
Nightmare at Test Time: Robust Learning by Feature Deletion

Amir Globerson gamir@csail.mit.edu

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA

Sam Roweis roweis@cs.toronto.edu

Department of Computer Science, University of Toronto, Canada

Abstract

When constructing a classifier from labeled
data, it is important not to assign too much
weight to any single input feature, in order to
increase the robustness of the classifier. This
is particularly important in domains with
nonstationary feature distributions or with
input sensor failures. A common approach
to achieving such robustness is to introduce
regularization which spreads the weight more
evenly between the features. However, this
strategy is very generic, and cannot induce
robustness specifically tailored to the classi-
fication task at hand. In this work, we in-
troduce a new algorithm for avoiding single
feature over-weighting by analyzing robust-
ness using a game theoretic formalization.
We develop classifiers which are optimally re-
silient to deletion of features in a minimax
sense, and show how to construct such clas-
sifiers using quadratic programming. We il-
lustrate the applicability of our methods on
spam filtering and handwritten digit recogni-
tion tasks, where feature deletion is indeed a
realistic noise model.

1. Building Robust Classifiers

When constructing classifiers over high dimensional
spaces such as texts or images, one is inherently faced
with the problem of under-sampling of the true data
distribution. Even so-called “discriminative” methods
which focus on minimizing classification error (or a
bound on it) are exposed to this difficulty since the
training objective will be calculated over the observed
input vectors only, and thus may not be a good approx-
imation of the average objective on the test data. This
is especially important in settings such as document

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

classification where features may take on certain ob-
served values (e.g. a zero count for a particular vocab-
ulary item) due to small sample effects. Furthermore,
it may not be the case that the test data and training
data come from the same distributions. The distri-
bution of words in spam email, for example, changes
very rapidly and keywords which are highly predictive
of class in the training set (e.g. “hurricane”) may not
be indicative or even present in the test data. As an-
other example, consider a digital camera whose output
is fed to a face recognition system. Due to hardware
or transmission failures, a few pixels may “die” over
the course of time. In the image processing litera-
ture, this is referred to as pepper noise (Bovik et al.,
2000) (salt noise refers to the case when pixels values
are clipped to some fixed value). Any classifier which
attached too much weight to any single pixel would
suffer a substantial performance loss in this case. As
a final example, consider a network of local processing
elements in an artificial sensor network or a biological
network such as the cortex. The hardware/wetware
of such systems is known to be extremely unreliable
(thousands of neurons die each day) and yet the over-
all architecture maintains its function, indicating a re-
markable robustness to such non-stationarities in its
input.

Given this uncertainty about the true underlying na-
ture of the data, it is crucial not too attach too much
weight to any single data dimension during testing,
however informative it may seem at training time. All
the above examples describe a scenario where features
that were present when constructing the classifier (i.e.,
in the training data), are potentially deleted at some
future point in time. Such deletion may manifest it-
self differently depending on the particular domain: a
deleted feature may be known to be unavailable or un-
measured; it may take on random values; or its value
may set to some constant. In our formal treatment,
we focus on the case where deletion corresponds to
setting the feature’s value to zero. Indeed, in the ex-
amples given above this is an appropriate description.



Nightmare at Test Time: Robust Learning by Feature Deletion

Of course, when constructing the classifier, we cannot
anticipate in advance which features may be deleted in
the future. One possible strategy is to analyze the per-
formance under random deletion of features. However,
this may not be a correct model of the deletion statis-
tics. The approach we take here is to construct a clas-
sifier which is optimal in the worst case deletion sce-
nario, thus avoiding any modeling assumptions about
the deletion mechanism. This can be formulated as a
two player game, where the action of one player (the
classifier builder) is to choose robust classifier param-
eters, whereas the other player (the feature removal
mechanism) tries to delete the feature which would be
most harmful given the current classifier. Robust min-
imax approaches to learning classifiers have recently
attracted interest in the machine learning community
(Lanckriet et al., 2004; El Ghaoui et al., 2003; Kim
et al., 2006). Our approach is related to (El Ghaoui
et al., 2003) where the location of sample points is only
known up to an ellipsoidal region, and a classifier that
is optimal in the worst case is sought. However, in our
case, the structure of uncertainty is inherently differ-
ent and is related to the existence vs. non-existence of
a feature.

In the next section we formalize this minimax game
for classifiers such as the support vector machine
(Schölkopf & Smola, 2002) in which the training ob-
jective is measured using a regularized hinge loss. We
show that the game results in a tractable quadratic
program for training robust classifiers, which we de-
note by the name FDROP . We then go on to illustrate
the method’s performance on several datasets.

2. Minimax Problem Formulation

Given a labeled sample (xi, yi) (i = 1, . . . , n), with
input feature vectors xi ∈ <d and class labels1 yi ∈
{±1}, we would like to construct classifiers which are
robust to deletion of features. We focus on the case
where a feature is assigned the value of zero if it is
deleted, and denote by K the maximum number of
features which may be deleted for any given point x.
(This limitation is necessary since if for example all
features may be deleted, then in the worst case there
is no access to the true data.)

We assume that the objective function we would like to
maximize when training the classifier is measured us-
ing the hinge loss2

∑

i [1 − yiw · xi]+ (Recall that the
hinge loss is also a convex upper bound on the zero one

1We focus on the binary case here. All results can be
easily generalized to the multi class case.

2It would be interesting to consider other loss functions,
such as the log loss

loss: lzo(w, y,x) ≤
∑

i [1 − yiw · xi]+, so that by min-
imizing hinge loss we are actually minimizing a bound
on the training error). We do not introduce a bias
term explicitly, but including a bias is straightforward
by adding a constant feature xd+1 = 1.

We would like our classifier to be robust to test time
deletion of features from the input vectors, i.e. robust
against the setting of arbitrary feature values to zero.
Thus, we seek a classifier which minimizes the worst
case hinge loss when up to K features may be deleted
from each data vector. In this setting, the worst case
hinge loss for example i is given by

hwc(w, yixi) = max [1 − yiw · (xi ◦ (1 − αi))]+
s.t. αi ∈ {0, 1}

∑

j αij = K
(1)

where maximization is over all legal assignments to αi,
and αij denotes the jth element of αi which equals 1
if the jth feature of xi is deleted (we use ◦ to denote
the element-wise multiplication operation).

The worst case hinge loss over the entire training set is
∑

i hwc(w, yixi). In analogy to the standard support
vector machine formulation, we will minimize some
tradeoff between this worst-case error and a regular-
ization term involving the weight vector norm 3

w∗ = arg min
w

1

2
‖w‖2 + C

∑

i

hwc(w, yixi) (2)

To solve the above problem we first analyze the worst
case hinge loss hwc(w, yixi). This loss can be seen
to be minimized when αi is chosen to delete the K

features xij with highest values yiwjxij , since these
will have the strongest decreasing effect on the loss.
Thus we can rewrite hwc(w, yixi) as

hwc(w, yixi) =
[

1 − yiw
T xi + si

]

+
,

where we have defined

si = max
αi∈{0,1},

∑

αij=K

yiw · (xi ◦ αi) (3)

as the maximum contribution of K features to the mar-
gin of sample xi.

To simplify the expression for si, we note that the in-
teger constraint on the variables αi may be relaxed to
0 ≤ αi ≤ 1 without changing the optimum. This is
true since the vertices of the resulting 2d+1 linear in-
equalities are integral. Since the maximization is over

3Note that when bias is added using a feature xd+1 = 1,
its corresponding weight is not included in the regulariza-
tion. All results are easily extendable to this case.



Nightmare at Test Time: Robust Learning by Feature Deletion

a linear function, the optimum will be at the vertices,
and is therefore integral. We rewrite si using this re-
laxation, and also changing the order of multiplication

si = max yi (w ◦ xi) · αi

s.t. 0 ≤ αi ≤ 1
∑

j αij = K
(4)

The above expression for hwc is bilinear in αi,w. Since
this may potentially contribute a non-convex factor
into the optimization, we use a duality transformation
to avoid bilinearity. The dual problem of the si maxi-
mization optimizes over the variables vi ∈ <d, zi ∈ <,
yielding

si = min Kzi +
∑

j vij

s.t. zi + vi ≥ (yixi ◦ w)
vi ≥ 0

(5)

To plug this into the minimization problem, we intro-
duce a variable ti which upper bounds the minimum.
The resulting problem is

FDROP:
min 1

2
‖w‖2 + C

∑

i

[

1 − yiw
T xi + ti

]

+

s.t. ti ≥ Kzi +
∑

j vij

vi ≥ 0
zi + vi ≥ (yixi ◦ w)

(6)

The above problem is quadratic and can be solved ef-
ficiently. Note that the hinge function [x]

+
can be

written using linear constraints (as is commonly done
in SVM formulations).

2.1. The Dual Robust Problem

The classic support vector machine problem is a con-
vex quadratic problem, and has a dual convex which
reveals some interesting properties and allows the use
of kernel classifiers. Since our robust problem is also
quadratic and convex, it is interesting to consider its
dual problem. It can be shown (see Appendix A) that
the dual of our robust classifier construction problem
is the following optimization 4

min 1

2
‖
∑

i yiαixi ◦ (1 − λi)‖
2 −

∑

i
αi

s.t. 0 ≤ α ≤ C

0 ≤ λi ≤ 1
∑

j λij = K

(7)

where the are variables are: α, a vector of dimension n

(the number of samples), and λi a set of n vectors, each
of dimension d (the dimension of the input). Further-
more, the optimal set of weights w can be expressed

4We denote by 1 the vector with all elements one.

as:

w =
∑

i

yiαixi ◦ (1 − λi) (8)

The above problem can be written in an alternative
form, where it is more clearly convex

min 1

2
‖
∑

i yixi ◦ (αi1 − λi)‖
2 −

∑

i
αi

s.t. 0 ≤ α ≤ C

0 ≤ λi ≤ αi
∑

j λij = Kαi

(9)

Here the expression in the norm is an affine function
of the variables, and thus the problem is convex.

Recall that the SVM dual is

min 1

2
‖
∑

i yixiαi‖
2 −

∑

i αi

s.t. 0 ≤ α ≤ C
(10)

where w =
∑

i yixiαi.

Thus, in our case the weight vector is not a combina-
tion of input vectors, but rather a combination of vec-
tors weighted by elements of weight up to αi where the
maximal number of elements that may be set to zero
is K. Interestingly, the λi values can be fractional, so
that none of the features has to be completely deleted.

Note that, as opposed to the classic SVM, our robust
objective does not involve dot products between xi,
but also λi, and the dimension of the variable λi is
still d (the dimension of xi). Thus it is not immediately
clear if and how kernel methods may be put to use in
this case. This is not surprising, since the algorithm is
strongly linked to the structure of the sample space <d,
where features are dropped. Dropping such features
alters the kernel function, and it remains an interesting
challenge to obtain algorithms for this case.

2.2. An Alternate Setting: Uniform Feature

Deletion

In the previous section, we assumed that different fea-
tures may be deleted for different data points. We can
also consider an alternative formulation where once a
feature is chosen to be deleted it is deleted uniformly
from all data points simultaneously. Clearly, this sce-
nario is subsumed by the one described in the previous
section, and is thus less pessimistic.

The worst case hinge is defined as in the non-uniform
case in Equation 1. However, now there is a single α

vector for all examples, whereas in the previous sce-
nario, each sample had its own vector. The optimiza-



Nightmare at Test Time: Robust Learning by Feature Deletion

tion thus becomes

w∗ = min max ‖w‖2 + C
∑

i [1 − yiw · (xi ◦ α))]
+

w α ∈ {0, 1}
∑

j αj = d − K

We first note that the above optimization problem is
still convex. To see this, denote by f(w) the maximum
value over all legal α assignments. Then f(w) is a
pointwise maximum over a set of convex functions and
is thus convex (Boyd & Vandenberghe, 2004) . The
problem of minimizing over w is therefore convex.

However, although it is convex, the current optimiza-
tion problem appears more difficult than the one in the
previous section, due to the presence of the α in all the
sum elements. As before, the integral constraints on α

can be relaxed, since the maximum of the inner opti-
mization is attained at the vertices (because the target
is convex). However, since the target is non-linear (a
hinge function) this maximization is not itself a convex
problem, and does not seem to be efficiently solvable.

The problem is easily tractable when
(

d
K

)

is sufficiently
small so that all the feasible values of α can be enumer-
ated over. Our experiments show that in many cases
K needs to be O(10), so that the uniform method is
often not applicable.

2.3. Computational Considerations

The FDROP optimization problem in Equation 6 is
a quadratic program and can thus be solved in poly-
nomial time. The number of variables in both the
primal and dual problems is O(nd), where most of
these are the vi (or dual λi) variables. This should
be contrasted with the n + d variables in the stan-
dard SVM problem. Our algorithm is thus more
computationally demanding than SVMs. However,
it should be noted that the constraints are sparse,
such that no more than O(d) variables participate in
each constraint. This makes the problem feasible for
n, d = O(1000). In the experiments described below
we used the ILOG-CPLEX optimization software for
solving the quadratic program.

3. Relation to Feature Selection

The adversary in the FDROP minimax problem iden-
tifies those input features whose contribution to the
margin is maximal. In this way, the adversary can
be thought of as being related to feature selection al-
gorithms which try to find the set of features which,
when taken alone, would yield optimal generalization.
A clear illustration of this effect can be seen in Figure 2
(section 4.2).

However, the current minimax setup differs from the
standard feature selection approach in two important
aspects. The first is that here we focus on feature
elimination, i.e., finding the set of features whose elim-
ination would maximally decrease performance. Intu-
itively, these features should also convey high informa-
tion when taken on their own, but this is not guaran-
teed to be the case.

The other aspect which distinguishes the current ap-
proach from feature selection is that here features are
selected (or eliminated to be precise), for every sample
individually. The uniform feature deletion approach
described in Section 2.2 is more in line with the stan-
dard feature selection one.

We can provide a slightly more formal treatment of
feature selection optimization algorithms which high-
lights their relation to the current approach. The stan-
dard feature selection goal is to find a set of K features
which minimize generalization error. A reasonable ap-
proximation is the empirical error, or the hinge loss in
our case. Thus the feature selection problem can be
posed as (we omit the regularization term here)

min
∑

i [1 − yiw · (xi ◦ α))]
+

s.t. α ∈ {0, 1}
∑

j αj = K
(11)

such that minimization is over both α and w. Denote
by f(w) the minimum over α assignments for a given
value of w. Then f(w) is a pointwise minimum of con-
vex functions and is thus generally non-convex. Thus
the optimization problem is not convex, and is gener-
ally hard to solve . Furthermore for a large number of
features, calculating f(w) requires enumeration over
possible α assignments. The problem may be approx-
imated via different relaxations as in (Gilad-Bachrach
et al., 2004; Weston et al., 2000).

The above problem may be slightly altered to resem-
ble our current formulation by allowing the best K

features to be chosen on a per sample basis. (a single
set of features might then be selected, for example, by
taking the features chosen most often across samples).
The resulting optimization problem is

min
∑

i [1 − yiw · (xi ◦ αi))]+
s.t. αi ∈ {0, 1}

∑

j αij = K
(12)

This problem is easier than that in Equation 11 in
that the minimization over αi is always tractable: the
minimizing αi is the one which has the minimum con-
tribution to the margin. However, the function f(w) is
again non-convex, and thus it seems that the problem
remains hard.



Nightmare at Test Time: Robust Learning by Feature Deletion

It is interesting that these two feature selection vari-
ants, while similar in spirit to our minimax problems,
seem to belong to a different computational class. This
suggests that our algorithm may also prove useful for
feature selection by finding the set of features it tends
to delete. Initial evaluations have shown that its per-
formance is similar to that of the InfoGain method
(Yang & Pedersen, 1997).

4. Experiments

We now illustrate the application of our algorithm to
synthetic and real data. We shall especially be in-
terested in evaluating performance when features are
deleted from the test set. Thus, for example we test
handwritten digit recognition when pixels are removed
from the image, or spam filtering when words are re-
moved from the text. We also focus on relatively small
training sets, such that the inherent sparseness of the
problem is high, and most classification algorithms are
likely to overfit. We compare our method with a lin-
ear support vector machine algorithm. In all experi-
ments, both FDROP and SVM used a bias term. The
FDROP algorithm was not allowed to delete the bias
feature xd+1 = 1.

4.1. A Synthetic Example

To illustrate the advantages of the current method,
we apply it to a setting where the test data indeed
differs from the training data by deleting features. We
consider a feature vector in x ∈ <20 where training
examples are drawn uniformly in that space. The label
is assigned according to a logistic regression rule

p(y = 1|x) ∝ ew·x+b . (13)

In our experiments, w1 = 5 and all the other wi =
−2. The bias b was set to the mean of w. Thus the
feature x1 is likely to be assigned a high weight by
any sensible learning algorithm. In the test data, we
delete the feature x1, i.e. set it to zero, with a given
probability p(delete). We compare the performance
of our FDROP minimax algorithm (with K = 1) to
that of a standard SVM. For both methods, we choose
the weight of the regularization parameter C via cross
validation.

Figure 1 shows the resulting error rates. It can be
seen that as the probability of deletion increases, the
performance of SVM decreases, while that of the min-
imax algorithm stays roughly constant. This constant
behavior is due to the fact that the FDROP classi-
fier is optimized for the worst case when this feature
is deleted. To understand this behavior further, we

checked which feature was deleted by FDROP for ev-
ery one of the samples. Indeed, on all the cases where
x1 = 1 and y = 1, it was x1 that was deleted in the
optimization.

0 0.2 0.4 0.6 0.8 1
0.2

0.22

0.24

0.26

0.28

0.3

p(delete)
E

rr
or

FDROP
SVM

Figure 1. Evaluation of FDROP and SVM on a toy logistic
regression example, where a highly informative feature is
randomly dropped from the test sample. The value of K

was set to 1. The figure shows classification error as a
function of the deletion probability p(delete).

4.2. Handwritten Digit Classification

Image classification into categories should in principle
be robust to pixel deletion, or in other words deletion
of parts of the image. Our game theoretic framework
captures this intuition by modeling the worst case pixel
deletion scenario.

We investigated the application of FDROP to
classifying handwritten digits, and focused on robust-
ness to pixel deletion in these images. We applied
FDROP to the MNIST dataset (LeCun et al., 1995)
of handwritten digits, and focused on binary problems
with small training sets of 50 samples per digit.
Furthermore, we only considered binary problems
created by label pairs which had more than 5% error
when learned using an SVM (The chosen pairs were
(4, 9),(3, 5),(7, 9),(5, 8),(3, 8),(2, 8),(2, 3),(8, 9),(5, 6),
(2, 7),(4, 7) and (2, 6)). The size in pixels of each digit
was (28 × 28). A holdout sample of size 200 was used
to optimize the algorithm parameters, and a set of
300 samples was used for testing. The holdout set
underwent the same pixel deletion as the test set, in
order to achieve a fair comparison between SVM and
FDROP. Experiments were repeated with 20 random
subsets of the above sizes.

To evaluate the robustness of the algorithm to fea-



Nightmare at Test Time: Robust Learning by Feature Deletion

ture deletion, we trained it on the raw data (i.e., with-
out deleted features), and then tested it on data from
which K features were deleted. The values of K were
(0, 25, 50, 75, 100, 125, 150).

Figure 2 gives a visual representation of the feature
deletion process. The FDROP minimax optimization
deletes K features from every sample point. We can
find which features were deleted from each sample by
finding the K features with maximum margin contri-
bution at the optimal w. Figure 2 illustrates these
features for three sample points. Each row displays
the original raw input image and the same input im-
age with the K most destructive features deleted (here
K = 50). It can be seen that FDROP chooses the
features which maximize the resemblance between the
given digit and the digit in the other class. These re-
sults suggest that FDROP may indeed be useful as a
feature selection mechanism.

FDROP Adversary

confuse with "seven"

FDROP Adversary

confuse with "five"

FDROP Adversary

confuse with "three"

Figure 2. Illustration of adversarial feature (pixel) deletion
for handwritten digits. Three binary classification prob-
lems were created from the MNIST digit database by dis-
criminating the classes “five” vs. “three” (top), “eight” vs.
“five” (middle) and “seven” vs. “nine”. The training data
consisted of 50 samples per class. The number of deleted
features was K = 50. The images show three correspond-
ing examples of features deleted by the FDROP adversary.
The left column shows the original digit, and the right col-
umn shows the digit with the 50 pixels dropped by the
FDROP algorithm. It can be seen that the worst case
against which our algorithm attempts to be robust corre-
sponds to the deletion of extremely discriminative features
for each example: the top right digit has been made to look
as much as possible like a “three”, the middle right digit
very much like a “five” and the bottom right digit has been
distorted to look very much like a “seven”.

Classification error rate should intuitively decrease as
more features are deleted. The goal of FDROP is to

minimize the damage incurred by such deletion. Fig-
ure 3 shows the dependence of classification error on
the number of deleted features for both FDROP and
SVM. The parameter K is taken as an unknown and
is chosen to minimize error on the holdout sample for
each digit pair and deletion level separately. It can
be seen that FDROP suffers less degradation in error
when compared to SVM. Furthermore, the optimal K

grows monotonously with the number of deleted fea-
tures, as is intuitively expected. The dependence on
K for a specific digit pair (4 and 7) and deletion level
(50 deletions) is shown in Figure 4. It can be seen that
performance is improved up to a value of K = 25 which
supposedly matches the deletion level in the data set
(recall that FDROP considers a worst case scenario,
whereas here features are dropped randomly, so that
K and the number of deleted features should not be
expected to be close numerically).

0 50 100 150

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Num Deleted

E
rr

or
 R

at
e

SVM
FDROP

0 50 100 150
10

15

20

Num Deleted

O
pt

im
al

 K

Figure 3. Classification error rate for the MNIST dataset,
as a function of the number of features deleted from the
test set. Standard errors over 20 repetitions are shown
on the curve. The optimal K parameter for the FDROP
algorithm was chosen per classification problem and per
number of deleted features. The inset shows the optimal
K for each deletion scheme.

4.3. Spam Filtering

One of the difficulties in filtering spam email from le-
gitimate email is that the problem is dynamic in na-
ture, in the sense that spam authors react to spam
filters by changing content. In this sense, it is indeed
a game where the two players are the spam filter and
spam authors. Our formalism captures this competi-
tion, and it is therefore interesting to apply it to this
case. To test FDROP, we applied it to the UCI Spam-
Base dataset, which consists of 4601 emails, 39.4% of
which are spam. Each email is represented via a bag



Nightmare at Test Time: Robust Learning by Feature Deletion

0 10 20 30 40
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

K

E
rr

or
 R

at
e

Figure 4. Classification error as a function of the parame-
ter K for the digit pair (4, 7) with 50 deleted features.

of words model with 57 terms. We also used a spam
dataset collected by one of the authors from his per-
sonal mailbox. The latter contained 5000 emails with
40% spam, and 185 terms. For training we used 50
samples, a holdout set of 200, and a test set of 300.

Figure 5 shows the performance of the algorithm for
different feature deletion levels, as in Figure 2. It can
be seen that in this case the algorithm outperforms
SVM even on the raw dataset, presumably because
the original data is either non-stationary or the level
of sparsity is such that SVM tends to overfit. Figure
6 shows the same analysis for our own spam dataset.
Here again results are better than SVM for deletion
levels up to 20, after which both algorithms converge
to the apriori probability of the less common class.

5. Discussion & Conclusions

We have introduced a novel method for learning clas-
sifiers which are minimax optimal under a worst case
scenario of feature deletion at test time. This is an
important step towards extending statistical learning
paradigms beyond the restrictive assumption that the
training and testing data must come from the same
(conditional) distribution. An alternative view of our
algorithm is as a feature selection method which seeks
the features which are most crucial for performance.
A key assumption of our approach is that small sets
of features should not be relied upon at test time to
faithfully represent the class structure. Thus, in some
sense, the features available to the algorithm at train-
ing time are viewed as being subject to random, or
even deliberate removal at test time. Interestingly, a
recent paper (Krupka & Tishby, 2006) presents a re-

0 10 20 30 40 50

0.15

0.2

0.25

0.3

0.35

0.4

Num Deleted

E
rr

or
 R

at
e

SVM
FDROP

Figure 5. Classification error rate for the Spam-Base
dataset, as a function of the number of features deleted
from the test set. Setting as in Figure 2 with number of
deleted features up to 50.

lated view of features, where one considers a learning
scheme where features are selected randomly from a
large set, and generalization is studied with respect
to unseen features. It will be interesting to study the
relation between our approach and theirs.

Another game theoretic approach to feature selection
has previously appeared in (Cohen et al., 2005). Their
approach is related to Shapley values in cooperative
games. The Shapley value is a measure of the per-
formance drop incurred by dropping a feature from a
given set of features, where this performance is aver-
aged over all subsets in which this feature participates.
It is thus close in spirit to our feature elimination ap-
proach. However, our approach searches for multiple
features simultaneously and is furthermore tractable,
as opposed to exact calculation of Shapley values.

The extension of our method to kernel based classifiers
is an interesting challenge, as mentioned in Section
2.1. It is also very interesting to consider the appli-
cability of similar ideas to unsupervised methods such
as principal component analysis or linear discriminant
analysis.

A. Deriving the Dual Problem

Rewrite the problem in Equation 6 using auxiliary
variables ξi to represent the hinge function.

min 1

2
‖w‖2 + C

∑

i ξi

s.t. ξi ≥ 0 , ξi ≥ 1 − yiw
T xi + ti

ti ≥ Kzi +
∑

j vij

vi ≥ 0 , zi + vi ≥ (yixi ◦ w)

(14)



Nightmare at Test Time: Robust Learning by Feature Deletion

0 10 20 30 40 50
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Num Deleted

E
rr

or
 R

at
e

SVM
FDROP

Figure 6. Classification error rate for our spam dataset, as
a function of the number of features deleted from the test
set. Setting as in Figure 5.

Define the following non-negative dual variables
α+

i , α−
i , γi, δi,λi (i = 1, . . . , n) corresponding to the

above five constraints, where δi,λi are of dimension
d. The Lagrangian, L, for the FDROP problem is a
function of the above dual variables and of the primal
variables ξi, zi, ti,vi,w.

To obtain the minimum of L for a fixed set of dual
variables, derive w.r.t the primal variables and equate
to zero

∂L

∂w
= w −

∑

i

(

α+

i yixi − yiλi ◦ xi

)

= 0

∂L

∂ξi

= C − α−
i − α+

i = 0

∂L

∂zi

= Kγi −
∑

j

λij = 0

∂L

∂vi

= γi − δi − λi = 0

∂L

∂ti
= α+

i − γi = 0

The second equation implies α+

i ≤ C. The fourth and
fifth imply λi ≤ α+

i (elementwise), and the third im-
plies

∑

j λij = Kα+

i . The structure of the solution w

is given by the first equation. Substituting all variables
into the Lagrangian and some algebra results in

minL = −
1

2
‖w‖2 +

∑

i

α+

i (15)

where w here is actually a function of the dual vari-
ables as implied by the equation ∂L

∂w
= 0. The above

minimum is the dual function (Boyd & Vandenberghe,

2004), whose maximization is equivalent to the original

minimization. By rescaling λi according to λ̂i = λi

αi
,

we obtain Equations 7 and 8.

References

Bovik, A. C., Gibson, J. D., & Bovik, A. (Eds.).
(2000). Handbook of image and video processing.
Orlando, FL, USA: Academic Press, Inc.

Boyd, S., & Vandenberghe, L. (2004). Convex opti-

mization. New York, NY, USA: Cambridge Univer-
sity Press.

Cohen, S., Ruppin, E., & Dror, G. (2005). Feature
selection based on the shapley value. IJCAI (pp.
665–670). Professional Book Center.

El Ghaoui, L., Lanckriet, G., & Natsoulis, G. (2003).
Robust classification with interval data (Technical
Report UCB/CSD-03-1279). EECS Department,
University of California, Berkeley.

Gilad-Bachrach, R., Navot, A., & Tishby, N. (2004).
Margin based feature selection - theory and algo-
rithms. ICML 21 (pp. 43–50). ACM Press.

Kim, S., Magnani, A., & Boyd, S. (2006). Robust
fisher discriminant analysis. NIPS 18 (pp. 659–666).
MIT Press.

Krupka, E., & Tishby, N. (2006). Generalization in
clustering with unobserved features. NIPS 18 (pp.
683–690). MIT Press.

Lanckriet, G., Cristianini, N., Bartlett, P., El Ghaoui,
L., & Jordan, M. (2004). Learning the kernel matrix
with semidefinite programming. Journal of Machine

Learning Research, 5, 27–72.

LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes,
C., Denker, J., Drucker, H., Guyon, I., Müller, U.,
Sackinger, E., Simard, P., & Vapnik, V. (1995).
Comparison of learning algorithms for handwritten
digit recognition. ICANN (pp. 53–60).

Schölkopf, B., & Smola, A. J. (Eds.). (2002). Learning

with kernels. Cambridge, MA: MIT Press.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M.,
Poggio, T., & Vapnik, V. (2000). Feature selection
for SVMs. NIPS 13 (pp. 668–674). MIT Press.

Yang, Y., & Pedersen, J. O. (1997). A comparative
study on feature selection in text categorization.
ICML 14 (pp. 412–420). Morgan Kaufmann.


