gaussian identities

sam roweis
(revised July 1999)

0.1 multidimensional gaussian

a d-dimensional multidimensional gaussian (normal) density for \mathbf{x} is:

$$
\begin{equation*}
\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=(2 \pi)^{-d / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right] \tag{1}
\end{equation*}
$$

it has entropy:

$$
\begin{equation*}
S=\frac{1}{2} \log _{2}\left[(2 \pi e)^{d}|\boldsymbol{\Sigma}|\right]-\text { const bits } \tag{2}
\end{equation*}
$$

where $\boldsymbol{\Sigma}$ is a symmetric postive semi-definite covariance matrix and the (unfortunate) constant is the \log of the units in which \mathbf{x} is measured over the "natural units"

0.2 linear functions of a normal vector

no matter how x is distributed,

$$
\begin{align*}
\mathrm{E}[\mathbf{A} \mathbf{x}+\mathbf{y}] & =\mathbf{A}(\mathrm{E}[\mathbf{x}])+\mathbf{y} \tag{3a}\\
\operatorname{Covar}[\mathbf{A} \mathbf{x}+\mathbf{y}] & =\mathbf{A}(\operatorname{Covar}[\mathbf{x}]) \mathbf{A}^{T} \tag{3b}
\end{align*}
$$

in particular this means that for normal distributed quantities:

$$
\begin{align*}
& \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow(\mathbf{A x}+\mathbf{y}) \sim \mathcal{N}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{y}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T}\right) \tag{4a}\\
& \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow \boldsymbol{\Sigma}^{-1 / 2}(\mathbf{x}-\boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \tag{4b}\\
& \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \sim \chi_{n}^{2} \tag{4c}
\end{align*}
$$

0.3 marginal and conditional distributions

let the vector $\mathbf{z}=\left[\mathbf{x}^{T} \mathbf{y}^{T}\right]^{T}$ be normally distributed according to:

$$
\mathbf{z}=\left[\begin{array}{l}
\mathbf{x} \tag{5a}\\
\mathbf{y}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{A} & \mathbf{C} \\
\mathbf{C}^{T} & \mathbf{B}
\end{array}\right]\right)
$$

where \mathbf{C} is the (non-symmetric) cross-covariance matrix between \mathbf{x} and \mathbf{y} which has as many rows as the size of \mathbf{x} and as many columns as the size of \mathbf{y}. then the marginal distributions are:

$$
\begin{align*}
& \mathbf{x} \sim \mathcal{N}(\mathbf{a}, \mathbf{A}) \tag{5b}\\
& \mathbf{y} \sim \mathcal{N}(\mathbf{b}, \mathbf{B}) \tag{5c}
\end{align*}
$$

and the conditional distributions are:

$$
\begin{align*}
& \mathbf{x} \mid \mathbf{y} \sim \mathcal{N}\left(\mathbf{a}+\mathbf{C B}^{-1}(\mathbf{y}-\mathbf{b}), \mathbf{A}-\mathbf{C B}^{-1} \mathbf{C}^{T}\right) \tag{5~d}\\
& \mathbf{y} \mid \mathbf{x} \sim \mathcal{N}\left(\mathbf{b}+\mathbf{C}^{T} \mathbf{A}^{-1}(\mathbf{x}-\mathbf{a}), \mathbf{B}-\mathbf{C}^{T} \mathbf{A}^{-1} \mathbf{C}\right) \tag{5e}
\end{align*}
$$

0.4 multiplication

the multiplication of two gaussian functions is another gaussian function (although no longer normalized). in particular,

$$
\begin{equation*}
\mathcal{N}(\mathbf{a}, \mathbf{A}) \cdot \mathcal{N}(\mathbf{b}, \mathbf{B}) \propto \mathcal{N}(\mathbf{c}, \mathbf{C}) \tag{6a}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{C} & =\left(\mathbf{A}^{-1}+\mathbf{B}^{-1}\right)^{-1} \tag{6b}\\
\mathbf{c} & =\mathbf{C A}^{-1} \mathbf{a}+\mathbf{C B}^{-1} \mathbf{b} \tag{6c}
\end{align*}
$$

amazingly, the normalization constant z_{c} is Gaussian in either \mathbf{a} or \mathbf{b} :

$$
\begin{align*}
z_{c} & =(2 \pi)^{-d / 2}|\mathbf{C}|^{+1 / 2}|\mathbf{A}|^{-1 / 2}|\mathbf{B}|^{-1 / 2} \exp \left[-\frac{1}{2}\left(\mathbf{a}^{T} \mathbf{A}^{-1} \mathbf{a}+\mathbf{b}^{T} \mathbf{B}^{-1} \mathbf{b}-\mathbf{c}^{T} \mathbf{C}^{-1} \mathbf{c}\right)\right] \\
z_{c}(\mathbf{a}) & \sim \mathcal{N}\left(\left(\mathbf{A}^{-1} \mathbf{C} \mathbf{A}^{-1}\right)^{-1}\left(\mathbf{A}^{-1} \mathbf{C B}^{-1}\right) \mathbf{b},\left(\mathbf{A}^{-1} \mathbf{C A}^{-1}\right)^{-1}\right) \tag{6d}\\
z_{c}(\mathbf{b}) & \sim \mathcal{N}\left(\left(\mathbf{B}^{-1} \mathbf{C B}^{-1}\right)^{-1}\left(\mathbf{B}^{-1} \mathbf{C} \mathbf{A}^{-1}\right) \mathbf{a},\left(\mathbf{B}^{-1} \mathbf{C B}^{-1}\right)^{-1}\right) \tag{6f}
\end{align*}
$$

0.5 quadratic forms

the expectation of a quadratic form under a gaussian is another quadratic form (plus an annoying constant). in particular, if \mathbf{x} is gaussian distributed with mean \mathbf{m} and variance \mathbf{S} then,

$$
\begin{align*}
\int_{\mathbf{x}}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \mathcal{N}(\mathbf{m}, \mathbf{S}) d \mathbf{x} & \\
& =(\boldsymbol{\mu}-\mathbf{m})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}-\mathbf{m})+\operatorname{Tr}\left[\boldsymbol{\Sigma}^{-1} \mathbf{S}\right] \tag{7a}
\end{align*}
$$

if the original quadratic form has a linear function of \mathbf{x} the result is still simple:

$$
\begin{align*}
& \int_{\mathbf{x}}(\mathbf{W} \mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{W} \mathbf{x}-\boldsymbol{\mu}) \mathcal{N}(\mathbf{m}, \mathbf{S}) d \mathbf{x} \\
&=(\boldsymbol{\mu}-\mathbf{W} \mathbf{m})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}-\mathbf{W m})+\operatorname{Tr}\left[\mathbf{W}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{W S}\right] \tag{7b}
\end{align*}
$$

0.6 convolution

the convolution of two gaussian functions is another gaussian function (although no longer normalized). in particular,

$$
\begin{equation*}
\mathcal{N}(\mathbf{a}, \mathbf{A}) * \mathcal{N}(\mathbf{b}, \mathbf{B}) \propto \mathcal{N}(\mathbf{a}+\mathbf{b}, \mathbf{A}+\mathbf{B}) \tag{8}
\end{equation*}
$$

this is a direct consequence of the fact that the Fourier transform of a gaussian is another gaussian and that the multiplication of two gaussians is still gaussian.

0.7 Fourier transform

the (inverse)Fourier transform of a gaussian function is another gaussian function (although no longer normalized). in particular,

$$
\begin{align*}
\mathcal{F}[\mathcal{N}(\mathbf{a}, \mathbf{A})] & \propto \mathcal{N}\left(j \mathbf{A}^{-1} \mathbf{a}, \mathbf{A}^{-1}\right) \tag{9a}\\
\mathcal{F}^{-1}[\mathcal{N}(\mathbf{b}, \mathbf{B})] & \propto \mathcal{N}\left(-j \mathbf{B}^{-1} \mathbf{b}, \mathbf{B}^{-1}\right) \tag{9b}
\end{align*}
$$

where $j=\sqrt{-1}$

0.8 constrained maximization

the maximum over \mathbf{x} of the quadratic form:

$$
\begin{equation*}
\boldsymbol{\mu}^{T} \mathbf{x}-\frac{1}{2} \mathbf{x}^{T} \mathbf{A}^{-1} \mathbf{x} \tag{10a}
\end{equation*}
$$

subject to the J conditions $c_{j}(\mathbf{x})=0$ is given by:

$$
\begin{equation*}
\mathbf{A} \boldsymbol{\mu}+\mathbf{A C} \boldsymbol{\Lambda}, \quad \boldsymbol{\Lambda}=-4\left(\mathbf{C}^{T} \mathbf{A C}\right) \mathbf{C}^{T} \mathbf{A} \boldsymbol{\mu} \tag{10b}
\end{equation*}
$$

where the j th column of \mathbf{C} is $\partial c_{j}(\mathbf{x}) / \partial \mathbf{x}$

