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Abstract

We introducebinary matrix factorization, a novel model for unsupervised ma-
trix decomposition. The decomposition is learned by fittinga non-parametric
Bayesian probabilistic model with binary latent variablesto a matrix of dyadic
data. Unlike bi-clustering models, which assign each row orcolumn to a single
cluster based on a categorical hidden feature, our binary feature model reflects the
prior belief that items and attributes can be associated with more than one latent
cluster at a time. We provide simple learning and inference rules for this new
model and show how to extend it to an infinite model in which thenumber of
features is not a priori fixed but is allowed to grow with the size of the data.

1 Distributed representations for dyadic data

One of the major goals of probabilistic unsupervised learning is to discover underlying or hidden
structure in a dataset by using latent variables to describea complex data generation process. In this
paper we focus ondyadic data: our domains have two finite sets of objects/entities and observa-
tions are made ondyads(pairs with one element from each set). Examples include sparse matrices
of movie-viewer ratings, word-document counts or product-customer purchases. A simple way to
capture structure in this kind of data is to do “bi-clustering” (possibly using mixture models) by
grouping the rows and (independently or simultaneously) the columns[6, 13, 9]. The modelling as-
sumption in such a case is that movies come inK types and viewers inL types and that knowing
the type of movie and type of viewer is sufficient to predict the response. Clustering or mixture
models are quite restrictive – their major disadvantage is that they do not admit a componential or
distributed representation because items cannot simultaneously belong to several classes. (A movie,
for example, might be explained as coming from a cluster of “dramas” or “comedies”; a viewer as
a “single male” or as a “young mother”.) We might instead prefer a model (e.g. [10, 5]) in which
objects can be assigned to multiple latent clusters: a moviemight be a drama and have won an Os-
car and have subtitles; a viewer might be single and female and a university graduate. Inference in
such models falls under the broad area offactorial learning(e.g. [7, 1, 3, 12]), in which multiple
interacting latent causes explain each observed datum.

In this paper, we assume that both data items (rows) and attributes (columns) have this kind of
componential structure: each item (row) has associated with it an unobserved vector ofK binary
features; similarly each attribute (column) has a hidden vector ofL binary features. Knowing the
features of the item and the features of the attribute are sufficient to generate (before noise) the
response at that location in the matrix. In effect, we are factorizing a real-valued data (response)
matrixX into (a distribution defined by) the productUWV>, whereU andV are binary feature
matrices, andW is a real-valued weight matrix. Below, we develop thisbinary matrix factorization
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Figure 1:(A) The graphical model representation of the linear-GaussianBMF model. The concen-
tration parameter and Beta weights for the columns ofX are represented by the symbols� and�l.
(B) BMF shown pictorally.

(BMF) model using Bayesian non-parametric priors over the number and values of the unobserved
binary features and the unknown weights.

2 BMF model description

Binary matrix factorization is a model of anI � J dyadic data matrixX with exchangeable rows
and columns. The entries ofX can be real-valued, binary, or categorial; BMF models suitable
for each type are described below. Associated with each row is a latent binary feature vectorui;
similarly each column has an unobserved binary vectorvj . The primary parameters are represented
by a matrixW of interaction weights.X is generated by a fixed observation processf(�) applied
(elementwise) to the linear inner product of the features and weights, which is the “factorization” or
approximation of the data: X j U;V;W � f(UWV>;�) (1)

where� are extra parameters specific to the model variant. Three possible parametric forms for
the noise (observation) distributionf are: Gaussian, with meanUWV> and covariance(1=�) I;
logistic, with mean1= (1 + exp(�UWV>)); and Poisson, with mean (and variance)UWV>.
Other parametric forms are also possible. For illustrativepurposes, we will use the linear-Gaussian
model throughout this paper; this can be thought of as a two-sided version of the linear-Gaussian
model found in [5].

To complete the description of the model, we need to specify prior distributions over the feature
matricesU;V and the weightsW. We adopt the same priors over binary matrices as previously
described in [5]. For finite sized matricesU with I rows andK columns, we generate a bias�k
independently for each columnk using a Beta prior (denotedB) and then conditioned on this bias
generate the entries in columnk independently from a Bernoulli with mean�k.�k j �;K � B (�=K; �) � j a�; b� � G (a�; b�)U j � � IYi=1 KYk=1 �uikk (1� �k)1�uik = KYk=1 �nkk (1� �k)I�nk
wherenk = Pi uik. The hyperprior on the concentration� is a Gamma distribution (denotedG),
whose shape and scale hyperparameters control the expectedfraction of zeros/ones in the matrix.
The biases� are easily integrated out, which creates dependencies between the rows, although
they remain exchangeable. The resulting prior depends onlyon the numbernk of active features
in each column. An identical prior is used onV, with J rows andL columns, but with different
concentration prior�. The variable� was set to1 for all experiments.

The appropriate prior distribution over weights depends onthe observation distributionf(�). For
the linear-Gaussian variant, a convenient prior onW is a matrix normal with prior meanWo and



covariance(1=�) I. The scale� of the weights and output precision� (if needed) have Gamma
hyperpriors: W jWo; � � N (Wo; (1=�) I)� j a�; b� � G (a�; b�)� j a�; b� � G (a�; b�)
In certain cases, when the prior on the weights is conjugate to the output distribution modelf , the
weights may be analytically integrated out, expressing themarginal distribution of the dataXjU;V
only in terms of the binary features. This is true, for example, when we place a Gaussian prior on
the weights and use a linear-Gaussian output process.

Remarkably, the Beta-Bernoulli prior distribution overU (and similarlyV) can easily be extended
to the case whereK !1, creating a distribution over binary matrices with a fixed numberI of
exchangeable rows and a potentially infinite number of columns (although the expected number of
columns which are not entirely zero remains finite). Such a distribution, the Indian Buffet Process
(IBP) was described by [5] and is analogous to the Dirichlet process and the associated Chinese
restaurant process (CRP) [11]. Fortunately, as we will see,inference with this infinite prior is not
only tractable, but is also nearly as efficient as the finite version.

3 Inference of features and parameters

As with many other complex hierarchical Bayesian models, exact inference of the latent variablesU
andV in the BMF model is intractable (ie there is no efficient way tosample exactly from the pos-
terior nor to compute its exact marginals). However, as withmany other non-parametric Bayesian
models, we can employ Markov Chain Monte Carlo (MCMC) methods to create an iterative proce-
dure which, if run for sufficiently long, will produce correct posterior samples.

3.1 Finite binary latent feature matrices

The posterior distribution of a single entry inU (orV) given all other model parameters is propor-
tional to the product of the conditional prior and the data likelihood. The conditional prior comes
from integrating out the biases� in the Beta-Bernoulli model and is proportional the number of
active entries in other rows of the same column plus a term fornew activations. Gibbs sampling for
single entries ofU (orV) can be done using the following updates:P (uik = 1jU�ik;V;W;X) = C (�=K + n�i;k)P (XjU�ik ; uik = 1;V;W) (2)P (uik = 0jU�ik;V;W;X) = C (� + (I � 1)� n�i;k)P (XjU�ik ; uik = 0;V;W) (3)

wheren�i;k =Ph6=i uhk,U�ik excludes entryik, andC is a normalizing constant. (Conditioning
on�;K and� is implicit.) When conditioning onW, we only need to calculate the ratio of likeli-
hoods corresponding to rowi. (Note that this is not the case when the weights are integrated out.)
This ratio is a simple function of the model’s predictionsx̂+ij =Phl uihvjlwhl (whenuik = 1) andx̂�ij =Phl uihvjlwhl (whenuik = 0). In the linear-Gaussian case:log P (uik = 1jU�ik;V;W;X)P (uik = 0jU�ik;V;W;X) = log (�=K + n�i;k)(� + (I � 1)� n�i;k) � 12Xj �ij �(xij � x̂+ij)2 � (xij � x̂�ij)2�
In the linear-Gaussian case, we can easily derive analogousGibbs sampling updates for the weightsW and hyperparameters. To simplify the presentation, we consider a “vectorized” representation of
our variables. Letx be anIJ column vector taken column-wise fromX,w be aKL column vector
taken column-wise fromW andA be aIJ � KL binary matrix which is the kronecker productV 
U. (In “Matlab notation”,x = X(:);w =W(:) andA = kron(V;U).) In this notation, the
data distribution is written as:xjA;w; � � N (Aw; (1=�) I). Given values forU andV, samples
can be drawn forw, �, and� using the following posterior distributions (where conditioning onwo; �; �; a�; b�; a�; b� is implicit):w j x;A � N �(�A>A+ �I)�1 (�A>x+ �wo) ; (�A>A+ �I)�1�



� j w � G �a� +KL=2; �b� + 12 (w �wo)> (w �wo)��� j x;A;w � G �a� + IJ=2; �b� + 12 (x�Aw)> (x�Aw)��
Note that we do not have to explicitly compute the matrixA. For computing the posterior of linear-
Gaussian weights, the matrixA>A can be computed asA>A = kron(V>V;U>U). Similarly,
the expressionA>x is constructed by computingU>XV and taking the elements column-wise.

3.2 Infinite binary latent feature matrices

One of the most elegant aspects of non-parametric Bayesian modeling is the ability to use a prior
which allows a countably infinite number of latent features.The number of instantiated features is
automatically adjusted during inference and depends on theamount of data and how many features
it supports. Remarkably, we can do MCMC sampling using such infinite priors with essentially no
computational penalty over the finite case. To derive these updates (e.g. for rowi of the matrixU),
it is useful to consider partitioning the columns ofU into two sets as shown below.
Let set A have at least one non-zero entry
in rows other thani. Let set B be all other
columns, including the set of columns where
the only non-zero entries are found in rowi
and the countably infinite number of all-zero
columns. Sampling values for elements in rowi of set A given everything else is straightfor-
ward, and involves Gibbs updates almost iden-
tical to those in the finite case handled by equa-
tions (2) and (3); asK!1 andk in set A we
get:

set A set B
0 1 0 0 1 0 0 0 0 0 � � �
0 0 1 0 0 0 0 0 0 0 � � �
1 1 0 0 1 0 0 0 0 0 � � �
1 0 0 1 1 0 0 0 0 0 � � �
1 1 0 0 1 0 1 0 1 0 rowi
0 1 0 0 0 0 0 0 0 0 � � �
0 0 0 1 0 0 0 0 0 0 � � �
1 0 0 0 1 0 0 0 0 0 � � �P (uik = 1jU�ik ;V;W) = C � n�i;k P (XjU�ik ; uik = 1;V;W) (4)P (uik = 0jU�ik ;V;W) = C � (� + I � 1� n�i;k)P (XjU�ik; uik = 0;V;W) (5)

When sampling new values for set B, the columns are exchangeable, and so we are really only
interested in the number of entriesn?B in set B which will be turned on in rowi. Sampling
the number of entries set to1 can be done with Metropolis-Hastings updates. LetJ (n?B jnB) =
Poisson(n?B j�= (� + I � 1)) be the proposal distribution for a move which replaces the currentnB
active entries withn?B active entries in set B. The reverse proposal isJ (nB jn?B). The acceptance
probability ismin �1; rnB!n?B�, wherernB!n?B isP (n?B jX) J (nB jn?B)P (nB jX) J (n?B jnB) = P (Xjn?B)Poisson(n?B j�= (� + I � 1))J (nB jn?B)P (XjnB)Poisson(nB j�= (� + I � 1))J (n?B jnB) = P (Xjn?B)P (XjnB) (6)

This assumes a conjugate situation in which the weightsW are explicitly integrated out of the
model to compute the marginal likelihoodP (Xjn?B). In the non-conjugate case, a more compli-
cated proposal is required. Instead of proposingn?B , we jointly proposen?B and associated feature
parametersw?B from their prior distributions. In the linear-Gaussian model, wherew?B is a set of
weights for features in set B, the proposal distribution is:J (n?B ;w?B jnB ;wB) = Poisson(n?B j�= (� + I � 1))Normal(w?B jn?B ; �) (7)

We need actually sample only the finite portion ofw?B whereuik = 1. As in the conjugate case, the
acceptance ratio reduces to the ratio of data likelihoods:rnB ;wB!n?B;w?B = P (Xjn?B ;w?B)P (XjnB ;wB) (8)

3.3 Faster mixing transition proposals

The Gibbs updates described above for the entries ofU,V andW are the simplest moves we could
make in a Markov Chain Monte Carlo inference procedure for the BMF model. However, these



limited local updates may result in extremely slow mixing. In practice, we often implement larger
moves in indicator space using, for example, Metropolis-Hastings proposals on multiple features
for row i simultaneously. For example, we can propose new values for several columns in rowi
of matrixU by sampling feature values independently from their conditional priors. To compute
the reverse proposal, we imagine forgetting the current configuration of those features for rowi
and compute the probability under the conditional prior of proposing the current configuration. The
acceptance probability of such a proposal is (the maximum ofunity and) the ratio of likelihoods
between the new proposed configuration and the current configuration.

Split-merge moves may also be useful for efficiently sampling from the posterior distribution of
the binary feature matrices. Jain and Neal [8] describe split-merge algorithms for Dirichlet process
mixture models with non-conjugate component distributions. We have developed and implemented
similar split-merge proposals for binary matrices with IBPpriors. Due to space limitations, we
present here only a sketch of the procedure. Two nonzero entries inU are selected uniformly at
random. If they are in the same column, we propose splitting that column; if they are in different
columns, we propose merging their columns. The key difference between this algorithm and the Jain
and Neal algorithm is that the binary features are not constrained to sum to unity in each row. Our
split-merge algorithm also performs restricted Gibbs scans on columns ofU to increase acceptance
probability.

3.4 Predictions

A major reason for building generative models of data is to beable to impute missing data values
given some observations. In the linear-Gaussian model, thepredictive distribution at each iteration
of the Markov chain is a Gaussian distribution. The interaction weights can be analytically integrated
out at each iteration, also resulting in a Gaussian posterior, removing sampling noise contributed by
having the weights explicitly represented. Computing the exact predictive distribution, however,
conditional only on the model hyperparameters, is analytically intractable: it requires integrating
over all binary matricesU andV, and all othernuisanceparameters (e.g., the weights and preci-
sions). Instead we integrate over these parameters implicitly by averaging predictive distributions
from many MCMC iterations. This posterior, which is conditional only on the observed data and hy-
perparameters, is highly complex, potentially multimodal, and non-linear function of the observed
variables.

By averaging predictive distributions, our algorithm implicitly integrates overU andV. In our
experiments, we show samples from the posteriors ofU andV to help explain what the model is
doing, but we stress that the posterior may have significant mass on many possible binary matrices.
The number of features and their degrees of overlap will varyover MCMC iterations. Such variation
will depend, for example, on the current value of� and� (higher values will result in more features)
and precision values (higher weight precision results in less variation in weights).

4 Experiments

4.1 Modified “bars” problem

A toy problem commonly used to illustrate additive feature or multiple cause models is thebars
problem([2, 12, 1]). Vertical and horizontal bars are combined in some way to generate data sam-
ples. The goal of the illustration is to show recovery of the latent structure in the form of bars. We
have modified the typical usage of bars to accommodate the linear-Gaussian BMF with infinite fea-
tures. Data consists ofI vectors of size82 where each vector can be reshaped into a square image.
The generation process is as follows: sinceV has the same number of rows as the dimension of the
images,V is fixed to be a set of vertical and horizontal bars (when reshaped into an image).U is
sampled from the IBP, and global precisions� and� are set to1=2. The weightsW are sampled
from zero mean Gaussians. Model estimates ofU andV were initialized from an IBP prior.

In Figure 2 we demonstrate the performance of the linear-Gaussian BMF on the bars data. We train
the BMF with 200 training examples of the type shown in the toprow in Figure 2. Some examples
have their bottom halves labeledmissingand are shown in the Figure with constant grey values. To
handle this, we resample their values at each iteration of the Markov chain. The bottom row shows
the expected reconstruction using MCMC samples ofU, V, andW. Despite the relatively high



noise levels in the data, the model is able to capture the complex relationships between bars and
weights. The reconstruction of vertical bars is very good. The reconstruction of horizontal bars is
good as well, considering that the model has no information regarding the existence of horizontal
bars on the bottom half.

(A) Data samples

(B) Noise-free data

(C) Initial reconstruction

(D) Mean reconstruction

(E) Nearest neighbour

Figure 2: Bars reconstruction.(A) Bars randomly sampled from the complete dataset. The bottom
half of these bars were removed and labeledmissingduring learning.(B) Noise-free versions of the
same data.(C) The initial reconstruction. The missing values have been set to their expected value,0, to highlight the missing region.(D) The average MCMC reconstruction of the entire image. (E)
Based solely on the information in the top-half of the original data, these are the noise-free nearest
neighbours in pixel space.

V VW>
Figure 3: Bars features. The top row shows values ofV andWV> used to generate the data. The
second row shows a sample ofV andWV> from the Markov chain.WV> can be thought of as a
set of basis images which can be added together with binary coefficients (U) to create images.

By examining the features captured by the model, we can understand the performance just described.
In Figure 3 we show the generating, ortrue, values ofV andWV> along with one sample of those
features from the Markov chain. Because the model is generated by adding multipleWV> basis
images shown on the right of Figure 3, multiple bars are used in each image. This is reflected in the
captured features. The learnedWV> are fairly similar to the generatingWV>, but the former are
composed of overlapping bar structure (learnedV).

4.2 Digits

In Section 2 we briefly stated that BMF can be applied to data models other than the linear-Gaussian
model. We demonstrate this with alogistic BMF applied to binarized images of handwritten digits.
We train logistic BMF with 100 examples each of digits1, 2, and3 from the USPS dataset. In
the first five rows of Figure 4 we again illustrate the ability of BMF to impute missing data values.
The top row shows all 16 samples from the dataset which had their bottom halves labeledmissing.
Missing values are filled-in at each iteration of the Markov chain. In the third and fourth rows we
show the mean and mode (P (xij = 1) > 0:5) of the BMF reconstruction. In the bottom row we
have shown the nearest neighbors, in pixel space, to the training examples based only on the top
halves of the original digits.

In the last three rows of Figure 4 we show the features captured by the model. In row F, we show
the average image of the data which have each feature inU on. It is clear that some row features
have distinct digit forms and others are overlapping. In rowG, the basis imagesWV> are shown.
By adjusting the features that are non-zero in each row ofU, images are composed by adding basis
images together. Finally, in row H we showV. These pixel features mask out different regions in



pixel space, which are weighted together to create the basisimages. Note that there areK features
in rows F and G, andL features in row H.

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

Figure 4: Digits reconstruction.(A) Digits randomly sampled from the complete dataset. The
bottom half of these digits were removed and labeledmissingduring learning.(B) The data shown
to the algorithm. The top half is the original data value.(C) The mean of the reconstruction for
the bottom halves.(D) The mode reconstruction of the bottom halves.(E) The nearest neighbours
of the original data are shown in the bottom half, and were found based solely on the information
from the top halves of the images.(F) The average of all digits for eachU feature.(G) The featureWV> reshaped in the form of digits. By adding these features together, which theU features do,
reconstructions of the digits is possible.(H) V reshaped into the form of digits. The first image
represents a bias feature.

4.3 Gene expression data

Gene expression data is able to exhibit multiple and overlapping clusters simultaneously; finding
models for such complex data is an interesting and active research area ([10], [13]). The plaid
model[10], originally introduced for analysis of gene expression data, can be thought of as a non-
Bayesian special case of our model in which the matrixW is diagonal and the number of bi-
nary features is fixed. Our goal in this experiment is merely to illustrate qualitatively the ability
of BMF to find multiple clusters in gene expression data, someof which are overlapping, others
non-overlapping. The data in this experiment consists of rows corresponding to genes and columns
corresponding to patients; the patients suffer from one of two types of acute Leukemia [4]. In Figure
5 we show the factorization produced by the final state in the Markov chain. The rows and columns
of the data and its expected reconstruction are ordered suchthat contiguous regions inX were ob-
servable. Some of the many feature pairings are highlighted. The BMF clusters consist of broad,
overlapping clusters, and small, non-overlapping clusters. One of the interesting possibilities of us-
ing BMF to model gene expression data would be to fix certain columns ofU orV with knowledge
gained from experiments or literature, and to allow the model to add new features that help explain
the data in more detail.

5 Conclusion

We have introduced a new model,binary matrix factorization, for unsupervised decomposition of
dyadic data matrices. BMF makes use of non-parametric Bayesian methods to simultaneously dis-
cover binary distributed representations of both rows and columns of dyadic data. The model ex-
plains each row and column entity using a componential code composed of multiple binary latent
features along with a set of parameters describing how the features interact to create the observed
responses at each position in the matrix. BMF is based on a hierarchical Bayesian model and can be
naturally extended to make use of a prior distribution whichpermits an infinite number of features,
at very little extra computational cost. We have given MCMC algorithms for posterior inference
of both the binary factors and the interaction parameters conditioned on some observed data, and



(A) (B)

Figure 5: Gene expression results.(A) The top-left isX sorted according to contiguous features in
the finalU andV in the Markov chain. The bottom-left isV> and the top-right isU. The bottom-
right isW. (B) The same as(A), but the expected value ofX, X̂ = UWV>. We have highlighted
regions that have bothuik andvjl on. For clarity, we have only shown the (at most) two largest
contiguous regions for each feature pair.

demonstrated the model’s ability to capture overlapping structure and model complex joint distribu-
tions on a variety of data. BMF is fundamentally different from bi-clustering algorithms because of
its distributed latent representation and from factorial models with continuous latent variables which
interact linearly to produce the observations. This allowsa much richer latent structure, which we
believe makes BMF useful for many applications beyond the ones we outlined in this paper.
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