
Aim 3. A modeling approach to identify the shoot-root long distance signals.  
Rationale. The goal of this aim is to identify the long-distance signals that travel from root-to-
shoot, and shoot-to-root, in a root-shoot-root relay of systemic N-signaling. We will first use the 
space and time data from Aim 1 to identify the inter-organ correlation of causal and target gene 
pairs (between roots and shoots), which will be indicative of a long-distance signal. Specifically, 
we will identify gene pairs for which a causal gene in one organ (e.g. shoots) and target genes in 
the distal organ (e.g. roots), show a strong inter-organ correlation or lagged-correlation over time. 
We will then integrate such causal/target gene pairs into a predictive model, and use left-out data 
for in silico validation (Aim 3A). For long-distance signals suggested by the predictive modeling 
approach described in Aim 3A, we will focus on those relevant to the heterogeneous N-response, 
as identified in Aim 3B. Finally in Aim 3C, we will integrate the time/space data from Aim 1 and 
Aim 3A-B, with the phloem-specific data from Aim 2, using a Rank-Sum method to prioritize 
long-distance signals for testing in Aim 4.  
 

Aim 3A. To identify potential long-distance signals involved in response to a heterogeneous 
N-environment by integrating time and space data from Aim 1. 
 

Known long-distance signals in plants. Our first goal is to identify potential long-distance 
signals based on RNA data collected over space (organ) and time in Aim 1. We anticipate a long-
distance N-signal to have the following properties: 1. A verified role in regulation of N-
assimilation and 2. The ability to be transported across organs. For these reasons, the signal types 
we will focus our study are: hormones, small RNAs, and mRNA/Proteins (specifically TFs) (Fig. 
6B). Hormones have been long known to travel across organs and they play a well-known role in 
the N-response [56]. In addition, we have previously shown a role for cytokinin in the signaling 

of systemic 
N-demand [1]. 

sRNAs 
(siRNA and 
miRNAs) are 
known to 
travel in the 
phloem [57]. 

Moreover, 
grafting 

experiments 
have shown 
that miRNAs 
act as long-

distance 
signals of 

phosphate 
starvation 

[58]. We have 
also 

previously 
shown that 

miRNAs 
mediate 

nitrate control 
of root 

development 
[2,6] and 

Fig.  1 Modeling causal/target gene pairs will identify potential long-distance signals of 
systemic N-supply or demand. (A) Inter-organ (lagged-)correlation identifies causal/target gene 
pairs (x and y) as indicators of  (B) long-distance signals including hormones, sRNAs and TF 
mRNA/protein. For sRNA, note that the correlation of the sRNA precursor in the source organ and 
mature sRNA in the distal organ is also used to indicate the movement of the sRNA.  (C) Modeling 
of causal/effector genes using time-series data and regression analysis identifies predictive models 
for systemic N-signals. Note: The example of shoot-to-root is shown here and the same logic is 
used for root-to-shoot signaling. 
 



metabolism [3]. Thus, we will consider sRNAs as potential long-distance signals. Finally, mRNA 
and proteins especially transcription factors (TFs) are known to travel in the phloem [59]. Thus, 
we will consider the possibility that mRNAs or their encoded TFs may act as long-distance 
signals in root-shoot-root communication. 
 

Identifying causal/target “gene pair” read-outs as indicators of long-distance N-signaling.  
To identify the potential long-distance signal(s) involved in systemic N-signaling, we will 
examine temporal expression of potential causal and target gene pairs across organ-types (Fig. 
6A). Such gene pairs will be the molecular “read out” of a potential long-distance signal. For 
example, for hormone signals, the causal gene will be a hormone synthesis gene in one organ, and 
the target gene will be a hormone responsive gene [60] in the distal organ (Fig. 6B).  For long-
distance sRNA signals, the causal gene is a miRNA coding gene or siRNA generating locus, and 
the target will be computationally predicted or experimentally validated sRNA targets [61] (Fig. 
6B). For traveling mRNA/proteins [62], we will specifically focus on TFs, as these regulators 
have been shown to travel in the phloem [63] to regulate developmental processes. For traveling 
TFs, the potential target gene can be identified using the TF-target database AGRIS [64] (Fig. 
6B).  
 Next, correlation and lagged correlation between each potential causal gene x in the one 
organ (e.g. shoots), and each potential target gene y in the distal organ (e.g. roots) over time will 
be calculated, because such correlation indicates a long-distance signal downstream of x to affect 
y. If the expression (E) of a gene (g) in an organ (O) over time is denoted as E(g,O) = {Et1, Et2, Et3, 
…, Etn} (tn=time point). The correlation will be calculated as Corr(E(x,S), E(y,R)) (S=shoots and 
R=roots) for shoot-to-root signal, or Corr(E(x,R), E(y,S)) for root-to-shoot signal. Lagged 
correlation will also be calculated as the correlation between the shoot and root time-series data 
shifted in time relative to one another. We will evaluate a p-value of the correlation [65] and then 
compute a false discovery rate (FDR). A strong and significant (lag) correlation (FDR cutoff 
determined by a silhouette plot [66]) in such a causal/target gene pair over time, and across organ 
types, will be a strong indicator that the relevant signal indeed travels between one organ (e.g. 
shoots) and a distal organ (e.g. roots) (Fig. 6A). Meanwhile, to ensure the change of target gene y 
is not due to a local effect of the N-signal, we will also calculate intra-organ correlation of the 
causal/target gene pairs e.g. Corr (E(x,R), E(y,R)) in the target organ, and consider cases where 
the intra-organ correlation << inter-organ correlation (Fig. 6A). This will identify potential gene 
pairs read outs that are indicative of the long-distance signal for the predictive modeling 
described below. 

 

Predictive modeling of the effect of long-distance signals on target genes.  
The above correlation analysis will suggest a restricted set of possible causal genes which effect 
long-distance regulation of a target gene. Since correlation alone doesn’t support cause-effect 
relationship, and some genes can be regulated by multiple factors, we will next perform an 
integrated analysis across one to multiple (e.g. up to 15) causal genes to model their effect on the 
target gene using Stochastic Gradient Descent and Boosted ‘Regression Trees’ methods (Fig. 6C). 
These two machine-learning algorithms are complementary in that regression trees are easier to 
interpret, but stochastic gradient descent handles interactions better [67]. This analysis will allow 
us to: 

• Predict cause and effect through a modeling approach that can be validated in silico. 
• Test interactions between different causal genes on the same target gene. 
• Integrate effects across the three major signal types (hormones, sRNAs, TFs).  

The last point is important, because we have previously documented that interactions between 
hormones, sRNAs and TFs effect changes in root morphology in response to N-signals, so there 
is precedence for this type of signaling interaction [3,6].  
  In detail, we will use the observed dynamic expression levels of the causal genes x1, x2, 
x3, …, xn in the source organ (e.g. shoots) and the observed dynamic expression level of target 



gene y in the recipient organ (e.g. roots), to model the target y as a function of its potential long-
distance causal genes xs over time. The central modeling problem consists of the use of both 
algorithms to find a set of coefficients Ci to each causal gene xi so we can obtain equations of the 
form:  

𝐸 𝑦,𝑅 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐶!×𝐸 𝑋!, 𝑆 + 𝐶!×𝐸 𝑋!, 𝑆 +⋯+ 𝐶!×𝐸 𝑋!, 𝑆  
We will also analyze the product terms of two causal genes to identify possible combined 

effects and interdependencies between them. For example, the coefficients D1,2 describes the 
impact of the interaction effect of x1 and x2 as:  
𝐸 𝑦,𝑅
= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐶!×𝐸 𝑋!, 𝑆 + 𝐶!×𝐸 𝑋!, 𝑆 +⋯+ 𝐶!×𝐸 𝑋!, 𝑆 + 𝐷!,!×𝐸 𝑋!, 𝑆 ×𝐸 𝑋!, 𝑆  

Model predictions will be validated by a leave-out test, where one or more later time 
points are left out of the training data and then predicted using the model [29]. We will derive 
estimates of quality of the prediction by evaluating the mean square error (MSE) of the 
predictions [67] done using the model, compared with a prediction of no change in expression, 
and compared with a prediction of the continuation of a trend in the expression of each target 
gene (e.g. an auto-regression prediction). A low MSE indicates that the one or more causal genes 
in the learned model can be used to successfully predict the expression of the target gene y in a 
distal organ in later time-points. Biologically it means that the one or more causal genes plausibly 
influence the target gene cross-organ. The long-distance signals (hormone, sRNA, or TF) 
generated by these causal genes thus likely travel from one organ to the distal organ.  

 

Aim 3B. Identifying systemic signals relevant to the heterogeneous N-response. The above 
machine-learning analysis will be used to infer the traveling signals in plants exposed to several 
distinct N-environments: 1. Plants exposed to a heterogeneous N-environment (Sp.KNO3 and 
Sp.KCl), 2. Control plants exposed to a homogenous N-replete environment (C.KNO3), or 
homogeneous N-deplete environment (C.KCl). We anticipate that many signals will be found to 
travel, and only a subset of them will be involved in long-distance systemic N-signaling. To 
identify those, we will do the following comparisons to distinguish between two hypothetical 
models for a heterogeneous N-response. 

Model 1:  A unified “N-imbalance” signal for sensing heterogeneous N-supply.  In 
model one, we hypothesize that there is a unique systemic signal sensing the nitrogen imbalance 
that is only observed in plants exposed to heterogeneous N-environments (Fig. 7A). This “N-
imbalance signal” in plants exposed to a heterogeneous N-environment, would trigger root 
growth on the N-replete side (Sp.KNO3). To identify this signal, we will examine long-distance 
signals unique to Sp.KNO3/Sp.KCl plants, but absent in C.KNO3 and C.KCl plants, and subject it 
to Aim 3C for prioritizing for testing in Aim 4. While we will test such a formal possibility, the 
current data does not support a unified N-imbalance signal, since N-demand and N-supply are 
genetically distinct signals [1].  We showed using a cytokinin synthesis mutant, that the N-
demand signal is dependent on cytokinin, while the N-supply signal is not [1], implying there are 
two separate systemic signals for N-supply and demand.   



Model 2: A specific combination of long-distance signals and local response genes 
triggers root responses to heterogeneous N-supply. This model posits that the long-distance 
signals for N-supply (S1 and 
S2) or N-demand (D1 and 
D2) occur in plants exposed 
to either heterogeneous or 
homogeneous N-conditions 
(Fig. 7B).  In this model, we 
posit that it is the 
interaction of these long-
distance signals, with a 
response to local N-status in 
the heterogeneous roots (e.g. 
genes A or B in Fig. 7B) 
that triggers the root growth 
on the N-replete side (which 
has a unique D2+ gene A 
combination), and represses 
root growth on the N-
deplete side (which has a 
unique S2+ gene B 
combination) (Fig. 7B).  
Therefore, we will identify 
the N-supply signal as the 
long-distance signals shared 
by C.KNO3, Sp.KNO3 and 
Sp.KCl, but absent in C.KCl.  
Similarly, we will identify 
the N-demand signal as the 
long-distance signals shared 
by C.KCl and split-root plants (Sp.KCl and Sp.KNO3), but absent in C.KNO3 plants (Fig. 7B). 
Next, we aim to detect the specific combination of long-distance signals and local-response genes 
(determined by ANOVA analysis in Aim 1) that triggers the root response to heterogeneous N-
supply. For example, our studies suggest that cytokinin is the long distance signal for N-demand 
[1]. Thus, cytokinin traveling from shoots-to-roots may induce expression of a cytokinin-
responsive gene Y in both root ½’s (Fig. 6A). Then, the interaction of gene Y product with gene 
A, which is responsive to local N-status, would specifically induce lateral root growth in the N-
replete root ½ (Fig. 6A).  To form hypothesis about such interactions, we will detect the 
interaction between each target gene Y of the potential N-supply or N-demand signal, with each 
local N-responsive gene A or B, using the multinetwork knowledge which documents all gene-to-
gene interactions in Arabidopsis [26].  The Arabidopsis multinetwork includes all known protein-
protein interactions, miRNA-RNA interactions, TF-DNA interactions, and literature-based 
interactions [26].  The potential N-supply/N-demand signals predicted to interact with a local N-
response gene, will be used in Aim 3C to prioritize candidates for in planta testing. The above 
analyses will allow us to focus on the systemic signals (identified in Aim 3A) that are specifically 
relevant to the heterogeneous N-response, and to identify their potential interacting partners that 
respond to local N-signals.  
 

Aim 3C. Prioritizing long-distance signals for experimental validation in mediating 
responses to a heterogeneous N-environment. 

Fig.  2. Models for root response to systemic signals of N-supply or demand.  A.  Model 
1 posits a unified signal for N-imbalance in Sp.KNO3/Sp.KCl plants, compared to controls 
exposed to homogeneous N-environments (C.KCl or C.KNO3).  B.  Model 2 posits that 
systemic signals of N-supply (S1,S2) and N-demand (D1,D2) are common to the 
heterogeneous-N and control plants, while the unique interaction of these systemic signals 
with local N-response genes (A or B) that causes induction of lateral roots in Sp.KNO3 (D2 
and A) and repression of lateral roots in Sp.KCl (S2 and B). 
 



In this aim, we prioritize the long-distance signals for testing by combining confidence and 
relevance measures from analysis in Aims 1-3, to rank signals for experimental validation (in 
Aim 4).  This modeling combines the results of three analyses: 

• In Aim 3A, we used correlation and machine learning to identify the potential traveling 
signals (technically their causal and target genes) using data from Aim 1. 

• In Aim 3B, we determined the traveling signals that are specifically associated with a 
heterogeneous N-environment. 

• In Aim 2, we physically capture the sRNAs and mRNAs traveling in the phloem. 
Experimentally, Aim 1 and Aim 3 has the advantage of suggesting long-distance signals of a wide 
range of chemical nature, including hormones, sRNA/RNAs and protein. Aim 2 on the other hand, 
has the advantage that it physically captures the phloem-trafficking signal. Thus, integrating these 
complementary datasets will help us to prioritize signals for testing. 
 

To do this, we will use a Rank-Sum method to rank all the potential long-distance signals based 
on their overall “goodness” determined by the two distinct experimental/computational 
approaches. Technically, the long-distance signals suggested by the modeling approaches using 
causal and effect gene pairs (Aim 3A), will be first filtered by their relevance to the 
heterogeneous N-response as described in Aim 3B, and then ranked based on the MSE of the 
regression model in Aim 3A (Table 1, (1)). The trafficking signals suggested by phloem-data in 
Aim 2 will be ranked by whether they are (2) responsive to nitrogen (measured by the p-val of the 
N-factor calculated in Aim 2), and (3) responsive to heterogeneous N-environment (measured by 
the p-val of the Het-factor calculated in Aim 2) (Table 1). The ranks of (1)-(3) will be summed up 
to produce a Sum-of-rank, generating a sorted global ranked order of long-distance signals whose 
effectiveness we can prioritize for testing in Aim 4 (Table 1). 
 

To estimate the p-value and therefore the false discovery rate of the resulting sorted global rank, 
we will estimate the p-value of each global rank value by non-parametric reshuffling [65]. That is, 

for each of the 
3 ranking 
factors, we 
will randomly 

and 
independently 
permute the 
signal rank, 
then compute 
the simulated 
global ranks. 
This will give 
an estimated 
p-value and 

false discovery rate for each true global rank using the actual data. (The null hypothesis would be 
that the three ranking methods are independent.) The signals will be further ranked by FDR and 
the top 5-10 will be subject to validation testing in Aim 4. 
 

Expected Outcomes and alternative approaches for Aim 3: Aim 3 will specifically test 
Hypothesis 2, to find the long-distance signal from modeling, and Hypothesis 3. Root Response: 
that specific combination of long-distance signals and the local N-response genes in roots is the 
trigger for root N-foraging in a heterogeneous N-environment. The modeling approach in Aim 3A 
will yield a list of potential shoot-to-root and root-to-shoot signals, whose relevance to N-Supply 
and N-Demand involved in heterogeneous N-response will be determined in Aim 3B. Spurious 
correlation could be a problem in such approaches, so we address this as follows: While the 

Table 1. Rank-Sum method to prioritize candidate long-distance signals. 



currently proposed 7 time-points, combined with a focused space of genes of interest (e.g. 
hormone regulated or hormone biosynthesis genes) should allow us to overcome such problem, 
we will add 2 or 3 more times points if needed. Those will be added at time-points where sentinel 
genes to heterogeneous N-environment are shown to vary [1]. Such results from Aim 3A and B 
will be combined with the data from Aim 2 using Rank-sum method (Aim 3C) to provide a list of 
ranked signals for long-distance signaling of heterogeneous N-environments for in planta testing 
in Aim 4. Note, that Aim 1 detects both shoot-to-root signal and root–to-shoot signals, while Aim 
2 only detects shoot-to-roots signal.  Thus, the Rank Sum method will only be used to prioritize 
shoot-to-root signals for testing. For the putative root-to-shoot signals suggested by Aim 3 A&B 
analysis of the Aim 1 data, we will select 2-3 candidates for experimental testing in Aim 4, based 
on the modeling MSE and the biological relevance. 
	  


