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0.1 multidimensional gaussian

a d-dimensional multidimensional gaussian (normal) density for x is:

N (µ,Σ) = (2π)−d/2|Σ|−1/2 exp
[
−1

2
(x− µ)TΣ−1(x− µ)

]
(1)

it has entropy:

S =
1
2

log2

[
(2πe)d|Σ|

]
− const bits (2)

where Σ is a symmetric postive semi-definite covariance matrix and the
(unfortunate) constant is the log of the units in which x is measured over
the “natural units”

0.2 linear functions of a normal vector

no matter how x is distributed,

E[Ax + y] = A(E[x]) + y (3a)

Covar[Ax + y] = A(Covar[x])AT (3b)

in particular this means that for normal distributed quantities:

x ∼ N (µ,Σ)⇒ (Ax + y) ∼ N
(
Aµ+ y,AΣAT

)
(4a)

x ∼ N (µ,Σ)⇒ Σ−1/2(x− µ) ∼ N (0, I) (4b)

x ∼ N (µ,Σ)⇒ (x− µ)TΣ−1(x− µ) ∼ χ2
n (4c)
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0.3 marginal and conditional distributions

let the vector z = [xTyT ]T be normally distributed according to:

z =
[
x
y

]
∼ N

([
a
b

]
,

[
A C
CT B

])
(5a)

where C is the (non-symmetric) cross-covariance matrix between x and y
which has as many rows as the size of x and as many columns as the size of
y. then the marginal distributions are:

x ∼ N (a,A) (5b)
y ∼ N (b,B) (5c)

and the conditional distributions are:

x|y ∼ N
(
a + CB−1(y − b),A−CB−1CT

)
(5d)

y|x ∼ N
(
b + CTA−1(x− a),B−CTA−1C

)
(5e)

0.4 multiplication

the multiplication of two gaussian functions is another gaussian function
(although no longer normalized). in particular,

N (a,A) · N (b,B) ∝ N (c,C) (6a)

where

C =
(
A−1 + B−1

)−1 (6b)

c = CA−1a + CB−1b (6c)

amazingly, the normalization constant zc is Gaussian in either a or b:

zc = (2π)−d/2|C|+1/2|A|−1/2|B|−1/2 exp
[
−1

2
(aTA−1a + bTB−1b− cTC−1c)

]
(6d)

zc(a) ∼ N
(
(A−1CA−1)−1(A−1CB−1)b, (A−1CA−1)−1

)
(6e)

zc(b) ∼ N
(
(B−1CB−1)−1(B−1CA−1)a, (B−1CB−1)−1

)
(6f)
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0.5 quadratic forms

the expectation of a quadratic form under a gaussian is another quadratic
form (plus an annoying constant). in particular, if x is gaussian distributed
with mean m and variance S then,∫

x

(x− µ)TΣ−1(x− µ)N (m,S) dx

= (µ−m)TΣ−1(µ−m) + Tr
[
Σ−1S

]
(7a)

if the original quadratic form has a linear function of x the result is still
simple:∫

x

(Wx− µ)TΣ−1(Wx− µ)N (m,S) dx

= (µ−Wm)TΣ−1(µ−Wm) + Tr
[
WTΣ−1WS

]
(7b)

0.6 convolution

the convolution of two gaussian functions is another gaussian function (al-
though no longer normalized). in particular,

N (a,A) ∗ N (b,B) ∝ N (a + b,A + B) (8)

this is a direct consequence of the fact that the Fourier transform of a gaus-
sian is another gaussian and that the multiplication of two gaussians is still
gaussian.

0.7 Fourier transform

the (inverse)Fourier transform of a gaussian function is another gaussian
function (although no longer normalized). in particular,

F [N (a,A)] ∝ N
(
jA−1a,A−1

)
(9a)

F−1 [N (b,B)] ∝ N
(
−jB−1b,B−1

)
(9b)

where j =
√
−1
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0.8 constrained maximization

the maximum over x of the quadratic form:

µTx− 1
2
xTA−1x (10a)

subject to the J conditions cj(x) = 0 is given by:

Aµ+ ACΛ, Λ = −4(CTAC)CTAµ (10b)

where the jth column of C is ∂cj(x)/∂x

4


