
Lecture 7:

Fully Observed Trees

Sam Roweis

January 26, 2004

Directed Tree Graphical Models

• Directed trees are DAGMs in which each variable xi has exactly one
other variable as its parent xπi except the “root” xroot which has
no parents. Thus, the probability of a variable taking on a certain
value depends only on the value of its parent:

p(x) = p(xroot)
∏

i6=root

p(xi|xπi)

• Trees are the next step up from assuming independence.
Instead of considering variables in isolation, consider them in pairs.

NB: each node (except root) has
exactly one parent, but nodes
may have more than one child.

x x

x

x

x

x

1,n 3,n

2,n

4,n

6,n

5,n

Undirected Tree Graphical Models

• Undirected trees are connected, acyclic graphs with exactly (D-1)
edges if there are D nodes (variables).

• For undirected trees, the cliques are all pairs of connected nodes.

p(x) =
1

Z

∏

i

ψi(xi, xπi)

where we can make Z = 1 with the choice ψi = p(xi|xπi) except
for one clique involving the root: ψj = p(xr)p(xj|xπj)

• Trees have no “explaining-away” (converging arrows).
Therefore, d-separation and regular separation are equivalent.

• Directed and undirected trees are equivalent and the choice of root
is arbitrary (for fully observed models).

• Another characterization of trees: there is exactly one path between
any pair of nodes (without doubling back).

Likelihood function

• Notation:
yi ≡ a node xi and its single parent xπi.
Vi ≡ set of joint configurations of node i and its parent xπi
(yroot ≡ xroot and Vroot ≡ vroot)

• Directed model likelihood:

`(θ;D) =
∑

n

log p(xn) =
∑

n

log pr(x
n
r) +

∑

i6=r

log p(xi
n|xπi

n)

=
∑

n

∑

i

∑

v∈Vi

[yni = v] log pi(v) indicator trick

=
∑

i

∑

v∈Vi

Ni(v) log pi(v)

where Ni(v) =
∑

n[y
n
i = v] and pi(vi) = p(xi|xπi).

More on the Likelihood function

• Undirected model likelihood:

`(θ;D) =
∑

n

log
∏

i

ψi(y
n
i)

=
∑

n

∑

i

∑

v∈Vi

[yni = v] logψi(v)

=
∑

i

∑

v∈Vi

Ni(v) logψi(v)

where Ni(y) =
∑

n[y
n
i = y] and ψi(yi) = p(xi|xπi).

(Except for one clique involving the root: ψj = p(xr)p(xj|xπj))

• Directed and undirected likelihoods are the same!

• Trees are in the exponential family with yi as sufficient statistics.

Maximum Likelihood Parameters Given Structure

• Trees are just a special case of fully observed graphical models.

• For discrete data xi with values vi, each node stores a conditional
probability table (CPT) over its values given its parent’s value.
The ML parameter estimates are just the empirical histograms of
each node’s values given its parent:

p∗(xi = vi|xπi = vj) =
N (xi = vi, xπi = vj)

∑

vi
N (xi = vi, xπi = vj)

=
Ni(yi)

Nπi(vj)

except for the root which uses marginal counts Nr(vr)/N .

• For continuous data, the most common model is a two-dimensional
Gaussian at each node. The ML parameters are just to set the
mean of pi(yi) to be the sample mean of [xi;xπi] and the
covariance matrix to the sample covariance.

• In practice we should use some kind of smoothing/regularization.

Structure Learning

•What about the tree structure (links)?
How do we know which nodes to make parents of which?

x x

x

x

x

x

1,n 3,n

2,n

4,n

6,n

5,n

• Bold idea: how can we also learn the optimal structure?
In principle, we could search all combinatorial structures, for each
compute the ML parameters, and take the best one.

• But is there a better way? Yes. It turns out that structure learning
in tree models can be converted to a good old computer science
problem: maximum weight spanning tree.

Optimal Structure

• Let us rewrite the likelihood function:

`(θ;D) =
∑

x∈Vall

N(x) log p(x)

=
∑

x

N(x)

log p(xr) +
∑

i6=r

log p(xi|xπi)

•ML parameters, are equal to the observed frequency counts q(·):

`∗

N
=

∑

x∈Vall

q(x)

log q(xr) +
∑

i6=r

log q(xi|xπi)

=
∑

x

q(x)

log q(xr) +
∑

i6=r

log
q(xi, xπi)

q(xπi)

=
∑

x

q(x)
∑

i6=r

log
q(xi, xπi)

q(xi)q(xπi)
+

∑

x

q(x)
∑

i

log q(xi)

• NB: second term does not depend on structure.

Edge Weights

• Each term in sum i 6= r corresponds to an edge from i to its parent.
`∗

N
=

∑

x

q(x)
∑

i6=r

log
q(xi, xπi)

q(xi)q(xπi)
+ C

=
∑

i6=r

∑

xi,xπi

q(xi, xπi) log
q(xi, xπi)

q(xi)q(xπi)
+ C

=
∑

i6=r

∑

yi

q(yi) log
q(yi)

q(xi)q(xπi)
+ C

=
∑

i6=r

W (i;πi) + C

where the edge weights W are defined by mutual information:

W (i; j) =
∑

xi,xj

q(xi, xj) log
q(xi, xj)

q(xi)q(xj)

• So overall likelihood is sum of weights on edges that we use.
We need the maximum weight spanning tree.

Kruskal’s algorithm (Greedy Search)

• To find the maximum weight spanning tree A on a graph with
nodes U and weighted edges E:

1.A← empty

2. Sort edges E by nonincreasing weight: e1, e2, . . . , eK .

3. for k = 1 to K {A +=ek unless doing so creates a cycle}

a

b d

e

fgh

i

8 7

10
67

8

14

c

a

b d

e

fgh

i

4

8 7

9

102

67

18

14

c

42
11

11

Maximum Likelihood Trees

We can now completely solve the tree learning problem:

1. Compute the marginal counts q(xi) for each node
and pairwise counts q(xi, xj) for all pairs of nodes.

2. Set the weights to the mutual informations:

W (i; j) =
∑

xi,xj

q(xi, xj) log
q(xi, xj)

q(xi)q(xj)

3. Find the maximum weight spanning tree A=MWST(W).

4. Using the undirected tree A chosen by MWST, pick a root
arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:

p(xi|xπi) =
q(xi, xπi)

∑

xi
q(xi, xπi)

=
q(xi, xπi)

q(xπi)

Notes

• Any directed tree consistent with the undirected tree found by the
algorithm above will assign the same likelihood to any dataset.

• Amazingly, as far as likelihood goes, the root is arbitrary.
We can just pick one node and orient the edges away from it.
Or we can work with undirected models.

• For continuous nodes (e.g. Gaussian), the situation is similar,
except that computing the mutual information requires an integral.

•Mutual information is the Kullback-Leibler divergence
(cross-entropy) between a distribution and the product of its
marginals. Measures how far from independent the joint
distribution is.

W (i; j) = I[xi;xj] = KL[q(xi, xj)‖q(xi)q(xj)]

aids

health

baseball

hit

players

bible

god

bmw

car

cancer

patients

dealer

drive

engine

honda

card

graphics
video

windows

case
fact

childrengovernment

christian

computer

science

course

data

system

disease

disk

files

memory

display image

server

doctor

dos

scsi

driver

earth

orbit

email ftpphone

oil

evidence

human

question

fans

team

format

food

msg

water

games

jesus

religion

jewspower
president

rights

state

war

gun

law

insurance

medicine

help

problem hockey

nhl

israel

launchspace

league

lunar

moon

mac

mars

nasa

studies

mission

shuttle

number

satellite
solar

vitamin

pc

software

program

puck

research

university

season

technology

win

version

world

won

aids

health

baseball

hit

bible

bmw

cancer

car

dealer engine honda

card

graphics video

case

children

christian computercourse

data

disease

disk

drive memory system

display

server

doctor

dos

scsi

driver

earth

orbit

email

phone

oil

evidence

fact

question

fans

files

format ftp

food

msg water

image games

god

jesus

government

jews power rights state war

gun

insurance medicine president

help

hockey

nhl

humanisrael religion

launch

law

league

lunar

mac

mars

patients studies

mission

moon nasa

number

satellite solar space

vitamin

pc

software

players

problem

program

windows

puck

research science

season

shuttle technology

university

team

version

world

win

won

