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ABSTRACT

Motivation: There is a pressing need for improved proteomic

screeningmethods allowing for earlier diagnosis of disease, systematic

monitoring of physiological responses and the uncovering of funda-

mental mechanisms of drug action. The combined platform of LC-MS

(Liquid-Chromatography-Mass-Spectrometry) has shown promise in

moving toward a solution in these areas. In this paper we present a

technique for discovering differences in protein signal between two

classes of samples of LC-MS serum proteomic data without use of

tandem mass spectrometry, gels or labeling. This method works on

data from a lower-precision MS instrument, the type routinely used

by and available to the community at large today.We test our technique

on a controlled (spike-in) but realistic (serum biomarker discovery)

experimentwhich is thereforeverifiable.Wealsodevelopanewmethod

for helping to assess the difficulty of a given spike-in problem. Lastly,

we show that the problem of class prediction, sometimes mistaken as

a solution to biomarker discovery, is actually a much simpler problem.

Results: Using precision–recall curves with experimentally extracted

ground truth, we show that (1) our technique has good performance

using seven replicates from each class, (2) performance degradeswith

decreasing number of replicates, (3) the signal that we are teasing out

is not trivially available (i.e. the differences are not so large that the

task is easy). Lastly, we easily obtain perfect classification results for

data in which the problem of extracting differences does not produce

absolutely perfect results. This emphasizes the different nature of

the two problems and also their relative difficulties.

Availability:Our data are publicly available as a benchmark for further

studies of this nature at http://www.cs.toronto.edu/�jenn/LCMS

Supplementary Information: http://www.cs.toronto.edu/~jennl/LCMS

Contact: jenn@cs.toronto.edu

1 INTRODUCTION

Much proteomic work to date has concentrated on the use of tandem

mass spectrometry (also written MS/MS) in which the sequences of

some peptides in serum are found, and analysis is based on a list of

peptides (Kislinger and Emili, 2003). While such an approach has

been successful for problems such as building protein catalogues,

this approach has shortcomings when applied to biomarker dis-

covery, in which the goal is to find what differences exist between

two classes of samples (e.g. cancer versus healthy). We refer to this

as the problem of difference detection. Since the list of peptides

derived from tandem mass spectrometry experiments is never com-

plete for complex mixtures, there are likely to always be protein

signals of interest that are missed (America et al., 2006; Prakash
et al., 2006). One can avoid this problem by looking at all of the raw

data from the LC-MS experiment rather than just the list of

sequenced peptides, and without reliance on concurrent MS/MS

sequencing. Once regions (time, m/z) that are different have been

identified, these can be characterized by MS/MS (Wiener et al.,
2004). While the present paper seeks to provide a statistical/

computational technique for biomarker discovery from LC-MS

data, such a step is but one of many in the grand goal of true

biomarker discovery, which must address issues ranging from sam-

ple collection to a feedback loop with basic biology for validation.

For more discussion of these issues we refer the reader to Listgarten

and Emili (2005a), Lyons-Weiler (2005) and references therein.

Our goals in this paper are to show that in a realistic experiment

using human blood serum, with a controlled spike-in of known

peptides, we can elicit signals of interest between two classes,

relative to a known ground truth, using data from a low-precision

mass spectrometry instrument. We show that our ability to achieve

this is affected by number of replicates available. The difficulty of

our spike-in difference detection problem is assessed to ensure non-

triviality of the problem. We also demonstrate that the problem of

class prediction is easier than that of difference detection. Lastly, we

provide a benchmark dataset to the community for problems of this

nature; such a dataset is currently unavailable, to our knowledge.

1.1 Related work

Recently, several approaches to the specific problem of difference

detection between two classes of LC-MS samples, without use of

MS/MS or chemical/isotopic labeling, have been published. These

approaches typically involve a suite of algorithms, starting from

data pre-processing such as filtering, background-subtraction and

alignment along the LC time axis, and then move on to one of two

approaches (1) detect and quantify peaks to then do a differential

peak analysis [e.g. America et al. (2006), Silva et al. (2005)], or
(2) do a peak-free, ‘signal-based’, differential analysis to find

regions of interest that can then be further studied [e.g. Wiener

et al. (2004), Prakash et al. (2006)], as we do here. In the former

approach, peak detection is carried out on one LC-MS run at a time,

without the advantage of leveraging across samples, so features

could be lost that might be captured by a signal-based approach,

since the latter need not first capture discrete features within each

LC-MS run (Wiener et al., 2004; Listgarten and Emili, 2005b). The

relative merits of each approach are likely to be closely linked to the

precision of the MS instrument being used. In America et al.
(2006) and Silva et al. (2005), high-precision instruments are

used with a peak-based approach, while Wiener et al. (2004) and
Prakash et al. (2006), with lower-precision data, use a signal-based

approach.

Prakash et al. (2006) use a signal-based approach to the problem

of looking for one spike-in peptide added to a base mixture of four�To whom correspondence should be addressed.
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peptides—a very simple mixture relative to a more realistic setting

involving human blood serum. With just the simple mixture of five

proteins, Prakash et al. (2006) note that even ‘these mixtures are

surprisingly complex’ and that ‘thousands of peptide-like features

are observed’. They align their data, and nicely characterize their

scoring function which quantifies the number of shared peaks

between mass spectra, but they stop short of using any statistical

tests when doing difference detection, relying on differences in ion

amplitude [shown in Wiener et al. (2006) to be sub-optimal], and

they do not quantify their difference detection results, using instead

qualitative plots. America et al. (2004), use a peak-based approach

with 2D LC-MS to find differences between tomatoes at various

stages of ripening. While their suite of algorithms appears to be very

solid, they do not show how well they do relative to any ground

truth. A very comprehensive study was conducted by Wiener et al.
(2004), where several different spike-in mixtures, consisting of

tryptic digests of roughly eight proteins, were added to a base

mixture of 1000 known tryptic peptides, and differences detected.

ROC curves were used to evaluate detected differences with respect

to ground truth, but it is not clear how their analysis would gener-

alize to human serum, which we tackle here. Silva et al. perform
a detailed exploration of spike-in proteins to human blood serum

using data from a very high-precision MS instrument (Silva

et al., 2005). In this study, we show the ability to detect known

spike-in proteins in human serum with data from a much lower-

precision instrument—the more common ‘workhorse’ type mass-

spectrometer that is widely available and affordable to the

proteomics community at present, making our work of immediate

and widespread utility.

2 APPROACH TO DETECTION

Our approach to difference detection relies heavily on our previous

work on time alignment and normalization (Listgarten et al., 2005),
in which we introduce the CPM (Continuous Profile Model). Align-

ment in LC time is one of the major obstacles to reliable detection of

differences (America et al., 2006; Listgarten et al., 2005; Prakash
et al., 2006) and, thus, this step is critical. The work presented

here extends our earlier work by showing that the CPM can

form the basis for reliable difference detection in LC-MS data.

2.1 Alignment in LC-Time

The CPM, based on an HMM (hidden Markov model), performs

multiple alignment and normalization of time series data such as

LC-MS data. One can think of the HMM in the CPM as containing

a series of hidden states, each of which represents some underlying

‘true’ time, to which each observed time point in each LC-MS run is

ultimately assigned. The alignment in time is dictated by which

observed time gets probabilistically mapped to which hidden state.

The states are called ‘hidden’ because before the algorithm is run

on the data we do not know which observed time points map

to which states. In addition to the hidden time states mentioned,

hidden states are also augmented by ‘scale’ states, which allow

scaling of the signal locally in time. This mapping to both time

and scale states performs alignment and normalization concur-

rently. Training, during which the best parameters for the HMM

are found, is performed by maximum likelihood using the

Expectation–Maximization algorithm. Both training and later use

of the model (i.e. alignment extraction) are performed efficiently in

HMMs by use of dynamic programming. The CPM has the advan-

tages that no template is required, all experiments are aligned simul-

taneously (thereby leveraging information across all experiments),

normalization is concurrent with alignment, and the model is proba-

bilistically formulated, making it amenable to principled extensions

(e.g. multi-class alignment in which it is not assumed that all sam-

ples are from the same class during alignment.)

Whereas in Listgarten et al. (2005) only the total ion count (TIC)
were used for alignment, we have since extended the model to use

multiple m/z bins at each time point, where each bin is designed to

contain roughly equal ion abundance over all samples being aligned.

On previous datasets we found four m/z bins to provide better

alignment than one bin, but without the computational burden of

more bins, and without much loss in quality of alignment with

respect to using more bins. We thus used four m/z bins in this work.
Another minor change we have made to the model in Listgarten

et al. (2005) was to remove the hidden scale states, replacing them

with ‘scaling’ spline parameters. In this modified setting, the HMM

states now correspond only to ‘true time’ states, and are no longer

augmented by scale states, so that now a path through the HMM

states tells us how to warp time in one LC-MS run, but not how to

scale the ion amplitude (i.e. normalize it). The scaling is instead

performed by adding a new parameter vector to the model, which

consist of a spline (and we use one spline per observed time series).

A spline is a simple idea in its simplest form (and the one used here).

Imagine you have a a set of experimental measurements (e.g. tem-

perature at various time points). Then you might try to fit a straight

line to the points so as to characterize or visualize the trend, or if that

fails, perhaps a quadratic line. A more general form of trend line

would be a spline, in which you pick a few ‘control points’ at fixed

times, between which you interpolate (e.g. linearly) the tempera-

ture. On this basis, you can then fit the temperature at each control

point, using all of the data. The control points are fixed ahead of

time, using, for example, a constant time interval. Thus, instead of

scaling our LC-MS data at every time point, the values at various

control points of our scaling spline are fitted, using all of the data,

with the assumption that we will linearly interpolate between them.

This modification has three implications: (1) we are no longer

estimating the distribution over scale states, since we are no longer

treating them as hidden variables, rather, we are obtaining a point

estimate of spline control point values, (2) because we use fewer

spline control points than latent times, the scaling becomes more

global in nature and (3) the algorithm can run faster because we are

obtaining a point estimate of the parameters rather than a full dis-

tribution (and also using relatively few of them). This modification

achieves roughly the same effect (i.e. puts the different LC-MS

runs into similarly good ion amplitude correspondence with

one another), but with less computational burden. Details of both

changes are available on our website (see ‘Availability’ section).

Lastly, although the original CPM was intended to align replicate

data, we here use the model to align samples from two different,

though similar, (as would be expected in a biomarker discovery type

experiment) classes and find it to work well. To accommodate this

change, we apply normalization concurrently with alignment during

model training, but do not include the learned local normalizations

in the final alignment, since if a peak exists in only one class, such

normalization would coerce the two classes to look more similar

than they are. Instead, after use of the CPM (with spline scaling)

for alignment, we simply do a single global normalization. That is,
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we apply one scaling factor to each LC-MS run so that the total ion

abundances from each LC-MS run are identical after normalization.

Figure 1 shows the dataset used in the paper before and after align-

ment by the CPM with a global normalization applied to the aligned

data after alignment.

2.2 Detecting differences between classes

After applying the CPM to all samples from each of two classes (e.g.

cancer versus not cancer), we have in hand a set of aligned data

matrixes. That is, we have, for each LC-MS run k, a matrix of data,

Mk where Mk
t‚ i indexes the normalized ion abundance at the t-th

aligned time point for the i-th m/z bin in the k-th observed LC-MS

run. Note that before using the CPM, all m/z values are mapped to

bins of width 1/2 Th which are retained throughout all other pro-

cessing [similarly done in Radulovic et al. (2004), Wiener et al.
(2004), Listgarten et al. (2005)]. In our dataset, we had 1000 rows

corresponding to 1000 time points and 2400 columns corresponding

tom/z bins of width 0.5 Th spanning 400–1600 Th (which were then
further reduced to four bins as mentioned earlier).

Even for very good alignments, one can usually observe regions

in two different LC-MS runs that appear to correspond to each other,

but that are not perfectly and completely overlapping. As such, we

have found it useful to apply a small local smoothing in time andm/z
to each data matrix. The smoothing in m/z helps to overcome any

possible rounding issues in the m/z binning. This smoothing is

implemented by convolving a 2D Hamming filter of length 25 in

aligned time points [corresponds to �12 observed LC time points

because aligned time is roughly twice as dense as observed time—

see Listgarten et al. (2005)], and length 3 m/z bins (corresponds to
1.5 Th) to each of the data matrices.

The size of the Hamming filter used (25 · 3) was chosen based on

data from similar experiments using the following intuition: If we

do not smooth at all, then some m/z bins across experiments will

not be in good correspondence with one another, and likewise, some

LC times will not be in good correspondence with one another.

Thus, if we use one of these LC-MS runs and ask how well it

‘predicts’ the other replicates in this class, it will ‘predict less

well’ because of the regions of poor correspondence. Going to

the other extreme, if we heavily smooth this same LC-MS run,

and then ask how well it ‘predicts’ the others, its signal will be

completely smeared out, and it will not ‘predict’ them well. In

between these two regimes lies an amount of smoothing for

which this one LC-MS run optimally ‘predicts’ the others. More

formally, we use the total variation distance (TVD) between

a smoothed LC-MS run and the other runs to see how well it

‘predicts’ the other runs. The TVD is simply a symmetric measure

of howmuch two probability distributions diverge. To be able to use

the TVD, we pretend that each data matrix, Mk is a distribution by

forcing its components to sum to one. Formally, our method oper-

ates as follows: (1) normalize each Mk to sum to 1, (2) apply

Hamming smoothing to one LC-MS run k0, (3) measure how

‘close’ this smoothed run, k0, is to every other non-smoothed run

by computing the TVD (Total Variation Distance – measures dis-

tance between distributions), (4) do this for each run in turn

and sum together the TVD values, 5) repeat for variously sized

Hamming filters. Too little smoothing produces larger TVDs

because of mismatched peaks, while too much smoothing washes

out the signal so that the smoothed run is ‘further’ from the non-

smoothed signals and the TVD is greater. In between these regimes

lies the optimal amount of smoothing.

2.2.1 A spatial test statistic for difference detection We devise

a simple statistical test, based on a t-statistic [first applied to mass

spectrometry data in Wang et al. (2003)], which is applied to the

dataset. First we compute a (Welch) t-statistic at each (time, m/z ) in
the set of data matrixes, fMkg. Let Cr

t‚ i be the class mean over

all samples in class r at the t’th time point and i’th m/z bin, i.e.

Cr
t‚ i �

P
fk j k2rg Mk

t‚ i

Nr

 !
;

where Nr is the number of samples in each class. Similarly, let Vr
t‚ i

be the class standard deviation over all samples in class r at the t’th
time point and i’th m/z bin, i.e.

Vr
t‚ i �

P
fk j k2rg ðCkt‚ i�Mk

t‚ iÞ
2

Nr � 1
:

Also, let S0t‚ i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1
t‚ i/N1 þ V2

t‚ i/N2

q
be the pooled standard

deviation. Then we calculate a signed t-statistic,

tt‚ i �
C1
t‚ i � C2

t‚ i

V0
t‚ i

:

If V1
t‚ i ¼ 0 and V2

t‚ i ¼ 0 and C1
t‚ i ¼ C2

t‚ i then
1 we set tt‚ i ¼ 0.

After this point-wise statistic is calculated, we modify it to account

for the fact that we know, a priori, that signal of interest in this type

of data will span more than one time point, because elution of the

LC column is not instantaneous, and possibly more than onem/z bin,
because of isotope shoulders. We therefore calculate what we call

a spatial t-statistic, t0t‚ i, by performing 2D smoothing on the matrix

T
IC

Experimental LC Time

Aligned LC Time

T
IC

Fig. 1. Unaligned (top) and aligned (bottom) TIC of the 14 LC-MS runs used

in this paper (note that alignment was not done on the TIC, we use TIC for

display purposes only). ‘Unaligned’ actually refers to data that have been

coarsely pre-processed with simple linear offsets (shifts) and global scaling.

1This occurs when there is no ion abundance in any of the samples at this

time and m/z.
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consisting of t-statistics. This is implemented by convolving

the matrix of values tt,i with a 2D Hamming filter of length 10

in aligned time (i.e. five in experimental time) and length 3m/z bins,
corresponding to our previous beliefs about peak sizes of interest.

Note that regions of interest which are smaller than this filter can

still be captured if their signal is strong enough. That is, this method

does not immediately throw out smaller peaks, as is the case in

Wiener et al. (2004) where a hard threshold of length in time is

used, it only requires that such regions provide more evidence for

themselves. Without this last step of moving to a spatial t-statistic,
we observed that the ability to reliably detect differences

across classes was diminished, as shown in Figure 2. While smooth-

ing the t-statistic removes the possibility of using corresponding t-
statistic p-values, these p-values would in any case provide only

a ranking given the massive scale of multiple testing, so nothing is

lost in this regard.

To detect differences between classes, we simply look for areas

with the largest magnitude spatial t-statistics, t0t‚ i. This provides

a ranked set of hypotheses. To get a sense of whether these test

statistics are providing real information, one can permute the class

labels (spike-in/base-mixture) and calculate the resulting null dis-

tribution estimate. While it is possible that each (time, m/z) may

require its own null distribution, we have found a single distribution

to be sufficient (and hence can use the spatial t-statistics to

rank hypotheses). Figure 3 shows how the distributions of spatial

t-statistics in our problem compares with a null distribution esti-

mated from 100 random permutations of the class labels. The real

test statistic distribution is skewed toward negative values—here

class 1 was base mixture only, while class 2 was base mixture plus

spiked-in peptides, so we expect to see more negative signal.

2.3 Comparison with ground truth

To characterize the performance of our algorithm, we ran the

spiked-in reference peptides in buffer-only (no serum) through

the LC-MS to obtain eight ‘ground-truth’ runs. Clearly, extracting

a single ground truth from these runs is itself not a trivial problem.

We might have used our CPM alignment/normalization to help

extract the ground truth, but we sought a method which was com-

pletely independent from that which was used to do difference

detection. Because the reference peptides are relatively few in

number, peak detection was not overly difficult, though we note

that it is still unlikely to be perfect. We extracted ground truth peaks

in a fairly simple manner which involves four main steps, (1)

thresholding, (2) clustering, (3) m/z extraction, (4) voting across

eight ground truth LC-MS runs.

Note that our ground truth comparisons use m/z , not time, since

time is not consistent, producing a large dependency on alignment,

which we wished to bypass for comparison with ground truth.

However, the main signal of interest, and that with the highest

precision and accuracy, lies in m/z, not time. We did however

visually verify that detected differences did correspond to the

spiked-in peptides in both time and m/z. In addition, when our

method is used in a setting that does not involve comparison

with ground truth, it is simple to obtain LC-time estimates for

all detected differences by mapping back from HMM hidden

time states to real observed time and averaging over replicates to

obtain a time window.

Formally, for each ground truth run, w, we (1) created a data

matrix, Mw, by binning the m/z as described earlier; (2) smoothed

the matrix using 2D Hamming filter of length 10 in aligned time

(corresponds to five time points in experimental time) and 3 m/z
bins; (3) normalized the total ion abundance in each matrix to be 1;

(4) thresholded the abundance at each (time, m/z), so that if the

abundance was less than T0, then we set Mw
i‚ t ¼ 0; (5) for all

remaining non-zero entries in Mw, call a peak any group of tuples

(i, t) that are connected [i.e. are linked by a path of Mw
i0‚ t0 > 0,

where link is defined with respect to a neighbourhood consisting of

the eight surrounding points in (time, m/z)]. We calculated the m/z
value of each peak to be the weighted-averagem/z value of all tuples
assigned to that peak, where the weights are proportional to each

tuple’s ion abundance. The threshold, T0, was chosen on the basis of
histograms of the data, and in such a manner as to attempt to cut off
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Fig. 3. The solid line shows all 2.4 · 106 sorted spatial t-statistics for our data
set (� 1000 time points · 2400m/z values). The dashed lines show the 0.001

(top) and 99.999 (bottom) percentiles of the null distribution estimated from

100 random permutations of the class labels (producing a total of 2.4 · 108

test statistics). There are 86 spatial t-statistics above the top dashed line,

and 468 below the bottom dashed line.
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Fig. 2. Precision–recall curves when a spatial t-statistic is used (triangle

marker) versus a regular t-statistic (circlemarker)whenusing seven replicates

from each class. The curve for the spatial t-statistic is the same as that in

Figure 4 below, with seven replicates.

Difference detection in Lc-ms data for Protein biomarker discovery

e201



background noise while maintaining the greatest possible signal (we

used T0¼ 5 · 10�5). We set this threshold low (retaining as much as

possible) knowing that we would force replicate LC-MS ground

truth runs to later agree, reducing the possibility of spuriously

detected peaks. Finally, we calculated the ‘strength’ of each peak

as the sum of the ion abundance of all tuples assigned to it. If several

peaks had the same m/z, their strengths were added to obtain the

strength for that m/z. This strength attribute is later used to see

whether ‘stronger’ peaks are those identified more easily (Fig. 5).

Given a list of m/z values for each of the eight ground truth

replicates, we then clustered the m/z values using complete-linkage,

Euclidean distance hierarchical clustering, using a distance cut-off

that produced clusters such that no two m/z values assigned to

a cluster differ by >1 Th. Lastly, each unique cluster is voted on

in a binary fashion from the eight ground truth peak extractions

(using a tolerance of 1 Th), and those clusters with at least six votes

were considered to be in our final ground truth. In this manner, we

extracted 32 ground truth m/z values. The strength of each of these

was determined by the average strength of the peak corresponding

to that m/z value, over the LC-MS replicates that voted for it.

We also had access to theoretical predictions for our tryptically

digested peptides. While these theoretical predictions are not a bad

guide, ultimately, it is unknown which charge-state ions will be

observed, whether non-tryptic peptides will be found (Prakash et al.,
2006), and what the ionization efficiency of each tryptic peptides is

(and hence whether it will be observed). We note, however, that our

experimentally extracted ground truth peaks contained seven of the

eight theoretical predictions.

Lastly, we note that our naive method of extracting ground truth

peaks cannot be applied to the actual difference detection problem

itself, since in realistic settings, using for example serum, there are

so many peptide peaks that it is impossible to segment them from

background in the naive way described in this section, and more

sophisticated methods would need to be applied.

2.4 Precision–recall curves

In order to compute precision–recall curves for the difference detec-

tion task, we found regions of interest and compared their m/z
values with our extracted ground truth list. Precision reflects

what proportion of our detected differences appear in the ground

truth, while recall tells us what proportion of the ground truth values

we actually managed to recover.

Specifically, we (1) choose a threshold, R0, for the spatial

t-statistic, and refer to all m/z values with a t-statistic larger in

magnitude than R0 as ‘on’, (2) find all unique ‘on’ m/z values,

(3) obtain the number of true positives by counting how many of

our ‘on’ m/z appear in our extracted ground truth list within a tol-

erance of 1 Th, (and which also appear in the correct direction—

negative in this experiment) not allowing more than one true

positive count per ground truth peak, (4) for all ‘on’ m/z that did
not match to a ground truth peak, cluster them (again, complete-

linkage, Euclidean distance hierarchical) such that every cluster

contains onlym/z values nomore than 1 Th apart, (5) use the number

of unique clusters as the number of false positives. We repeated

these steps for decreasing thresholds, R0 to trace out the precision–

recall curve, stopping when the precision reached 10%.

Note that precision–recall curves differ significantly from

ROC curves. While a diagonal line on an ROC curve shows that

a classifier is guessing no better than random, a diagonal line on

a precision–recall curve shows that one can, for example, extract

50% of known ground truth values while incurring a false positive

rate of 50%, which may be a non-trivial achievement.

3 EXPERIMENTS AND RESULTS

We tested our difference detection technique on a spike-in LC-MS

dataset where class 1 consisted of a base mixture of human serum

and class 2 consisted of this same base mixture of serum, along with

three known peptides (see Section 3.1 for details). We show later

that the amount of spike-in was not trivially easy to find, as was

intended by design of the experiment. For each dataset, serum-only

runs were alternated with the spike + serum runs (seven of each class)

to control for potential time and order-dependent biases, and all

samples were run on the same column.

3.1 Laboratory Methods

Frozen human serum was thawed on ice. A 2 ml aliquot (� 160 mg
protein) was denatured and reduced for 30 min on ice by adding

5 vol (10 ml) of 8M urea (pH 8.5), 1 mM fresh DTT. This was

followed by 5 vol (10 ml) of acetonitrile and 50 ml of 100 mM

ammonium bicarbonate, 1 mM CaCl2. The samples were then incu-

bated and digested for two days with 10 ml of covalent trypsin beads

(Poroszyme; Applied Biosystems) at 30� C with rotation. Before

analysis, the samples were further diluted with 70 ml of Buffer A
(5% ACN, 0.05% HFBA). For the spiking runs, the reference pep-

tides standard was added at 1.0 pmol (Peptide Calibration Standard

#206195, Bruker Daltonics Inc.) to the sample immediately before

LC-MS. Of the diluted serum samples 5 ml (0.2 nmol total protein)

was analyzed using standard capillary scale LC-MS profiling meth-

ods as described in Radulovic et al. (2004). Briefly, a quaternary

HPLC pump was interfaced using the electrospray ionization

method to an LCQ quadrupole ion trap tandem mass spectrometer

(Thermo Finnigan, San Jose, CA). The samples were loaded onto

a 150 mm i.d. fused silica capillary micro-column (Polymicro Tech-

nologies; Phoenix, AZ) bearing a fine nozzle created with a P-2000

laser puller (Sutter Instruments; Novato, CA) and packed with

8 cm of 5mm Zorbax 300SB-C18 resin (Agilent Technologies,
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Fig. 4. Precision–recall curves for the difference detection analysis. Each

curve shows the results when a different number of replicates was used, from

two through to seven.
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Mississauga, ON, Canada). The ion trap mass spectrometer was

operated in dual cycling mode, cycling from precursor scanning

to dynamic data-dependent MS/MS scan mode, even though we did

not use the MS/MS data in our experiments, and this mode in fact

degrades the quality of the data.

3.2 Difference detection results

Figure 4 shows the precision–recall curves obtained when using

seven replicates from each class down to only two replicates from

each class. Using seven replicates from each class, we obtain very

reasonable results, with, for example, a recall of 50% matching to

a precision of 50%. Second, as expected, with a decreasing number

of replicates, our ability to achieve good results systematically

deteriorates. Note that alignment in LC-time was done using all

seven replicates from both classes, and only for the latter part of the

analysis, (that which uses the spatial t-statistic) was the number of

replicates varied. One would expect that if the entire analysis had

been done on varying number of replicates that the systematic

differences would be more extreme, as less information would

be available with which to produce good alignments.

3.3 Assessing the difficulty of the problem

If the amount of reference peptides spiked in were very large, the

difference detection problem might be trivially easy. How can one

get at how difficult our problem is? Well, if the amount of spike-in

were very large relative to the base mixture, then the spike-in would

swamp the signal of the base mixture, and a simple 1D analysis

looking at the ion count at each m/z, irrespective of time (i.e. sum-

ming out the ion count out over time) would be able to tease out all

differences of interest. We apply such a technique here, and show

that the 1D analysis is inferior to the full 2D analysis described in

Section 2.

Formally, the 1D analysis involves converting each data matrix,

Mk, to a vector representing the total ion count at each m/z bin.

Thus we define the Total Time Ion Count (TTIC), for m/z bin i for
the k’th LC-MS run, Tk

i , as T
k
i �

P
t Mk

i‚ t . Then the 1D analysis is

exactly the same as the 2D analysis, only it operates on fTk
i g rather

than on the set fMk
i‚ tg. A direct comparison of the 1D versus the 2D

approach is shown in Figure 5. The 2D approach allows us to more

precisely find subtler regions of interest. To assess the stability of

this relationship, we redid this analysis seven times, each using

a different subset of the six replicates per class, and found the

pattern to be somewhat unstable in the region of recall less than

0.3, indicating there are no statistically significant differences in this

region. However, for recall larger than 0.3, the pattern was stable,

suggesting a statistically significant difference for regions of larger

recall. Thus we have provided evidence that our spike-in experiment

was not trivially easy.

We want to emphasize that the point here is not to contrast

two difference detection methods (as they are essentially the

same), but to show that the signal of interest is indeed swamped

out, to a certain extent, by baseline peaks, indicating that the amount

of spike-in is not so large as to rise above this, and thus trivially easy

to find.

3.4 Predictive modeling

While we were not able to achieve perfect difference detection

results, (where perfect would mean always having precision ¼ 1

and recall ¼ 1), we were nevertheless able to easily build a perfect

supervised prediction model for the class of each sample. We used

regularized LR [logistic regression Hastie et al. (2001)] as a pre-

diction model with features consisting of every (time, m/z) in

the aligned data matrixes, fMkg, described earlier2 We used L2
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Fig. 5. Left: precision–recall curve for 1D analysis (dashed-circle) versus a full 2D analysis (solid-triangle). right: the precision level when each peak is detected

along with the strength of the peak. Overlaid is a lowess-smoothed (span¼ 17) version of the plotted data points to more easily visualize the trends. As expected,

stronger peaks are discovered at higher precision levels, though the trend is noisy.Both plots used seven replicates fromeach class. The 1Dplots contain 20 ground

truth peaks, while the 2D plots contain 29.

2For computational efficiency, we actually do LR in an equivalent

14-dimensional feature space obtained from PCA (Principal Components

Analysis) which gives identical results to doing LR in the original feature

space Neal and Zhang (2006).
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regularization, which is similar to putting a Gaussian prior with

spherical covariance over the LR weights.

Over a range of 7 orders of magnitude for the regularization term,

we always achieved perfect sensitivity/specificity as measured

by leave-one-out cross validation (i.e. a perfect ROC curve).

This demonstrates that the problem of classification is far easier

than that of difference detection, and that good classification

performance provides little information about the ability to do

comprehensive difference detection. Of course if one were unable

to build a good classifier, this would suggest that the task of

difference detection would probably also be difficult. Conversely,

if one were able to successfully perform difference detection,

then one might reasonably expect to be able to build a good

classifier.

4 DISCUSSION AND CONCLUSION

We have presented and evaluated a technique for discovering dif-

ferences in protein signal in serum, between two classes of samples

of LC-MS data, without use of tandem mass spectrometry, gels or

labeling. Along the way, we demonstrated how to show that a par-

ticular spike-in difference detection problem is not trivial, and in

particular that our difference detection problem was not trivial. We

also showed that the problem of supervised prediction, sometimes

mistaken as a solution to biomarker discovery, is actually a much

simpler problem. Our difference detection technique works on data

from lower precision mass-spectrometers, the kind that are widely

available and affordable to the proteomics community at present,

making our work of immediate and widespread utility. Lastly, we

hope that by making our dataset publicly available, further papers of

this nature can include comparisons with previously published

results, as, at present, this is a difficult, if not impossible, task.
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