Causal Inference Using Composition of Transactions

Abbas Shojaee MD CHDA

2020

Please Do Not Circulate

Outline

- Introduction
- The fundamental question
- Inferring human disease causality using Causal Inference Using Composition of Transactions (CICT)
- Identification of Regulatory Network using CICT
- Research Plan

Fundamental Question

- "The fundamental question behind most research in biology or medical research is a causal question"
- A causal question is difficult, so we often compromise
 - Coexistence, correlation,
 - Differential question
 - Prediction

An even more difficult causal question is when

- Many changing parameters
- Many interactions
- Insufficient information on interactions
- The number of observations are low
- Multi layer heterogenous networks

• Sounds familiar?

Graph Network Inference or System Inference

A Story About Inferring Human Diseases Graph

Each patient has a series of admissions, each admission with a diagnosis

A Story About Inferring Human Diseases Graph

Source is represented by I

Target is represented by **j** ij is a directed edge from i to j

A Story About Inferring Human Diseases Graph

- Lots of very simple, short-length discrete time series data
 - Patients diagnoses and procedures in consecutive hospitalizations
 - 37000 diagnoses and procedures
 - 1.4 billion potential edges
 - 100 million real edges
- Question:
 - which diagnosis or procedure causes another one?
 - OR
 - What is the underlying network?

The key idea:

• The set of events before and after a causal phenomenon are different than the set of events before or after a random phenomenon.

Adding a simple definition

Source is represented by **İ** Target is represented by **j ij** is a directed edge from **i** to **j**

CICT Network Representation

- Directed or undirected
- Unsigned

Significant in CICT defined zones between causal and random events

Cause: Rheumatoid Arthritis(red), an effect: Syncope (orange) and a random event: Pneumonia (blue)

CICT features enables clustering

- Two clusters as identified by Partitioning Around Medoids along with the real class of data points displayed on the first and second dimensions of PCA.
- Adjusted Rand Index ⁹ shows 0.468 agreement between clustering results and real classes

Causal association versus random

Direction of causality in an association

Example of a good and novel discriminator:

Median absolute deviation of normalized confidences from source

Abbas Shojaee MD, CHDA Yale University - 2016

Decision analysis: top Predictors of causal relations

Abbas Shojaee MD – CORE/ Yale University - 2016

Results

- Identifies well-known causal relationships
 - Example:
 - Hypertension -> myocardial infarction (hearth attack), smoking -> lung cancer
- Identified several novel findings
 - 11 original findings reported to scientific community as papers or presentations
 - Confirmed by epidemiological time-to-event studies after controlling for all confounders. Examples:
 - Sleep apnea => heart failure
 - Viral pneumonia => pulmonary fibrosis
 - Disorders of coping with stress => heart problems

Significance

- No confounders used
- Highly accurate (AUC ROC > 0.9) discrimination of causal versus random relationships
- Non parametric, no assumptions made on the distribution of input or output
- Applicable to Markov Chain data (directed one-step graph networks) and Markov Networks (undirected one-step graph networks) to infer directional relationships
- Simple method, computationally efficient,
- Scalable at linear time and space complexity in both learning and prediction phases
- Can use numerical and discrete value edges and frequencies
- Not limited to specific constraints on output network structure (e.g. can be cyclic)

CICT – DREAM4

Application of CICT on simulated biological regulatory networks

DREAM4

- Systems biology to uncover causal relationships between genotypes and phenotypes
- Identifying Gene Regulatory Networks(GRN) is a main objective
- Dialogue for Reverse Engineering Assessments and Methods (DREAM)
- Annual challenges in systems biology

DREAM4 project

- Inferring gene regulatory networks
- 5 networks each with 100 genes, for each:
 - 1. Gold Standard (ground truth)
 - Subnetworks from transcriptional regulatory networks of Escherichia coli and Saccharomyces
 - 2. Simulated wildtype steady state, knockouts, knockdowns, dual knockouts and multifactorial perturbation
 - 3. Simulated time series
 - 10 time series
 - Each with 21 time points
 - T=0 perturbation happens and continues till time point 10, then perturbation removed and go back to wild type for ten more rounds
 - Perturbation affects one third of all genes
- Objective:
 - predict the underlying network
 - Measures: AUC ROC and AUC PR comparing to Gold Standard data.

Applying CICT on DREAM 4 Time Series Data

- Calculated mutual information $\dot{i}\dot{j}$ between pairs of genes \dot{i} and \dot{j}
- Collapsed all K time series data to a CICT network presentation.
- CICT feature production
- Supervised learning with regularized regression and random forest
- Evaluation of the model performance using gold standard network

Applying CICT on DREAM 4 Time Series Data

• CICT network representation has two less distribution zones for a relevance undirected network

Results

• AUC ROC = 0.83

Golden standard Network VS Predicted Network

Research plan

Single Cell RNA seq

- Complex organism
 - Specialized tissues
 - Location: Spatial profiling
 - Timing: reaction profiling
 - Functional profiling of cells
 - Developmental profiling
- Challenges in applying to plant biology
 - Cell walls, vacuoles, chloroplasts and some secondary metabolites
 - Effective ways to identify underlying network

A rich knowledge representation

