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Fundamental Question

* “The fundamental question behind most research in biology or medical research
is a causal question”
* A causal question is difficult, so we often compromise
* Coexistence, correlation,
» Differential question
* Prediction
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An even more difficult causal guestion is when

* Many changing parameters

* Many interactions

* Insufficient information on interactions
* The number of observations are low

* Multi layer heterogenous networks

* Sounds familiar?

Graph Network Inference or System Inference
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A Story About Inferring Human Diseases Graph

Each patient has a series of admissions, each admission with a diagnosis

Patient 3: @—»@

Patient 4: [ X_}——{ w J——{ x |
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A Story About Inferring Human Diseases Graph

Source is represented by I X — Y

Target is represented byj v
ij is a directed edge from itoj K
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A Story About Inferring Human Diseases::(éraph

* Lots of very simple, short-length discrete
time series data

* Patients diagnoses and procedures in
consecutive hospitalizations

* 37000 diagnoses and procedures
* 1.4 billion potential edges
* 100 million real edges

* Question: .
* which diagnosis or procedure causes another Py
one? A L
OR g

 What is the underlying network?
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The key idea:

* The set of events before and after a causal phenomenon are different
than the set of events before or after a random phenomenon.

Diabetes Flu / —
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Adding a simple definition

Confidence =ij/ i
Contribution =ij/

Source is represented by | “
Target is represented byj
1] is a directed edge from | to j » 6
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CICT Network Representation

e Directed or undirected Zone 2
* Unsigned

l

| \‘Zone4 —i
Contrib ji _]/i
Zone 3

“Iconf ji = /
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Let’s put it in the network context

o
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Significant in CICT defined zones between causal and random events
Cause: Rheumatoid Arthritis(red), an effect: Syncope (orange) and a random event: Pneumonia (blue)
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CICT features enables clustering

* Two clusters as identified by Partitioning Around Medoids along with the real class of data points displayed on
the first and second dimensions of PCA.

* Adjusted Rand Index ® shows 0.468 agreement between clustering results and real classes
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Causal association versus random
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Calibration plot
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Example of a good and novel discriminator:
Median absolute deviation of normalized confidences from source

Confidences from Source
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Decision analysis: top Predictors of causal relations
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Results

* |dentifies well-known causal relationships

* Example:
* Hypertension -> myocardial infarction (hearth attack), smoking -> lung cancer

* |dentified several novel findings

* 11 original findings reported to scientific community as papers or
presentations
* Confirmed by epidemiological time-to-event studies after controlling for all
confounders. Examples:
* Sleep apnea => heart failure
* Viral pneumonia => pulmonary fibrosis
* Disorders of coping with stress => heart problems
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Significance

* No confounders used

* Highly accurate (AUC ROC > 0.9) discrimination of causal versus random
relationships

* Non parametric, no assumptions made on the distribution of input or output

» Applicable to Markov Chain data (directed one-step graph networks) and Markov
Networks (undirected one-step graph networks) to infer directional relationships

* Simple method, computationally efficient,

* Scalable at linear time and space complexity in both learning and prediction
phases

e Can use numerical and discrete value edges and frequencies
* Not limited to specific constraints on output network structure (e.g. can be cyclic)
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CICT — DREAMA4

Application of CICT on simulated biological regulatory networks
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DREAMA4

* Systems biology to uncover causal relationships between genotypes
and phenotypes

* [dentifying Gene Regulatory Networks(GRN) is a main objective
* Dialogue for Reverse Engineering Assessments and Methods (DREAM)
* Annual challenges in systems biology
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DREAM4 project

* Inferring gene regulatory networks

* 5 networks each with 100 genes, for each:
1. Gold Standard (ground truth)
* Subnetworks from transcriptional regulatory networks of Escherichia coli and Saccharomyces

2. Simulated wildtype steady state, knockouts, knockdowns, dual knockouts and
multifactorial perturbation

3. Simulated time series

* 10 time series
e Each with 21 time points

e T=0 perturbation happens and continues till time point 10, then perturbation removed and go back
to wild type for ten more rounds

* Perturbation affects one third of all genes

* Objective:
* predict the underlying network
* Measures: AUC ROC and AUC PR comparing to Gold Standard data.
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Applying CICT on DREAM 4 Time Series Data

Calculated mutual information Ij between pairs of genes | andj

Collapsed all K time series data to a CICT network presentation.

CICT feature production /x

Supervised learning with regularized regression and random fores)/

N

Evaluation of the model performance using gold standard networ

;
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Applying CICT on DREAM 4 Time Series Data

* CICT network representation has two less distribution zones for a relevance undirected network
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Results

* AUCROC=0.83
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Golden standard Network VS Predicted
Network
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Research plan



Single Cell RNA seq

* Complex organism

* Specialized tissues
* Location: Spatial profiling
* Timing: reaction profiling
* Functional profiling of cells
* Developmental profiling

* Challenges in applying to plant biology
* Cell walls, vacuoles, chloroplasts and some secondary metabolites
 Effective ways to identify underlying network



A rich knowledge representation

Gene Transcription Factors Transcriptome Proteome
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