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Abstract

Many techniques for complex speech processing such as denoising and
deconvolution, time/frequency warping, multiple speaker separation, and
multiple microphone analysis operate on sequences of short-time power
spectra (spectrograms), a representation which is often well-suited to
these tasks. However, a significant problem with algorithms that manipu-
late spectrograms is that the output spectrogram does not include a phase
component, which is needed to create a time-domain signal that has good
perceptual quality. Here we describe a generative model of time-domain
speech signals and their spectrograms, and show how an efficient opti-
mizer can be used to find the maximum a posteriori speech signal, given
the spectrogram. In contrast to techniques that alternate between esti-
mating the phase and a spectrally-consistent signal, our technique di-
rectly infers the speech signal, thus jointly optimizing the phase and a
spectrally-consistent signal. We compare our technique with a standard
method using signal-to-noise ratios, but we also provide audio files on
the web for the purpose of demonstrating the improvement in perceptual
quality that our technique offers.

1 Introduction

Working with a time-frequency representation of speech can have many advantages over
processing the raw amplitude samples of the signal directly. Much of the structure in
speech and other audio signals manifests itself through simultaneous common onset, off-
set or co-modulation of energy in multiple frequency bands, as harmonics or as coloured
noise bursts. Furthermore, there are many important high-level operations which are much
easier to perform in a short-time multiband spectral representation than on the time domain
signal. For example, time-scale modification algorithms attempt to lengthen or shorten
a signal without affecting its frequency content. The main idea is to upsample or down-
sample the spectrogram of the signal along the time axis while leaving the frequency axis
unwarped. Source separation or denoising algorithms often work by identifying certain
time-frequency regions as having high signal-to-noise or as belonging to the source of inter-
est and “masking-out” others. This masking operation is very natural in the time-frequency
domain. Of course, there are many clever and efficient speech processing algorithms for
pitch tracking[6], denoising[7], and even timescale modification[4] that do operate directly
on the signal samples, but the spectral domain certainly has its advantages.
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Figure 1: In the generative model, the spectrogram is obtained by taking overlapping win-
dows of length n from the time-domain speech signal, and computing the energy spectrum.

In order to reap the benefits of working with a spectrogram of the audio, it is often important
to “invert” the spectral representation back into a time domain signal which is consistent
with a new time-frequency representation we obtain after processing. For example, we may
mask out certain cells in the spectrogram after determining that they represent energy from
noise signals, or we may drop columns of the spectrogram to modify the timescale. How
do we recover the denoised or sped up speech signal? In this paper we study this inversion
and present an efficient algorithm for recovering signals from their overlapping short-time
spectral magnitudes using maximum a posteriori inference in a simple probability model.
This is essentially a problem of phase recovery, although with the important constraint
that overlapping analysis windows must agree with each other about their estimates of the
underlying waveform. The standard approach, exemplified by the classic paper of Griffin
and Lim [1], is to alternate between estimating the time domain signal given a current
estimate of the phase and the observed spectrogram, and estimating the phase given the
hypothesized signal and the observed spectrogram. Unfortunately, at any iteration, this
technique maintains inconsistent estimates of the signal and the phase.

Our algorithm maximizes the a posteriori probability of the estimated speech signal by
adjusting the estimated signal samples directly, thus avoiding inconsistent phase estimates.
At each step of iterative optimization, the method is guaranteed to reduce the discrepancy
between the observed spectrogram and the spectrogram of the estimated waveform. Fur-
ther, by jointly optimizing all samples simultaneously, the method can make global changes
in the waveform, so as to better match all short-time spectral magnitudes.

2 A Generative Model of Speech Signals and Spectrograms

An advantage of viewing phase recovery as a problem of probabilistic inference of the
speech signal is that a prior distribution over time-domain speech signals can be used to
improve performance. For example, if the identity of the speaker that produced the spec-
trogram is known, a speaker-specific speech model can be used to obtain a higher-quality
reconstruction of the time-domain signal. However, it is important to point out that when
prior knowledge of the speaker is not available, our technique works well using a uniform
prior.

For a time-domain signal with N samples, let s be a column vector containing samples
s1, . . . , sN . We define the spectrogram of a signal as the magnitude of its windowed short-
time Fourier transform. Let M = {m1,m2,m3....} denote the spectrogram of s; mk is
the magnitude spectrum of the kth window and mf

k is the magnitude of the f th frequency
component. Further, let n be the width of the window used to obtain the short-time trans-
form. We assume the windows are spaced at intervals of n/2, although this assumption is
easy to relax. In this setup, shown in Fig. 1, a particular time-domain sample st contributes
to exactly two windows in the spectrogram.

The joint distribution over the speech signal s and the spectrogram M is

P (s,M) = P (s)P (M|s). (1)



We use an Rth-order autoregressive model for the prior distribution over time-domain
speech signals:
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In this model, each sample is predicted to be a linear combination of the r previous samples.
The autoregressive model can be estimated beforehand, using training data for a specific
speaker or a general class of speakers. Although this model is overly simple for general
speech signals, it is useful for avoiding discontinuities introduced at window boundaries by
mis-matched phase components in neighboring frames. To avoid artifacts at frame bound-
aries, the variance of the prior can be set to low values at frame boundaries, enabling the
prior to “pave over” the artifacts.

Assuming that the observed spectrogram is equal to the spectrogram of the hidden speech
signal, plus independent Gaussian noise, the likelihood can be written
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}

(3)

where σ2 is the noise in the observed spectra, and m̂k(s) is the magnitude spectrum given
by the appropriate window of the estimated speech signal, s. Note that the magnitude
spectra are independent given the time domain signal.

The likelihood in (3) favors configurations of s that match the observed spectrogram, while
the prior in (2) places more weight on configurations that match the autoregressive model.

2.1 Making the speech signal explicit in the model

We can simplify the functional form m̂k(s), by introducing the n×n Fourier transform ma-
trix, F. Let sk be an n-vector containing the samples from the kth window. Using the fact
that the magnitude of a complex number c is cc∗, where ∗ denotes complex conjugation,
we have

m̂k(s) = (Fsk) ◦ (Fsk)∗ = (Fsk) ◦ (F∗

sk),

where ◦ indicates element-wise product.

The joint distribution in (1) can now be written
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(4)
The factorization of the distribution in (4) can be used to construct the factor graph shown
in Fig. 2. For clarity, we have used a 3rd order autoregressive model and a window length of
4. In this graphical model, function nodes are represented by black disks and each function
node corresponds to a term in the joint distribution. There is one function node connecting
each observed short-time energy spectrum to the set of n time-domain samples from which
it was possibly derived, and one function node connecting each time-domain sample to its
R predecessors in the autoregressive model.

Taking the logarithm of the joint distribution in (4) and expanding the norm, we obtain
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Figure 2: Factor graph for the model in (4) using a 3rd order autoregressive model, window
length of 4 and an overlap of 2 samples. Function nodes fi enforce the constraint that
the spectrogram of s match the observed spectrogram and function nodes gi enforce the
constraint due to the AR model

In this expression, k indexes frames, i indexes frequency, sk−n/2+j is the jth sample in the
kth frame, mki is the observed spectral energy at frequency i in frame k, and ar is the rth
autoregressive coefficient. The log-probability is quartic in the unknown speech samples,
s1, . . . , sN .

For simplicity of presentation above, we implicitly assumed a rectangular window for com-
puting the spectrogram. The extension to other types of windowing functions is straight-
forward. In the experiments described below, we have used a Hamming window, and ad-
justed the equations appropriately.

3 Inference Algorithms

The goal of probabilistic inference is to compute the posterior distribution over speech
waveforms and output a typical sample or a mode of the posterior as an estimate of the
reconstructed speech signal. To find a mode of the posterior, we have explored the use of
iterative conditional modes (ICM) [8], Markov chain Monte Carlo methods [9], variational
techniques [10], and direct application of numerical optimization methods for finding the
maximum a posteriori speech signal. In this paper, we report results on two of the faster
techniques, ICM and direct optimization.

ICM operates by iteratively selecting a variable and assigning the MAP estimate to the
variable while keeping all other variables fixed. This technique is guaranteed to increase
the joint probability of the speech waveform and the observed spectrum, at each step. At
every stage we set st to its most probable value, given the other speech samples and the
observed spectrogram:

s∗t = argmaxst
P (st|M, s \ st) = argmaxst

P (s,M).

This value can be found by extracting the terms in (5) that depend on st and optimizing the
resulting quartic equation with complex coefficients. To select an initial configuration of s,
we applied an inverse Fourier transform to the observed magnitude spectra M, assuming
a random phase. As will become evident in the experimental section of this paper, by
updating only a single sample at a time, ICM is prone to finding poor local minima.

We also implemented an inference algorithm that directly searches for a maximum of
log P (s,M) w.r.t. s, using conjugate gradients. The same derivatives used to find the ICM
updates were used in a conjugate gradient optimizer, which is capable of finding search di-
rections in the vector space s, and jointly adjusting all speech samples simultaneously. We
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Figure 3: Reconstruction results for an utterance from the WSJ database. (left) Original
signal and the corresponding spectrogram. (middle) Reconstruction using algorithm in
[1]. The spectrogram of the reconstruction fails to capture the finer details in the original
signal. (right) Reconstruction using our algorithm. The spectrogram captures most of the
fine details in the original signal.

initialized the conjugate gradient optimizer using the same procedure as described above
for ICM.

4 Experiments

We tested our algorithm using several randomly chosen utterances from the Wall street
journal corpus and the NIST TIMIT corpus. For all experiments we used a (Hamming)
window of length 256 and with an overlap of 128 samples. Where possible, we trained
a 12th order AR model of the speaker using an utterance different from the one used to
create the spectrogram. For convergence to a good local minima, it is important to down
weight the contribution of the AR-model for the first several iterations of conjugate gradient
optimization. In fact we ran the algorithm without the AR model until convergence and then
started the AR model with a weighting factor of 10. This way, the AR model operates on
the signal with very little error in the estimated spectrogram.

Along the frame boundaries, the variance of the prior (AR model) was set to a small value
to smooth down spikes that are not very probable apriori. Further, we also tried using
a cubic spline smoother along the boundaries as a post processing step for better sound
quality.

4.1 Evaluation

The quality of sound in the estimated signal is an important factor in determining the
effectiveness of the algorithm. To demonstrate improvement in the perceptual qual-
ity of sound we have placed audio files on the web; for demonstrations please check,
http://www.psi.toronto.edu/∼kannan/spectrogram. Our algorithm consistently outper-
formed the algorithm proposed in [1] both in terms of sound quality and in matching the
observed spectrogram . Fig. 3 shows reconstruction result for an utterance from WSJ data.

As expected, ICM typically converged to a poor local minima in a few iterations. In Fig. 4,



Algorithm dB gain (dB)
Griffin and Lim [1] 4.508
Our approach 7.900
(without AR model)
Our approach 8.172
(12th order AR model)
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Figure 4: SNR for different algorithms. Values reported are averages over 12 different
utterances. The graph on the right compares the log probability under ICM to our algorithm

a plot of the log probability as a function of number of iterations is shown for ICM and our
approach.

Analysis of signal to noise ratio of the true and estimated signal can be used to measure the
quality of the estimated signal, with high dB gain indicating good reconstruction.

As the input to our model does not include a phase component, we cannot measure SNR
by comparing the recovered signal to any true time domain signal. Instead, we define the
following approximation

SNR∗ =
∑

u

10 log
1

Eu

∑

w

∑

f |su,w(f)|2
∑

w

∑

f ( 1

Êu

|ŝu,w(f)| − 1

Eu

|su,w(f)|)2
(6)

where Eu =
∑

t s2
t is the total energy in utterance u. Summations over u, w and f are over

all utterances, windows and frequencies respectively.

The table in Fig. 4 reports dB gain averaged over several utterances for [1] and our algo-
rithm with and without an AR model.The gains for our algorithm are significantly better
than for the algorithm of Griffin and Lim. Moving the summation over w in (6) outside the
log produces similar quality estimates.

4.2 Time Scale Modification

As an example to show the potential utility of spectrogram inversion, we investigated an
extremely simple approach to time scale modification of speech signals. Starting from
the original signal we form the spectrogram (or else we may start with the spectrogram
directly), and upsample or downsample it along the time axis. (For example, to speed up
the speech by a factor of two we can discard every second column of the spectrogram.) In
spite of the fact that this approach does not use any phase information from the original
signal, it produces results with good perceptual sound quality. (Audio demonstrations are
available on the web site given earlier.)

5 Variational Inference

The framework described so far focuses on obtaining fixed point estimates for the time do-
main signal by maximizing the joint log probability of the model in (5). A more important
and potentially useful task is to find the posterior probability distribution P (s|M). As ex-
act inference of P (s|M) is intractable, we approximate it using a fully factored distribution
Q(s) where,



Q(s) =
∏

i

qi(si) (7)

Here we assume qi(si) ∼ N (µi, ηi). The goal of variational approximation is to infer the
parameters {µi, ηi},∀i by minimizing the KL divergence between the approximating Q
distribution and the true posterior P (s|M). This is equivalent to minimizing,
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∑

s

Q(s) log
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The entropy term H(qi) is easy to compute; log P (s,M) is a quartic in the random variable
si and the second term involves computing the expectation of it with respect to the Q
distribution. Simplifying and rearranging terms we get,
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Gi(µ, η) accounts for uncertainty in s. Estimates with high uncertainty (η) will tend to
have very little influence on other estimates during the optimization. Another interesting
aspect of this formulation is that by setting η = 0, the first and third terms in (9) vanish
and D takes a form similar to (5). In other words, in the absence of uncertainty we are in
essence finding fixed point estimates for s.

6 Conclusion

In this paper, we have introduced a simple probabilistic model of noisy spectrograms in
which the samples of the unknown time domain signal are represented directly as hidden
variables. But using a continuous gradient optimizer on these quantities, we are able to ac-
curately estimate the full speech signal from only the short time spectral magnitudes taken
in overlapping windows. Our algorithm’s reconstructions are substantially better, both in
terms of informal perceptual quality and measured signal to noise ratio, than the standard
approach of Griffin and Lim[1]. Furthermore, in our setting, it is easy to incorporate an
a-priori model of gross speech structure in the form of an AR-model, whose influence on
the reconstruction is user-tunable. Spectrogram inversion has many potential applications;
as an example we have demonstrated an extremely simple but nonetheless effective time
scale modification algorithm which subsamples the spectrogram of the original utterance
and then inverts.

In addition to improved experimental results, our approach highlights two important lessons
from the point of view of statistical signal processing algorithms. The first is that directly
representing quantities of interest and making inferences about them using the machinery of
probabilistic inference is a powerful approach that can avoid the pitfalls of less principled



iterative algorithms that maintain inconsistent estimates of redundant quantities, such as
phase and time-domain signals. The second is that coordinate descent optimization (ICM)
does not always yield the best results in problems with highly dependent hidden variables.
It is often tacitly assumed in the graphical models community, that the more structured
an approximation one can make when updating blocks of parameters simultaneously, the
better. In other words, practitioners often try to solve for as more variables as possible
conditioned on quantities that have just been updated. Our experience in this model has
shown that direct continuous optimization using gradient techniques allows all quantities
to adjust simultaneously and ultimately finds far superior solutions.

Because of its probabilistic nature, our model can easily be extended to include other pieces
of prior information, or to deal with missing or noisy spectrogram frames. This opens the
door to unified phase recovery and denoising algorithms, and to the possibility of perform-
ing sophisticated speech separation or denoising inside the pipeline of a standard speech
recognition system, in which typically only short time spectral magnitudes are available.
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