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Joint Probabilities

• Goal 1: represent a joint distribution P(X) = P(x1,x2, . . . ,xn)
compactly even when there are many variables.

• Goal 2: efficiently calculate marginal and conditionals of such
compactly represented joint distributions.

• Notice: for n discrete variables of arity k, the naive (table)
representation is HUGE: it requires kn entries.

• We need to make some assumptions about the distribution.
One simple assumption: independence == complete factorization:

P(X) =
∏

i P(xi)

• But the independence assumption is too restrictive.
So we make conditional independence assumptions instead.

Conditional Independence

• Notation: xA ⊥ xB|xC

Definition: two (sets of) variables xA and xB are conditionally
independent given a third xC if:

P(xA,xB|xC) = P(xA|xC)P(xB|xC) ∀xC

which is equivalent to saying

P(xA|xB,xC) = P(xA|xC) ∀xC

• Only a subset of all distributions respect any given (nontrivial)
conditional independence statement. The subset of distributions
that respect all the CI assumptions we make is the
family of distributions consisitent with our assumptions.

• Probabilistic graphical models are a powerful, elegant and simple
way to specify such a family.

Probabilistic Graphical Models

• Probabilistic graphical models represent large joint distributions
compactly using a set of “local” relationships specified by a graph.

• Each random variable in our model corresponds to a graph node.

• There are directed/undirected edges between the nodes which tell
us qualitatively about the factorization of the joint probability.

• There are functions stored at the nodes which tell us the
quantitative details of the pieces into which the distribution factors.
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• Graphical models are also known as Bayes(ian) (Belief) Net(work)s.



Directed Graphical Models

• Consider directed acyclic graphs over n variables.

• Each node has (possibly empty) set of parents πi.

• Each node maintains a function fi(xi;xπi) such that
fi > 0 and

∑
xi

fi(xi;xπi
) = 1 ∀πi.

• Define the joint probability to be:

P(x1,x2, . . . ,xn) =
∏

i

fi(xi;xπi
)

Even with no further restriction on the the fi, it is always true that

fi(xi;xπi
) = P(xi|xπi

)

so we will just write

P(x1,x2, . . . ,xn) =
∏

i

P(xi|xπi)

• Factorization of the joint in terms of local conditional probabilities.
Exponential in “fan-in” of each node instead of in total variables n.

Conditional Independence in DAGs

• If we order the nodes in a directed graphical model so that parents
always come before their children in the ordering then the graphical
model implies the following about the distribution:

{xi ⊥ xπ̃i
|xπi

}∀i

where xπ̃i
are the nodes coming before xi that are not its parents.

• In other words, the DAG is telling us that each variable is
conditionally independent of its non-descendants given its parents.

• Such an ordering is called a “topological” ordering.

Example DAG

• Consider this six node network: The joint probability is now:
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P(x1)P(x2|x1)P(x3|x1)

P(x4|x2)P(x5|x3)P(x6|x2,x5)
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Missing Edges

• Key point about directed graphical models:
Missing edges imply conditional independence

• Remember, that by the chain rule we can always write the full joint
as a product of conditionals, given an ordering:

P(x1,x2,x3,x4, . . .) = P(x1)P(x2|x1)P(x3|x1,x2)P(x4|x1,x2,x3) . . .

• If the joint is represented by a DAGM, then some of the
conditioned variables on the right hand sides are missing.
This is equivalent to enforcing conditional independence.

• Start with the “idiot’s graph”: each node has all previous nodes in
the ordering as its parents.

• Now remove edges to get your DAG.

• Removing an edge into node i eliminates an argument from the
conditional probability factor p(xi|x1,x2, . . . ,xi−1)



Even more structure

• Surprisingly, once you have specified the basic conditional
independencies, there are other ones that follow from those.

• In general, it is a hard problem to say which extra CI statements
follow from a basic set. However, in the case of DAGMs, we have
an efficient way of generating all CI statements that must be true

given the connectivity of the graph.

• This involves the idea of d-separation in a graph.

• Notice that for specific (numerical) choices of factors at the nodes
there may be even more conditional independencies, but we are
only concerned with statements that are always true of every
member of the family of distributions, no matter what specific
factors live at the nodes.

• Remember: the graph alone represents a family of joint distributions

consistent with its CI assumptions, not any specific distribution.

D-separation

• D-separation, or directed-separation is a notion of connectedness in
DAGMs in which two (sets of) variables may or may not be
connected conditioned on a third (set of) variable.

• D-connection implies conditional dependence and d-separation
implies conditional independence.

• In particular, we say that xA ⊥ xB|xC if every variable in A is
d-separated from every variable in B conditioned on all the
variables in C.

• To check if an independence is true, we can cycle through each
node in A, do a depth-first search to reach every node in B, and
examine the path between them. If all of the paths are d-separated,
then we can assert xA ⊥ xB|xC .

• Thus, it will be sufficient to consider triples of nodes. (Why?)

• Pictorially, when we condition on a node, we shade it in.

Chain

X Y Z X Y Z

• Q: When we condition on y, are x and z independent?

P(x,y, z) = P(x)P(y|x)P(z|y)

which implies

P(z|x,y) =
P(x,y, z)

P(x,y)

=
P(x)P(y|x)P(z|y)

P(x)P(y|x)

= P(z|y)

and therefore x ⊥ z|y

• Think of x as the past, y as the present and z as the future.

Common Cause
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y is the common cause
of the two independent
effects x and z

• Q: When we condition on y, are x and z independent?

P(x,y, z) = P(y)P(x|y)P(z|y)

which implies

P(x, z|y) =
P(x,y, z)

P(y)

=
P(y)P(x|y)P(z|y)

P(y)

= P(x|y)P(z|y)

and therefore x ⊥ z|y



Explaining Away
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• Q: When we condition on y, are x and z independent?

P(x,y, z) = P(x)P(z)P(y|x, z)

• x and z are marginally independent, but given y they are
conditionally dependent.

• This important effect is called explaining away (Berkson’s paradox.)

• For example, flip two coins independently; let x=coin1,z=coin2.
Let y=1 if the coins come up the same and y=0 if different.

• x and z are independent, but if I tell you y, they become coupled!

Bayes Ball Algorithm

• To check if xA ⊥ xB|xC we need to check if every variable in A is
d-separated from every variable in B conditioned on all vars in C.

• In other words, given that all the nodes in xC are clamped, when
we wiggle nodes xA can we change any of the node xB?

• The Bayes-Ball Algorithm is a such a d-separation test.
We shade all nodes xC, place balls at each node in xA (or xB), let
them bounce around according to some rules, and then ask if any
of the balls reach any of the nodes in xB (or xA).
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So we need to know what happens
when a ball arrives at a node Y

on its way from X to Z.

Bayes-Ball Rules

• The three cases we considered tell us rules:
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(a) (b)

(a)

X

Y

Z X

Y

Z

(b)

(a)

X

Y

Z

(b)

X

Y

Z

Bayes-Ball Boundary Rules

• We also need the boundary conditions:

(a) (b)
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• Here’s a trick for the explaining away case:
If y or any of its descendants is shaded,
the ball passes through.
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• Notice balls can travel opposite to edge directions.



Canonical Micrographs
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Examples of Bayes-Ball Algorithm

x1 ⊥ x6|{x2,x3} ?

1X

2X

3X

X 4

X 5

X6

Examples of Bayes-Ball Algorithm

x2 ⊥ x3|{x1,x6} ?
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Notice: balls can travel opposite to edge directions.

Families of Distributions

• Consider two families of distributions.

• One is generated by all possible settings of the conditional
probability tables in the DAGM form:

P(x1,x2, . . . ,xn) =
∏

i

P(xi|xπi
)

• The other is generated by finding all the conditional independencies
implied by a DAGM and eliminating any joint distributions which
violate them.

• A version of the amazing Hammersley-Clifford Theorem (1971)
states that these two families are exactly the same.


