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Learning Graphical Models from Data

• In AI the bottleneck is often knowledge acquisition.

• Human experts are rare, expensive, unreliable, slow.
But we have lots of machine readable data.

• Want to build systems automatically based on data and a small
amount of prior information (e.g. from experts).

⇒ Sam Roweis ⇒ Geoff Hinton

• In this course, our “systems” will be probabilistic graphical models.

• Assume the prior information we have specifies type & structure of
the GM, as well as the mathematical form of the parent-conditional
distributions or clique potentials.

• In this case learning ≡ setting parameters.
(“Structure learning” is also possible but we won’t consider it now.)

Multiple Observations, Complete Data, IID Sampling

• A single observation of the data X is rarely useful on its own.

• Generally we have data including many observations, which creates
a set of random variables: D = {x1,x2, . . . ,xM}

• We will assume two things:

1. Observations are independently and identically distributed
according to joint distribution of graphical model: IID samples.

2. We observe all random variables in the domain on each
observation: complete data.

• We shade the nodes in a graphical model to indicate they are
observed. (Later you will see unshaded nodes corresponding to
missing data or latent variables.)
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Likelihood Function

• So far we have focused on the (log) probability function p(x|θ)
which assigns a probability (density) to any joint configuration of
variables x given fixed parameters θ.

• But in learning we turn this on its head: we have some fixed data
and we want to find parameters.

• Think of p(x|θ) as a function of θ for fixed x:

L(θ;x) = p(x|θ)

`(θ;x) = log p(x|θ)

This function is called the (log) “likelihood”.

• Chose θ to maximize some cost function c(θ) which includes `(θ):

c(θ) = `(θ;D) maximum likelihood (ML)

c(θ) = `(θ;D) + r(θ) maximum a posteriori (MAP)/penalizedML

(also cross-validation, Bayesian estimators, BIC, AIC, ...)



Maximum Likelihood

• For IID data:

p(D|θ) =
∏

m

p(xm|θ)

`(θ;D) =
∑

m

log p(xm|θ)

• Idea of maximum likelihod estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

θ∗ML = argmaxθ `(θ;D)

• Very commonly used in statistics.
Often leads to “intuitive”, “appealing”, or “natural” estimators.

• For a start, the IID assumption makes the log likelihood into a sum,
so its derivative can be easily taken term by term.

Sufficient Statistics

• A statistic is a (possibly vector valued) function of a (set of)
random variable(s).

• T (X) is a “sufficient statistic” for X if

T (x1) = T (x2) ⇒ L(θ;x1) = L(θ;x2) ∀θ

• Equivalently (by the Neyman factorization theorem) we can write:

p(x|θ) = h (x, T (x)) g (T (x), θ)

• Example: exponential family models:

p(x|θ) = h(x) exp{η>T (x) − A(η)}
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Example: Bernoulli Trials

• We observe M iid coin flips: D=H,H,T,H,. . .

• Model: p(H) = θ p(T ) = (1 − θ)

• Likelihood:

`(θ;D) = log p(D|θ)

= log
∏

m

θx
m

(1 − θ)1−x
m

= log θ
∑

m

x
m + log(1 − θ)

∑

m

(1 − x
m)

= log θNH + log(1 − θ)NT

• Take derivatives and set to zero:
∂`

∂θ
=

NH

θ
−

NT

1 − θ

⇒ θ∗ML =
NH

NH + NT

Example: Multinomial

• We observe M iid die rolls (K-sided): D=3,1,K,2,. . .

• Model: p(k) = θk
∑

k θk = 1

• Likelihood (for binary indicators [xm = k]):

`(θ;D) = log p(D|θ)

= log
∏

m

θxm = log
∏

m

θ
[xm=1]
1 . . . θ

[xm=k]
k

=
∑

k

log θk

∑

m

[xm = k] =
∑

k

Nk log θk

• Take derivatives and set to zero (enforcing
∑

k θk = 1):

∂`

∂θk
=

Nk

θk
− M

⇒ θ∗k =
Nk

M



Example: Univariate Normal

• We observe M iid real samples: D=1.18,-.25,.78,. . .

• Model: p(x) = (2πσ2)−1/2 exp{−(x − µ)2/2σ2}

• Likelihood (using probability density):

`(θ;D) = log p(D|θ)

= −
M

2
log(2πσ2) −

1

2

∑

m

(xm − µ)2

σ2

• Take derivatives and set to zero:
∂`
∂µ = (1/σ2)

∑

m(xm − µ)

∂`
∂σ2 = − M

2σ2 + 1
2σ4

∑

m(xm − µ)2

⇒ µML = (1/M )
∑

m xm

σ2
ML = (1/M )

∑

m x2
m − µ2

ML

Example: Univariate Normal
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Example: Linear Regression

• At a linear regression node, some parents (covariates/inputs) and
all children (responses/outputs) are continuous valued variables.

• For each child and setting of discrete parents we use the model:

p(y|x, θ) = gauss(y|θ>x, σ2)

• The likelihood is the familiar “squared error” cost:

`(θ;D) = −
1

2σ2

∑

m

(ym − θ>x
m)2

• The ML parameters can be solved for using linear least-squares:

∂`

∂θ
= −

∑

m

(ym − θ>x
m)xm

⇒ θ∗ML = (X>
X)−1

X
>
Y

• Sufficient statistics are input correlation matrix and input-output
cross-correlation vector.

Example: Linear Regression
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Sufficient Statistics are Sums

• In the examples above, the
sufficient statistics were merely
sums (counts) of the data:
Bernoulli: # of heads, tails
Multinomial: # of each type
Gaussian: mean, mean-square
Regression: correlations

• As we will see, this is true for all
exponential family models:
sufficient statistics are the
average natural parameters.

• Only∗ exponential family models
have simple sufficient statistics.
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MLE for Directed GMs

• For a directed GM, the likelihood function has a nice form:

log p(D|θ) = log
∏

m

∏

i

p(xm
i |xπi, θi) =

∑

m

∑

i

log p(xm
i |xπi, θi)

• The parameters decouple; so we can maximize likelihood
independently for each node’s function by setting θi.

• Only need the values of xi and its parents in order to estimate θi.

• Furthermore, if xi,xπi have sufficient statistics only need those.

• In general, for fully observed data if we know how to estimate
params at a single node we can do it for the whole network.
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Example: A Directed Model

• Consider the distribution defined by the DAGM:

p(x|θ) = p(x1|θ1)p(x2|x1, θ2)p(x3|x1, θ3)p(x4|x2,x3, θ4)

• This is exactly like learning four separate small DAGMs, each of
which consists of a node and its parents (not its Markov blanket).
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MLE for Multinomial Networks

• Assume our DAGM contains only discrete nodes, and we use the
(general) multinomial form for the conditional probabilities.

• Sufficient statistics involve counts of joint settings of xi,xπi

summing over all other variables in the table.

• Likelihood for these special “fully observed multinomial networks”:

`(θ;D) = log
∏

m,i

p(xm
i |xπi

m, θi)

= log
∏

i,xi,xπi

p(xi|xπi, θi)
N(xi,xπi) = log

∏

i,xi,xπi

θ
N(xi,xπi)

xi|xπi

=
∑

i

∑

xi,xπi

N (xi,xπi) log θxi|xπi

⇒ θ∗
xi|xπi

=
N (xi,xπi)

N (xπi)



MLE for General Exponential Family Models

• Recall the probability function for models in the exponential family:

p(x|θ) = h(x) exp{η>T (x) − A(η)}

• For iid data, the sufficient statistic vector is
∑

m T (xm):

`(η;D) = log p(D|η) =

(

∑

m

log h(xm)

)

−MA(η)+

(

η>
∑

m

T (xm)

)

• Take derivatives and set to zero:
∂`
∂η =

∑

m T (xm) − M
∂A(η)

∂η

⇒
∂A(η)

∂η = 1
M

∑

m T (xm)

ηML = 1
M

∑

m T (xm)

recalling that the natural moments of an exponential distribution
are the derivatives of the log normalizer.


