Lecture 7:

Fully Observed Trees

Sam Roweis

January 26, 2004

- Undirected trees are connected, acyclic graphs with exactly (D-1) edges if there are D nodes (variables).
- For undirected trees, the cliques are all pairs of connected nodes.

$$
p(\mathbf{x})=\frac{1}{Z} \prod_{i} \psi_{i}\left(x_{i}, x_{\pi_{i}}\right)
$$

where we can make $Z=1$ with the choice $\psi_{i}=p\left(x_{i} \mid x_{\pi_{i}}\right)$ except
for one clique involving the root: $\psi_{j}=p\left(x_{r}\right) p\left(x_{j} \mid x_{\pi_{j}}\right)$

- Trees have no "explaining-away" (converging arrows).

Therefore, d-separation and regular separation are equivalent.

- Directed and undirected trees are equivalent and the choice of root is arbitrary (for fully observed models).
- Another characterization of trees: there is exactly one path between any pair of nodes (without doubling back).

Directed Tree Graphical Models

- Directed trees are DAGMs in which each variable x_{i} has exactly one other variable as its parent $x_{\pi_{i}}$ except the "root" $x_{\text {root }}$ which has no parents. Thus, the probability of a variable taking on a certain value depends only on the value of its parent:

$$
p(\mathbf{x})=p\left(x_{\mathrm{root}}\right) \prod_{i \neq \mathrm{root}} p\left(x_{i} \mid x_{\pi_{i}}\right)
$$

- Trees are the next step up from assuming independence.

Instead of considering variables in isolation, consider them in pairs.

NB: each node (except root) has exactly one parent, but nodes may have more than one child.

- Notation:
$\mathbf{y}_{i} \equiv$ a node x_{i} and its single parent $x_{\pi_{i}}$.
$\mathbf{V}_{i} \equiv$ set of joint configurations of node i and its parent $x_{\pi_{i}}$
($\mathbf{y}_{\text {root }} \equiv x_{\text {root }}$ and $\mathbf{V}_{\text {root }} \equiv \mathbf{v}_{\text {root }}$)
- Directed model likelihood:

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\sum_{n} \log p\left(\mathbf{x}^{n}\right)=\sum_{n}\left[\log p_{r}\left(x_{r}^{n}\right)+\sum_{i \neq r} \log p\left(x_{i}^{n} \mid x_{\pi_{i}}^{n}\right)\right] \\
& =\sum_{n} \sum_{i} \sum_{\mathbf{v} \in \mathbf{V}_{i}}\left[\mathbf{y}_{i}^{n}=\mathbf{v}\right] \log p_{i}(\mathbf{v}) \quad \text { indicator trick } \\
& =\sum_{i} \sum_{\mathbf{v} \in \mathbf{V}_{i}} N_{i}(\mathbf{v}) \log p_{i}(\mathbf{v})
\end{aligned}
$$

where $N_{i}(\mathbf{v})=\sum_{n}\left[\mathbf{y}_{i}^{n}=\mathbf{v}\right]$ and $p_{i}\left(\mathbf{v}_{i}\right)=p\left(x_{i} \mid x_{\pi_{i}}\right)$.

- Undirected model likelihood:

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\sum_{n} \log \prod_{i} \psi_{i}\left(\mathbf{y}_{i}^{n}\right) \\
& =\sum_{n} \sum_{i} \sum_{\mathbf{v} \in \mathbf{V}_{i}}\left[\mathbf{y}_{i}^{n}=\mathbf{v}\right] \log \psi_{i}(\mathbf{v}) \\
& =\sum_{i} \sum_{\mathbf{v} \in \mathbf{V}_{i}} N_{i}(\mathbf{v}) \log \psi_{i}(\mathbf{v})
\end{aligned}
$$

where $N_{i}(\mathbf{y})=\sum_{n}\left[\mathbf{y}_{i}^{n}=\mathbf{y}\right]$ and $\psi_{i}\left(\mathbf{y}_{i}\right)=p\left(x_{i} \mid x_{\pi_{i}}\right)$.
(Except for one clique involving the root: $\psi_{j}=p\left(x_{r}\right) p\left(x_{j} \mid x_{\pi_{j}}\right)$)

- Directed and undirected likelihoods are the same!
- Trees are in the exponential family with \mathbf{y}_{i} as sufficient statistics.
- What about the tree structure (links)?

How do we know which nodes to make parents of which?

- Bold idea: how can we also learn the optimal structure? In principle, we could search all combinatorial structures, for each compute the ML parameters, and take the best one.
- But is there a better way? Yes. It turns out that structure learning in tree models can be converted to a good old computer science problem: maximum weight spanning tree.

Maximum Likelihood Parameters Given Structure

- Trees are just a special case of fully observed graphical models.
- For discrete data x_{i} with values v_{i}, each node stores a conditional probability table (CPT) over its values given its parent's value. The ML parameter estimates are just the empirical histograms of each node's values given its parent:

$$
p^{*}\left(x_{i}=v_{i} \mid x_{\pi_{i}}=v_{j}\right)=\frac{N\left(x_{i}=v_{i}, x_{\pi_{i}}=v_{j}\right)}{\sum_{\mathbf{v}_{i}} N\left(x_{i}=v_{i}, x_{\pi_{i}}=v_{j}\right)}=\frac{N_{i}\left(\mathbf{y}_{i}\right)}{N_{\pi_{i}}\left(v_{j}\right)}
$$

except for the root which uses marginal counts $N_{r}\left(v_{r}\right) / N$.

- For continuous data, the most common model is a two-dimensional Gaussian at each node. The ML parameters are just to set the mean of $p_{i}\left(\mathbf{y}_{i}\right)$ to be the sample mean of $\left[x_{i} ; x_{\pi_{i}}\right]$ and the covariance matrix to the sample covariance.
- In practice we should use some kind of smoothing/regularization.

Optimal Structure

- Let us rewrite the likelihood function:

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\sum_{\mathbf{x} \in \mathbf{V}_{\mathrm{all}}} N(\mathbf{x}) \log p(\mathbf{x}) \\
& =\sum_{\mathbf{x}} N(\mathbf{x})\left(\log p\left(\mathbf{x}_{r}\right)+\sum_{i \neq r} \log p\left(x_{i} \mid x_{\pi_{i}}\right)\right)
\end{aligned}
$$

- ML parameters, are equal to the observed frequency counts $q(\cdot)$:

$$
\begin{aligned}
\frac{\ell^{*}}{N} & =\sum_{\mathbf{x} \in \mathbf{V}_{\text {all }}} q(\mathbf{x})\left(\log q\left(\mathbf{x}_{r}\right)+\sum_{i \neq r} \log q\left(x_{i} \mid x_{\pi_{i}}\right)\right) \\
& =\sum_{\mathbf{x}} q(\mathbf{x})\left(\log q\left(\mathbf{x}_{r}\right)+\sum_{i \neq r} \log \frac{q\left(x_{i}, x_{\pi_{i}}\right)}{q\left(x_{\pi_{i}}\right)}\right) \\
& =\sum_{\mathbf{x}} q(\mathbf{x}) \sum_{i \neq r} \log \frac{q\left(x_{i}, x_{\pi_{i}}\right)}{q\left(x_{i}\right) q\left(x_{\pi_{i}}\right)}+\sum_{\mathbf{x}} q(\mathbf{x}) \sum_{i} \log q\left(\mathbf{x}_{i}\right)
\end{aligned}
$$

- NB: second term does not depend on structure.

Edge Weights

- Each term in sum $i \neq r$ corresponds to an edge from i to its parent.

$$
\begin{aligned}
\frac{\ell^{*}}{N} & =\sum_{\mathbf{x}} q(\mathbf{x}) \sum_{i \neq r} \log \frac{q\left(x_{i}, x_{\pi_{i}}\right)}{q\left(x_{i}\right) q\left(x_{\pi_{i}}\right)}+C \\
& =\sum_{i \neq r} \sum_{x_{i}, x_{\pi_{i}}} q\left(x_{i}, x_{\pi_{i}}\right) \log \frac{q\left(x_{i}, x_{\pi_{i}}\right)}{q\left(x_{i}\right) q\left(x_{\pi_{i}}\right)}+C \\
& =\sum_{i \neq r} \sum_{\mathbf{y}_{i}} q\left(\mathbf{y}_{i}\right) \log \frac{q\left(\mathbf{y}_{i}\right)}{q\left(x_{i}\right) q\left(x_{\pi_{i}}\right)}+C \\
& =\sum_{i \neq r}^{W} W\left(i ; \pi_{i}\right)+C
\end{aligned}
$$

where the edge weights W are defined by mutual information:

$$
W(i ; j)=\sum_{x_{i}, x_{j}} q\left(x_{i}, x_{j}\right) \log \frac{q\left(x_{i}, x_{j}\right)}{q\left(x_{i}\right) q\left(x_{j}\right)}
$$

- So overall likelihood is sum of weights on edges that we use.

We need the maximum weight spanning tree.

Maximum Likelihood Trees

We can now completely solve the tree learning problem:

1. Compute the marginal counts $q\left(x_{i}\right)$ for each node and pairwise counts $q\left(x_{i}, x_{j}\right)$ for all pairs of nodes.
2. Set the weights to the mutual informations:

$$
W(i ; j)=\sum_{x_{i}, x_{j}} q\left(x_{i}, x_{j}\right) \log \frac{q\left(x_{i}, x_{j}\right)}{q\left(x_{i}\right) q\left(x_{j}\right)}
$$

3. Find the maximum weight spanning tree $A=\operatorname{MWST}(W)$.
4. Using the undirected tree A chosen by MWST, pick a root arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:

$$
p\left(x_{i} \mid x_{\pi_{i}}\right)=\frac{q\left(x_{i}, x_{\pi_{i}}\right)}{\sum_{x_{i}} q\left(x_{i}, x_{\pi_{i}}\right)}=\frac{q\left(x_{i}, x_{\pi_{i}}\right)}{q\left(x_{\pi_{i}}\right)}
$$

- Any directed tree consistent with the undirected tree found by the algorithm above will assign the same likelihood to any dataset.
- Amazingly, as far as likelihood goes, the root is arbitrary. We can just pick one node and orient the edges away from it. Or we can work with undirected models.
- For continuous nodes (e.g. Gaussian), the situation is similar, except that computing the mutual information requires an integral.
- Mutual information is the Kullback-Leibler divergence (cross-entropy) between a distribution and the product of its marginals. Measures how far from independent the joint distribution is.

$$
W(i ; j)=\mathrm{I}\left[x_{i} ; x_{j}\right]=\operatorname{KL}\left[q\left(x_{i}, x j\right) \| q\left(x_{i}\right) q\left(x_{j}\right)\right]
$$

