is to predict a real number value (e.g. to predict the weight of a
chicken), precision and recall would make sense only if we arti�cially discretize the
weights into bins. This can sometimes be useful, but usually is not. Instead we look
at a measure called RMSE (Root Mean Square Error), which is simply the square
root of the arithmetic mean of the squares of the di�erences between each of the n
predictions (ŷi below) and the corresponding correct value (yi).

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

1.2.3 STATISTICAL ANALYSIS TECHNOLOGIES
Once we have obtained the results from the experiment, we want to determine
whether they indicate an e�ect beyond random chance and the size of that e�ect.

We use a non-parametric approach as in the companion book Statistics is Easy,
because making a speci�c distribution assumption (e.g., that the data is normally dis-
tributed) may not be justi�ed in many cases and may therefore lead to erroneous
conclusions.

The only assumption of the non-parametric approach is that the data collected
is an unbiased sample from the population. Usually, this means that the sample is
taken randomly with uniform likelihood without replacement from an underlying
population. This is a far weaker assumption than assuming that the whole population
can be characterized by some particular distribution.

Establishing Signi�cance: p-values
In many scienti�c settings, one is trying to determine whether some factor is critical
to a result. In the chicken dataset described in the next chapter, for example, wewant
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to determine whether diet in�uences the �nal body weight of the chicken. Because
of thewide variability among chickens, any two groups of chickenswill have di�erent
mean �nal weights even if the two groups follow the same diet. To evaluate whether
some change in diet is likely to overcome this random �uctuation, we use the notion
of p-value, brie�y introduced above.

Suppose, for example, that an experiment reports that diet A gives a higher av-
erage weight than diet B. The p-value is the probability that the observed di�erences
among the diet groups could have happened by chance. If the p-value is low (conven-
tionally under 0.05), then the null hypothesis that the diet didn’t matter is unlikely,
so we may be justi�ed in concluding that the diet likely did matter.

In parametric statistics, one can �nd a p-value by assuming a distribution and
evaluating the observed results based on that distribution. Because our philosophy
is to assume nothing about a distribution, we use a relabeling and counting tech-
nique called "shu�ing" which is explained in the companion book Statistics is Easy
(as are all the statistical techniques used here), thoughwe’ll review it later in theChick
Weight case study and also apply it in the Cystic Fibrosis case study.

Non-parametric Power Analysis: estimating how big a sample size should be
A p-value analysis that leads to feedback for the experimentalist in determining a suf-
�ciently large sample size. Here is how. Suppose the p-value is very high. Resampling
can �nd the number of replicates that might reduce the metric to a more desirable
number.

An example will help explain this: suppose that a treatment is given to some set
of patients T and a placebo to some set P . Suppose that the patients in T do in fact
receive a greater bene�t than the patients in P , but the result has an excessively high
p-value. One can computationally create a new treatment set T ′ consisting of T and
say some fraction f of ||T || additional values that are drawn randomly and uniformly
without replacement from T . One could use the same fraction f to create a new set
P ′ from P . If as a result the di�erence in bene�t between T ′ and P ′ falls below some
p-value threshold, then a new experiment in which the treatment pool is of size ||T ′||
or more and the placebo pool is of size ||P ′|| or more may lead to a desired p-value
if the e�ect is in fact real.

Magnitude of an E�ect: Con�dence Intervals
Suppose that we �nd that diet has some e�ect on chicken weight (i.e., there is a low
p-value that diet has no e�ect). A natural next question is to determine how big that
e�ect is.

Suppose that in the sample, the average weight of chickens eating diet A is 0.8
kilograms more than the average weight of chickens eating diet B. We might want
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to know how di�erent that average weight might be for a di�erent group of chickens
who take diet A compared to a groupwho take diet B. The result might say something
like: we expect the average di�erence to lie between 0.68 and 0.85 kilograms 90%
of the time. In that case, we’d say the 90% con�dence interval lies between 0.68 and
0. 85 kilograms.

Wewill use a non-parametric statistics uses a technique called bootstrapping to
compute con�dence intervals. This is also discussed in Statistics is Easy and brie�y
reviewed in the Chick Weight study and also used in the Cystic Fibrosis case study.

Multiple Hypothesis Testing
For a single scienti�c question (e.g., does diet A lead to a higher weight than diet
B), the p-value is an appropriate indicator of statistical signi�cance. When there are
multiple scienti�c questions (e.g., which genes have been a�ected by a treatment),
the p-value is only the �rst step.

To use an everyday example, if we compare di�erent diets for chickens along
many measurement dimensions: �nal weight, number of clucks per minute, number
of hours sleep, ... then for some measurement dimension the diet di�erence may
show a low p-value just by chance. This is called themultiple testing e�ect: even very
low p-values will occasionally appear for ameasurement type evenwhen a treatment
has no real e�ect.

There are several way to overcome the multiple hypothesis testing e�ect. The
two we will consider in this book are 1) Bonferroni correction and 2) false discovery
rate (FDR), the latter of which we introduced brie�y above.

The Bonferroni correction evaluates the probability that there is at least one
false positive (sometimes called the family-wise error probability). Operationally,
one takes some probability cuto�, denoted α, and divides it by the number of tests.
For example, if α = 0.05, and there are 10,000 tests, then the Bonferroni correc-
tionBonferroni [1936] will accept only those test results that have a p-value of 0.05

10,000

or less. The net e�ect is that the probability that one or more of those accepted tests
had the observed value due to chance is 0.05 or less.

False discovery rate is de�ned as the number ofmeasurement di�erenceswith a
certain level of p-valuewhich could have that levelmerely by chance (in our example,
without any in�uence from the diet). Here (as in most current RNA-seq analyses) we
use the technique of Benjamini and Hochberg [1995] though there are others. We
describe that technique in the cystic �brosis chapter.

1.3 OVERVIEWOF THE CASE STUDIES
For each case study, we describe the dataset, the goal of analysis, and the computa-
tional technologies we used.
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1. Chicken Diet - This dataset was originally provided by Crowder, and Hand,
(1990) Crowder and Hand [1990], in Analysis of Repeated Measures (exam-
ple 5.3), published by Chapman and Hall. The dataset tracks the weight gain of
chicks in four di�erent diets: normal, 10%protein, 20% protein, and 40% pro-
tein replacement. There are 20 chicks who take the normal diet, and 10 chicks
each for the remaining three so a total of 50 chicks. Weight for each chick was
measured on the following days for three weeks: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, and 21. Five chicks did not make it to the 21st day so the data contains miss-
ing values. The goal is to see how the weight of a chicken relates to a speci�c
diet.

Technologies used:

• Data preparation: Ignore the days with missing values.

• Analysis: linear and quadratic regression along with a root mean squared
error metric.

• Statistics: Unpaired signi�cance testing, con�dence intervals.

2. Breast cancer - This dataset comes from digitized images of breast mass UCI.
The features describe the cell nuclei in each image. The goal of the study was to
classify tumors as benign ormalignant using predictivemodeling. Our reanalysis
will test di�erent machine learning methods to see which model gives the high-
est diagnostic accuracy and whether the di�erence in accuracy is statistically
signi�cant. In addition, the reanalysis will test the performance of each model
with missing data to see which model can handle missing data the best. Finally
we determine which feature(s) are most important in making correct predic-
tions.

Technologies used:

• Data preparation: reducing 30 cell-speci�c attributes into 7 useful fea-
tures.

• Data preparation: impute missing data.

• Analysis: machine learning techniques including logistic regression, deci-
sion trees, random forests, and support vector machines.

• Analysis:The application of correlation to remove similar features in order
to lower the dimensionality of the machine learning analysis.

• Statistics: precision, recall and F-measure.

3. Cystic Fibrosis - The RNA-seq data for this analysis comes from NCBI GEO
(GSE124548). The purpose of the original studywas to study the e�ect of a drug
(Lumacaftor/Ivacaftor) to treat cystic �brosis. Kopp et al. [2020]

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124548


1.3. OVERVIEWOF THE CASE STUDIES 11

RNA-seq is a method for detecting the abundance of messenger RNA (mRNA)
of each gene present in a sample drawn from a patient. Our goal in this book is
to identify the genes whose expression might suggest cystic �brosis. The main
challenges have to do with normalization, multiple hypothesis testing, identi�-
cation of signi�cant changes and use of con�dence intervals to determine mag-
nitude of change.

Technologies used:

• Data preparation: normalize RNA-seq data so that the RNA levels ob-
tained from di�erent samples are meaningfully comparable.

• Analysis: F-measure based on random forest prediction of diagnosis based
on changed genes.

• Analysis: Random forest for the prediction of cystic �brosis and impor-
tance ranking of genes.

• Statistics: Shu�e tests to determine the statistical signi�cance of the dif-
ferences in gene expression due to disease status and drug use. Multiple
hypothesis testing correction.
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C H A P T E R 2

ChickWeight and Diet

2.1 GOAL OF THE STUDY

The goal of this study is to determine whether the diet provided to a young chicken
can a�ect the chick’s weight and, if so, by how much. We will compare the diets
pairwise to seewhether the di�erences in the �nalweights are statistically signi�cant.

This form of analysis is common, viz. there is some controllable input (diet in
this case) and some output of interest (�nal weight). We want to determine whether
changing the input in�uences the output and by how much. A properly designed
experiment will assign individuals (chicks) to one input group or another (one diet
or another) based on random assignment (randomly and independently, always using
the same probabilities, assign each chick to one of four diets). Because individuals
(chicks) may have di�erent �nal results for other reasons (e.g., some chicks may be
genetically disposed to gain more weight than others), there will be variation within
each group. Statistical analysis will tell us whether the di�erences between the diet
groups are likely due to the diet or likely the result of random chance.

In addition to comparing �nal weights, we want to understand the relationship
between a dependent variable (weight) and one or more independent variables (time
and diet). We will use linear and non-linear regression analysis for this purpose.

2.2 DATA DESCRIPTION

The Chickweight dataset has 578 rows and 4 columns from an experiment on the
e�ect of diet on early growth of chicks. The 4 columns are "Weight", "Time", "Chick"
and "Diet". Weight is a continuous variable, time is ordinal (day since the experiment
started), while chick and diet are categorical variables.

The dataset contains four diets; one normal diet and three with di�erent
amounts of protein replacements. The control group (normal diet, denoted Diet1)
has 20 chicks, whereas the other diets each have 10.

You can �nd more information about the data here https://stat.ethz.ch/R-
manual/R-patched/library/datasets/html/ChickWeight.html and it is described in
Crowder and Hand [1990]

https://stat.ethz.ch/R-manual/R-patched/library/datasets/html/ChickWeight.html
https://stat.ethz.ch/R-manual/R-patched/library/datasets/html/ChickWeight.html
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2.2.1 DATA PREPARATION
The body weights of the chicks were measured at birth and every second day there-
after until day 21.

Five chicks did not make it to day 21 so they were removed from the analy-
sis. Here, we’ve chosen the most conservative approach to deal with missing data –
remove the data items (chicks) having missing data. We can do this because there is
ample data. Note that in an alternative study, we might be interested in the question
of whether some diet increased the chances of mortality. But in that case, we would
need far more chicks.

2.3 WEIGHT CHANGE

2.3.1 WEIGHT CHANGE SIGNIFICANCE
In order to determine whether changing the diet makes a signi�cant di�erence to the
�nal weight, we will use the shu�e test as described in Statistics is Easy. Since we
have four di�erent diets, we will compare the control diet, Diet1, against the three
with increased protein content, Diet2, Diet3, and Diet4.

For our �rst comparison, Diet1 (the control) vs Diet2, we can take the average
of the �nal weights in each group and see whether the Diet2 weights are signi�cantly
greater than the Diet1 weights. This is a one-sided test, because we are interested
only in weight increases in Diet2 relative to the control diet Diet1. In this case the
di�erence is 36.95 grams. The question we are trying to address here is whether this
di�erence might have arisen with a reasonably high likelihood (say greater than a 5%
chance) just by chance.

To test this using a non-parametric shu�e test, we set a counter to 0 and then
perform 10,000 computational shu�e experiments of the following form:

1. Shu�e the diet labels among the chicks. Here is what that means. Recall
that a pair of vertical lines surrounding a group name, for example ||Diet1||,
refers to the number of chicks in the group. Suppose there are ||Diet1|| chicks
who received diet1 and ||Diet2|| who received diet2. Now consider the set of
�nal weights of all chicks who received either diet1 or diet2. Shu�ing has the
same e�ect as choosing at random and without replacement the �nal weights
of ||Diet1|| of the chicks in the two groups and putting them in group G1 and
taking the rest and putting them in group G2.

2. Evaluate the di�erence of themeans ofG1 andG2. If it is as great as the dif-
ference observed (36.95 in this example), update the counter by 1. Otherwise,
don’t change the counter.
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The p-value is the �nal (counter value/10,000). (If the counter value is 0, then
we say the p-value < 1/10,000.)

Below is a histogram of the di�erences of all the shu�e experiments between
Diet1 andDiet2. The p-value is the proportion of shu�e tests that showed an average
di�erence in weight equal to or greater than the di�erence observed in the study.
Pictorially, that is the ratio of the area to the right of and including the red line (which
is the observed di�erence) over the entire area of the blue lines.

Figure 2.1: Distribution of the shu�ed di�erences of the Diet1 and Diet2 chicks.
The red line marks the observed di�erence between the diet groups. The p-value is
the area to the right of and including the red line divided by the area of all the blue
lines. 887 out of 10000 experiments had a di�erence of means greater than or equal
to 36.95. The p-value of getting a di�erence of two means greater than or equal to
36.95 is thus roughly 0.0887, which is not low enough to be statistically signi�cant.

Below is a table summarizing the results of the pairwise comparisons against
Diet1.
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Table 2.1: Signi�cance of di�erent in weights in grams

Diets Observed Di�erence P-value
Diet2 - Diet1 36.95 0.0887
Diet3 - Diet1 92.55 0.0007
Diet4 - Diet1 60.81 0.0074

The table shows that the Diet3 - Diet1 comparison has the smallest p-value,
suggesting that the di�erence in weight is extremely unlikely to have happened by
chance (roughly 0.07%). Diet2 - Diet1 also shows a di�erence, but has a roughly
8.9% chance of having happened by chance.

Remark: As noted in the introduction, when multiple tests are performed, one
or more tests could yield a low p-value just by chance (i.e., even if there were no
e�ect). In chapter 4, we discuss two corrections for this issue. The simplest and most
conservative correction is called the Bonferroni correction. E�ectively, it involves
multiplying the p-values by the number of tests performed to get a "family-wise error
rate." So, if we were interested in a family-wise error rate of 0.05, then Diet3 - Diet1
would pass (because 3 × 0.0007 is under 0.05) and similarly for Diet4 - Diet1.

2.3.2 WEIGHT CHANGE CONFIDENCE INTERVAL
For diet di�erences having low p-values, we next ask how big a di�erence we might
expect to �nd. That is, if we were to collect data on di�erent chicks for these same
diets, what is the di�erence of the means that we are likely to see? To put this slightly
more technically, for each dietD, we want to approximate a large number of random
weight samples that are "similar" to the weights of the chicks who received diet D.
The we’ll compare the samples from the di�erent diets.

Mechanistically,we perform a new statistical experimentwherewewill sample,
with replacement, from the original values of each diet separately to get a new set
of values. This con�dence interval calculation, called a non-parametric bootstrap
calculation, goes like this.

To compare, say, diets 1 and 3, perform 10,000 experiments of the following
form:

1. Take the weights W1 of the ||Diet1|| chicks who received diet1 and form a
group G1 of ||Diet1|| weights by taking ||Diet1|| values from W1 with uniform
probability and with replacement. "Uniform probability" means that any of the
||Diet1|| weights has the same probability of being chosen. "With replacement"
means that after a weight is chosen, it can be chosen again with its same prob-
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ability. The net e�ect is that some weights in W1 may never appear in G1 and
others might appear several times. The idea is to get a sample that approximates
the �nalweights of an arbitrary group of chickswho getDiet1. Do the same thing
to form G3 from the weights W3 of the ||Diet3|| chicks who received diet3.

2. Evaluate the di�erence of the means of G1 and G3.

Sort the 10,000 di�erences in ascending order (starting from the most negative
if there are negative di�erences). The 90% con�dence interval is the range from the
500th (the 5th percentile) di�erence from the bottom of the sorted list to the 9500th
di�erence (95th percentile) from the top of the sorted list. The table tells us that
roughly 90% of the time, we’d expect the mean of a Diet3 group to improve on the
mean of a Diet1 group by between about 70 grams and 157 grams.

The results are presented below. Note that we should compute con�dence in-
tervals only for those diets that have a su�ciently low p-value when compared with
Diet1. As it happens Diet3 and Diet4 have a statistically signi�cant advantage over
the control diet Diet1, but Diet2 does not.

Table 2.2: 90%Con�dence interval of the di�erences in themeanweights for the dif-
ferent diets. For example, 90% of the time, we’d expect the mean of Diet3 chicks to
be heavier than the mean of Diet1 chicks by between 50.29 grams and 134.7 grams.

Diets Observed Di�erence P-value 90% Con�dence Interval
Diet3 - Diet1 92.55 0.0007 50.29 .. 134.71
Diet4 - Diet1 60.81 0.0074 29.05 .. 93.35

Warning to theUnwary:A commonmistake is to think that a 90%con�dence
interval that does not include 0 implies a lowp-value (i.e., the result is unlikely to have
occurred by chance). To see that this is not always true, consider a overly minimalist
experiment in which one chick is given diet X and another chick is given diet Y. Sup-
pose that the diet X chick weighs more at the end by 50 grams. The con�dence in-
terval would be 50 grams to 50 grams ( just the single number). But the p-value would
be 0.5. This would thus be an utterly insigni�cant result that could have had nothing
to do with the diet, e.g., the diet X chick might simply have had weightier genetics.
One might conclude from this example that there simply needs to be someminimum
number of data points (chicks in this case) in order to justify relying on con�dence
intervals alone. Unfortunately, this is not the case. While more data points tends to
reduce the p-valuewhen there is an e�ect, there is no �xed number to use. So, please
take the time to do the signi�cance test before measuring con�dence intervals. If the
p-value is high, then the con�dence interval is meaningless.
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2.4 REGRESSION ANALYSIS

Regression is a technique that is used to understand the numerical relationship be-
tween a dependent variable and one ormore independent variables. For this analysis,
we split the dataset into four sets where each set corresponds to one diet. For each
diet, the independent variable is "Time" and the dependent variable is the weight of
the chick. We will compare two regression methods (linear and quadratic) based on
how well they �t the data (called "goodness-of-�t"). Note that another use of regres-
sion is to predict future data points.

Figure 2.2: The linear and quadratic regression lines for diet 1 and diet3. The
quadratic regression lines curve upwards towards the end, potentially giving a better
�t.
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Here we will use linear (degree 1) regression. We use the poly�t() function
from the numpy package to calculate the slope and the intercept representing the
rate at which the Chick gains weight. These values are determined by minimizing
the squared error.

# Polyfit gives the y-axis intercept,
# slope (for linear regression), and
# linear and quadratic coefficients (for quadratic regression).
# X and Y are the values for the two variables.
# Third argument is for the degree of the polynomial
# z now contains the coefficients for the polynomial.
import numpy as np
z = np.polyfit(X, Y, deg)

Using the polynomials and the original values used to �t the line, we can de-
termine the squared error of the residual. A residual is the di�erence between the
actual point (Y in the code) and the point on the �tted line (y_hat in the code). We
calculate squared error for each point. To calculate the RMSE (root mean squared
error), we simply take the square root of the mean of the squared error (assuming n
data points).

RMSE =

√∑
(Y − Ŷ )2

n
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# This code evaluates the RMSE for both linear and quadratic regression.
# Using the z values, calculate the y_hat (the regression prediction)
# for each time value (x, below).
# Then calculate the Sum of squares ( Sum (y_hat - y)**2 )
def getSS(X,Y,z):

all_diffs=np.array([])
for i in range(len(X)):

if len(z)==2:
# linear regression z[0] is the slope
# and z[1] the intercept

y_hat = (X[i]*z[0]) + z[1]
if len(z)==3:

# quadratic regression
y_hat = (X[i]*X[i]*z[0])+ (X[i]*z[1]) +z[2]

all_diffs=np.append(all_diffs,[(y_hat - Y[i])**2])
diff_sum = sum(all_diffs)

return diff_sum

# Calculate the RMSE
def getRMSE(ss):

diff_sum = sum(ss)/len(ss)
return np.sqrt(diff_sum)

The RMSE for the 4 diets using quadratic and linear methods are summarized
in table 2.3.

Table 2.3: The diets have relatively small di�erences in RMSE (root mean squared
error) between the quadratic and linear regression models. Diet3 shows the biggest
di�erence, but even there the RMSE di�erence is under 5% of the linear RMSE.

Diets Linear RMSE Quadratic RMSE Lin-Quad
Diet1 33.62 33.48 0.14
Diet2 41.01 40.69 0.32
Diet3 37.90 36.07 1.83
Diet4 20.39 20.17 0.22
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Todeterminewhether the di�erence between the linear and quadraticmethods
is statistically signi�cant, wewill perform a non-parametric paired swap test. A paired
test is appropriate here since the same measurement points are being used for linear
and quadratic regression.

Here is how to do this concretely. Build a table of four columns: chick, time
point, error for linear regression, error for quadratic regression. Call that the original
table, orig. Compute the RMSE of the third column and subtract from that the RMSE
of the fourth column. This gives a value origDi�, which is the di�erence between
the RMSE of linear regression and quadratic regression. Quadratic regression should
give a lower RMSE (less of an error) because the regression line does not need to be
straight.

For every point in time for every chick, we will, with a probability of 50%,
switch the linear regression and quadratic regression errors and recalculate the dif-
ference between the RMSE. We will do this 10,000 times and count the number of
times the di�erence was greater than the one observed. If this is rare, then the lower
root mean squared error of quadratic regression is statistically signi�cant.

# Pseudo-code for a paired test
# to compute the p-value of
# the difference in RMSE between linear and quadratic regression.
counter:= 0
do 10,000 times

create an empty table tmp
for each row r of orig

flip a fair coin
if coin lands heads then

insert r in tmp as is
if coin lands tails then

insert r in tmp with the linear regression error
swapped with the quadratic regression error

r3:= RMSE of the third column of tmp
r4:= RMSE of the fourth column of tmp
if (r3 - r4) >= origDiff

then counter+= 1

p-value = counter / 10000
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To determine a con�dence interval of that di�erence, we use the following
bootstrap method:

# Pseudo-code for bootstrap to compute the 90% confidence interval
# of the difference in RMSE between quadratic and linear regression
# based on resampling with replacement the Diet1 weights.

do 10,000 times

choose rows randomly and uniformly with replacement from orig
to get a table of the same size as orig.

Recompute the RMSEs of each column
and recompute the difference.

Then sort the differences.
The lower end of the 90% confidence interval is the
500th difference and the upper end is the 9,500th difference.

Table 2.4: Quadratic regression does not have a statistically signi�cantly lower root
mean squared error (RMSE) than linear regression, but comes close in Diet3. The
"NA" stands for "not applicable" which arises because the p-value > 0.05. When the
p-value is high, the con�dence interval has no meaning. Diet3 has a p-value close to
0.05, so the con�dence interval might have meaning.

Diets Linear Quadratic Lin - Quad P-value 90% Conf Interval
Diet1 33.62 33.48 0.14 0.27 -0.23 .. 0.51 (NA)
Diet2 41.01 40.69 0.32 0.26 -0.46 .. 1.14 (NA)
Diet3 37.90 36.07 1.83 0.052 0.00 .. 3.71
Diet4 20.39 20.17 0.22 0.26 -0.30 .. 0.72 (NA)

The p-value of obtaining a better �t using quadratic regression compared with
linear regression is everywhere larger than 0.05, though it’s close to 0.05 for Diet3.
Recall that the con�dence interval of a comparison is not meaningful and should not
be computed when the comparison is not statistically signi�cant. That is why we
label the con�dence intervals other than for Diet3 as "NA" meaning not applicable.
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We conclude that there is no real bene�t from a goodness-of-�t perspective
to change the regression model from linear to quadratic. Di�erent data (e.g. eco-
nomic data showing the concept of diminishing returns) might gain substantially from
quadratic regression.

2.5 EXERCISE
In the text, we studied the di�erence in Root Mean Squared Error (RMSE) between
linear and quadratic regression and found that (i) quadratic gives a lower RMSE, (ii)
the di�erence in their RMSEs is generally not statistically signi�cant, except for Diet3
which has a p-value close to 0.05, and (iii) the di�erence is relatively small.

In this exercise, you will compute the 90% con�dence interval of the RMSE
with respect to the linear regression line L for Diet1. The goal is to gain an idea of
how closely another set of chicks given Diet1 would track the original regression line
L.

Hint: The new analysis will proceed as follows for Diet1.

# Pseudo-code for bootstrap to compute the 90% confidence interval
# of the RMSE with respect to linear regression
# on the original Diet1 weigts
# based on resampling with replacement the Diet1 weights.

L := compute the linear regression line for Diet1
do 10,000 times

construct a bootstrap sample of chicks
calculate the RMSE of the time series of
all the sampled chicks with respect to L

end do
compute the confidence interval from the calculated RMSEs

2.6 CODE
A Python notebook with the code used for the analysis can be found here :

CaseStudies/Chick_weight_diet/Chick_Weight_Diet.ipynb

https://github.com/StatisticsIsEasy/CaseStudies/blob/main/Chick_weight_diet/Chick_Weight_Diet.ipynb
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C H A P T E R 3

Breast Cancer
Classi�cation

3.1 GOAL OF THE STUDY
Here we will analyze the Breast Cancer Wisconsin (Diagnostic) Data Set 1. The goals
of this study are (i) (diagnosis) to classify breast samples as cancerous or not; and (ii)
(importance) to determine which measurement feature or combination of features is
most important to determine whether a patient has breast cancer.

In many data analytic studies, one wants to determine which inference method
performs the best. As an example, we compare four di�erent classi�cation methods:
logistic regression, support vector machine (SVM), decision tree, and random forest.

The main technological challenges we will explore are:

• How to compare di�erent machine learning models statistically (spoiler: ran-
dom forests do very well when there are relatively few features, up to a few
10s).

• The bene�ts of feature selection (spoiler: helps support vector machines a lot).

• How missing value decisions can a�ect accuracy (spoiler: imputation can work
very well).

• How to �nd themost important features (spoiler: machine learningmethodswill
tell you).

3.1.1 APPROACH
For each classi�cation method, we will split the data into a "training" set that we will
use to build the model, and a "test" set that we will use to evaluate performance. We
will then compare our predictionswith the actual outcomes (benign ormalignant). To
evaluate robustness, we will repeat each analysis 100 times using di�erent subsets of
the data for training and testing, a process called "cross-validation". We will use these
to compute con�dence intervals for the F-scores in order to compare the quality of
the results of the di�erent methods.
1 (http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic))

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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The code for loading the data and doing the analysis is provided in more detail
on the Github repository https://github.com/StatisticsIsEasy/CaseStudies.

3.2 DATA
The features of the dataset are computed from digitized images of a �ne needle aspi-
rate (FNA) of breast masses. They describe characteristics of the cell nuclei present
in the image.

3.2.1 ATTRIBUTE INFORMATION
1. ID number

2. Diagnosis (M = malignant, B = benign)

3-12. The mean of the following real-valued features are computed for each cell nu-
cleus:

(a) radius (mean of distances from center to points on the perimeter)

(b) texture (standard deviation of gray-scale values)

(c) perimeter

(d) area

(e) smoothness (local variation in radius lengths)

(f) compactness (perimeter2/area− 1.0)

(g) concavity (severity of concave portions of the contour)

(h) concave_points (number of concave portions of the contour)

(i) symmetry

( j) fractal dimension ("coastline approximation" - 1), an indication of how
ragged the nucleus is

13-22 Standard error of the 10 measurements listed above

23-32 Worst value for the 10 measurements listed above

The mean, standard error and "worst" or largest (mean of the three largest val-
ues) of each feature were computed for each image, resulting in 30 features. For
instance, consider the feature "Radius". The �eld 3 value is Mean Radius, the �eld 13
value is Radius standard error, and the �eld 23 value is Worst Radius.

In this study, for purposes of illustration, we will look only at themean values.

https://github.com/StatisticsIsEasy/CaseStudies
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3.3 DATA PREPARATION

3.3.1 TRAINING AND TESTING SPLIT
The data set consists of 569 breast samples, 357 benign and 212 malignant.

To construct our models, we will use 80% of the data for training and 20% for
testing. We will call the features about cell nuclei used for prediction X, and the cor-
responding diagnoses [B,M] (benign, malignant) Y. Mechanically, to split the dataset
into training and testing, wewill use the train_test_split function to split our dataset.
The test_size=0.2 parameter tells the method to keep 80% of the cases for train-
ing and 20% for testing. The stratify parameter tells the method to keep the same
proportion of successes and failures (malignant/breast cancer and benign/healthy, for
our example) in the training and test sets. We explicitly set this toNone because the
test set is supposed to represent new data and we want to put as few constraints on
new data as possible.

# This code performs the train-test
# (80% train and 20% test) split in SciKit Learn.
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,

test_size = 0.2,
stratify=N)

As explained earlier, cross-validation is a method to get an average sense of
accuracy across all the various data points for a given selection of hyperparameter
settings. Here, we will randomly create the test and training dataset 100 times and
build a distribution of the F-score using the default hyperparameter settings for each
method. From the distribution we will take the 5th and 95th highest value which
provide 90% con�dence intervals for the prediction errors on training and test sets
for each method.
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# The code takes the features and labels as input and outputs
# the F-scores on the training and test sets
# using the logistic regression method.

score=np.zeros(shape=(100,2))
for i in range(100):

X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size = 0.2,

stratify=N)

score[i,]=(logreg(X_train, X_test, Y_train, Y_test))

3.4 CLASSIFICATIONMODELS

A classi�er is an algorithm that maps the input data (cell nuclei characteristics) to
a speci�c category. We will test a few supervised binary classi�cation models that
assign every sample in the data set into one of the two categories of diagnosis, i.e.,
malignant (M, encoded as 1) or benign (B, encoded as 0). Thousands of machine
learning models are possible, so if you have a favorite, you can substitute yours for
ours in the code.

3.4.1 LOGISTIC REGRESSION
Logistic regression is a statistical model which, in its simplest form, is used to model
how a binary feature (the outcome, here the cancer diagnosis) depends on features
which may be discrete or continuous (for example the mean radius). Logistic regres-
sion di�ers from linear/quadratic regression,which forecasts a continuous dependent
feature (e.g., a �nal weight in the chick example). Instead, logistic regression is used
to infer a categorical/discrete dependent feature such as Benign or Malignant.

Logistic regression is implemented in Python in the scikit-learn library. Here’s
a small example:
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# This applies logistic regression to make predictions
# and then calculate an
# F score (also known as F1 score) on both the training and test data.

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import f1_score

def logreg(X_train, X_test, Y_train, Y_test):
clf = LogisticRegression().fit(X_train, Y_train)
Y_train_predicted = clf.predict(X_train)
train_score = f1_score(Y_train, Y_train_predicted)
Y_test_predicted = clf.predict(X_test)
test_score = f1_score(Y_test, Y_test_predicted)
return [train_score, test_score]

3.4.2 DECISION TREE CLASSIFIER
In a decision tree, each internal node represents the test on a certain feature, each
edge is characterized by a result of that test. The leaf represents the category. In the
�gure below, for example, the root node tests the value of the concave_points_mean
feature. The leaves will give a diagnosis of Benign or Malignant.

A Decision Tree Classi�er, as applied to this example, produces a decision tree
that diagnoses patient conditions as Malignant or Benign based on the measured fea-
tures. At each node, the classi�er tries to choose the attribute and the value that best
separates Benign from Malignant cancers.

The Decision Tree Classi�er is implemented in Python in the scikit-learn li-
brary under DecisionTreeClassi�er class. Here’s an example:

# This applies decision trees for prediction
# and then calculates an
# F score on both the training and test data.
def decisiontree(X_train, X_test, Y_train, Y_test):

clf = DecisionTreeClassifier(criterion="gini").fit(X_train, Y_train)
Y_train_predicted = clf.predict(X_train)
train_score = f1_score(Y_train, Y_train_predicted)
Y_test_predicted = clf.predict(X_test)
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test_score = f1_score(Y_test, Y_test_predicted)
return [train_score, test_score]

Figure 3.1: Decision Tree Classi�er. The top line in each box represents the test on
the data of a patient to perform. The second line gini is a measure of how e�ec-
tive the feature branching is in splitting the data. Of the 569 samples in the training
set, branching on "concave_points_mean <= 0.051" assigns 349 patients to 0 (B for
Benign) and 220 to 1 (M for Malignant). The blue node on the right is for the 220
samples that have a concave points_mean > 0.051 and the orange node on the left
is for the 349 samples that have concave points_mean <= 0.051. Out of the 220
in the blue node, a majority (192/220) of the samples are M (Malignant). The most
informative further classifying feature-value for the 220 samples is "texture_mean <=
16.395" and the separation to the next level depends on whether the value is <= (left
branch) or > 16.395 (right branch). The gray leaf nodes represent further levels of the
decision tree.

3.4.3 RANDOM FOREST CLASSIFIER
A Random Forest consists of a large number of distinct decision trees that work to-
gether as an ensemble. Random forests can work as a learning method for both re-
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gression (predict a numerical value) and classi�cation (predict a class, e.g. cancerous
or not).

As characterized in the excellent book The Elements of Statistical Learning
Hastie [2001], the essential idea behindRandomForests is to take the results ofmany
noisy but approximately unbiased models and average them to reduce the variance.
Empirically, this large number of trees operating as an ensemble outperforms any
of the constituent decision trees. When used as a classi�er, each decision tree in
the forest predicts a class for the object. The class with the most (possibly weighted)
votes becomes the prediction of the random forest model.

Figure 3.2: Simple Random Forest consisting of three decision trees. If the instance
receives two votes for class B and one for class A, then the random forest will output
B.

Here is an example of the implementation of Random Forest Classi�er using
scikit-learn library in Python.

# This applies random forests to calculate an
# F score on both the training and test data.
def randomforest(X_train, X_test, Y_train, Y_test):

clf = RandomForestClassifier().fit(X_train, Y_train)
Y_train_predicted = clf.predict(X_train)
train_score = f1_score(Y_train, Y_train_predicted)
Y_test_predicted = clf.predict(X_test)



30 3. BREAST CANCER CLASSIFICATION

test_score = f1_score(Y_test, Y_test_predicted)
return [train_score, test_score]

3.4.4 SUPPORT VECTORMACHINE
Like Random Forests, Support Vector Machines provide methods for both classi�-
cation and regression. The objective of the Support Vector Machine algorithm is to
�nd a "hyperplane" (a linear equation among the features) that maximally separates
the data points from di�erent classes. The notion of maximal separation is expressed
as a "margin" whose geometrical manifestation can be seen in the �gure.

Figure 3.3: Optimal Hyperplane. A hyperplane is a line when the data is two di-
mensional, a plane for three dimensional data, etc. Optimal in this example means
choosing the line among all possible separating lines (examples of which are shown
in the left panel) that separates the stars from the triangles with as large a distance
(called the margin) on either side of the line as possible.

Here is an example of the implementation of Support VectorMachine Classi�er
using the scikit-learn library in Python.

# This applies the support vector machine method to calculate an
# F score on both the training and test data.
def mysvm(X_train, X_test, Y_train, Y_test):

clf = svm.SVC().fit(X_train, Y_train)
Y_train_predicted = clf.predict(X_train)
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train_score = f1_score(Y_train, Y_train_predicted)
Y_test_predicted = clf.predict(X_test)
test_score = f1_score(Y_test, Y_test_predicted)
return [train_score, test_score]

3.5 EVALUATION
Here we have combined precision (the number of those accurately predicted to have
the disease/the number predicted to have it) and recall (the number of those accu-
rately predicted to have the disease/the number who have it) through the F-score.

Recall that the formula for the F score is:

Fscore = 2
(precision ∗ recall)
(precision+ recall)

(3.1)

Table 3.1: The con�dence intervals of the F-scores of di�erent machine learning
methods. The range re�ects the 90% con�dence interval of each method. Each
method is run 100 times on a randomly chosen 80-20 split of the data. The 90%
con�dence interval is based on the �fth F-score in the sorted order of F-scores to
the 95th F-score.

Method Training F-score Testing F-score
Logistic Regression 0.86 - 0.89 0.82 - 0.94
Decision Tree 1.00 - 1.00 0.84 - 0.94
Random Forest 1.00 - 1.00 0.88 - 0.96
SVM 0.79 - 0.85 0.76 - 0.92

The above chart shows the performance of themodels thatwe’ve just discussed.
(Because of the use of random seeds, your results may be slightly di�erent.) We see
that random forests perform best, which is in fact often the case when there are few
features (on the order of a few 10s). On the other hand when there are thousands of
features, Support Vector Machines can perform better. We suggest trying the di�er-
ent methods on your problem as we are doing in this chapter. It doesn’t take much
work on your part and it can greatly enhance the quality of your results.

Note that, in table 3.1, the methods show a larger con�dence interval for the
testing F-score than for the training F-score. The reason is that the test set is smaller,



32 3. BREAST CANCER CLASSIFICATION

so there will be more variance in its F-score. This is illustrated in Figure 3.4 for the
distribution of results from 100 logistic regression models.

# Plot the F-scores of logistic regression on
# training and testing data for different 80-20 splits.
sns.set(font_scale=1)
sns.distplot(score[:,0], label="train", bins=10, color="blue")
plt.axvline(score_sorted[5][0], 0,40, color="blue", ls='--')
plt.axvline(score_sorted[95][0], 0,40, color="blue", ls='--')
sns.distplot(score[:,1], label="test", color="green")
plt.axvline(score_sorted[5][1], 0,40, color="green", ls='--')
plt.axvline(score_sorted[95][1], 0,40, color="green", ls='--')
plt.xlim(0,1)
plt.legend()
plt.title("Logistic Regression")
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Figure 3.4: Distribution of training and testing F-scores for logistic regression. The
vertical lines represent 90% con�dence intervals. The test set size is smaller so will
tend to have a wider con�dence interval.

Note to the Unwary: When Cross-Validation Is Insu�cient
Because cross-validation splits the data into training (conventionally, 80%of the total
data) and testing (20%) subsets, onemight conclude that the result on the testing data
is the result one might expect if the model were applied to new data. However, this
is true only if the analyst is very careful.

We authors have seen researchers deceive themselves into thinking they had
amazingly great results, because they e�ectively incorporated test data into their
training data. One way this happens is that one takes averages and/or other statis-
tics on all the data and uses that to set some machine learning parameters. A second
way is that one uses cross-validation with many di�erent hyperparameter settings. A
hyperparameter is commonly a con�guration input to a machine learning model (e.g.
number of trees used in a random forest) or a method used for handling missing data
or some other method for handling data. If one runs cross-validation with di�erent
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hyperparameters until one gets the best results, then one is e�ectively incorporating
test data into the training process. We call that polluting the test set.

Polluting the test set will make the study results appear stronger, but then gen-
eralized application of the research in question will su�er worse results. That is just
bad science.

To ensure that you avoid this, you would do well to sequester some of the input
data from all other data at the very beginning. Then you can do cross-validation on
the remaining data, optimizing hyperparameters to your heart’s content. In the end,
you create a model based on all the non-sequestered data and calculate an error on
the sequestered data, which is the only error rate you should report.

In this case study, we use cross-validation alone for the sake of presentation
simplicity (and do not optimize hyperparameters). That corresponds roughly to step
(ii) of the following work�ow: (i) sequester some data, (ii) perform hyperparame-
ter tuning and cross-validation on the non-sequestered data to create an optimized
model, and (iii) apply the optimized model on the sequestered data and (iv) report
results only on that sequestered data.

Note to the Unwary: Imbalanced Datasets
How tomeasure error is also an issue. Our data set has the property thatmore records
are marked B (benign) than M (malignant). This situation is called class-imbalance
in machine learning parlance. Most real-world classi�cation problems display some
level of class imbalance. Usually, as in this case, there are more healthy/good samples
than sick/bad samples.

When there is gross imbalance (not our case), we may want to adjust our met-
rics. For example, if a disease occurs in only 0.1% of the population, then a classi�er
that always says the disease is absent will be correct 99.9% of the time. That would
miss the entire point, however, because false negatives (i.e., claiming there is no dis-
ease when there is one) may be much more costly than false positives (i.e., claiming
there is a disease when there is none). In such cases, we may want to put a larger cost
on false negatives than on false positives. In the 99.9% example, we might want to
assign a cost of 1 to a false positive (diagnosing illness when there is none) and 1000
to a false negative (diagnosing health when there is illness). For our breast cancer
setting, we assign the same cost to false positives and false negatives, because there
is relative minor imbalance.

3.6 MISSING DATA

Missing data occurs when some measurement wasn’t done, was lost, or simply failed
some quality check.Wewill show two basicmethods for dealing withmissing data: (i)
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removing records that contain missing values (as we did for chicks), and (ii) imputing
(i.e., �lling in) missing values.

Removing records having missing data is self-explanatory. We will simply re-
move all the records that are missing at least one value. Each record corresponds
to a patient. This throws out a lot of information that may have been expensive and
time-consuming to obtain, so we’d prefer an alternative.

The alternative is to impute themissing valueswith actual values based on some
justi�able mechanism. One simple mechanism is to replace the missing values with
themedian value of the feature from the training set. For example, if the perimeter
value is missing for a patient P , then assign the median perimeter value from all other
patients to P .

# This code inserts missing data in row/column locations
# with probability portion_to_remove.
import random
def get_data_with_missing_values(data, portion_to_remove):

data_copy = data.copy()
ix = [(row, col) for row in range(data_copy.shape[0])

for col in range(data_copy.shape[1])]
for row, col in random.sample(ix,

int(round(portion_to_remove*len(ix)))):
data_copy.iat[row, col] = np.nan

return data_copy

# The first function removes rows (full patient records)
# that have any missing data.
# The impute function fills in missing data using
# the median method (taking the
# median value for that measurement over all other patients).
def remove_missing_data_row(data):

df = data.copy()
df = df.dropna()
return df

def impute_missing_data(data):
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data.fillna(data.median(), inplace=True)
return data

To evaluate the robustness of various missing data methods, we also want to
test the performance of the methods with di�erent subsets of missing values. Below
is a code example of using the logistic regression function with the impute strategy.

# After imputing missing data using the median calculation,
# this code performs breast cancer classification
# using logistic regression.
score=np.zeros(shape=(100,2))
for i in range(100):

X_train, X_test, Y_train, Y_test = train_test_split(X_select,
Y, test_size = 0.2, stratify=None)

X_missing = get_data_with_missing_values(X_train, 0.25)
X_missing_imputed = impute_missing_data(X_missing)
score[i,]=(logreg(X_missing_imputed, X_test, Y_train, Y_test))

Table 3.2: 35% Missing Data: The second column shows the F-measures for each
classi�cation method on the test data when there is no missing data. The next two
columns look at the the 90% con�dence interval of the F-measure on test data (i)
when records having missing data are removed (ii) when missing values are imputed.
Imputing gives better F-scores.

Method Original Remove
35%

Impute
35%

Logistic Regression 0.82-0.94 0.73-0.90 0.79-0.92
Decision Tree 0.84 - 0.94 0.67 - 0.92 0.71 - 0.86
Random Forest 0.88 - 0.96 0.79 - 0.93 0.86 - 0.93
Support Vector Machine 0.76 - 0.92 0.00 - 0.84 0.73 - 0.78
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Table 3.3: 50% Missing Data: Even when 50% of the data is missing, imputing does
remarkably well for Random Forests and Logistic Regression.

Method Original Impute
50%

Logistic Regression 0.78-0.93 0.79-0.91
Decision Tree 0.84 - 0.93 0.74 - 0.90
Random Forest 0.86 - 0.95 0.85 - 0.95
Support Vector Machine 0.79 - 0.91 0.74 - 0.88

The qualitative conclusion is clear: the accuracy of the machine learning meth-
ods is empirically less sensitive to missing data when using imputation than when
removing records, especially for high levels of missing data.

3.7 FEATURE SELECTION

Feature Selection is the process of selecting or constructing a set of features in the
hopes of obtaining better prediction results. In this section, we talk about the prob-
lem of selecting a subset of a given set of features and how that a�ects the prediction
quality of each classi�er (in the absence of missing data).

3.7.1 CORRELATIONHEATMAP
A correlationmatrix shows how the features are related to each other. If two or more
features are highly correlated to each other, wemay be able to keep just one and drop
the rest as they are redundant.We use theheatmap function in the seaborn package
to show the correlations among the features.
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Figure 3.5: Pairwise correlation of the features in the breast cancer dataset

As you can see in �gure 3.5, several features are highly correlated with others.
We remove the following features to get a reduced list of features on which to build
our models:

• perimeter mean

• area mean

• concavity mean

Figure 3.6: Pairwise correlations of the reduced set of features
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After removing the highly correlated features, all the classi�ers were executed
again. Table 3.4 summarizes the results.

Table 3.4: Feature Selection improves the Support Vector Machine’s (SVM’s) testing
F-measure but doesn’t bene�t the othermodels’ F-measures. In our experience, tree-
based learning methods don’t bene�t from feature selection unless there are at least
hundreds of features.

Method Training
F-score

Testing F-
score

New
Training
F-score

New
Testing
F-score

Logistic
Regression

0.86 - 0.89 0.82 - 0.94 0.84-.87 0.80-0.92

Decision
Tree

1.00 - 1.00 0.84 - 0.94 1.00 - 1.00 0.83 - 0.93

Random
Forest

1.00 - 1.00 0.88 - 0.96 1.00 - 1.00 0.86 - 0.95

SVM 0.79 - 0.85 0.76 - 0.92 0.83 - 0.87 0.80 - 0.93

3.8 IDENTIFYING IMPORTANT FEATURES

Scientists oftenwant to explain some phenomenon by using aminimal set of features.
This may reduce the number of tests that must be collected or simply give a more
understandable picture of what is going on. While the goal of feature selection is to
improve prediction performance by eliminating redundant features, the fundamental
goal of identifying important features is to create amore understandable explanation,
even possibly at the expense of prediction accuracy.

As an analogy, remember that �rst year physics started with the assumption of
no air resistance in order to explain the best angle at which to throw a ball the greatest
distance. The result might not have been as good as it would have been if you had
taken air resistance into account, but ignoring air resistance gave an excellent �rst
order approximation and a clear mental picture.

All this said, it can sometimes even be a good strategy to use feature importance
as a method of feature selection instead of using correlation. You will explore this
possibility in the exercises.
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Many classi�ers, including the Random Forest classi�er, give a ranking of the
features that are most important to the determination of class membership. For this
application, we see that the feature concave_points_mean dominates all others.

# This code uses a technique known as permutation importance
# to identify important features.
# We use 5 repeats but that is just the default.
from sklearn.inspection import permutation_importance
clf = RandomForestClassifier().fit(X_train, Y_train)
result = permutation_importance(clf, X_train, Y_train,

n_repeats=5, scoring='f1')
feature_imp_data = {'variables':X_train.columns,

'mean':result.importances_mean,
'sd':result.importances_std}

feature_imp_df = pd.DataFrame(data=feature_imp_data)
feature_plot = sns.barplot(x='variables',y='mean',data=feature_imp_df)
plt.errorbar(x=feature_imp_df['features'], y=feature_imp_df['mean'],

yerr=feature_imp_df['sd']/np.sqrt(5), fmt='none')
feature_plot.set(xlabel="Features",ylabel="Mean Importance")
feature_plot.set_xticklabels(feature_imp_df['variables'],rotation=90)
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Figure 3.7: Feature importance on a scale of 0 to 1 on the vertical axis. The feature
concave_points_mean is of primary importance in determining whether a patient
has breast cancer. Recall that concave_points_mean was the most important feature
in the Decision Tree which is why it was the feature evaluated at the root node of
the tree. With more repeats, the error bars would be narrower.
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3.9 EXERCISES TO TEST YOUR UNDERSTANDING
1. Imputing missing values as opposed to deleting them seems to improve the F-

measure results for each of the machine learning methods. Evaluate the statisti-
cal signi�cance of the improvement non-parametrically when 40% of the data
is missing.

2. Imputation and Random Forests: Create a chart whose x-axis is the percentage
of missing data (0%, 10%, 20%, 30%, 40%, and 50%) and whose y-axis con-
tains the lower and upper bound of the 90% con�dence interval for random
forests using imputation.

3. Restrict yourself to the top k (e.g. k = 5) most important features and rerun the
classi�cation study using only those features. How is the F-measure impacted?
If the F-measure does not decrease too much, the fewer feature model may
be considered better based on the philosophical rule known as Occam’s razor
Gauch [2003].2

4. If someone presents to you the test error from cross-validation results along
with the assertion that that error should be representative of errors on new data,
what might you ask about the analytical process?

5. Redo the analysis done here (with whatever level of missing values you choose)
by keeping out a subset of the data say 16% as sequestered. On the remaining
84%of the data, optimize hyperparameters, missing value imputation, and any-
thing else you choose on a series of cross-validation experiments. Then build
a model with those optimized hyperparameter values on the 84% of the data
and see how you do on the sequestered 16% of the data. Redo this process sev-
eral times on a bootstrap of the sequestered 16% of the data (but with the same
optimized hyperparameter values) to get a 90% con�dence interval of the test
set results. How does the test set result compare with the best cross-validation
results on the 84% of the data?

6. Comparing the con�dence intervals of the machine learning algorithms gave us
some indication of whichmethodwas better, but did not establish statistical sig-
ni�cance. Suppose that methodM1 has an overall higher accuracy thanmethod
M2. To see whether that di�erence in accuracy is statistically signi�cant, try a
paired test. Compute the p-value to determine whether the di�erence in the

2 The approach of retrying predictions using fewer features is sometimes called model simpli�cation. If one
simpli�es by choosing various subsets of features to see which gives a good F-meausre, one is polluting the
test set, because one is using the test set to determine the features to use. The net result is that one might get
a poor �t on other data. Generalizability might su�er.
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F-measure of the Random Forest method compared to other methods is signif-
icant.

Hint: Here is how the paired test could work. (This is similar to what we did
in the previous chapter to compare linear and quadratic regression.) Create a
three element table Tab: patient, M1 prediction, M2 prediction for some run
of M1 and some run of M2. Suppose M1’s F-score is FM1 and M2’s F-score is
FM2 and Di� = FM1 - FM2, where Di� > 0.

# Pseudo-code showing how to
# find the p-value in a paired # test setting.
Set counter = 0
Start with Tab
do 10,000 times

tmptable = Tab
for each patient,

flip a fair coin
if the result is heads

swap the predictions between the M1 and M2 columns tmptable
end for

compute FM1-FM2 as X
if X >= Diff then counter += 1

end do
The p-value is counter/10000
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C H A P T E R 4

RNA-seq Data Set

4.1 GOAL OF THE STUDY
Cystic �brosis (CF) is a genetic disorder that a�ects the lungs. In this case study, we
will examine data froma study on the e�cacy of a drug (Lumacaftor/Ivacaftor) to treat
cystic �brosis Kopp et al. [2020]. This drug has been approved for individuals that
are homozygous formutations (i.e., the samemutation is inherited fromboth parents)
in the CFTR ( Cystic �brosis transmembrane conductance regulator ) gene. Clinical
studies have shown that the drug appears to be more e�ective with certain patients
and less with others. This is likely because there are over 1000 known mutations in
CFTR that are associated with CF.

The study researchers Kopp et al. [2020] measured mRNA expression to help
identify both the RNA-level di�erences between healthy patients and Cystic Fibrosis
patients and between CF patients before and after drug treatment. Unfortunately the
published material doesn’t reveal how the patients responded to the treatment. For
that reason, the �rst part of this chapter simply asks whether we can detect any genes
whose changes in expression are diagnostic of Cystic Fibrosis.

Brief Background on RNA and RNA-seq
Recall from elementary biology that a gene is a subsequence of the DNA of

an organism. Each gene is activated or "expressed" when it creates RNA. Some
RNA molecules are referred to as "messenger RNA" (mRNA, for short). The mRNA
molecules of most genes are "translated" into proteins, which are the workhorses that
carry out the instructions encoded in the DNA.

RNA-seq is a technology that counts the total number of RNA molecules in a
sample. The data contains RNA-seq counts of mRNA molecules of each gene in the
di�erent samples. The samples will be groups of cells coming from either healthy
patients, untreated cystic �brosis patients, or treated cystic �brosis patients.

Goals of this chapter:
We will use the data for two di�erent goals:

i Compare the healthy and cystic �brosis patients to identify the genes whose
expression di�ers signi�cantly between the two groups.

ii Use machine learning to determine which of those signi�cantly di�erent genes
are most indicative of sickness vs. health.
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4.2 DATA
Weobtained the RNA-seq data for this analysis fromNCBIGEO (GSE124548). Blood
samples came from:

1 20 healthy patients.

2 20 untreated patients with Cystic Fibrosis

3 The same 20 Cystic Fibrosis patients after treatment with Lumacaftor/Ivacaftor

To analyze this dataset we will apply the following techniques:

1 Normalization - Researchers have provided the raw and normalized values.
We will test if a simple normalization will provide the same results as the so-
phisticated one performed by the researchers.

2 Unpaired tests - When comparing two di�erent populations (in this case,
healthy vs. cystic �brosis patients), we have to use unpaired tests. We did this
also when comparing the �nal weights of the chicks, since each chick received
only one diet.

3 Multiple hypothesis testing/Reducing false positives -When there are over
15,000 genes that could be expressed di�erently in healthy patients compared
to sick ones, there might be di�erences in mRNA expression of some gene g
just by chance. We would want to avoid calling such a gene g "di�erentially
expressed", because that would constitute a false positive. So, we describe
and use two multiple testing correction techniques: Bonferroni and Benjamini
Hochberg.

4 EvaluationofCon�dence Interval -Oncewe determine that a gene’s expres-
sion is statistically signi�cant di�erent between healthy patients and cystic �-
brosis patients, we will use con�dence intervals to characterize the di�erences.

5 Identifying Diagnostic Genes - As input features for machine learning-based
diagnosis, we seek the signi�cantly di�erentially expressed genes (those that
pass step 3) whose di�erence in expression between healthy and cystic �brosis
patients is greatest. Those will be genes for which the limits of the con�dence
interval of the di�erence in expression are both either highly positive or highly
negative.

To avoid polluting the test set, wewould have preferred to sequester some of the
data from the post-normalization steps above to evaluate the models. We don’t
do that because we have so little data, so any conclusions we reach should be
checked on disjoint data.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124548
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4.3 DATA PREPARATION

The researchers have provided the RNA-seq data in a database
https://www.ncbi.nlm.nih.gov/sra?term=SRP175005. The �rst step in process-
ing the raw sequence data is to determine the number of sequence reads that align
to each gene, also referred to as the raw gene count. The authors have provided the
raw gene count and the normalized values of the genes in NCBI’s GEO database
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124548.

We will begin the analysis by loading the Excel �le from GEO’s site where raw
gene count and normalized gene expression data is provided.

# Load the cystic fibrosis data.
import pandas as pd
data_df = pd.read_excel("https://ftp.ncbi.nlm.nih.gov/geo/series/\
GSE124nnn/GSE124548/suppl/\
GSE124548_AllData_170308_RNAseq_Kopp_Results.xlsx")

4.3.1 NORMALIZATION
The authors have provided raw and normalized data in their excel �le, designated
as RAW and NORM in the pre�x of the headers. The normalized values are de-
termined using the sophisticated methods of a widely accepted R package called
DESeq2 Love et al. [2014] that tries to estimate statistical parameters based on
a distribution assumption. In the spirit of non-parametric methods, we will use a
distribution-agnostic approach.

In the given dataframe, every column corresponds to a speci�c individual.
Though the total number of mRNA sequences generated across individuals can vary,
we are primarily interested in the relative expression of di�erent kinds of mRNA. To
make the data in di�erent columns comparable, we will simply normalize the mRNA
values from the genes of each individual (corresponding to one RNAseq run and one
column) so their total read count is one million.

Simple Normalization Approach Code

https://www.ncbi.nlm.nih.gov/sra?term=SRP175005
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124548
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# Cleaning and normalizing RNA-seq data.

# Eliminate numbers in the name that are not relevant
# for ease of readability

data_df = data_df.rename(columns=lambda x: re.sub("w_[0-9]+_O", "w_O",x))
data_df = data_df.rename(columns=lambda x: re.sub("m_[0-9]+_O", "m_O",x))

# get all raw values
columns = list(data_df.columns)
raw_cols = [x for x in columns if "Raw" in x]

# calculate the total number of reads mapped to genes from each sample
raw_cols_sums = data_df[raw_cols].sum()

# divide each value by its column sum and multiply by 1,000,000
norm_cpm = [data_df[raw_cols].iloc[i]*1000000/raw_cols_sums \

for i in range(data_df.shape[0])]

# keep a copy of data frame with gene name and description
norm_cpm_df = pd.DataFrame(data=norm_cpm)
norm_cpm_df = pd.concat([norm_cpm_df, data_df[columns[:9]]], axis=1)

# confirm results, columns should add up to 1,000,000
norm_cpm_df.iloc[:,:5].sum()

4.3.2 REMOVING GENES HAVING LOWEXPRESSION
Generally genes that are expressed at very low levels (in the RNA-seq readout, that
have low counts) do not have reliable measurement values. Furthermore, such genes
may not be expressed at all in certain individuals. The authors of the original study
have already eliminated some lowly expressed genes, but we will go one step further
and remove any gene that has even one 0 value for some individual, because their
expression levels are likely to be unreliable.
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# Remove genes having any 0s in their counts.
number_of_zeroes = [ list(norm_cpm_df[raw_cols].values[i]).count(0) \

for i in range(norm_cpm_df.shape[0])]
genes_no_zeroes_logic = [number_of_zeroes[i] == 0 \

for i in range(len(number_of_zeroes))]
data_df_subset = norm_cpm_df[genes_no_zeroes_logic]

Removing all genes with at least one zero reduced the number of genes from
15,570 to 15,250.

4.4 DISTINGUISHING SICK FROMHEALTHY PATIENTS
When comparing samples from two di�erent conditions, one should ask whether the
measurements from the di�erent conditions are paired. In our case we have three
di�erent conditions, (i) healthy, (ii) cystic �brosis before treatment, and (iii) cystic
�brosis after treatment. The individuals constituting the healthy control group are
disjoint from those who have cystic �brosis. Therefore, their comparison will be un-
paired.

In order to do the unpaired analysis, we will do a shu�e test for each gene.
That is, for gene g, we start with by labeling each expression value as coming from a
cystic �brosis or healthy patient. Shu�ing consists of shu�ing the labels.

The net e�ect is the following: suppose that for some gene g, there are n1 ex-
pression values of sick patients and n2 values of healthy patients. Shu�ing entails
taking a random subset of size n1 from the n1+n2 patients and labeling them "sick"
and the remainder "healthy". If the health status of the patient does not a�ect the ex-
pression of gene g, we would expect the di�erence in the average expression of these
randomly selected subsets to be about as large as we found when using the correct
labels.

We are interested in identifying the number of times the shu�ed comparison
yields a more extreme value than the one observed. If often, then the p-value is high,
suggesting that health status doesn’t a�ect that gene’s expression.

For each shu�e, we will calculate the log-fold-change. The log-fold-change is
calculated by taking log base 2 of the ratio of the mean expression of those genes
labeled S divided by the mean expression of those genes labeled H. The bene�t of
using log-fold-change is that it makes fold-increases and fold-decreases comparable
inmagnitude. For example a doubling ofmagnitude corresponds to a log-fold-change
of 1 and a halving corresponds to a log-fold-change of -1.

Here is a pseudo-code description of the shu�ing process.



4.4. DISTINGUISHING SICK FROMHEALTHY PATIENTS 49

for each gene:
observed change = calculate log fold change
# log2( mean(cystic fibrosis)/mean(healthy))
for each iteration: #do 100,000 times:

shuffle healthy/sick labels
associated with the gene expression values.
randomchange = Calculate log fold change.

Record number of times abs(observed change) <= abs(random change)
into a variable "counter".

p-value for gene = counter / number of iterations

7,361 of the 15,250 genes showed signi�cant p-values ( < 0.05 ) Because we
have performed p-value evaluations on multiple genes, some of those low p-values
could have occurred just by chance. After all, a p-value of say 0.05 means that the
observed change in expression had a 1/20th probability of happening by chance if
the null hypothesis (in our case that cystic �brosis had no e�ect on the expression
of that gene) were true. Because we perform around 15,00 tests, this could give us
around 300 (15,000/20) genes that look signi�cant just by chance. Those would be
false positives.

To correct for multiple hypothesis testing (in our case, testing many genes), we
can use several di�erent methods, but we consider just two widely used ones: (i) the
extremely conservative Bonferroni correction Bonferroni [1936] and (ii) the looser
Benjamin Hochberg’s FDR (false discovery rate) correction Benjamini and Hochberg
[1995].

4.4.1 BONFERRONI
The Bonferroni corrections limits the FWER (Family wise error rate). This error rate
is the probability that at least one gene that is called di�erentially expressed is a false
positive. In the Bonferroni method, we divide the threshold by the number of genes.
So, if we take a family wise error threshold of 20% or 0.2, the Bonferroni-corrected
threshold would be 0.2/len(norm_p_values). In this case we have 0.2/15250 which is
1.3e-05. The only way a gene will pass this cuto� is if our shu�e test has 1 instance
or fewer of obtaining a log fold change more extreme than the one observed in the
100,000 shu�es. There were 531 such genes. For those genes, the Bonferonni cor-
rection says that roughly 80%of the time, therewon’t be any false positives. Other re-
searchers might choose di�erent Bonferonni thresholds, but going much lower than
20% might result in no genes.
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4.4.2 BENJAMINI–HOCHBERG PROCEDURE
The False Discovery Rate (FDR), by contrast, is the percentage of genes that are pre-
dicted to be di�erentially expressed due to disease but whose di�erential expression
is due solely to chance. Thus, FDR is a fraction of false positives whereas the Bon-
feronni correction asks whether there is at least one false positive.

The Benjamini-Hochberg method of creating a set of genes that have a given
false discovery rate starts by listing the individual gene p-values in ascending order,
from smallest to largest. The smallest p-value has a rank i = 1, the next smallest has
i = 2, etc. Compare each individual p-value to its Benjamini-Hochberg critical value,
(i/m)Q, where i is the rank,m is the total number of tests (15,250, as above), andQ is
the false discovery rate the user can tolerate, say 5%. The gene associated with the
largest p-value P that has P < (i/m)Q should be included as should all of the genes
associated with p-values less than P (including that aren’t less than their Benjamini-
Hochberg critical value). 6,082 of the genes having the lowest p-values passed this
new cuto�.

Note that any gene that passes the Bonferroni criterion for a given threshold Q
will pass the Benjamini-Hochberg criterion for Q. Here is why. Suppose that some
gene g has a p-valueP . By theBonferroni criterion for some thresholdQ,P ≤ (1/m)Q,
where m is the number of genes tested. For the Benjamini-Hochberg criterion, the
threshold is that P ≤ (i/m)Q. Since i ≥ 1, the genes that pass the Bonferroni crite-
rion must pass the Benjamini-Hochberg criterion (for the same Q) and will have the
smallest p-values.

In our analysis we use Q = 0.2 for Bonferroni (meaning we are willing to con-
sider a set of genes such that the probability that the expression di�erence of at
least one of those genes could be due to chance is 0.2) and Q = 0.05 for Benjamini-
Hochberg (meaning that we expect roughly 5% of the genes that pass the Benjamini-
Hochberg test to be false positives).

Table 4.1: Di�erentially expressed genes. More than 7,364 genes had p-values less
than 0.05. Using a False Discovery Rate cuto� (Benjamani-Hochberg) of 5%, we get
6,082 genes. Using the FWER (Family Wise Error Rate/Bonferroni) cuto� of 0.2 (so
p-values of 0.20/15,250), we get 531 genes.

Total
Genes

P Value <
0.05

FDR < 5% Bonferroni
20%

15,250 7,364 6,082 531

In summary, the two methods say something quite di�erent:
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• A False Discovery Rate of x% says that roughly x% of the genes that Benjamini-
Hochberg says are di�erentially expressed at the x% level will be false positives.

• A Bonferroni threshold of x% says that that there is roughly an x% chance that
at least one gene that falls below theBonferroni thresholdwill be a false positive.
Put another way, there is a (100-x)% chance that there will be no false positives
at all.

4.5 CONFIDENCE INTERVAL

Ideally, we would want to use just a few diagnostic genes to determine whether an
individual has a condition. To help prioritize the signi�cant genes, we look at the ratio
of expressions, speci�cally the log2 of that ratio, and compute the 90% con�dence
interval of this log fold change. Our approach is similar to what we did for chick
weights.

# Pseudo-code to compute the 90% confidence interval of
# the log fold of gene expression.
for each gene that passed the Bonferroni threshold:

for 1000 iterations:
bootstrap (sample with replacement) values
from each condition and
calculate the log fold change

sort the bootstraps by log fold change
report the 5% and 95% of the sorted values

Given the con�dence intervals of the di�erentially expressed genes, we rank
them as follows. Suppose gene g1 has con�dence interval c1low and c1high and g2 has
con�dence interval c2low and c2high. Gene g1 has a higher rank (closer to 1) than g2
if max(|c1low|, |c1high|) > max(|c2low|, |c2high|). Basically, this means that g1 has a more
extreme log fold change than g2, eithermore strongly negative at the low end ormore
strongly positive at the high end of the con�dence interval.

Of the top 10most di�erentially expressed genes based on con�dence intervals,
the researchers Kopp et al. [2020] discussed three genes in detail: MMP9, ANXA3,
and SOCS3.1

1 In the R implementation of con�dence intervals, MMP9 and ANXA3 are in the top 10, but SOCS3 is ranked
number 16.
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Figure 4.1: The �gures show violin plots for the expression ranges of the three genes
identi�ed as potential markers of Cystic Fibrosis in Kopp et al. [2020]. These genes
tend to have higher expression in cystic �brosis patients than in healthy patients. Note
that since this is based on log base 2 values, a value of 1 means that the expression is
2 times larger and a value of 2 means 4 times larger in a CF patient than in a healthy
patient. A value of 0 would represent no change.
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Table 4.2: Top 10 genes (lowest rank number), based on the 5% and 95% of the
sorted log fold changes (the limits of the 90% con�dence interval). The 10 genes
after Bonferroni correction with the most extreme log fold changes happen to be
over-expressed in cystic �brosis patients, indicated by a positive log fold change.

Gene Description 5%
Value

95%
value

LOC105372578 1.71 3.27
MCEMP1 mast cell-expressed membrane

protein 1
1.56 2.63

MMP9 matrix metallopeptidase 9 1.61 2.50
SOCS3 suppressor of cytokine signaling 3 1.38 2.22
ANXA3 annexin A3 1.29 2.21
G0S2 G0/G1 switch 2 1.36 2.17
IL1R2 interleukin 1 receptor type 2 0.92 2.11
PFKFB3 6-phosphofructo-2-

kinase/fructose-2,6-
biphosphatase 3

1.40 2.11

OSM oncostatin M 1.27 2.03
SEMA6B semaphorin 6B 1.20 1.96

4.6 PREDICTIVEMODELING
We will now evaluate the performance of the top 10 genes with the largest gene ex-
pression changes in predicting whether someone has cystic �brosis. Cystic �brosis
can also be determined simply by checking for mutations in the CFTR gene. By con-
trast, our goal is to perform a diagnosis by measuring the mRNA from genes that are
responding to the mutation. In the not-too-distant future, RNA-seq testing will be-
come a routine procedure and therefore could test for multiple diseases without the
need to sequence particular genes or to look for speci�c disease markers.

Similarly to our analysis of the Breast Cancer dataset, we will determine which
feature(s), in this case genes, are most useful in predicting the status of cystic �brosis.

We have 40 samples, 20 healthy and 20 with cystic �brosis. When we perform
our analysis, cross-validation will use 20% as the test set, which is 8 samples, leaving
us with 32 samples for training. It should be expected that there will be quite a bit
of variation in the results depending on which samples are selected for training and
testing. This was less of a problem for breast cancer because there were many more
patients.
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Warning to the Unwary: it’s easy to pollute the test set
Before we start, we should elaborate on a problem with our analytical work�ow that
we alluded to earlier in this chapter. We have used the data D to determine which
genes are di�erentially expressed in healthy vs sick patients. Now we use that same
data D to build amodel to predict which patients are healthy andwhich are sick. This
double use of the same data constitutes polluting the test set. What we would prefer
to do is use one dataset D1 (of a subset of the healthy and cystic �brosis patients)
to determine di�erentially expressed genes and build a machine learning model on
D1. Then we’d use a disjoint dataset D2 (of the remaining healthy and the remaining
cystic �brosis patients) to test the model. Unfortunately, we have too little data to do
that here. So, this chapter can be viewed as performing the analysis on the D1 data.
To conclude anything de�nitive, a careful analyst would test our resulting machine
learning model on a disjoint dataset.

4.6.1 RANDOM FOREST INFERENCE
To determine whether we can distinguish healthy from cystic �brosis patients based
on gene expression, we developed a Random Forest model and tested it 100 times
using an 80-20 training-test split. That is, each of 100 times, we take 80% of the data
to train our model and test on the remaining 20%. The tests show that the model can
diagnose patients with a precision, recall, and F-measure levels of nearly 90%.
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Figure 4.2: The �gures show violin plots for the range of scores for three di�erent
metrics: precision, recall and F-score. Themean value for the three metrics are 0.91,
0.85, and 0.87 respectively, suggesting that machine learning applied to di�erentially
expressed genes may lead to accurate diagnosis, though one should apply the model
to sequestered data to avoid polluting the test set.

The RandomForestmethod also allows us to determinewhich genesweremost
diagnostic. To �nd the most important genes, we construct a random forest using all
40 patients. Due to the random nature of the algorithm and the small number of data
points, we will perform this method 100 times to get a distribution of the importance
scores. The results are shown below. The genesMMP9 and IL1R2 consistently show
up as in�uential.
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Figure 4.3: The horizontal axis shows the names of the most in�uential genes and
the vertical axis shows their relative importance. Because the Random Forest makes
strong use of randomness, the exact importance of any speci�c gene varies across
di�erent runs. Nevertheless, we see that MMP9 and IL1R2 are consistently impor-
tant.
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4.7 EXERCISES
1 Before studyingwhich genes aremost important in the random forestmodel, we
should �rst show that the random forest predictions (diagnosing cystic �brosis
vs. healthy people) have a signi�cantly better accuracy than randomly guessing
the health of each person. Try that and determine the p-value.

Hint: Remember that we have a dataset of 40 individuals, half of whom have
cystic �brosis and half do not.

# Pseudo-code to evaluate the p-value of the null hypothesis
# (i.e. random labeling is at least as accurate as
# random forest labeling which has an F-score of 0.87).
counter = 0
Do 10,000 times

Shuffle the labels on the patients
Evaluate the precision, recall, and F-score
If F-score >= 0.87
then counter += 1

End
p-value = counter/10000

The random assignment approach would assign a patient to cystic �brosis or
healthy with probability 0.5 which corresponds to the probability distribution
of our sample. Then we would evaluate the F-score after that random assign-
ment. The p-value is the number of times the F-scores resulting from the ran-
dom assignment was greater than or equal to the F-score of the Random Forest
(about 0.9).

2 Weused the native random forest importance ranking to determinewhich genes
were most in�uential in diagnosing cystic �brosis patients. There is a widely
used alternative method called permutation importance that we used in the last
chapter. Describe what permutation importance does and then apply it to de-
termine the most in�uential features.

3 We have used a random forest on the di�erentially expressed genes to try to
predict which genes are the most in�uential in determining whether a patient
is healthy or has cystic �brosis. Then we evaluated the precision and recall of
our analysis. Do the same analysis using support vector machines and compare
the outcomes.
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4 So far, we have done an unpaired comparison of untreated cystic �brosis pa-
tients with healthy patients. We had to do this, because the two sets of patients
were disjoint. By contrast, the RNA samples after treatmentwere taken from the
same individuals as before treatment, so a paired test (i.e. the gene expression
value before treatment for a given individual X compared to the gene expression
value after treatment for that same X) is appropriate. Paired tests often make it
easier to identify changes to some given gene g due to treatment.

Perform a paired test comparing treated vs. untreated patients and see which
genes show a signi�cant log fold change and construct con�dence intervals of
that log fold change.

Rank the genes as we did before and see if you �nd any genes that were both
di�erentially expressed in the healthy patient vs. sick patient comparison and
in the sick untreated patient vs. the sick treated patient comparison.

5 Find a larger set of medical/genomics data. Sequester say s% of the data both
from healthy and sick data. Then perform di�erential expression analysis and
the diagnostic analysis (i.e. healthy vs. sick) on the remaining (1-s)% of the data,
the "non-sequestered" part. On the non-sequestered data, optimize hyperpa-
rameter settings and anything else you choose on a series of cross-validation
experiments. Then build a model with those optimized hyperparameter set-
tings on the (1-s)% of the data and see how you do on the sequestered s% of
the data. Without changing hyperparameter settings, repeat this process at least
100 times on a bootstrap of the initially sequestered s% of the data to get a 90%
con�dence interval of the test set results. How does the test set result compare
with the best cross-validation results on the (1-s)% of the data?
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Summary and
Perspectives

Processing scienti�c datasets involves three major steps: (i) data preparation, (ii) data
analysis and inference, and (iii) statistical analysis.

The case studies in this book have included di�erent methods of data prepa-
ration including normalization to render di�erent value types comparable and im-
putation to estimate missing values. The case studies also presented a small collec-
tion of core machine learning algorithms from the library scikit-learn for inference
purposes. Finally, the book presented several examples of the use of non-parametric
statistics to determine the usefulness of an experimental condition (e.g., diet in chap-
ter 2), regression technique (also in chapter 2), and machine learning method (in
chapters 3 and 4). We also considered methods to overcome the pitfalls of multi-
ple hypothesis testing in chapter 4.

Along the way, we discussed the possibility of polluting one’s test set and how
to combat this by sequestering test data.

Our hope is that you will use the code we provide to analyze your own datasets
and perhaps even construct new Jupyter notebooks that we can link to from our
github site.

We wish you the best.
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