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Abstract
Background: Inferring gene networks from time-course microarray experiments with vector
autoregressive (VAR) model is the process of identifying functional associations between genes
through multivariate time series. This problem can be cast as a variable selection problem in
Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou
and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number
of true positives while it also results in increasing the number of false positives.

Results: By incorporating relative importance of the VAR coefficients into the elastic net, we
propose a new class of regularization, called recursive elastic net, to increase the capability of the
elastic net and estimate gene networks based on the VAR model. The recursive elastic net can
reduce the number of false positives gradually by updating the importance. Numerical simulations
and comparisons demonstrate that the proposed method succeeds in reducing the number of false
positives drastically while keeping the high number of true positives in the network inference and
achieves two or more times higher true discovery rate (the proportion of true positives among the
selected edges) than the competing methods even when the number of time points is small. We
also compared our method with various reverse-engineering algorithms on experimental data of
MCF-7 breast cancer cells stimulated with two ErbB ligands, EGF and HRG.

Conclusion: The recursive elastic net is a powerful tool for inferring gene networks from time-
course gene expression profiles.

Background
The inference of gene networks from time-course microar-
ray data can be defined as the process of identifying func-
tional interactions between genes over time. Typically, a
gene network is represented by a directed or undirected
graph where nodes indicate genes encoded in a given
organism of interest and edges represent various func-

tional properties. The elucidation of gene networks has
been expected to having an essential role for better under-
standing of molecular mechanisms and can be useful in
the identification of new drug targets [1-5].

In this article, we use vector autoregressive (VAR) model
[6,7] to estimate gene networks from time-course micro-
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array data. The process of inferring gene networks based
on the VAR model is to choose non-zero coefficients in
the coefficient matrix, which can be considered as a prob-
lem of statistical model selection, especially as a variable
selection problem [8]. Although a variety of variable selec-
tion methods have been developed, e.g., best-subset selec-
tion [9], subset selection [9] and the lasso [10], these
methods often suffer from the following crucial problems
due to the limited number of samples (time points) com-
pared with the large number of variables (genes) in time-
course microarray data.

1. High computational cost for model selection:
When the number of variables is m, there are m × 2m

candidate models in model selection. The best-subset
selection is computationally prohibitive when the
number of variables is large.

2. High correlation between variables: When the
number of variables is much larger than the number of
samples, two or more variables tend to be highly cor-
related [11]. In this situation, the coefficient estimates
of the subset selection or the lasso may change errati-
cally in response to small changes in the observed
data, and thus the resulting models have poor per-
formances [12,13]. What is worse that these methods
tend to select only one variable from the highly corre-
lated variables [13] which can lead to reducing the
number of true positives in gene network inference.

One solution for the above problems is to use a regulari-
zation method called elastic net [13] which minimizes a
penalized loss function with l1- and l2-penalties of the
coefficients. Applying an l1-penalty regularizes the least
squares fit and shrinks some coefficients exactly to zero,
i.e., achieves automatic variable selection, as the lasso
does. Adding of an l2-penalty to an l1-penalty encourages
a grouping effect so that highly correlated variables will be
in or out of the model together. The elastic net is also
capable of selecting a set of relevant variables with low
computational effort even when the number of variables
is much larger than the number of observations with
LARS-EN algorithm [13]. However, although VAR mode-
ling with the elastic net succeeds in increasing the number
of true positives, it also results in increasing the number of
false positives. This is because the elastic net shrinks the
same amount of the l1-penalty to each coefficient without
assessing their relative importance.

To increase the capability of the elastic net, i.e., to decrease
the number of false positives while keeping the high
number of true positives in inferring gene networks based
on VAR model, we propose a new class of regularization,
called recursive elastic net, by incorporating relative impor-

tance of the coefficients. The recursive elastic net is a kind
of iterative procedures that can reduce the number of false
positives gradually by updating the relative importance of
each VAR coefficient. The performance of variable selec-
tion strongly depends on the regularization parameters of
the l1- and l2-penalty terms in the recursive elastic net. For
selecting these regularization parameters automatically,
we derive a modified Bayesian information criterion and
a modified bias-corrected Akaike information criterion.

Methods
Vector Autoregressive Model
We now consider gene expression data in time-course
microarray experiments at n time steps t ∈ {1, 2, ..., n}. Let
yt = (yt,1, ..., yt, m)' be the vector of m gene expressions at
time step t. We assume that yt at time step t is generated
from yt-1 at the previous time step t - 1 with a first-order
VAR model:

where c is a constant vector, B = [Bij]1≤i, j≤m is an m × m

autoregressive coefficient matrix, t is assumed to follow an

m-dimensional multivariate normal distribution N(0, Σ),

and the notation  denotes the transpose of the vector yt.

Throughout the paper, we assume that Σ is a diagonal

matrix, that is, . Note that the coeffi-

cient Bij measures the influence that node i exerts on node

j and the nonzero Bij provides a functional connectivity

which is related to Granger causality [14]. The Granger
causality is a concept widely used in econometrics to ana-
lyze the relationships between variables and is based on
the intuitive idea that a cause always occurs before its
effect. Thus, we can describe a gene network by a directed
graph based on the coefficient matrix B where nodes rep-
resent genes and edges show functional connectivities. In
the estimated graph, node i is linked to node j by the edge

i → j if and only if Bij ≠ 0.

For simplicity of explanation, we introduce the following
notations:

Since the covariance matrix Σ is diagonal, the first order
VAR model of these observations can then be considered
as m linear regression models
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Here, we center each input variable so that there is no
intercept in (2) and scale each input variable so that the
observed standard deviation is equal to one.

The major objective of our analysis is to estimate the coef-
ficient matrix B from observations. Especially, our interest
is its structures, that is, we want to estimate which ele-
ments of each column of B are zero or nonzero. Let denote
the set of indices corresponding the nonzero components

of  by . The graph inference problem

can be formally stated as the problem of predicting

 from the observations. This formulation is

equivalent to m variable selection problems in linear
regression where each component in yt is the response and

yt-1 is the covariates.

Recursive Elastic Net
From this section, we focus on a variable selection prob-
lem in linear regression model with response yt, j and cov-
ariates yt-1,1, ..., yt-1, m. For notational simplicity, we omit
the suffix j of zj, βj, λ1j and λ2j, and use the notation z, β, λ1
and λ2.

To obtain a sparse solution for parameter estimation with
high prediction accuracy and encourage a group effect
between variables in linear regression, Zou and Hastie
[13] proposed the elastic net, which combines both l1-reg-
ularization and l2-regularization together. Similar to the
lasso, due to the property of l1-penalty, the elastic net per-
forms automatic variable selection. It can also choose
highly correlated variables which is due to the benefit of
l2-penalty. The loss function of the elastic net for parame-
ter estimation can be represented by

where λ1 and λ2 are regularization parameters. The naive
elastic net estimator is then the minimizer of (3):

Although the naive elastic net overcomes the limitations
of the lasso, Zou and Hastie [13] showed the naive elastic
net does not perform satisfactorily in numerical simula-
tions and this deficiency in performance is due to impos-
ing a double shrinkage with l1- and l2-penalties. To solve

the problem, they proposed the elastic net estimator as a
bias-corrected version of the naive elastic net estimator
given by:

However, the elastic net suffers from too many false posi-
tives in the variable selection problem for extremely high-
dimensional data, which will be illustrated in Simulation
Section. This is due to the same amount of shrinkage for
all the coefficients in the l1-penalty. That is, the same reg-
ularization parameter λ1 is used for each coefficient with-
out assessing their relative importance. In a typical setting
of linear regression, it has been shown that such an exces-
sive l1-penalty can affect the consistency of model selec-
tion [15-18].

To enable different amounts of shrinkage for each coeffi-
cient, we define the following weighted loss function:

where λ1 and λ2 are regularization parameters, and w1, ...,
wm are positive coefficient weights. The weighted elastic
net estimator and its bias-corrected estimator are defined
as:

and

The modification of the l1-penalty was first proposed by
Zou [18]. This type of l1-regularization was applied to
parameter estimation for several statistical models, such
as Cox's proportional hazard model [19], least absolute
deviation regression model [20], and graphical Gaussian
model [21].

We next consider how to set the values of wk. One possible

way is to select the weights so that they are inversely pro-

portional to the true coefficients  that is,

where L is some specified large value. If wk is small, 

tends to be nonzero. While  tends to be zero if wk is
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large. By using the weight (9) and appropriate values of
the regularization parameters, we can choose the true set

of variables, i.e., . However, in many sit-

uations, one does not know true coefficients, and thus we
need some plug-in estimator instead of the true coeffi-
cients. In this article, we propose a new multi-step regular-
ization, called recursive elastic net. The proposed method
tries to obtain a better estimator than the elastic net esti-
mator by solving the weighted elastic net problem and
updating the weights alternatively. The recursive elastic
net can be described as:

Recursive Elastic Net

1. Set a maximum number of iterations to be M and

choose an initial estimator  by the naive elastic

net (4).

2. For the l-th iteration (l = 1, ..., M), define the coeffi-
cient weights by using the (l - 1)-th weighted elastic
net estimator as follows:

3. Solve the weighted elastic net problem and estimate
the coefficient vector:

4. Repeat Step 2 and Step 3 until a stopping criterion
is fulfilled or when the number of iterations attains M.

The parameter δ > 0 is introduced to avoid that the

weights of zero-valued components in  take the value

of infinity. From numerical simulations which are not

demonstrated, δ should be taken near 0. In this article, we

set δ = 10-5. Following Zou and Hastie [13], we can also
consider a bias-corrected version of the recursive elastic
net by replacing (10) with

We call the iterative procedure using the elastic net estima-
tor (5) as the initial variable weights and updating the
coefficients by the bias-corrected weighted elastic net (11)
corrected recursive elastic net. Note that our solution with

the iterative procedure is a local optimum when initializ-
ing some variable weights and we cannot guarantee the
convergence of a global minimum. Thus, it is important to
choose a suitable starting point for the variable weights. In
the recursive elastic net and the corrected recursive elastic
net, we propose to initialize with the naive elastic net and
the elastic net estimators, (4) and (5), that is, the
unweighted solutions of (10) and (11), respectively. In
the recursive elastic net and the corrected recursive elastic
net, the regularization parameters determine whether or
not the l-th estimator is better than the (l - 1)-th estimator.
The selection problem of the regularization parameters
will be discussed in the latter section.

Grouping Effect
In this section, we show that the recursive elastic net esti-
mator can lead to a desirable grouping effect for correlated
variables. In the framework of linear regression, the
grouping effect can be considered as an effect that the
coefficients of highly correlated variables should be simi-
lar each other. As discussed in Zou and Hastie [13], the
lasso does not have the grouping effect and tends to select
one among a correlated set. The following Lemma which
is quoted from Zou and Hastie [13] guarantees the group-
ing effect for the recursive elastic net in the situation with
identical variables, since the loss function of the recursive
elastic net is strictly convex when λ2 > 0. The Lemma is
given by:

Lemma 1 Assume that xi = xj for i, j ∈ {1, ..., m} and is esti-

mated by (10), then for any λ2 > 0.

Furthermore, the following theorem provides an upper
bound on the difference of the i-th and j-th coefficients for
the l-th iteration with the proposed method:

Theorem 1 For given dataset (z, X), regularization parameters

(λ1, λ2) and variable weights of the l-th iteration ,

suppose that the response z is centered and the covariate matrix

X is standardized. Let be the recursive elastic net estimator

of the l-th iteration (10). Suppose that two coefficients satisfy
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where and is the sample correla-

tion.

The proof of Theorem 1 is given by Appendix. We notice
that the grouping effect of the recursive elastic net contrib-

utes not only the sample correlation ρ but also the differ-
ence between the i-th and j-th coefficients of the (l - 1)-th

iterations . If xi and xj are highly correlated, i.e., ρ  1,

and the difference  is almost zero, then Theorem 1

says that the difference  is also almost zero.

Computational Algorithm
In this section, we provide an algorithm for solving the
weighted elastic net problem in (6) by modifying the
LARS-EN algorithm [13]. The modified algorithm called
LARS-WEN can be described as:

Algorithm: LARS-WEN
1. Define the (n - 1) × m design matrix by

2. Solve the elastic net problem by the LARS-EN algo-
rithm:

3. Output the weighted lasso estimator  by

For a fixed λ2, the LARS-WEN algorithm sequentially

updates the locations of the nonzero coefficients and its
values, and produces the entire solution path of the

weighted elastic net estimator . The R source code is

available from the authors upon request. The computa-
tional cost of the LARS-WEN algorithm is the same as that
of the LARS-EN algorithm except for the treatment of Step

1 and Step 3. If the algorithm for calculating  is

stopped after u steps, it requires O(u3 + mu2) operations.

Selection of Regularization Parameters
The regularization parameters play a critical role for deter-
mining the performance of variable selection with the
recursive elastic net. We now discuss how to choose the

values of the regularization parameters λ1and λ2 in the
recursive elastic net. Traditionally, cross-validation is
often used for estimating the predictive error and evaluat-
ing different models. For example, leave-one-out cross-
validation involves using a single observation from the
original sample as the validation data and the remaining
observations as the training data, and requires additional
calculations for repeating such that each observation in
the sample is used once as the validation data. Note that
we need to choose two regularization parameters for each
variable j in the VAR model. Thus, cross-validation can be
time-consuming and hardly be applied for the regulariza-
tion parameter selection in the estimation of the VAR
model with the recursive elastic net. In order to choose the
two regularization parameters, we use the degrees of free-
dom as a measure of model complexity. The profile of
degrees of freedom clearly shows that how the model
complexity is controlled by shrinkage, which helps us to
pick an optimal model among all the possible candidates
[22]. In recent years, an unbiased estimate of the degrees
of freedom for the lasso [22] was proposed. Using the
result of Zou et al. [22], an unbiased estimate of the
degrees of freedom for the recursive elastic net in the l-th
iteration is given by

where  denotes the active

set of  and the corresponding design matrix is given

by

Note that  does not include λ1 and depends on

 and λ2. Let  and  be the coefficient vector

and the active set of the LARS-WEN step α, respectively,

and λα,1 be the corresponding l1-regularization parameter

of the step α. Hence, we can use  in place of λα,1 as a

tuning parameter.

In our numerical studies, two model selection criteria,
Bayesian information criterion (BIC) [23] and bias-cor-
rected Akaike information criterion (AICc) [24,25], are
considered. Substituting the number of parameters in BIC

and AICc by the degrees of the freedom  we

can define a modified BIC and a modified AICc for select-
ing the regularization parameters as
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where

For a given λ2, we choose the optimal step that gives the
smallest BIC or the smallest AICc from the candidate
models.

VAR Modeling with Recursive Elastic Net

As shown in the previous section, the inference of
nonzero components in the VAR model can be formalized
as m variable selection problems, i.e., our objective is to

estimate . Therefore, we can apply the recursive

elastic net directly to estimate the coefficient matrix B in
the VAR model. In this section, we provide an algorithm
for estimating B in the VAR model with the recursive elas-
tic net and the derived model selection criteria for a fixed

λ2. The algorithm is as follows:

Algorithm:RENET-VAR
1. Set a maximum number of iterations to be M and a
maximum step size to be u.

2. For a fixed λ2, start with the initial coefficient
weights

3. For j = 1, ..., m

(a) For the l-th iteration, given

, the LARS-WEN algorithm

after u steps produces u solutions,

where

(b) Calculate the values of model selection crite-
rion for u candidate models, say

where  denotes the active set of , and

MC = AICc or BIC.

(c) Select  from among  which satisfies

(d) Update the variable weights by

4. Update l = l + 1 and repeat Step 3 until a stopping
criterion is satisfied or the number of iterations attains
M.

As a stopping criterion, we calculate the sum of the values
of model selection criterion for j = 1, ..., m:

The algorithm stops if SMC(l) (λ2) - SMC(l - 1)(λ2) > 0 (l =
2, 3, ..., M) holds.

Typically, we first pick a grid of values for λ2, say

For each λγ, 2, the RENET-VAR algorithm produces

. Finally, we select  which satisfies

We can also estimate  with the bias-corrected recursive
elastic net by replacing the solution (18) with

We note that our iterative algorithm guarantees the
decrease of the sum of the values of model selection crite-
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rion and searches the model minimizing (19), although it
cannot guarantee the decreasing of the loss function.

Results and Discussion
We tested the performance of the proposed method on
both simulated and real gene expression time-course data.
Using simulated data, we showed the differences between
the proposed method and other l1-regularization
approaches in the variable selection problem for linear
regression model and evaluated how well the proposed
method estimates the coefficient matrix of the VAR model
compared with other estimation methods. Using real
data, we also compared the proposed method with vari-
ous reverse-engineering algorithms for inferring gene net-
works.

Simulation Results
Simulation 1
We compared our proposed methods, the recursive elastic
net (REN) and the corrected recursive elastic net (CREN),
with the other l1-regularization methods, the lasso (LA),
the naive elastic net (NEN) and the elastic net (EN) on
simulated data in linear regression. We generated data
from a linear regression model

where β* was a 1000-dimensional vector of coefficients,
and x followed a 1000-dimensional multivariate normal
distribution N(0, S) with the zero mean vector 0 and the
covariance matrix S whose (i, j)-th entry was Si, j = 0.3 if i

≠ j and Si, i = 1 otherwise. The true coefficient vector was

, i.e., the first five coef-

ficients were related with the response z. The first five

entries  were generated from a uniform distribu-

tion on the interval [-1.2, -0.8] and [0.8, 1.2]. The stand-

ard deviation σ was chosen so that the signal-to-noise
ratio was 10, and 50 observations were generated from
this model. We set the grid of the values of the l2-regular-

ization parameters to {0.5, 1, 2, 5}. The regularization
parameters of each method were selected by a model
selection criterion AICc. We used AICc as a stopping crite-
rion of REN and CREN and the algorithm stopped if AICc
was not decreasing in the next iteration. All the methods
were run on each dataset through 100 simulations.
Results of Simulation 1 are described in Table 1. TDR
stands for true discovery rate (or accuracy) defined as TDR
= TP/(TP + FP) and sensitivity (SE) is TP/(TP+FN), where
TP, FP, TN and FN are the number of true positives, false
positives, true negatives and false negatives, respectively.

Compared with REN and CREN with the other l1-regular-

ization methods, LA, NEN and EN had larger numbers of
true positives than REN and CREN. However, LA, NEN
and EN also had larger numbers of false positives, and
they suffered from their low true discovery rates. While
REN and CREN had the higher true discovery rates than
LA, NEN and EN, since they reduced the numbers of false
positives drastically while keeping the numbers of true
positives as large as possible. Especially, REN reduced the
number of false positives from 11.90 to 1.01 and had the
highest true discovery rate between all the algorithms.

Next we illustrates the difference between the naive elastic
net and the recursive elastic net on a dataset from the

z N= ′ +∗x bb e e s, ~ ( , ),0 2 (20)

bb ∗ ∗ ∗ ∗ ∗ ∗= ′( , , , , , , , ..., )b b b b b1 2 3 4 5 0 0 0

b b1 5
∗ ∗, ...,

Table 1: Results of Simulation 1

Method TP FP TN FN TDR SE

LA 4.60 25.38 969.62 0.40 0.22 0.92
NEN 4.38 11.90 983.10 0.62 0.30 0.88
EN 4.22 7.89 987.11 0.78 0.40 0.84

REN 4.07 1.01 993.99 0.93 0.84 0.81
CREN 3.78 1.05 993.95 1.22 0.84 0.76

Coefficient profiles of the recursive elastic net through 10 iterationsFigure 1
Coefficient profiles of the recursive elastic net 
through 10 iterations. The numbers on the top of the fig-
ures are the numbers of nonzero coefficients at each itera-
tion. The red lines indicate variables whose coefficients are 
nonzero in the true model. The black lines are noisy varia-
bles. The dot line shows the iteration when the stopping cri-
terion is fulfilled.
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model (20). Figure 1 illustrates the coefficient profiles
through 10 iterations with the application of the recursive
elastic net on a dataset of 50 observations. The red lines
indicate the first 5 coefficient profiles related with the
response z, that is, the five true coefficient profiles. While
the black lines indicate the noisy coefficient profiles. The
dot line stands for the iteration when the stopping crite-
rion was fulfilled.

The coefficients of the 0-th iteration was equivalent to the
naive elastic net estimators where 19 coefficients were
identified as nonzero including the 5 true components
(true positives) and 14 noisy components (false posi-
tives). In the first iteration, among the 19 components
selected in the naive elastic net, 7 coefficients including
the 5 true components were estimated as nonzero by the
recursive elastic net. That is, we succeeded in reducing the
number of false positives from 14 to 4 while keeping all
the 5 true positives. After 5 iterations, the stopping crite-
rion was fulfilled and the recursive elastic net yielded 5
true positives and only 1 false positive. This reduction of
the number of false positives in the linear regression has
much effect on the performance of the VAR model which
is equivalent to m linear regressions. The performances of
the proposed methods in the VAR model will be illus-
trated in the next section.

Simulation 2
For the second simulation, we used the VAR model with
the structure of scale-free networks. We considered five
models with (n, m) = (20, 100), (20, 200), (20, 500), (20,
1000) and (20, 2000) where n was the number of time
points and m was the number of variables. The topologies
of the scale-free networks were generated according to the
Barabasi-Albert model [26] by using the R function bara-
basi.game in the R package igraph [27]. The parameter
power was set to 1.2 and the other parameters were set to
their default values, and then the numbers of edges were
chosen to be 108, 213, 525, 1045 and 2079 for m = 100,
200, 500, 1000 and 2000, respectively. The structures of
the simulated networks are illustrated in Additional File 1.
The dataset from the VAR model with a given structure
was drawn as follows:

1. The nonzero entities for the true VAR coefficients B*
were generated from a uniform distribution on the
interval [-0.8, -0.4] and [0.4, 0.8].

2. The initial value y0 was drawn from a uniform dis-
tribution on the interval [10, 100].

3. The data at time points t ∈ {1, 2, ..., 20} was gener-
ated recursively according to the VAR model with
identity random noise matrix Σ = I.

We simulated 100 different datasets from the above pro-
cedure for each combination of (n, m). We compared the
recursive elastic net (REN) and the corrected recursive
elastic net (CREN) with the lasso (LA), the naive elastic
net (NEN), the elastic net (EN), and the Jame-Stein
shrinkage (JS) [7] on simulated datasets. Opgen-Rhein
and Strimmer [7] proposed an improved estimator of the
VAR coefficients by using a James-Stein-type shrinkage
approach. All the algorithms were run out on each drawn
dataset {y1, ..., y20}. The setting of the l2-regularization
parameters was same as given in Simulation 1. The regu-
larization parameters of LA, NEN, EN, REN and CREN
were selected by a model selection criterion, BIC or AICc.
JS is a test-based approach and a cut-off value for the local
false discovery was set to 0.2 (JS-A), which was used in
Opgen-Rhein and Strimmer [7]. We also used a cut-off
value such that the number of significant edges detected
by JS was as same as that of REN with AICc (JS-B).

For each algorithm, its network inference performance
was evaluated by true discovery rate (TDR = TP/(TP + FP)
and sensitivity (SE = TP/(TP + FN)) where TP, FP, TN and
FN are the number of true positives, false positives, true
negatives and false negatives, respectively. Table 2
presents the results of Simulation 2. These results can be
summarized as follows:

1. The sensitivity and true discovery rate of each algo-
rithm were gradually decreasing as increasing the
number of variables.

2. NEN and EN had higher sensitivities than the other
methods, but their true discovery rates were much
lower than those of REN and CREN.

3. The sensitivity of LA was slightly higher than that of
REN, while the true discovery rate of REN was over ten
times higher than that of LA.

4. Compared with the same significant edges of REN
and JS-B, REN outperformed JS-B in both of sensitivity
and true discovery rate.

5. CREN succeeded in higher sensitivity than REN, but
it suffered from its low true discovery rate compared
with REN when the number of variables was large.

6. REN had the highest true discovery rate between all
the algorithms in all cases while its sensitivity was
almost same as that of LA, JS-A and CREN.

7. REN with AICc was slightly better than REN with
BIC.
Page 8 of 13
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We also compared our proposed method with other com-
peting methods on simulated dataset by using the VAR
model with hierarchical structures. These results are given
in Additional File 2.

Experimental Results
In this section we used experimental data of MCF-7 breast
cancer cells stimulated with two ErbB ligands, epidermal
growth factor (EGF) and heregulin (HRG), to compare the
proposed method with various reverse-engineering algo-
rithms. This dataset is available from Gene Expression
Omnibus (GEO, Accession Number GSE6462) [28]. In
GSE6462, cells were stimulated with 0.1, 0.5, 1, or 10 nM
of either EGF or HRG and the expression values were
measured at eight time points (0, 5, 10, 15, 30, 45, 60, and
90 minutes) by Affymetrix GeneChip U133A-2. The
expressions with 10 nM of EGF at 60 minutes were not
observed, and thus its values were estimated with linear
interpolation. These microarray datasets were also nor-
malized by faster cyclic loess [29].

In addition to the lasso, the naive elastic net, the elastic
net, and the James-Stein shrinkage which were used in
Simulation Section, we considered MRNET [30], CLR [2],
and ARACNE [31] as competing methods. These methods
are available from the R package minet [32]. Note that
they do not intend to analyze time-course data. To
increase their capabilities, we considered a lagged version
of a time series matrix, denoted by D, whose (i, j)-element
indicates Di, j = yi+1, j - yi, j and used it as an input of MRNET,
CLR and ARACNE. This modification enables us to extract
gene-gene interactions between time steps i + 1 and i. To
distinguish between the original version and the modified
version, we refer the original MRNET, CLR and ARACNE
as MRN, CLR and ARA, and the modified MRNET, CLR

and ARACNE as MRN-L, CLR-L and ARA-L, respectively.
In our analysis, we assumed that time points were equidis-
tant and that the structure of gene networks did not
change with different dosages of EGF or HRG. Thus, the
datasets from different dose conditions of EGF or HRG
were considered as replicated observations. We validated
the performances of these reverse-engineering algorithms
in terms of how to identify pairwise gene-gene interaction
edges by using TRANSPATH database [33]. Although we
do not have perfect knowledge of true network, we used
biological interactions obtained from TRANSPATH data-
base as true edges. We started by focusing on 254 probes
by Nagashima et al. [34]. Among these probes, 233 probes
were mapped to unique Entrez Gene IDs, 7 probes were
mapped to more than one Entrez Gene IDs, and 14 probes
were not mapped, respectively. We only used 233 probes
with 228 unique Entrez Gene IDs. To correspond each
Entrez Gene ID to unique probe, we selected a probe for
each Entrez Gene ID with the largest mean value of expres-
sions through all the experiments. Among these 228 Ent-
rez Gene IDs, TRANSPATH database identified a
biological pathway which includes 110 Entrez Gene IDs.
While the other 128 Entrez Gene IDs do not connect each
other in TRANSPATH database. Thus, all the algorithms
were run on time-course expression profiles of the 110
Entrez Gene IDs for EGF-stimulation and HRG-stimula-
tion, respectively.

The setting of the regularization parameters in the lasso
(LA), the naive elastic net (NEN), the elastic net (EN), the
recursive elastic net (REN) and the corrected recursive
elastic net (CREN) was same as given in Simulation and
these parameters were selected by BIC. As a result, LA,
NEN, EN, REN and CREN identified 2202, 1721, 870, 162
and 436 significant edges from the EGF dataset, respec-

Table 2: Results of Simulation 2

number of time points × number of variables

20 × 100 20 × 200 20 × 500 20 × 1000 20 × 2000

Method MC TDR SE TDR SE TDR SE TDR SE TDR SE

LA BIC 0.06 0.77 0.05 0.72 0.05 0.69 0.05 0.67 0.05 0.65
LA AICc 0.08 0.78 0.07 0.76 0.07 0.73 0.06 0.71 0.06 0.69

NEN BIC 0.08 0.93 0.07 0.94 0.06 0.91 0.06 0.88 0.06 0.84
NEN AICc 0.12 0.93 0.10 0.93 0.08 0.91 0.08 0.87 0.07 0.83
EN BIC 0.25 0.91 0.19 0.91 0.15 0.89 0.12 0.85 0.11 0.82
EN AICc 0.25 0.91 0.20 0.91 0.15 0.89 0.13 0.85 0.11 0.82

REN BIC 0.74 0.73 0.71 0.70 0.68 0.68 0.65 0.65 0.61 0.61
REN AICc 0.77 0.75 0.73 0.72 0.70 0.69 0.67 0.66 0.63 0.62

CREN BIC 0.54 0.82 0.44 0.81 0.33 0.81 0.27 0.78 0.22 0.76
CREN AICc 0.56 0.82 0.45 0.81 0.34 0.81 0.28 0.78 0.23 0.76
JS-A - 0.09 0.79 0.05 0.74 0.02 0.75 0.01 0.74 4.7 × 10-2 0.74
JS-B - 0.29 0.29 0.19 0.19 0.11 0.10 0.05 0.05 0.03 0.03
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tively. While they also identified 2904, 2335, 411, 154
and 171 significant edges from the HRG dataset, respec-
tively. In order to facilitate comparison among them, we
controlled the numbers of significant edges detected by
LA, NEN, EN and CREN same as that of REN by using a
threshold value, that is, set to 0 all edges whose coeffi-
cients are lower than the threshold. We also chose the
same number of significant edges detected by the James-
Stein shrinkage (JS) as that of REN in a similar way as in
the previous section. MRN, CLR, ARA, MRN-L, CLR-L and
ARA-L require the calculation of a mutual information
matrix. We used a Miller-Madow asymptotic bias cor-
rected empirical estimator as each mutual information of
them. We set the numbers of significant edges detected by
them as same as that of REN by using a threshold. Notice
that each of MRN, CLR, ARA, MRN-L, CLR-L and ARA-L
infers the network just as an undirected graph, while each
of the others infers the network as a directed graph. In our
analysis, we first transformed the real and the inferred
directed networks into undirected graphs and then per-
formed a comparison. Results from experimental data are
described in Table 3. TDR stands for true discovery rate
defined as TP = (TP + FP) where TP and FP are the num-
bers of true positives and false positives, respectively. The
method RAND is an algorithm which selects the same
number of significant edges same as that of REN ran-
domly. Each value of RAND indicates the mean value
through 1,000,000 simulations. The p-value of each algo-
rithm was calculated using a Binomial distribution based
on the random model through 1,000,000 simulations.
Notice that the overall low performances on the EGF and
HRG datasets are owing to the limited number of data and
the imperfect knowledge of the real network. We observed
that, in the EGF dataset, ARA, MRN-L, LA, NEN, REN and
CREN had higher numbers of true positives than RAND,
however only the performance of REN was significantly

better than that of RAND. While, in the HRG dataset,
MRN-L, CLR-L, ARA-L, NEN, EN, REN and CREN per-
formed well than RAND. Between them, the perform-
ances of EN, REN and CREN were significantly better than
that of RAND. As a result, REN had the highest number of
true positives on both of the EGF and HRG datasets.

Next we applied our method to time-course expression
profiles of the 228 Entrez Gene IDs stimulated with EGF
and HRG, respectively, in order to investigate the differ-
ence between the EGF- and HRG-induced gene networks.
In the ErbB signaling network, two different ErbB receptor
ligands, EGF and HRG, play a key role in controlling
diverse cell fates. In MCF-7 cells, stimulation with EGF
causes sustained network activation and leads to cell dif-
ferentiation, while stimulation with HRG causes transient
network activation and leads to cell proliferation.

Figures 2 and 3 show the inferred EGF- and HRG-induced
gene networks with the recursive elastic net.

These figures were illustrated by Cell Illustrator [35,36].
We observed that the two directed graphs had different
network topologies each other. We compared with the
two graphs from characteristics of node degree, that is, the
number of edges that they had. In directed networks, we
distinguish between the in-degree, the number of directed
edges that point toward the node, and the out-degree, the
number of directed edges that start at the node. The in-
degree distributions and the out-degree distributions of
the EGF- and HRG-induced networks are illustrated in

Table 3: Results of the applications of network inference 
algorithms on the experimental datasets

Method EGF HRG

TP TDR p-value TP TDR p-value

RAND 8.73 0.05 - 8.29 0.05
MRN 8 0.05 0.65 8 0.05 0.59
CLR 4 0.03 0.98 7 0.05 0.73
ARA 9 0.06 0.51 7 0.05 0.73

MRN-L 12 0.08 0.16 10 0.07 0.32
CLR-L 6 0.04 0.87 9 0.06 0.45
ARA-L 6 0.04 0.87 9 0.06 0.45

JS 6 0.04 0.87 8 0.05 0.59
LA 9 0.06 0.51 7 0.05 0.73

NEN 10 0.06 0.38 9 0.06 0.45
EN 8 0.05 0.65 17 0.11 4.0 × 10-3

REN 16 0.10 0.01 19 0.13 6.7 × 10-4

CREN 11 0.07 0.25 16 0.11 8.8 × 10-3

EGF-induced VAR network inferred from time-course microarray data in MCF-7 cellsFigure 2
EGF-induced VAR network inferred from time-
course microarray data in MCF-7 cells. The nodes indi-
cate genes and the edges represent functional connectivities.
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Additional File 3. We found that each of the in-degree dis-
tributions concentrated around its average value, whereas
the out-degree distributions had long tails. In particular,
the out-degree distribution of the HRG-induced network
was more heavy tailed than that of the EGF-induced net-
work. Furthermore, in the HRG-induced network, we
found that three hub genes, FOS, MAP3K8 and PDLIM5,
had larger out-degrees (30, 68 and 75, respectively) than
the other genes. While, in the EGF-induced network, each
of FOS, MAP3K8 and PDLIM5 had only one outgoing
edge (one out-degree). Thus, these hub genes are thought
to be essential in only the HRG-induced network since
their disruptions do not lead to a major loss of connectiv-
ity in the EGF-induced network, but the loss of them
causes the breakdown of the HRG-induced network into
isolated clusters. Our analysis based on the VAR model
with the proposed method produced the hypothesis that
these hub genes might be implicated why only HRG
allows MCF-7 cells to be differentiated.

Conclusion
In this article, we have proposed a new class of l1-regular-
ization, called recursive elastic net for inferring gene net-
works from time-course microarray data based on the VAR
model. The recursive elastic net addresses the drawback of
the elastic net and has higher true discovery rate than
other competing methods in gene network inference.
Numerical simulations demonstrated that the proposed
method succeeded in reducing the number of false posi-

tives drastically while keeping the large number of true
positives and achieved two or more times higher true dis-
covery rate than the lasso, the naive elastic net, the elastic
net and the James-Stein shrinkage even when the number
of time points was small. We also compared our method
with various reverse-engineering algorithms including
MRNET, CLR and ARACNE by using experimental data of
MCF-7 breast cancer cells and TRANSPATH database. As a
result, we found that the proposed method had the best
performance between them and provided some differ-
ences between the EGF- and HRG-induced networks.

An interesting direction for future work would be to incor-
porate prior information elicited from the known biolog-
ical networks. In the recursive elastic net, we can
incorporate the topology of the known network directly as
the initial variable weights (10). For example, if an edge
from gene i to gene j exists the known biological pathway,
we impose a small weight less than one on the corre-
sponding coefficient. This incorporation would further
provide higher sensitivity and higher true discovery rate of
the proposed method in gene network inference. Another
promising direction for future work would be the exten-
sion of the recursive elastic net to other type of mathemat-
ical models. A limitation of the VAR model comes from
their equidistant assumption which is not true in many
real situations. We might solve the problem by applying
the proposed method to differential equation models
[37,38].

Appendix: Proof of Theorem 1
We provide proof of Theorem 1 which is similar to that of

Zou and Hastie [13]. If , then both  and

 are nonzero, and we have .

Because of (10), the estimator  satisfies

Hence we have

Subtracting (21) from (22) gives
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HRG-induced VAR network inferred from time-course microarray data in MCF-7 cellsFigure 3
HRG-induced VAR network inferred from time-
course microarray data in MCF-7 cells. The nodes indi-
cate genes and the edges represent functional connectivities.
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which is equivalent to

Using the identity |A ± B| ≤ |A| + |B| for all A and B, we
have

By equation (6) we must have

that is,

So

Then equation (23) implies

If we assume that X is standardized,

 where . Thus inequality

(24) reduces to

We assume that . Since the function

f(x) = x-1 is Lipshitz continuous for x > 0, then we have

Using (26) gives

Thus inequality (25) further simplifies to

This completes the proof.

Authors' contributions
TS conceived and designed the study, and wrote the man-
uscript. SI provided statistical expertise and careful manu-
script review. RY, AF and MN assisted in preparing the
manuscript. SM supervised the whole project. All authors
read and approved of the final manuscript.

Additional material

− ′ − ′ − + − + −( )( ) ( ) sgn( ) (( ) ( ) ( ) ( ) ( )x x z Xi j
l

i
l

j
l

i
l

i
lw wbb l b l b1 2

ˆ̂ ) ,( )b j
l = 0

l b b l2 1| | |( )( ) ( ) sgn(( ) ( ) ( ) ( ) ( )
i
l

j
l

i j
l

i
l

j
lw w− = ′ − ′ − − −x x z Xbb ˆ̂ ) | .( )b i

l

(23)

l b b l2 1| | |( )( ) | | ( ) sg( ) ( ) ( ) ( ) ( )
i
l

j
l

i j
l

i
l

j
lw w− ≤ ′ − ′ − + −x x z Xbb nn( ) | .( )b i

l

WL WL( , , ,..., , ) ( , , , ..., ,( ) ( ) ( ) ( ) ( )l l l l1 2 1 1 2 1w w w wl
m
l l l

m
lbb ≤ bbbb ( ) ),l = 0

1
2

2
2

1
22

2
1 2

2

1

|| || | | || || || |( ) ( ) ( ) ( )z X z− + + ≤
=

∑bb bbl
k
l

k
l l

k

p

wl b l
|| .2
2

|| || || || .( )z X z− ≤bb l
2 2

D
l

w wi j
l

i j i
l

j
l

,
( ) ( ) ( )|| ( )||

| |
|| ||

| |
| |= − − + −1

2
2

1
1
1

2l
lz X

z
x x

z
bb⎧⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

≤ − − + −1

2
2

2
1
1

2l
l|| ( )||

|| ||
|| ||

| |
| ( )z X

z
x x

z
bb l

wi j i
l ww

w w

j
l

i j i
l

j
l

( )

( ) ( )

|

|| ||
| |

| | .

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

≤ − + −
⎧
⎨
⎩

⎫
⎬
⎭

1

2
1
1

2l
l

x x
z

(24)

|| || ( )x xi j− = −2 2 1 r r = ′x xi j

D w wi j
l

i
l

j
l

,
( ) ( ) ( )( )

| |
| | .≤ − + −

⎧
⎨
⎩

⎫
⎬
⎭

1

2
2 1 1

1l
r l

z
(25)

wk
l

k
l( ) ( )| |= +− −b d1 1

| ( ) ( ) | | | .f x f y x y− ≤ − (26)

Additional file 1
Structures of simulated scale-free networks. This file includes Addi-
tional Figures 1, 2, 3, 4 and 5 that describe the structures of the simulated 
scale-free networks with 100, 200, 500, 1000 and 2000 genes, respec-
tively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-41-S1.pdf]

Additional file 2
Simulation 3. This document represents Simulation 3 where we com-
pared our proposed method with other competing methods on simulated 
dataset by using the VAR model with a hierarchical structure. It also 
includes Additional Figure 6 that describes the structure of the simulated 
network and Additional Tables 1 and 2 that show the results of Simula-
tion 3, respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-41-S2.pdf]

Additional file 3
In-degree and out-degree distributions of the EGF- and HRG-induced 
gene networks. This file includes Additional Figures 7 and 8 that describe 
the in-degree distribution and the out-degree distribution of the EGF-
induced gene network, and Additional Figures 9 and 10 that describe the 
in-degree distribution and the out-degree distribution of the HRG-induced 
gene network, respectively.
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