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Abstract

We propose a non-linear Canonical Correlation Analysis (CCA) method
which works by coordinating or aligning mixtures of linear models. In
the same way that CCA extends the idea of PCA, our work extends re-
cent methods for non-linear dimensionality reduction to the case where
multiple embeddings of the same underlying low dimensional coordi-
nates are observed, each lying on a different high dimensional manifold.
We also show that a special case of our method, when applied to only
a single manifold, reduces to the Laplacian Eigenmaps algorithm. As
with previous alignment schemes, once the mixture models have been
estimated, all of the parameters of our model can be estimated in closed
form without local optima in the learning. Experimental results illustrate
the viability of the approach as a non-linear extension of CCA.

1 Introduction

In this paper, we are interested in data that lies on or close to a low dimensional manifold
embedded, possibly non-linearly, in a Euclidean space of much higher dimension. Data
of this kind is often generated when our observations are very high dimensional but the
number of underlying degrees of freedom is small. A typical example are images of an
object under different conditions (e.g. pose and lighting). A simpler example is given in
Fig. 1, where we have data in IR3 which lies on a two dimensional manifold. We want
to recover the structure of the data manifold, so that we can ‘unroll’ the data manifold
and work with the data expressed in the underlying ‘latent coordinates’, i.e. coordinates
on the manifold. Learning low dimensional latent representations may be desirable for
different reasons, such as compression for storage and communication, visualization of
high dimensional data, or as preprocessing for further data analysis or prediction tasks.

Recent work on unsupervised nonlinear feature extraction has pursued several comple-
mentary directions. Various nonparametric spectral methods, such as Isomap[1], LLE[2],
Kernel PCA[3] and Laplacian Eigenmaps[4] have been proposed which reduce the dimen-
sionality of a fixed training set in a way that maximally preserve certain inter-point rela-
tionships, but these methods do not generally provide a functional mappings between the
high and low dimensional spaces that are valid both on and off the training data. In this
paper, we consider a method to integrate several local feature extractors into a single global
representation, similar to the approaches of [5, 6, 7, 8]. These methods, as well as ours,



deliver after training a functional mapping which can be used to convert previously unseen
high dimensional observations into their low dimensional global coordinates. Like most
of the above algorithms, our method performs non-linear feature extraction by minimizing
a convex objective function whose critical points can be characterized as eigenvectors of
some matrix. These algorithms are generally simple and efficient; one needs only to con-
struct a matrix based on local feature analysis of the training data and then computes its
largest or smallest eigenvectors using standard numerical methods. In contrast, methods
like generative topographic mapping[9] and self-organizing maps[10] are prone to local
optima in the objective function.

Our method is based on the same intuitions as in earlier work: the idea is to learn a mixture
of latent variable density models on the original training data so that each mixture compo-
nent acts as a local feature extractor. For example, we may use a mixture of factor analyzers
or a mixture of principal component analyzers (PCA). After this mixture has been learned,
the local feature extractors are ‘coordinated’ by finding, for each model, a suitable linear
mapping (and offset) from its latent variable space into a single ‘global’ low-dimensional
coordinate system. The local feature extractors together with the coordinating linear maps
provide a global non-linear map from the data space to the latent space and back. Learning
the mixture is driven by a density signal – we want to place models near the training points,
while the post-coordination is driven by the idea that when two different models place sig-
nificant weight on the same point, they should agree on its mapping into the global space.

Our algorithm, developed in the following section, builds upon recent work of coordination
methods. As in [6], we use a cross-entropy between a unimodal approximation and the true
posterior over global coordinates to encourage agreement. However we do not attempt to
simultaneously learn the mixture model and coordinate since this causes severe problems
with local minima. Instead, as in [7, 8], we fix a specific mixture and then study the com-
putations involved in coordinating its local representations. We extend the latter works as
CCA extends PCA: rather than finding a projection of one set of points, we find projections
for two sets of corresponding points {xn} and {yn} (xn corresponding to yn) into a single
latent space that project corresponding points in the two point sets as nearby as possible.

In this setting we begin by showing, in Section 3, how Laplacian Eigenmaps[4] are a special
case of the algorithms presented here when they are applied to only a single manifold.
We go on, in Section 4, to extend our algorithm to a setting in which multiple different
observation spaces are available, each one related to the same underlying global space but
through different nonlinear embeddings. This naturally gives rise to a nonlinear version of
weighted Canonical Correlation Analysis (CCA). We present results of several experiments
in the same section and we conclude the paper with a general discussion in Section 5.

2 Non-linear PCA by aligning local feature extractors

Consider a given data set X = {x1, . . . ,xN} and a collection of k local feature extractors,
fs(x) is a vector containing the, zero or more, features produced by model s. Each feature
extractor also provides an “activity signal”, as(x) representing its confidence in modeling
the point. We convert these activities into posterior responsibilities using a simple soft-
max: p(s|x) = exp(as(x))/

∑
r exp(ar(x)). If the experts are actually components of a

mixture, then setting the activities to the logarithm of the posteriors under the mixture will
recover exactly the same posteriors above.

Next, we consider the relationship between the given representation of the data and the
representation of the data in a global latent space, which we would like to find. Throughout,
we will use g to denote latent ’Global’ coordinates for data. For the unobserved latent
coordinate g corresponding to a data point xn and conditioned on s, we assume the density:

p(g|xn, s) = N (g;κs + Asfs(xn), σ2I) = N (g;gns, σ
2I), (1)



where N (g;µ,Σ) is a Gaussian distribution on g with mean µ and covariance Σ. The
mean, gns, of p(g|xn, s) is the sum of the component offset κs in the latent space and a lin-
ear transformation, implemented by As, of fs(xn). From now on we will use homogeneous
coordinates and write: Ls = [Asκs] and zns = [fs(xn)>1]>, and thus gns = Lszns. Con-
sider the posterior distribution on latent coordinates given some data:

p(g|x) =
∑

s

p(s,g|x) =
∑

s

p(s|x)p(g|x, s). (2)

Given a fixed set of local feature extractors and a corresponding activities, we are interested
in finding linear maps Ls that give rise to ‘consistent’ projections of the data in the latent
space. By ‘consistent’, we mean that the p(g|x, s) are similar for components with large
posterior. If the predictions are in perfect agreement for a point xn, then all the gns are
equal and the posterior p(g|x) is Gaussian, in general p(g|x) is a mixture of Gaussians. To
measure the consistency, we define the following error function:

Φ({L1, . . . ,Lk}) = min
{Qn,...QN}

∑

n,s

qnsD(Qn(g) ‖ p(g|xn, s)), (3)

where we used qns as a shorthand for p(s|xn) and Qn is a Gaussian with mean gn

and covariance matrix Σn. The objective sums for each data point xn and model s the
Kullback-Leibler divergence D between a single Gaussian Qn(g) and the component den-
sities p(g|x, s), weighted by the posterior p(s|xn). It is easy to derive that in order to
minimize the objective Φ w.r.t. gn and Σn we obtain:

gn =
∑

s

qnsgns and Σn = σ2I, (4)

where I denotes the identity matrix. Skipping some additive and multiplicative constants
with respect to the linear maps Ls, the objective Φ then simplifies to:

Φ =
∑

n,s

qns ‖ gn − gns ‖2=
1

2

∑

n,s,t

qnsqnt ‖ gnt − gns ‖2≥ 0. (5)

The main attraction with this setup is that our objective is a quadratic function of the linear
maps Ls, as in [7, 8]. Using some extra notation, we obtain a clearer form of the objective
as a function of the linear maps. Let:

un = [qn1z
>
n1 . . . qnkz

>
nk], U = [u>

1 . . .u>
N ]>, L = [L1 . . .Lk]>. (6)

Note that from (4) and (6) we have: gn = (unL)>. The expected projection coordinates
can thus be computed as: G = [g1 . . .gN ]> = UL. We define the block-diagonal matrix
D with k blocks given by Ds =

∑
n qnsznsz

>
ns. The objective can now be written as:

Φ = Tr{L>(D − U>U)L}. (7)

The objective function is invariant to translation and rotation of the global latent space and
re-scaling the latent space changes the objective monotonically, c.f. (5). To make solutions
unique with respect to translation, rotation and scaling, we impose two constraints:

(transl.) : ḡ =
∑

n

gn/N = 0, (rot. + scale) : Σg =
∑

n

(gn − ḡ)(gn − ḡ)>/N = I.

The columns of L minimizing Φ are characterized as the generalized eigenvectors:

(D − U>U)v = λU>Uv ⇔ Dv = (λ + 1)U>Uv. (8)

The value of the objective function is given by the sum of the corresponding eigenvalues
λ. The smallest eigenvalue is always zero, corresponding to mapping all data into the same
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2 Figure 1: Data in
IR3 with local charts
indicated by the axes
(left). Data repre-
sentation in IR2 gen-
erated by optimizing
our objective func-
tion. Expected la-
tent coordinates gn

are plotted (right).

latent coordinate. This embedding is uninformative since it is constant, therefore we select
the eigenvectors corresponding to the second up to the (d + 1)st smallest eigenvalues to
obtain the best embedding in d dimensions. Note that, as mentioned in [7], this framework
enables us to use feature extractors that provide different numbers of features.

In Fig. 1 we give an illustration of applying the above procedure to a simple manifold. The
plots show the original data presented to the algorithm (left) and the 2-dimensional latent
coordinates gn =

∑
s qnsgns found by the algorithm (right).

3 Laplacian Eigenmaps as a special case

Consider the special case of the algorithm of Section 2, where no features are extracted.
The only information the mixture model provides are the posterior probabilities collected
in the matrix Q with [Q]ns = qns = p(s|xn). In that case:

gns = κs, U = Q, L = [κ>
1 . . . κ>

k ]>, (9)

Φ = Tr{L>(D − A)L} =
∑

s,t

‖ κs − κt ‖
2

∑

n

qnsqnt, (10)

where A = Q>Q is an adjacency matrix with [A]st =
∑

n qnsqnt and D is the diagonal
degree matrix of A with [D]ss =

∑
t Ast =

∑
n qns. Optimization under the constrains

of zero mean and identity covariance leads to the generalized eigenproblem:

(D − A)v = λAv ⇔ (D − A)v =
λ

1 + λ
Dv (11)

The optimization problem is exactly the Laplacian Eigenmaps algorithm[4], but applied
on the mixture components instead of the data points. Since we do not use any feature
extractors in this setting, it can be applied to mixture models that model data for which
it is hard to design feature extractors, e.g. data that has (both numerical and) categorical
features. Thus, we can use mixture densities without latent variables, e.g. mixtures of
multinomials, mixtures of Hidden Markov Models, etc. Notice that in this manner the
mixture model not only provides a soft grouping of the data through the posteriors, but also
an adjacency matrix between the groups.

4 Non-linear CCA by aligning local feature extractors

Canonical Correlation Analysis (CCA) is a data analysis method that finds correspondences
between two or more sets of measurements. The data are provided in tuples of correspond-
ing measurements in the different spaces. The sets of measurements can be obtained by



employing different sensors to make measurements of some phenomenon. Our main inter-
est in this paper is to develop a nonlinear extension of CCA which works when the differ-
ent measurements come from separate nonlinear manifolds that share an underlying global
coordinate system. Non-linear CCA can be trained to find a shared low dimensional em-
bedding for both manifolds, exploiting the pairwise correspondence provided by the data
set. Such models can then be used for different purposes, like sensor fusion, denoising,
filling in missing data, or predicting a measurement in one space given a measurement in
the other space. Another important aspect of this learning setup is that the use of multiple
sensors might also function as regularization helping to avoid overfitting, c.f. [11].

In CCA two (zero mean) sets of points are given: X = {x1, . . . ,xN} ⊂ IRp and Y =
{y1, . . . ,yN} ⊂ IRq. The aim is to find linear maps a and b, that map members of X and
Y respectively on the real line, such that the correlation between the linearly transformed
variables is maximized. This is easily shown to be equivalent to minimizing:

E =
1

2

∑

n

[axn − byn]
2 (12)

under the constraint that a[
∑

n xnx>
n ]a> + b[

∑
n yny>

n ]b> = 1. The above is easily
generalized such that the sets do not need to be zero mean and allowing a translation as
well. We can also generalize by mapping to IRd instead of the real line, and then requiring
the sum of the covariance matrices of the projections to be identity. CCA can also be readily
extended to take into account more than two point sets, as we now show.

In the generalized CCA setting with multiple point-sets, allowing translations and linear
mappings to IRd, the objective is to minimize the squared distance between all pairs of
projections under the same constraint as above. We denote the projection of the n-th point
in the s-th point-set as gns and let gn = 1

k

∑
s gns. We then minimize the error function:

ΦCCA =
1

2k2

∑

n,s,t

‖ gns − gnt ‖
2=

1

k

∑

n,s

‖ gns − gn ‖2 . (13)

The objective Φ in equation (5) coincides with ΦCCA if qns = 1/k. The different con-
straints imposed upon the optimization by CCA and our objective of the previous sections
are equivalent. We can thus regard the alignment procedure as a weighted form of CCA.
This suggests using the coordination technique for non-linear CCA. This is achieved quite
easily, without modifying the objective function (5). We consider different point sets, each
having a mixture of locally valid linear projections into the ‘global’ latent space that is now
shared by all mixture components and point sets. We minimize the weighted sum of the
squared distances between all pairs of projections, i.e. we have pairs of projections due to
the same point set and also pairs that combine projections from different point sets.

We use c as an index ranging over the C different observation spaces, and write qc
ns for

the posterior on component s for observation n in observation space c. Similarly, we use
gc

ns to denote the projection due component s from space c. The average projection due to
observation space c is then denoted by gc

n =
∑

s qc
nsg

c
ns. We use index r to range over all

mixture components and observation spaces, so that qnr = 1
C

p(s|xn) if r corresponds to
(c = 1, s) and qnr = 1

C
p(s|yn) if r corresponds to (c = 2, s), i.e. r ↔ (c, s). The overall

average projection then becomes: gn = 1
C

∑
c gc

n =
∑

r qnrgnr. The objective (5) can
now be rewritten as:

Φ =
∑

n,r

qnr ‖ gnr − gn ‖2=
1

C

∑

c,n

‖ gn − gc
n ‖2 +

1

C

∑

c,n,s

qc
ns ‖ gc

n − gc
ns ‖2 . (14)

Observe how in (14) the objective sums between point set consistency of the projections
(first summand) and within point set consistency of the projections (second summand).
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Figure 2: Data and
charts, indicated by
bars (left-middle).
Latent coordinates
(vert.) and coordi-
nate on generating
curve (hor.) (right).

The above technique can also be used to get more stable results of the chart coordination
procedure for a single manifold discussed in Section 2. Robustness for variation in the
mixture fitting can be improved by using several sets of charts fitted to the same mani-
fold. We can then align all these sets of charts by optimizing (14). This aligns the charts
within each set and at the same time makes sure the different sets of aligned charts are
aligned, providing important regularization, since now every point is modeled by several
local models.

Note that if the charts and responsibilities are obtained using a mixture of PCA or factor
analyzers, the local linear mappings to the latent space induce a Gaussian mixture in the
latent space. This mixture can be used to compute responsibilities on components given
latent coordinates. Also, for each linear map from the data to the latent space we can
compute a pseudo inverse projecting back. By averaging the individual back projections
with the responsibilities computed in latent space we obtain a projection from the latent
space to the data space. In total, we can thus map from one observation space into another.
This is how we generated the reconstructions in the experiments reported below. When
using linear CCA for data that is non-linearly embedded, reconstructions will be poor since
linear CCA can only map into a low dimensional linear subspace.

As an illustrative example of the non-linear CCA we used two point-sets in IR2. The first
point-set was generated on an S-shaped curve the second point set was generated along an
arc, see Fig. 2. To both point sets we added Gaussian noise and we learned a 10 component
mixture model on both sets. In the rightmost panel of Fig. 2 the, clearly successfully,
discovered latent coordinates are plotted against the coordinate on the generating curve.
Below, we describe three more challenging experiments.

In the first experiment we use two data sets which we know to share the same underlying
degrees of freedom. We use images of a face varying its gaze left-right and up-down. We
cut these images in half to obtain our two sets of images. We trained the system on 1500
image halves of 40×20 pixels each. Both image halves were modeled with a mixture of 40
components. In Fig. 3 some generated right half images based on the left half are shown.

The second experiment concerns appearance based pose estimation of an object. One point
set consists of a pixel representation of images of an object and the other point set contains
the corresponding pose of the camera w.r.t. the object. For the pose parameters we used the
identity to ‘extract’ features (i.e. we just used one component for this space). The training
data was collected1 by moving a camera over the half-sphere centered at the object. A
mixture of 40 PCA’s was trained on the image data and aligned with the pose parameters in
a 2-dimensional latent space. The right panel of Fig. 3 shows reconstructions of the images
conditioned on various pose inputs (left image of each pair is reconstruction based on pose
of right image). Going the other way, when we input an image and estimate the pose, the
absolute errors in the longitude (0◦ − 360◦) were under 10◦ in over 80% of the cases and
for latitude (0◦ − 90◦) this was under 5◦ in over 90% of the cases.

1Thanks to G. Peters for sharing the images used in [12] and recorded at the Institute for Neural
Computation, Ruhr-University Bochum, Germany.



Figure 3: Right half of the images was generated given the left half using the trained model
(left). Image reconstructions given pose parameters (right).

In the third experiment we use the same images as in the second experiment, but replace
the direct (low dimensional) supervision signal of the pose parameters with (high dimen-
sional) correspondences in the form of images of another object in corresponding poses.
We trained a mixture of 40 PCA’s on both image sets (2000 images of 64×64 pixels in each
set) and aligned these in a 3-dimensional latent space. Comparing the pose of an object to
the pose of the nearest (in latent space) image from the other object the std. dev. of error
in latitude is 2.0◦. For longitude we found 4 errors of about 180◦ in our 500 test cases,
the rest of the errors had std. dev. 3.9◦. Given a view of one object we can reconstruct the
corresponding view of the second object, Fig. 4 shows some of the obtained reconstruction
results. All presented reconstructions were made for data not included in training.

5 Discussion

In this paper, we have extended alignment methods for single manifold nonlinear dimen-
sionality reduction to perform non-linear CCA using measurements from multiple man-
ifolds. We have also shown the close relationship with Laplacian Eigenmaps[4] in the
degenerate case of a single manifold and feature extractors of zero dimensionality.

In [7] a related method to coordinate local charts is proposed, which is based on the LLE
cost function as opposed to our cross-entropy term; this means that we need more than just
a set of local feature extractors and their posteriors: we also need to be able to compute
reconstruction weights, collected in a N × N weight matrix. The weights indicate how
we can reconstruct each data point from its nearest neighbors. Computing these weights
requires access to the original data directly, not just through the “interface” of the mix-
ture model. Defining sensible weights and the ‘right’ number of neighbors might not be
straightforward, especially for data in non-Euclidean spaces. Furthermore, computing the
weights costs in principle O(N 2) because we need to find nearest neighbors, whereas the
presented work has running time linear in the number of data points.

In [11] it is considered how to find low dimensional representations for multiple point sets
simultaneously, given few correspondences between the point sets. The generalization of
LLE presented there for this problem is closely related to our non-linear CCA model. The
work presented here can also be extended to the case where we know only for few points in
one set to which points they correspond in the other set. The use of multiple sets of charts
for one data set is similar in spirit as the self-correspondence technique of [11] where the
data is split into several overlapping sets used to stabilize the generalized LLE.
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Finally, it would be interesting to compare our approach with treating the data in the joint
(x,y) space and employing techniques for a single point set[8, 7, 6]. In this case, points
for which we do not have the correspondence can be treated as data with missing values.
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