
Hierarchical Clustering of a Mixture Model

Jacob Goldberger Sam Roweis
Department of Computer Science, University of Toronto

{jacob,roweis}@cs.toronto.edu

Abstract

In this paper we propose an efficient algorithm for reducing a large
mixture of Gaussians into a smaller mixture while still preserv-
ing the component structure of the original model; this is achieved
by clustering (grouping) the components. The method minimizes
a new, easily computed distance measure between two Gaussian
mixtures that can be motivated from a suitable stochastic model
and the iterations of the algorithm use only the model parameters,
avoiding the need for explicit resampling of datapoints. We demon-
strate the method by performing hierarchical clustering of scenery
images and handwritten digits.

1 Introduction

The Gaussian mixture model (MoG) is a flexible and powerful parametric frame-
work for unsupervised data grouping. Mixture models, however, are often involved
in other learning processes whose goals extend beyond simple density estimation to
hierarchical clustering, grouping of discrete categories or model simplification. In
many such situations we need to group the Gaussians components and re-represent
each group by a new single Gaussian density. This grouping results in a compact
representation of the original mixture of many Gaussians that respects the original
component structure in the sense that no original component is split in the reduced
representation. We can view the problem of Gaussian component clustering as gen-
eral data-point clustering with side information that points belonging to the same
original Gaussian component should end up in the same final cluster. Several algo-
rithms that perform clustering of data points given such constraints were recently
proposed [11, 5, 12]. In this study we extend these approaches to model-based
rather than datapoint based settings. Of course, one could always generate data by
sampling from the model, enforcing the constraint that any two samples generated
by the same mixture component must end up in the same final cluster. We show
that if we already have a parametric representation of the constraint via the MoG
density, there is no need for an explicit sampling phase to generate representative
datapoints and their associated constraints.

In other situations we want to collapse a MoG into a mixture of fewer components
in order to reduce computation complexity. One example is statistical inference
in switching dynamic linear models, where performing exact inference with a MoG
prior causes the number of Gaussian components representing the current belief
to grow exponentially in time. One common solution to this problem is grouping

the Gaussians according to their common history in recent timesteps and collapsing
Gaussians grouped together into a single Gaussian [1]. Such a reduction, however, is
not based on the parameters of the Gaussians. Other instances in which collapsing
MoGs is relevant are variants of particle filtering [10], non-parametric belief propa-
gation [7] and fault detection in dynamical systems [3]. A straight-forward solution
for these situations is first to produce samples from the original MoG and then to
apply the EM algorithm to learn a reduced model; however this is computationally
inefficient and does not preserve the component structure of the original mixture.

2 The Clustering Algorithm

We assume that we are given a mixture density f composed of k d-dimensional
Gaussian components:

f(y) =

k
∑

i=1

αiN(y;µi,Σi) =

k
∑

i=1

αifi(y) (1)

We want to cluster the components of f into a reduced mixture of m < k compo-
nents. If we denote the set of all (d-dimensional) Gaussian mixture models with at
most m components by MoG(m), one way to formalize the goal of clustering is to
say that we wish to find the element g of MoG(m) “closest” to f under some dis-
tance measure. A common proximity criterion is the cross-entropy from f to g, i.e.
ĝ = arg ming KL(f ||g) = arg maxg

∫

f log g, where KL() is the Kullback-Leibler
divergence and the minimization is performed over all g in MoG(m). This criterion
leads to an intractable optimization problem; there is not even a closed-form expres-
sion for the KL-divergence between two MoGs let alone an analytic minimizer of
its second argument. Furthermore, minimizing a KL-based criterion does not pre-
serving the original component structure of f . Instead, we introduce the following

new distance measure between f =
∑k

i=1 αifi and g =
∑m

j=1 βjgj :

d(f, g) =

k
∑

i=1

αi

m

min
j=1

KL(fi||gj) (2)

which can be intuitively thought of as the cost of coding data generated by f under
the model g, if all points generated by component i of f must be coded under a single
component of g. Unlike the KL-divergence between two MoGs, this distance can
be analytically computed. In particular, each term is a KL-divergence between two
Gaussian distributions N(µ1,Σ1) and N(µ2,Σ2) which is given by:

1

2
(log

|Σ2|

|Σ1|
+ Tr(Σ−1

2 Σ1) + (µ1 − µ2)
T Σ−1

2 (µ1 − µ2) − d).

Under this distance, the optimal reduced MoG representation ĝ is the solution to
the minimization of (2) over MoG(m): ĝ = arg ming d(f, g). Although the min-
imization ranges over all the MoG(m), we prove that the optimal density ĝ is a
MoG obtained from grouping the components of f into clusters and collapsing all
Gaussians within a cluster into a single Gaussian. There is no closed-form solution
for the minimization; rather, we propose an iterative algorithm to obtain a locally
optimal solution. Denote the set of all the mk mappings from {1, ..., k} to {1, ...,m}
by S. For each π ∈ S and g ∈ MoG(m) define:

d(f, g, π) =

k
∑

i=1

αiKL(fi||gπ(i)). (3)

For a given g ∈ MoG(m), we associate a matching function πg ∈ S:

πg(i) = arg
m

min
j=1

KL(fi||gj) i = 1, ..., k (4)

It can be easily verified that:

d(f, g) = d(f, g, πg) = min
π∈S

d(f, g, π) (5)

i.e. πg is the optimal mapping between the components of f and g. Using (5) to
define our main optimization we obtain the optimal reduced model as a solution of
the following double minimization problem:

ĝ = arg min
g

min
π∈S

d(f, g, π) (6)

For m > 1 the double minimization (6) can not be solved analytically. Instead,
we can use alternating minimization to obtain a local minimum. Given a matching
function π ∈ S, we define gπ ∈ MoG(m) as follows. For each j such that π−1(j) is
non empty, define the following MoG density:

fπ
j =

∑

i∈π−1(j) αifi
∑

i∈π−1(j) αi

(7)

The mean and variance of the set fπ
j , denoted by µ′

j and Σ′
j , are:

µ′
j =

1

βj

∑

i∈π−1(j)

αiµi, Σ′
j =

1

βj

∑

i∈π−1(j)

αi

(

Σi + (µi − µ′
j)(µi − µ′

j)
T
)

where βj =
∑

i∈π−1(j) αi. Let gπ
j = N(µ′

j ,Σ
′
j) be the Gaussian distribution obtained

by collapsing the set fπ
j into a single Gaussian. It satisfies:

gπ
j = N(µ′

j ,Σ
′
j) = arg min

g
KL(fπ

j ||g) = arg min
g

d(fπ
j , g)

such that the minimization is performed over all the d-dimensional Gaussian den-
sities. Denote the collapsed version of f according to π by gπ, i.e.:

gπ =

m
∑

j=1

βjg
π
j (8)

Lemma 1: Given a MoG f and a matching function π ∈ S, gπ is the unique
minimum point of d(f, g, π). More precisely, d(f, gπ, π) ≤ d(f, g, π) for all g ∈
MoG(m), and if d(f, gπ, π) = d(f, g, π) then gπ

j = gj for all j = 1, ..,m such that
gπ

j and gj are the Gaussian components of gπ and g respectively.

Proof: Denote c =
∑k

i=1
αi

∫

fi log fi (a constant independent of g).

c − d(f, g, π) =

k
∑

i=1

αi

∫

fi log(gπ(i)) =

m
∑

j=1

∑

i∈π−1(j)

αi

∫

fi log(gj)

=

m
∑

j=1

βj

∫

f
π
j log(gj) =

m
∑

j=1

βj

∫

g
π
j log(gj)

The Jensen inequality yields:

≤

m
∑

j=1

βj

∫

g
π
j log(gπ

j) =

m
∑

j=1

βj

∫

f
π
j log(gπ

j) =

k
∑

i=1

αi

∫

fi log(gπ
π(i)) = c − d(f, g

π
, π)

The equality
∫

fπ
j log(gj) =

∫

gπ
j log(gj) is due to the fact that log(gj) is a quadratic

expression and the first two moments of fπ
j and its collapsed version gπ

j are equal. Jensen’s

inequality is saturated if and only if for all j = 1, .., m (such that π−1(j) is not empty) the
Gaussian densities gj and gπ

j are equal. 2

Using Lemma 1 we obtain a closed form description of a single iteration of the
alternating minimization algorithm, which can be viewed as a type of K-means
operating at the meta-level of model parameters:

πg = arg min
π

d(f, g, π) (REGROUP)

gπ = arg min
g

d(f, g, π) (REFIT)

Above, πg(i) = arg minj KL(fi||gj) and gπ is computed using (8). The iterative
algorithm monotonically decreases the distance measure d(f, g). Hence, since S
is finite, the algorithm converges to a local minimum point after finite number of
iterations. The next theorem ensures that once the iterative algorithm converges
we obtain a clustering of the MoG components.

Definition 1: A MoG g ∈ MoG(m) is an m-mixture collapsed version of f if there
exists a matching function π ∈ S such that g is obtained by collapsing f according
to π, .i.e. g = gπ.

Theorem 1: If applying a single iteration (expressions (regroup) and (refit)) to
a function g ∈ MoG(m) does not decrease the distance function (2), then necessarily
g is a collapsed version of f .

Proof: Let g ∈ MoG(m) and let π be a matching function such that d(f, g) = d(f, g, π).
Let gπ be a collapsed version of f according to π. The MoG gπ is obtained as a result of
applying a single iteration to g. Let g be composed of the following Gaussians {g1, ..., gm}
and similarly let gπ = {gπ

1 , ..., gπ
m}. According to Lemma 1, d(f, g) = d(f, g, π) ≥

d(f, gπ, π) ≥ d(f, gπ). Assume that a single iteration does not decrease the distance,
i.e. d(f, g) = d(f, gπ). Hence d(f, g, π) = d(f, gπ, π). According to Lemma 1, this implies
that gj = gπ

j for all j = 1, ..., m. Therefore g is a collapsed version of f . 2

Theorem 1 implies that each local minimum of the propose iterative algorithm is a
collapsed version of f .

Given the optimal matching function π, the last step of the algorithm is to set
the weights of the reduced representation. βπ

j =
∑

{i|π(i)=j} αi. These weights are

automatically obtained via the collapsing process.

3 Experimental Results

In this section we evaluate the performance of our semi-supervised clustering al-
gorithm and compare it to the standard “flat” clustering approach that does not
respect the original component structure. We have applied both methods to clus-
tering handwritten digits and natural scene images. In each case, a set of objects
is organized in predefined categories. For each category c we learn from a labeled
training set a Gaussian distribution f(x|c). A prior distribution over the categories
p(c) can be also extracted from the labeled training set. The goal is to cluster the
objects into a small number of clusters (fewer than the number of class labels). The
standard (flat) approach is to apply an unsupervised clustering to entire collection
of original objects, ignoring their class labels. Alternatively we can utilize the given
categorization as side-information in order to obtain an improved reduced clustering
which also respects the original labels, thus inducing a hierarchical structure.

B
BN

�
�

Class A Class B

Figure 1: (top) Means of 10 models of
digit classes. (bottom) Means of two
clusters after our algorithm has grouped
0,2,3,5,6,8 and 1,4,7,9.

method cls 0 1 2 3 4 5 6 7 8 9
this Class A 100 4 99 99 3 99 99 0 94 1

paper Class B 0 96 1 1 98 2 1 100 6 99
unsupervised Class 1 93 16 93 87 22 66 96 16 23 25

EM Class 2 7 85 7 14 78 34 4 84 77 76

Table 1: Clustering results showing the purity of a 2-cluster reduced model learned
from a training set of handwritten digits in 10 original classes. For each true label,
the percentage of cases (from an unseen test set) falling into each of the two re-
duced classes is shown. The top two lines show the purity of assignments provided
by our clustering algorithm; the bottom two lines show assignments from a flat
unsupervised fitting of a two component mixture.

Our first experiment used a database of handwritten digits. Each example is repre-
sented by a 8×8 grayscale pixel image; 700 cases are used to learn a 64-dimensional
full covariance Gaussian distribution for each class. In the next step we want to
divide the digits into two natural clusters, while taking into account their original
10-way structure. We applied our semi-supervised algorithm to reduce the mix-
ture of 10 Gaussians into a mixture of two Gaussians. The minimal distance (2)
is obtained when the ten digits are divided into the two groups {0, 2, 3, 5, 6, 8} and
{1, 4, 7, 9}. The means of the two resulting clusters are shown in Figure 1.

To evaluate the purity of this clustering, the reduced MoG was used to label a test
set consists of 4000 previously unseen examples. The binary labels on the test set are
obtained by comparing the likelihood of the two components in the reduced mixture.
Table 1 (top) presents, for each digit, the percentage of images that were affiliated
with each of the two clusters. Alternatively we can apply a standard EM algorithm
to learn by maximum likelihood a flat mixture of 2 Gaussians directly from the 7000
training examples, without utilizing their class labels. Table 1 (bottom) shows the
results of such an unsupervised clustering, evaluated on the same test set. Although
the likelihood of the unsupervised mixture model was significantly better than the
semi-supervised model, both on train and test data-sets it is obvious that the purity
of the clusters it learns is much worse since it is not preserving the hierarchical
class structure. Comparing the top and bottom of Table 1, we can see that using
the side information we obtain a clustering of the digit data-base which is much
more correlated with categorization of the set into ten digits than the unsupervised
procedure.

In a second experiment, we evaluate the performance of our proposed algorithm on
image category models. The database used consists of 1460 images selectively hand-
picked from the COREL database to create 16 categories. The images within each
category have similar color spatial layout, and are labeled with a high-level semantic

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

of clusters

m
ut

ua
l i

nf
or

m
at

io
n

clustering results

semi−supervised
unsupervised

A C

B D

Figure 2: Hierarchical clustering of natural image categories. (left) Mutual infor-
mation between reduced cluster index and original class. (right) Sample images
from the sets A,B,C,D learned by hierarchical clustering.

description (e.g. fields, sunset). For each pixel we extract a five-dimensional feature
vector (3 color features and x,y position). From all the pixels that are belonging
to the same category we learn a single Gaussian. We have clustered the image
categories into k = 2, ..., 6 sets using our algorithm and compared the results to
unsupervised clustering obtained from an EM procedure that learned a mixture of
k Gaussians. In order to evaluate the quality of the clustering in terms of correlation
with the category information we computed the mutual information (MI) between
the clustering result (into k clusters) and the category affiliation of the images in a
test set. A high value of mutual information indicates a strong resemblance between
the content of the learned clusters and the hand-picked image categories. It can be
verified from the results summarized in Figure 2 that, as we can expect, the MI in
the case of semi-supervised clustering is consistently larger than the MI in the case
of completely unsupervised clustering. A semi-supervised clustering of the image
database yields clusters that are based on both low-level features and a high level
available categorization. Sampled images from clustering into 4 sets presented in
Figure 2.

4 A Stochastic Model for the Proposed Distance

In this section we describe a stochastic process that induces a likelihood function
which coincides with the distance measure d(f, g) presented in section 2. Suppose
we are given two MoGs:

f(y) =

k
∑

i=1

αifi(y) =

k
∑

i=1

αiN(y;µi,Σi) , g(y) =

m
∑

j=1

βjgj(y) =

m
∑

j=1

βjN(y;µ′
j ,Σ

′
j)

Consider an iid sample set of size n, drawn from f(y). The samples can be arranged
in k blocks according to the Gaussian component that was selected to produce the
sample. Assume that ni samples were drawn from the i-th component fi and denote
these samples by yi = {yi1, ..., yini

}. Next, we compute the likelihood of the sample
set according to the model g; but under the constraint that samples within the
same block must be assigned to the same mixture component of g. In other words,
instead of having a hidden variable for each sample point we shall have one for each
sample block. The likelihood of the sample set yn according to the MoG g under
this constraint is:

Ln(g) = g(y1, ..., yk) =
k

∏

i=1

m
∑

j=1

βj

ni
∏

t=1

N(yit;µ
′
j ,Σ

′
j)

The main result is that as the number of points sampled grows large, the expected
negative log likelihood becomes equal to the distance d(f, g) under the measure
proposed above:

Theorem 2: For each g ∈ MoG(m)

lim
n→∞

1

n
log Ln(g) = c − d(f, g) (9)

such that c =
∑

αi

∫

fi log fi does not depend on g.

Surprisingly, as noted earlier the mixture weights βj do not appear in the asymptotic
likelihood function of the generative model presented in this section.

Proof: To prove the theorem we shall use the following lemma:

Lemma 2: Let {xjn} j = 1, .., m be a set of m sequences of real positive num-
bers such that xjn → xj and let {βj} be a set of positive numbers. Then
1
n

log
∑

j
βj(xjn)n → maxj log xj [This can be shown as follows: Let a = arg maxj xj .

Then for n sufficiently large, βa(xan)n ≤
∑

j
βj(xjn)n ≤ mβa(xan)n. Hence log xa ≤

limn→∞
1
n

log
∑

j
βj(xjn)n ≤ log xa.]

The points {yi1, ..., yini
} are independently sampled from the Gaussian distribution fi.

Therefore, the law of large numbers implies: 1
ni

log
∏ni

t=1
N(yit; µ

′

j , Σ
′

j) →
∫

fi log gj .

Hence, substituting: xjni
= (

∏ni

t=1
N(yit; µ

′

j , Σ
′

j))
1

ni → exp(
∫

fi log gj) = xj in Lemma 2,

we obtain: 1
ni

log
∑m

j=1
βj

∏ni

t=1
N(yit; µ

′

j , Σ
′

j) → maxm
j=1

∫

fi log gj In a similar manner,

the law of large numbers, applied to the discrete distribution (α1, ..., αk), yields ni

n
→ αi.

Hence 1
n

log Ln(g) = 1
n

log g(y1, ..., yk) =
∑k

i=1
ni

n
· 1

ni
log

∑m

j=1
βj

∏ni

t=1
N(yit; µ

′

j , Σ
′

j) →
∑k

i=1
αi maxm

j=1

∫

fi log gj = c −
∑k

i=1
αi minm

j=1 KL(fi||gj) = c − d(f, g) 2

5 Relations to Previous Approaches and Conclusions

Other authors have recently investigated the learning of Gaussian mixture models
using various pieces of side information or constraints. Shental et al. [5] utilized the
generative model described in the previous section and the EM algorithm derived
from it, to learn a MoG from data set endowed with equivalence constraints that
enforce equivalent points to be assigned to the same cluster. Vasconcelos and Lipp-
man [9] proposed a similar EM based clustering algorithm for constructing mixture
hierarchies using a finite set of virtual samples.

Given the generative model presented above, we can apply the EM algorithm to
learn the (locally) maximum likelihood parameters of the reduced MoG model g(y).
This EM-based approach, however, is not precisely suitable for our component
clustering problem. The EM update rule for the weights of the reduced mixture
density is based only on the number of the original components that are clustered
into a single component without taking into account the relative weights [9].

The problem discussed in this study is also related to the Information-Bottleneck

(IB) principle [8]. In the case of mixture of histograms f =
∑k

i=1 αifi , the IB
principle yields the following iterative algorithm for finding a clustering of a mixture
of histograms g =

∑m

j=1 βjgj(y):

wij =
βje

−λKL(fi||gj)

∑

l βle−λKL(fi||gl)
, βj =

∑

i

wijαi , gj =

∑

i wijαifi
∑

i wijαi

(10)

Assuming that the number of the (virtual) samples tends to ∞, we can derive,
in a manner similar to the Gaussian case, a grouping algorithm for a mixture of

histograms. Slonim and Weiss [6] showed that the clustering algorithm in this case
can be either motivated from the EM algorithm applied to a suitable generative
model [4] or from the (hard decision version) of the IB principle [8]. However,
when we want to represent the clustering result as a mixture density there is a
difference in the resulting mixture coefficient between the EM and the IB based
algorithms. Unlike the IB updating equation (10) of the coefficients wij , the EM
update equation is based only on the number of components that are collapsed into
a single Gaussian. In the case of mixture of Gaussians, applying the IB principle
results only in a partitioning of the original components but does not deliver a
reduced representation in the form of a smaller mixture [2]. If we modify gj in
equation (10) by collapsing the mixture gj into a single Gaussian we obtain a soft
version of our algorithm. Setting the Lagrange multiplier λ to ∞ we recover exactly
the algorithm described in Section 2.

To conclude, we have presented an efficient Gaussian component clustering algo-
rithm that can be used for object category clustering and for MoG collapsing. We
have shown that our method optimizes the distance measure between two MoG that
we proposed. In this study we have assumed that the desired number of clusters is
given as part of the problem setup, but if this is not the case, standard methods for
model selection can be applied.

References

[1] Y. Bar-Shalom and X. Li. Estimation and tracking: principles, techniques and soft-
ware. Artech House, 1993.

[2] S. Gordon, H. Greenspan, and J. Goldberger. Applying the information bottleneck
principle to unsupervised clustering of discrete and continuous image representations.
In ICCV, 2003.

[3] U. Lerner, R. Parr, D. Koller, and G. Biswas. Bayesian fault detection and diagnosis
in dynamic systems. In AAAI/IAAI, pp. 531–537, 2000.

[4] J. Puzicha, T. Hofmann, and J. Buhmann. Histogram clustering for unsupervised
segmentation and image retrieval. Pattern Recognition Letters, 20(9):899–909, 1999.

[5] N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Computing gaussian mix-
ture models with em using equivalence constraints. In Proc. of Neural Information
Processing Systems, 2003.

[6] N. Slonim and Y. Weiss. Maximum likelihood and the information bottleneck. In
Proc. of Neural Information Processing Systems, 2003.

[7] E. Sudderth, A. Ihler, W. Freeman, and A. Wilsky. Non-parametric belief propaga-
tion. In CVPR, 2003.

[8] N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In Proc.
of the 37-th Annual Allerton Conference on Communication, Control and Computing,
pages 368–377, 1999.

[9] N. Vasconcelos and A. Lippman. Learning mixture hierarchies. In Proc. of Neural
Information Processing Systems, 1998.

[10] J. Vermaak, A. A. Doucet, and P. Perez. Maintaining multi-modality through mixture
tracking. In Int. Conf. on Computer Vision, 2003.

[11] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroell. Constraind k-means clustering
with background knowledge. In Proc. Int. Conf. on Machine Learning, 2001.

[12] E.P. Xing, A. Y. Ng, M.I. Jordan, and S. Russell. Distance learning metric. In Proc.
of Neural Information Processing Systems, 2003.

