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1. Introduction
2. Database management systems (DBMSs) typically maintain a database buffer to provide efficient high speed access to database pages. [1]. A database buffer consists of page frames of the size of disk blocks [1]. Blocks arewhich are copied from disk into buffer without any change in format [1]. Since it’s more expensive to access a database page from disk than to access a page from the buffer [2], the problem spacemain challenge is reduces to effectively managing manage pages in the buffer. Finding an efficient solution for database buffer management is a well-researched problem. Many algorithms have been proposed so far in the same context, such as LRU, LIRS, Clock-Pro, 2Q, CAR, ARC etc. In this report, our focus is restricted to comparing 2Q and CLOCK-Pro algorithms in terms of hit ratee (ratio of number of pages requested that are already in the buffer to the total number of pages requested) over a series of real-time workloads. 



3. Optimal Page Replacement Algorithm (OPT)
The optimal page replacement algorithm or clairvoyant algorithm replaces a page whose next access will be farthest in future [3]. It’s impossible to implement OPT algorithm for practical purposes because the point when a page will be referenced next in the future is not known in advance [3]. However, OPT gives a natural best case among all the page replacement algorithms and can be used as a standard point of reference against which to compare performance of other page replacement algorithms. Our experiments were based on memory traces; hence we could easily look ahead in the future to see which page would be accessed farthest in the future. We used that information in our OPT algorithm implementation.

On accessing a page X :
begin
		if X is in the buffer then
			increment page hit counter
else // X not in the buffer
			increment page miss counter
			if buffer is not full then
				add X to the buffer
else // buffer is full
//Select a page that will not be referenced in the future for the /	//longest time
page Y:=selectPageForEviction()
remove Y from the buffer
			end if
		end if
end
______________________________________________________________________
		
selectPageForEviction() 
begin
		create a sub list, SL, of all the pages that have not been accessed so far
		//iterate over all the pages present in buffer
for i in 1..buffer.length loop
			page X := buffer(i)
			//calculate when a page will be accessed next time in the future
X.next_reference_time:=SL.indexOf(X.pageNum)
//if the page is not referenced in the future
if X.next_reference_time==-1 then
		//this page is the ideal candidate for page eviction
		return X
end if
		end loop
		//page with the highest value of next_reference_time will be selected for eviction
		page Y:= buffer(1)
for i in 1..buffer.length loop
			page X := buffer(i)
			if X. next_reference_time > Y. next_reference_time then
				Y:=X
			end if
		end loop	
		return Y
end

4. Two Queue Page Replacement Algorithm (2Q)
2Q maintains two families of queues: hot and cold. When a page is referenced for the first time, 2Q places it in the “cold” A1 queue, managed as FIFO (first-in first-out) queue [4]. If the page is accessed again while in the A1 queue, then it’s probably a hot page and is promoted to “hot” Am queue, a queue managed as a LRU (least-recently-used) queue [4]. If the page is not accessed while in the cold queue, then it’s eventually removed from the cold queue [4]. 2Q deals with the problem of correlated references by further dividing the A1 queue into A1in (of maximum size Kin) and A1out (of maximum size Kout) queues where Kin and Kout are tuning parameters [4]. The A1in queue keeps track of newly referenced pages whereas A1out queue keeps track of pages that have high long-term access rates [4]. Kin and Kout parameters are tuning parameters and set to fixed percentages of the cache size 

In our experiments, Kin = 20% and Kout = 65% works well as does Kin = 25% and Kout = 60% with the rest of the memory devoted to Am.” 

Pseudo code of 2Q algorithm as described in [4]:
On Accessing a Page X:
begin
       		if X is in Am then
            		Move X to the head of Am
       		else if X is in A1out then
            		reclaimfor(X)
                		Add X to the head of Am
        		else if X is in A1in
               	 	//do nothing
       		 else
                 		reclaimfor(X)
                 		Add X to the head of A1in
        		end if
end
______________________________________________________________________

//If there is space, we give it to X.
//If there is no space, we free a page slot to make room for large page X
reclaimfor(page X)
begin
       	 	if there are free page slots then
                  		 put X into a free page slot
        		else if (|A1in|>= Kin)
                   		page out the tail of A1in, call it Y
                   		add identifier of Y to the head of A1out
                  		 if (|A1out|>Kout)
                   			remove identifier of Z from the tail of A1out
                   		end if
                   		put X into the reclaimed page slot
       		 else 
                   		page out the tail of Am, call it Y
                  		 //do not put it on A1out, it has not been accessed for a while
                   		put X into the reclaimed page slot
        		end if
end

5. CLOCK-Pro Page Replacement Algorithm
In [5], S. Jiang, F. Chen and X. Zhang describes reuse distance as the period of time in terms of the number of other distinct pages accessed since its last access. CLOCK-Pro uses reuse distance to categorize a page as either a hot page or a cold page [5]. A page is categorized as a hot page if it has a small reuse distance or as a cold page if it has large reuse distance [5]. CLOCK-Pro algorithm maintains a single circular list where all hot and cold pages are placed in the order of their accesses [5]. Hot pages are placed at the tail of the list whereas cold pages are placed at the head of the list [5]. 
Once a cold page is added to the list, it’s assigned a test period so that it gets a fair chance to compete with other hot pages in the list [5]. [Ashish: please put in the default value for this.] The test period is set as the time before a cold page can be removed from the list even though it has reached the end of the cold list [5] 


The CLOCK-Pro algorithm maintains a single circular list for all the pages – hot or cold. In the non-adaptive version of the algorithm, number of hot and cold pages, mh and mc, respectively, is fixed, where m = mh + mc is the cache size. We chose mh = 95% of the cache size and mc = 5% of the cache size in our experiments. [These parameter values were provided by default in the source files that Dr. Song Jiang provided to us]. The circular list caches mh hot pages, mc cold pages and history access information of at most m non-resident cold pages. There are flags associated with each page which indicate whether a page is a hot page or a cold page, a page is in clock or out of clock, and a page is resident or non-resident. There is another flag which indicates if the cold page is in the test period. Additionally, the algorithm maintains reference bit for each page and three hands or pointers to the pages in the list, namely, HANDcold, HANDhot and HANDtest. 
HANDcold points to the last resident cold page in the list i.e the farthest cold page from the head of the list. It’s used to search for the cold page to replace. While searching for the cold page to replace, if the page pointed to by HANDcold is in the test period and has reference bit set as 0, the resident cold page is turned into a non-resident cold page. If cold page is not in the test period and has reference bit set as 0, it’s removed from the clock.  However, if the page pointed to by HANDcold has reference bit set as 1 and is in the test period, the page is turned into a hot page, its reference bit is reset and it’s moved to the head of the list.  HANDhot is triggered to perform its actions. If the page pointed to by HANDcold is not in the test period but has its reference bit set as 1, then its reference bit is reset and it’s moved to the head of the list.
HANDhot points to the tail of the list i.e. the last hot page in the list. It’s triggered when a cold page is accessed in its test period and is turned into a hot page. If the hot page pointed to by HANDhot has reference bit set as 1, its reference bit is reset and it’s moved to the head of the list. HANDhot is moved a page forward in the clockwise direction and the same process is repeated for all the other hot pages until a hot page with reference bit set as 0 is encountered by HANDhot. In such a case, the hot page is turned into a cold page and is moved to the head of the list. Another interesting point to note about movement of HANDhot is that if a cold page is encountered by the HANDhot and the cold page is in its test period, then its test period is terminated and it’s removed from the clock.  In the end, HANDhot stops at a hot page.
If the number of non-resident cold pages exceeds m, then the test period of the cold page pointed to by HANDtest is terminated. If the cold page pointed to by HANDtest is a non-resident cold page, then it’s also removed from the clock. 
When a page fault occurs and clock (circular list) is empty, it is first filled with mh hot pages and then with mc cold pages. If page fault occurs and clock is full, HANDcold is run to create free space in the clock for the faulted page. The faulted page is set as a cold page, moved to the head of the list and its test period is initiated. However, if page fault occurs and the faulted page is a non-resident cold page, it is turned into a hot page and is moved to the head of list. HANDhot is also run to turn a hot page with largest recency into a cold page.

If the cold page is re-accessed during its test period, it turns into a hot page [5]. However, if the cold page is not re-accessed during its test period, it is removed from the list [5]. More about CLOCK-Pro algorithm i.e. its data structure search for the victim page and adaptive version of the algorithm is are explained in greater details in [5].

6. Experiments
1. 
2. 
3. 
4. 
5. 
1. 
2. 
3. 
4. 
5. 
5.1. Simulation on file I/O traces
The file I/O traces used in this section are same as used for evaluation of the CLOCK-Pro algorithm in [5]. Quoting from [5]:
1. cpp is a GNU C compiler pre-processor trace and is a member of the probabilistic  pattern group.
2. multi2 is a member of the mixed pattern group and is obtained by executing three workloads, namely, cs, cpp and postgres, together.
3. sprite is a Sprite network file system trace which contains requests to a file server from client workstations for a two-day period. It’s a member of temporally-clustered pattern group.
4. glimpse is a text information utility trace and is a member of the loop pattern group.

For workload cpp, the performance of 2Q and CLOCK-Pro are comparable (see Table 1). Clock-PRO performs significantly better than 2Q for workloads multi2 and glimpse (see Table 2 and Table 4). However, for the sprite workload, the hit ratio of the 2Q algorithm is higher than CLOCK-Pro algorithm (see Table 3).

	Cache Size
	2Q (Kin = 25% Kout=65%)
	CLOCK-Pro
	OPT

	100
	.790
	.771
	.825

	500
	.861
	.860
	.865

	1000
	.865
	.864
	.865

	2000
	.865
	.865
	.865

	3000
	.865
	.865
	.865

	4000
	.865
	.865
	.865

	5000
	.865
	.865
	.865



Table 1: Hit Rate of 2Q, CLOCK-Pro and OPT algorithms on workload cpp.

	Cache Size
	2Q (Kin = 25% Kout=65%)
	CLOCK-Pro
	OPT

	100
	.259
	.266
	.354

	500
	.392
	.495
	.536

	1000
	.506
	.567
	.621

	2000
	.688
	.702
	.746

	3000
	.767
	.778
	.784

	4000
	.784
	.782
	.784

	5000
	.784
	.784
	.784

	6000
	.784
	.784
	.784

	7000
	.784
	.784
	.784

	8000
	.784
	.784
	.784

	10000
	.784
	.784
	.784

	20000
	.784
	.784
	.784



Table 2: Hit Rate of 2Q, CLOCK-Pro and OPT algorithms on workload multi2.

	Cache Size
	2Q (Kin = 25% Kout=65%)
	CLOCK-Pro
	OPT

	100
	.366
	.280
	.508

	500
	.857
	.768
	.879

	1000
	.924
	.884
	.932

	2000
	.942
	.923
	.948

	3000
	.946
	.932
	.947

	4000
	.947
	.937
	.947

	5000
	.947
	.941
	.947

	6000
	.947
	.943
	.947

	7000
	.947
	.947
	.947

	8000
	.947
	.947
	.947

	10000
	.947
	.947
	.947

	20000
	.947
	.947
	.947



Table 3: Hit Rate of 2Q, CLOCK-Pro and OPT algorithms on workload sprite.

	Cache Size
	2Q (Kin = 25% Kout=65%)
	CLOCK-Pro
	OPT

	100
	.009
	.058
	.077

	500
	.012
	.319
	.343

	1000
	.461
	.501
	.531

	2000
	.579
	.580
	.579

	3000
	.579
	.580
	.579

	4000
	.579
	.580
	.579

	5000
	.579
	.580
	.579



Table 4: Hit Rate of 2Q, CLOCK-Pro and OPT algorithms on workload glimpse.

5.2 Simulation on an Online Transaction Processing (OLTP) workload
The I/O traces used in this section are obtained from [5]. These traces are from OLTP applications running at two large financial institutions as mentioned in [5]. We had to tweak the original implementation of CLOCK-PRO algorithm provided by Dr. Song Jiang, in order to execute it successfully on Finanical1.spc. We had experienced segmentation fault error upon running CLOCK-Pro algorithm on the Financial.spc trace and had to change the page table implementation from array to map in the original source code. We recorded a slightly better performance of the 2Q algorithm compared with the CLOCK-Pro algorithm for OLTP workload (see Table 5 and Table 6).

	Cache Size
	2Q (Kin = 30% Kout=60%)
	CLOCK-Pro
	OPT

	50000
	.672292
	.640
	

	100000
	.7155877
	.674
	

	500000
	.867
	.839
	.867

	1000000
	.867
	.867
	.867

	2000000
	.867
	.867
	.867

	3000000
	.867
	.867
	.867



Table 5: Hit Rate of 2Q, CLOCK-Pro and OPT algorithms on workload Financial1.spc.

	Cache Size
	2Q (Kin = 30% Kout=60%)
	CLOCK-Pro
	OPT

	50000
	.8823328
	.859
	

	100000
	.90932566
	.896
	

	500000
	.920
	.920
	.920

	1000000
	.920
	.920
	.920

	2000000
	.920
	.920
	.920

	3000000
	.920
	.920
	.920



Table 6: Hit Rate of 2Q, CLOCK-Pro and OPT algorithms on workload Financial2.spc.

7. Sensitivity of Parameters
6.1 2Q
Choosing a value for Kin and Kout parameter for 2Q algorithm is essentially a tuning task. We experimented with different values of Kin and Kout parameters (see Table 7, Table 8, Table 9 and Table 10) and noted that Kin = 20% and Kout=60% did reasonalbly well for cpp and glimpse workloads whereas Kin = 25% and Kout=65% of cache size did reasonably well for cpp, multi2, glimpse and sprite traces.

	Cache Size
	2Q 
(Kin = 30% 
Kout=60%)
	2Q
(Kin = 20% 
Kout=60%)
	2Q
(Kin = 25% 
Kout=60%)
	2Q
(Kin = 25% 
Kout=65%)
	2Q
(Kin = 30% 
Kout=65%)

	100
	.783
	.795
	.789
	.790
	.785

	500
	.861
	.861
	.861
	.861
	.861

	1000
	.865
	.865
	.865
	.865
	.865

	2000
	.865
	.865
	.865
	.865
	.865

	3000
	.865
	.865
	.865
	.865
	.865

	4000
	.865
	.865
	.865
	.865
	.865

	5000
	.865
	.865
	.865
	.865
	.865



Table 7: Hit Rate of 2Q algorithm with different values of Kin and Kout on cpp workload.

	Cache Size
	2Q 
(Kin = 30% 
Kout=60%)
	2Q
(Kin = 20% 
Kout=60%)
	2Q
(Kin = 25% 
Kout=60%)
	2Q
(Kin = 25% 
Kout=65%)
	2Q
(Kin = 30% 
Kout=65%)

	100
	.252
	.257
	.254
	.259
	.259

	500
	.391
	.391
	.391
	.392
	.392

	1000
	.506
	.506
	.506
	.506
	.506

	2000
	.678
	.700
	.688
	.688
	.678

	3000
	.761
	.773
	.767
	.766
	.760

	4000
	.784
	.784
	.784
	.784
	.784

	5000
	.784
	.784
	.784
	.784
	.784

	6000
	.784
	.784
	.784
	.784
	.784

	7000
	.784
	.784
	.784
	.784
	.784

	8000
	.784
	.784
	.784
	.784
	.784

	10000
	.784
	.784
	.784
	.784
	.784

	20000
	.784
	.784
	.784
	.784
	.784



Table 8: Hit Rate of 2Q algorithm with different values of Kin and Kout parameters on multi2 workload.

	Cache Size
	2Q 
(Kin = 30% 
Kout=60%)
	2Q
(Kin = 20% 
Kout=60%)
	2Q
(Kin = 25% 
Kout=60%)
	2Q
(Kin = 25% 
Kout=65%)
	2Q
(Kin = 30% 
Kout=65%)

	100
	.357
	.364
	.361
	.366
	.363

	500
	.854
	.857
	.856
	.857
	.855

	1000
	.922
	.924
	.923
	.924
	.924

	2000
	.942
	.942
	.942
	.942
	.942

	3000
	.945
	.945
	.944
	.946
	.946

	4000
	.947
	.947
	.947
	.947
	.947

	5000
	.947
	.947
	.947
	.947
	.947

	6000
	.947
	.947
	.947
	.947
	.947

	7000
	.947
	.947
	.947
	.947
	.947

	8000
	.947
	.947
	.947
	.947
	.947

	10000
	.947
	.947
	.947
	.947
	.947

	20000
	.947
	.947
	.947
	.947
	.947



Table 9: Hit Rate of 2Q algorithm with different values of Kin and Kout parameters on sprite workload.

	Cache Size
	2Q 
(Kin = 30% 
Kout=60%)
	2Q
(Kin = 20% 
Kout=60%)
	2Q
(Kin = 25% 
Kout=60%)
	2Q
(Kin = 25% 
Kout=65%)
	2Q
(Kin = 30% 
Kout=65%)

	100
	.009
	.009
	.009
	.009
	.009

	500
	.012
	.012
	.012
	.012
	.012

	1000
	.444
	.477
	.460
	.460
	.444

	2000
	.579
	.579
	.579
	.579
	.579

	3000
	.579
	.579
	.579
	.579
	.579

	4000
	.579
	.579
	.579
	.579
	.579

	5000
	.579
	.579
	.579
	.579
	.579



Table 10: Hit Rate of 2Q algorithm with different values of Kin and Kout parameters on glimpse workload.
Kin = 20% and Kout=60% did reasonalbly well for cpp and glimpse workloads whereas Kin = 25% and Kout=65% of cache size did well for multi2and sprite traces.--Ashish
[Could you see whether there is one setting for Kin/Kout for all workloads that worked well?]

6.2 CLOCK-Pro
CLOCK-Pro adapts to the different workloads and doesn’t require predetermined parameters [5]. [Ashish, in your description you talk about mcold and mhot, so this cannot be (it doesn’t matter whether the authors say this, it matters what the code says).. Also could you look at the code and say how the test period is determined. I still find this mysterious?]
Do you mean the test period? The test period is not a predetermined parameter. Quoting from [5] 
``cold/hot'' are defined based on relativity and by constant comparison in one clock, not on a fixed threshold that are used to separate the pages into two lists. This makes CLOCK-Pro distinctive from prior work including 2Q and CAR, which attempt to use a constant threshold to distinguish the two types of pages, and to treat them differently in their respective lists (2Q has two queues, and CAR has two clocks), which unfortunately causes these algorithms to share some of LRU's performance weakness.


8. Conclusion
CLOCK-Pro and 2Q give comparable performance in all cases of interest. The differences are rarely more than 1 or 2%. Based on these experiments, we would recommend the use of whichever algorithm is easier to implement. 
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